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ABSTRACT

We study reinforcement learning for global decision-making in the presence of
local agents, where the global decision-maker makes decisions affecting all local
agents, and the objective is to learn a policy that maximizes the joint rewards
of all the agents. Such problems find many applications, e.g. demand response,
EV charging, and queueing. In this setting, scalability has been a long-standing
challenge due to the size of the joint state space which can be exponential in the
number of agents. This work proposes the SUBSAMPLE-Q algorithm, where the
global agent subsamples £ < n local agents to compute a policy in time that
is polynomial in k. We show that this learned policy converges to the optimal
policy on the order of O(1/vk + €j,.) as the number of subsampled agents &
increases, where ¢y, ,, is the Bellman noise. Finally, we validate our theoretical
results through numerical simulations in demand-response and queueing settings.

1 INTRODUCTION

Global decision-making, where a global agent makes decisions that affect a large number of local
agents, is a classical problem that has been widely studied in many forms (Foster et al., [2022; |Qin
et al 2023} [Foster et al.| 2023)) and can be found in many applications, e.g. network optimization,
power management, and electric vehicle (EV) charging (Kim & Giannakis}, 2017;Zhang & Pavonel,
2016; Molzahn et al., 2017). A critical challenge is the uncertain nature of the underlying system,
which is often difficult to model precisely. Reinforcement Learning (RL) has demonstrated an im-
pressive performance in a wide array of applications, such as the game of Go (Silver et al.,|2016),
autonomous driving (Kiran et al., 2022), and robotics (Kober et al.l 2013). More recently, RL has
emerged as a powerful tool for learning to control unknown systems (Ghai et al., 2023} [Lin et al.,
2023; 2024aib), and thus holds significant potential for decision-making in multi-agent systems,
including global decision making for local agents.

However, RL for multi-agent systems becomes intractable as the number of agents increases, due to
the curse of dimensionality. For instance, classical RL algorithms, such as tabular ()-learning and
temporal difference learning, require storing a Q)-function (Bertsekas & Tsitsiklis| |1996; Powell,
2007) that scales with the size of the state-action space. Even if the individual agents’ state space
is small, the global state space can take values from a set of size exponentially large in the number
of agents. When the system’s rewards are not discounted, reinforcement learning for multi-agent
systems is provably NP-hard (Qu et al.,2020a}; Blondel & Tsitsiklis| | 2000), and this scalability issue
has been observed in a variety of settings /Guestrin et al.[(2003)); |Papadimitriou & Tsitsiklis|(1999). A
promising line of research over recent years focuses on networked instances, where interactions are
restricted to local neighborhoods of agents (Lin et al., 202052021} |Qu et al.| [2020b; Jing et al., 2022
Chu et al., [2020). This approach has led to scalable algorithms where each agent only considers the
agents in its neighborhood to derive approximately optimal solutions. However, these results do not
apply to our setting, where one global agent interacts with many local agents. This can be viewed
as a star graph, where the neighborhood of the central decision-making agent is large.

Beyond the networked formulation, another exciting line of work addressing this intractability is
mean-field RL (Yang et al., 2018). Mean-field RL assumes that all agents are homogeneous in
their state and action spaces, enabling interactions to be approximated by a representative “mean”
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agent. This significantly reduces the complexity of )-learning to a polynomial dependence on the
number of agents, and learns an approximately optimal policy where the approximation error decays
with the number of agents (Gu et al., |2021; 2022a). However, mean-field RL does not directly
transfer to our setting since the global decision-making agent violates the homogeneity assumption.
Moreover, when the number of local agents is large, storing a polynomially-large (-table (where the
polynomial’s degree depends on size of the state space for a single agent) can still be infeasible. This
motivates the following fundamental question: can we design a fast and competitive policy-learning
algorithm for a global decision-making agent in a system with many local agents?

Contributions. We answer this question affirmatively. Our key contributions are outlined below.

* Subsampling Algorithm. We propose SUBSAMPLE-Q, an algorithm designed to address the
challenge of global decision-making in systems with a large number of local agents. We model the
problem as a Markov Decision Process with a global decision-making agent and n local agents.
SUBSAMPLE-Q (Algorithms[T]to[3) begins by selecting & < n local agents to learn a deterministic

policy 7%, where m is the number of samples used to update the estimates of the Q-function, by

applying value iteration and mean-field value iteration on the & local agents to learn y ost . which
can be viewed as a smaller () function. It then deploys a stochastic policy 7y, that uniformly

samples k local agents at each step and uses 7, ,,, to determine an action for the global agent.

* Sample Complexity and Theoretical Guarantee. As the number of local agents increases, the
size of ., scales polynomially with k, rather than polynomially with n as in mean-field RL.

When the size of the local agent’s state space grows, the size of @) ,, scales exponentially with
k, instead of exponentially with n as in traditional ()-learning). Theorem demonstrates that

the performance gap between 77,?}” and the optimal policy 7* is O(1/ VE+ €k,m), Where €,

represents the Bellman noise in Q$* . The choice of k reveals a fundamental trade-off between
the size of the Q-table and the optimality of 7%t . As n scales, setting k = O(logn) achieves
a runtime that is polylogarithmic in n, representing an exponential speedup over the previously

best-known polytime mean-field RL methods, while maintaining a decaying optimality gap.

* Numerical Simulations. We evaluate the effectiveness of SUBSAMPLE-Q in two scenarios: a
power system demand-response problem (Example [5.1)) and a queueing problem (Example [3.2).
A key inspiration for our approach is the power-of-two-choices from queueing theory (Mitzen-
macher & Sinclair, |1996), where a dispatcher subsamples two queues to make decisions. Our
work generalizes this principle to a broader decision-making problem.

While our results are theoretical in nature, it is our hope that SUBSAMPLE~-Q will lead to further
exploration into the potential of subsampling in Markov games and networked multi-agent rein-
forcement learning, and inspire the development of practical algorithms for multi-agent settings.

2 PRELIMINARIES

Notation. For k,n € N where k < n, let (1)) denote the set of k-sized subsets of [n] = {1,...,n}.
For any vector z € R%, let ||z||; and ||z« denote the standard ¢; and /., norms of z respectively.
Let ||A]|; denote the matrix £;-norm of A € R"*™. Given a collection of variables sy, ..., s, the

shorthand s denotes the set {s; : i € A} for A C [n]. We use O(-) to suppress polylogarithmic fac-
tors in all problem parameters except n. For a discrete measurable space (X', F), the total variation
distance between probability measures p1, p is given by TV (p1, p2) = 2 3 1 [p1(2) — pa(2)].

Problem Statement. We consider a system of n + 1 agents given by A" = {0} U [n]. Let agent 0 be
the “global agent” decision-maker, and agents [n] be the “local” agents. In this model, each agent
i € [n] is associated with a state s; € S;, where S is the local agent’s state space. The global agent
is associated with a state s, € S, and action a4 € Ay, where S is the global agent’s state space and
A, is the global agent’s action space. The global state of all agents is given by (s4, s1,...,8,) €
S =8, x §'. At each time-step ¢, the next state for all the agents is independently generated by
stochastic transition kernels P, : Sy x Sy x Ay — [0,1] and P, : §; X §; x S5 — [0, 1] as follows:

st +1) ~ Py(t[s4(t), ag(?)), M
si(t + 1) ~ Py(-]si(t), s4(t)), Vi € [n] 2)
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The global agent selects a,4(t) € A,. Next, the agents receive a structured reward 7 : S x A, — R,
given by Equation , where the choice of functions r, and r; is flexible and application-specific.

1
r(s,a9) = Ty(sga0) 4> milsisy) 3)

global component i€[n] local component

We define a policy 7 : S — P(A,) as a map from states to distributions of actions such that ag ~
7(-|s). When a policy is executed, it generates a trajectory (s°,a0,r°),..., (s, al, ") via the
process af, ~7(s"), s ~ (Py, P)(s", al,), initialized at 5% ~ dy. We write P"[-] and E”[-] to denote
the law and corresponding expectation for the trajectory under this process. The goal of the problem
is to then learn a policy 7 that maximizes the value function V : m xS — R, the expected discounted

reward for each s € S given by

VT(s) =BT | > A'r(s(t), aqg(t))]s(0) = s , 4)

t=0

where v € (0,1) is a discounting factor. We define 7* as the optimal deterministic policy, which
maximizes V™ (s) at all states. This model characterizes a crucial decision-making process in the
presence of multiple agents where the information from all local agents is concentrated towards the
decision maker, the global agent. The objective of the problem is to learn an approximately optimal
policy that jointly minimizes the sample and computational complexities of learning the policy.

We make the following standard assumptions:

Assumption 2.1 (Finite state/action spaces). We assume that the state spaces of all the agents and
the action space of the global agent are finite: ||, |S,|, |A44] < oc.

Assumption 2.2 (Bounded rewards). The global and local components of the reward function are
bounded. Specifically, ||r,(-, )|l < 7g, and [[r;(+,*)||oc < 7. Then, ||7(, ) |Joo < 7y + 7 := T

Definition 2.1 (e-optimal policy). Given a policy simplex II, a policy = € II is e-optimal if for all
s€8,V™(s) > supen V™ (s) — e

Remark 2.2. Heterogeneity among the local agents can be captured by modeling agent types as part
of the agent state. Specifically, assign a type to each local agent by letting §; = £ x S;, where &
represents a set of different possible agent types, which are treated as part of the agent’s state. This
type remains fixed throughout the transitions, allowing the transition and reward functions to vary
depending on the agent’s type, and enabling the global agent to uniquely signal agents of each type.

Related Work. This paper relates to two major lines of work which we describe below.

Multi-agent RL (MARL). MARL has a rich history, starting with early works on Markov games
used to characterize the decision-making process (Shapleyl, (1953} |Littman, {1994), which can be
regarded as a multi-agent extension of the Markov Decision Process (MDP). MARL has since been
actively studied (Zhang et al.;,|2021)) in a broad range of settings, such as cooperative and competitive
agents. MARL is most similar to the category of “succinctly described” MDPs (Blondel & Tsitsiklis,
2000), where the state/action space is a product space formed by the individual state/action spaces of
multiple agents, and where the agents interact to maximize an objective function. Our work, which
can be viewed as an essential stepping stone to MARL, also shares the curse of dimensionality.

A line of celebrated works (Qu et al.| [ 2020b; |Chu et al.|, 20205 Lin et al.| |2020;2021}; Jing et al., [2022)
constrain the problem to networked instances to enforce local agent interactions and find policies that
maximize the objective function, which is the expected cumulative discounted reward. By exploiting
Gamarnik’s spatial exponential decay property from combinatorial optimization (Gamarnik et al.,
2009), they overcome the curse of dimensionality by truncating the problem to only search over the
policy space derived from the local neighborhood of agents that are at most x away from each other
to find an O(p**1)-approximation of the maximized objective function for p € (0,1). However,
since their algorithms have a complexity that is exponential in the size of the neighborhood, they
are only tractable for sparse graphs. Therefore, these algorithms do not apply to our decision-
making problem, which can be viewed as a dense star graph (see Appendix [A)). The recently popular
work on V-learning (Jin et al, [2021) reduces the dependence of the product action space to an
additive dependence. However, since our work focuses on the action of the global decision-maker,
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the complexity in the action space is already minimal. Instead, our work focuses on reducing the
complexity of the joint state space which has not been previously accomplished for dense networks.

Mean-Field RL. Under assumptions of homogeneity in the state/action spaces of the agents, the
problem of densely networked multi-agent RL was partially resolved in [Yang et al. (2018)); |Gu
et al.| (2021;2022azb); Subramanian et al.|(2022)) which approximates the learning problem through
mean-field control, where the approximation error scales as O(1/y/n). To overcome the problem
of designing algorithms on probability measure spaces, they study MARL under Pareto optimality
and use the (functional) strong law of large numbers to consider a lifted state/action space with a
representative agent, where the rewards and dynamics of the system are aggregated. |Cui & Koeppl
(2022); Hu et al.| (2023); |Carmona et al.|(2023)) introduce heterogeneity to the mean-field approach
using graphon mean-field games; however, there is a loss of topological information when using
graphons to approximate finite graphs, as graphons correspond to infinitely large adjacency matrices.
Additionally, graphon mean-field RL imposes a critical assumption of the existence of graphon
sequences that converge in cut-norm to the problem instance. Another mean-field RL approach that
partially introduces heterogeneity is in a line of work considering major and minor agents. This has
been well studied in the competitive setting (Carmona & Zhu| 2016}, (Carmona & Wangl 2016). In
the cooperative setting, Mondal et al.| (2022); (Cui et al.| (2023) are most related to our work, as they
collectively consider a setting with k classes of homogeneous agents, but their mean-field analytic
approaches do not converge to the optimal policy upon introducing a global decision-making agent.
Furthermore, these works require Lipschitz continuity assumptions on the reward functions which
we relax in our work. Finally, the algorithms underlying mean-field RL have a runtime that is
polynomial in n, whereas our SUBSAMP LE—-Q algorithm has a runtime that is polylogarithmic in n.

Other Related Works. A line of works has similarly exploited the star-shaped network in cooper-
ative multi-agent systems. Min et al.| (2023)); |(Chaudhari et al.| (2024) studied the communication
complexity and mixing times of various learning settings with purely homogeneous agents, and
Do et al|(2023) studied the setting of heterogeneous linear contextual bandits to yield a no-regret
guarantee. We extend this work to the more challenging setting of reinforcement learning.

Q-learning. To provide background for the analysis in this paper, we review a few key tech-
nical concepts in RL. At the core of the standard Q-learning framework (Watkins & Dayan,
1992) for offline-RL is the @-function Q: S x A, — R. (@Q-learning seeks to produce a pol-
icy m*(-|s) that maximizes the expected infinite horizon discounted reward. For any policy m,
Q™ (s,ag) = E™[>2 7' (s(t), ag(t))|s(0) = s,aq(0) = a]. One approach to learning the optimal
policy 7*(+|s) is dynamic programming, where the Q-function is iteratively updated using value-
iteration: Q°(s,a,) = 0, forall (s,ay) € S x A,. Then, forall t € [T], Q*"(s,a) = TQ'(s,ay),
where T is the Bellman operator defined as
/

TQ'(s,a9) = 1(5,a9) +VE b, (s, .a).simPi(-[s5,55) Vi n] JHax Q'(s',ay). 4)

The Bellman operator 7 satisfies a ~y-contractive property, implying the existence of a unique
fixed-point Q* such that TQ* = Q*, by the Banach-Caccioppoli fixed-point theorem (Banach)
1922). Here, the optimal policy is the deterministic greedy policy 7*:S,; x &' — Ag, where
7*(s) = argmax,, e, @"(s,ay). However, the complexity of a single update to the Q-function
is O(|Syl|S1|™ |.A |) Wthh grows exponentially with n. As the number of local agents 1ncreases
(n > |Si)),

Mean-field Transformation. To address this, Yang et al.| (2018) developed a mean-field approach
which, under homogeneity assumptions, considers the distribution function Fj,:S; — R given by
1 n
Fy,, (z) = - Z 1{s; =z}, VxeS§. (6)
i=1
Let 1, (S)) = { |b € {0,...,n}}I5 be the space of |S;|-length vectors where each entry is an
element of {0, 1 - ”, . 1} In this space, Fi, € fin (S1) where Fy  represents the proportion
of agents in each state The @-function is permutatlon -invariant in the local agents as they are
homogeneous, and permuting the labels of local agents with the same state will not change the
global agent’s decision. Thus, the Q-function only depends on the states s,,) through the distribution
function Fs[n] :

Q(gyw 1@ ag)= Q(9g7 S[n) ag)- (7
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Here, Q : Sy X pn(S1) x Ay — Ris a reparameterized ()-function learned by mean-field value
iteration. We initialize Qo(sg,EQ[”],ag) =0,Y(s,aqy) € Sy x A,. For all t, we update Q as
Qt+1( Sy Og) = 7A'Qt(sg, Fy,.,a4), where 7T is the Bellman operator in distribution space:

TQI(SWFS[W,WG/Q) = T(svag) +7E s ~Py(-|sg,ag), max Q (S F/ ]7alg) (3)
st NP;( |si,sg),Vi€[n] %

T is ~-contractive; hence, it has a unique fixed-point Q* where Q* (sg, Fsps ag) = Q" (g, 8], ag),
and the deterministic optimal (gireedy) policy 7* is 7* (s, Fls,,) = argmax, e, O (89> Fspys ag)-
The update complexity to the Q-function is O(|S,||.A,||S;|n!S!), which scales polynomially in 7.

Remark 2.3. The solution offered by mean-field value iteration and standard Q)-learning requires a
sample complexity of min{O(|S,||.A,[|Si|™), O(|S,||Ay||Si|n15t1)}, where one uses Q-learning if
|S; |”’1 <nlSl and mean-field value iteration otherwise. In each of these regimes, as n scales, the
update complexity can become incredibly computationally intensive. Therefore, we introduce the
SUBSAMPLE-Q algorithm in Section [3]to mitigate the cost of scaling the number of local agents.

3  METHOD AND THEORETICAL RESULTS

3.1 PROPOSED METHOD: SUBSAMPLE-Q

In this work, we propose the SUBSAMPLE-Q algorithm to overcome the polynomial (in n) sample
complexity of mean-field value iteration and the exponential (in n) sample complexity of traditional
Q-learning. In our algorithm, the global agent randomly samples a subset of local agents A C [n]
such that |A| = k, for k& < n. It ignores all other local agents [n] \ A, and performs value iteration

to learn the @-function QZ and policy 7 . for this surrogate subsystem of k local agents, where
m is the sample size in each iteration. When |S;|*~! < kIl the algorithm uses traditional value-

iteration, and when |S; |k*1 > kISt it switches to mean-field value iteration. The surrogate reward
gained by the system at each time stepis ra : S x 4, — R, given by Equation (E[):

ra(s,aq) =14(sg,a4) |A| Zrl Sg,:). 9)
€A

To convert the optimality of the global agent’s action on the k local-agent subsystem to an ap-
proximate optimality on the full n-agent system, we use a randomized policy 7r65t which samples

Ael ([”]) at each time-step to derive the action a4 < 7’ st (8¢, $a). Finally, Theorem shows
that the policy 779“ converges to the optimal policy 7* as k — n and m — oc.

We present Algorithms [T] and 2] (SUBSAMPLE-Q: Learning) and Algorithm [3] (SUBSAMPLE-Q:
Execution), which we describe below. We first characterize the notion of the empirical distribution:

Definition 3.1 (Empirical Distribution Function). For any population (s1,...,s,) € S;*, define the
empirical distribution function Fs, : §; — R for A C [n] such that |A| = k by:
(z) = |A|Zl{sz_ . (10)
iEA

Let 1 (S)) == { 2|b € {O . k}}lsll be the space of |S;|-length vectors where each entry in a vector
is an element of {0, + > k, ..., 1} such that Fs, € ui(S;). Here, Fs, is the proportion of agents in
the k-local-agent subsystem at each state.

Algorithms|[T]and 2] (Offline learning). Let mn € N denote the sample size for the learning algorithm
with sampling parameter & < n. When |S;|*~1 <k!S!|, we empirically learn the optimal Q-function
for a subsystem with k-local agents denoted by Qeét 1Sy x SFx Ay — R: set Qg)m(sg, sA,aq)=0
for all (sg, 5a, ag) ESy x Sff x Ag. Attime step t, set Q'L (s, 5a,a4) = Tem@% (59, 54, ag),

k,m

where 7~7W,L is the empirically adapted Bellman operator in Equation (| .
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Algorithm 1 SUB-SAMPLE-Q: Learning (if | S;[F~! < klSi)

Require: A multi-agent system as described in Section[2] Parameter T for the number of iterations
in the initial value iteration step. Sampling parameters k € [n] and m € N. Discount parameter
€ (0,1). Oracle O to sample sy ~ Py(-[sy, ay) and s; ~ Pi(:|s;, 54, a;) forall i € [n].
Uniformly sample A C [n] such that |A] = k.
Initialize QF ,,(sg, 5, a9) = 0 for (54, 5n,a4) € Sy X S x Ag.
fort =1toT do
for (sq,sA,aq) €8, xSF x A, do

§<+r,17(5973A7ag) ﬁ,mQA§g7m(SQ78A7a’g)

k ~est — AT
Return Qk’m. Forall sy, sn € Sy x 7', let 735, (s4, 8a) = argmaxg,e 4, @ ., (Sg: Sa, ag).

SAN A S ol ey

When |S;|*~1 > kISt we empirically learn the optimal mean-field Q-function for a k local agent
system, denoted (with abuse of notation) by QeSt 1Sy x i (S1) x Ag—=R. For (s4, Fs,,aq) €Sy %
11(St) x Ay, set QY m (89, Fsaray)=0. Attime ¢, set Qi1 (5., Fyy,a.)= ﬁWQZ’m(Sg, Fs,.aq),

k,m

where ﬁym is the empirically adapted mean-field Bellman operator in Equation 1}

Tr.m and Ty, ., draws m random samples 57~ Py(-|s4,ay) and s7~ P(-|si, 54) for j€[m], i€ A:

ﬁ,m@i,m(sga sasag) =7a(s,a9) + % Z X Qi,m(S§»S£7a’g)~ (1)
jefm) 0
ﬁ,m@i,m(sngSwag) =ra(s,aq) + % _g] ar/gneajig Qk m( FJ ) g) (12)
jelm
As in Equation (7), Q! k.m only depends on s through Fi .
Qi-m(sgvSAvag) :QAZm(Sg»ES‘Avag)- (13)

ﬁm and 77”n are ~y-contractive by Lemma Algorithms I and I apply value iter-
ation with their Bellman operator until ka converges to a fixed point Qegt satisfying

~est

Trm Q5 = 2t and Tg QS = Zsfn, giving equivalent deterministic policies 737, (sS4, 5a) =

arg max, e A, Qk v (89,50, ag) and 7% (54, Fs ) = argmax, ea, k;m(sg,EsA,ag).

Algorithm [3] (Online implementation). Here, Algorithm [3|(SUBSAMPLE-Q: Execution) randomly
samples A ~U ([”]) ateach time step and uses action ay ~7}°) (g, Fs, ) to get reward (s, ag). This
procedure of first sampling A and then applying wCSt is denoted by a stochastic policy 7TCSt b (ag]s):

es 1 ~es
T (agls) = @] Z (755 (59, Fsn) = ag)- (14)
ae()
Then, each agent transitions to their next state based on Equation (TJ).

Remark 3 2. Algorithm[2]assumes the existence of a generative model O (Kearns & Singhl [1998) to
sample s}, ~ Py(-[sy,ay) and s; ~ Py(+]si, s4). This may generalize to the online RL setting using
cold-start and no- regret techniques from (Jin et al., [2018)), which we leave for future investigations.

3.2 THEORETICAL GUARANTEE

This subsection shows that the value of the expected discounted cumulative reward produced by

zSt is approximately optimal, where the optimality gap decays as k£ —n and m — oo.

Bellman noise. We introduce the notion of Bellman noise, which is used in the main theorem.
Consider 77C m. Clearly, it is an unbiased estimator of the generalized adapted Bellman operator T,

EQk(897F8A7a9)_TA(S ag)—i_’VEs’ ~Py(sg,aq),5i~P(+|8:,84),ViEA meax Qk( g?FS/Aﬂ g) (15)
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Algorithm 2 SUBSAMPLE-Q: Learning (if £/t < |S§;|%)

Require: A multi-agent system as described in Section[2] Parameter 7 for the number of iterations
in the initial value iteration step. Sampling parameters k € [n| and m € N. Discount parameter

€ (0,1). Oracle O to sample sy ~ Py(:[sq,ay) and s; ~ Pi(:|s;, 54) for all i € [n].
Uniformly choose A C [n] such that |A| = k.
Set QR (5, Fsasag) = 0, for (sg, Fuy,ay) € S X 11(St) x A,
fort =1toT do

for (Sg, Fs\,aq4) € Sy x pi(S;) x Ay do

Ztrlv (897 FSA7 a’g) = E,mQ};,m(sga FSA ’ ag)

Return Qk,m. V(8g; Fsn) €Sy x i (S1), let 7557 (54, Fin ) =arg maxa, e 4, Q;‘gm(sg,FsA,ag).

SA A S ol e

Algorithm 3 SUBSAMPLE-Q: Execution

Require: A multi-agent system as described in Section [2| l Parameter 7" for the number of rounds
in the game. Hyperparameter k € [n]. Discount parameter ~y. Policy 73"} (54, Fi,)-
If |S;[F~1 > k!Si, learn 7y, from Algorlthm
If |S;|*=1 < kIS Tearn 7r'%t from Algorlthm
Initialize (s4(0), 5,)(0)) ~ so, Where s is a distribution on the initial global state (s, 5[,)).
Initialize the total reward: Ry =0
Policy 7j"} (s) is defined as follows:
fort = 0toT’d0
Sample A uniformly at random from from ([Z]).
Let a, (t) = ﬁisgn(sg (t), E@A(t))'
Let s (t + 1) ~ Py (|3, (t). ag(t)) and s (¢ +1) ~ Pi(lsi(t), (1)), forall € [n.
Riy1=Ri+7"- 7"(57%)

SO XA AELDD 2

Ju—

For all (sg,FSA,ag) €Sy X up(Sr) x Ag, set Qk(sg, SA,ag) = 0. Fort € N, let Qt“ TrQt,
where 7y, is defined for k < n in Equatlon . Then, Ty, is also a V- contractlon (Lemma A.9) with
fixed-point Qk So, by the law of large numbers lim,,— o0 7; m="Tr, and 1Q% e“ Qk”oo — 0 as

Aest

m — oo. For finite m, km

- Qk lloo =t €k,m is the well-studied Bellman noise:

Lemma 3.3 (Theorem 1 of [Li et al.| (2022)). For k € [n] and m € N, where m is the number of
samples in Equation (12), there is a Bellman noise € ,,, with [|Q$* — Q% |lec < €h.m < O(1/y/m).

With the above preparations, we are now primed to present our main result: a bound on the optimal-
ity gap, for our learned policy w¢¢ | that decays with k. Section@outlines the proof of Theorem

k.m>

Theorem 3.4. For any state s € S5 x S/,

* est 27 n—k+1 1 2€k,m
™ _ Th.m < - AL
V™ () — Vim(s) < <\/ o IS A |VE) + \/E> g

Corollary 3.5. Theorem [3.4] implies an asymptotically decaying optimality gap for our learned
policy 7%} . Further, from Lemma €k,m < O(1/4/m). Hence,

VT (s) — Vi (s) < O (1/\/E + 1/\/5) . (16)

Discussion 3.6. Between Algorithms |I| and [2| the sample complexity to learn 7y, ,, for a fixed k
is min{O(|S,||4,]|S1¥), O(|S, || A, |Si|ESh}. By Theorem as k — n, the optimality gap
decays, revealing a fundamental trade-off in the choice of k: increasing k& improves the policy, but
increases the size of the @-function. We explore this trade-off further in our experiments. For
k = O(logn) and m — oo, the runtime is min{O(|S,||A,|n'°815t1), O(|S,||A,]|Si|(log n)Si1)}.
This is an exponential speedup on the complexity from mean-field value iteration (from poly(n)
to poly(log n)), as well as over traditional value-iteration (from exp(n) to poly(n)). Further, the
optimality gap decays to 0 at the rate of O(1/+/logn).
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Discussion 3.7. In the non-tabular setting with infinite state/action spaces, one could replace the
Q-learning algorithm with an arbitrary value-based RL method that learns Qk with function approx-
imation (Sutton et al.l[1999a) such as deep @)-networks (Silver et al., 2016). Doing so introduces a
further error that factors into the bound in Theorem [3.5] We formalize this intuition in Appendix

4 PROOF OUTLINE

This section details an outline for the proof of Theorem [3.4] as well as some key ideas. At a high
level, our SUBSAMPLE-Q framework recovers exact mean-field ) learning and traditional value

iteration when £ = n and as m — oco. Further, as kK — n, Qz should intuitively get closer to Q*
from which the optimal policy is derived. Thus, the proof is divided into three major steps: firstly,
we prove a Lipschitz continuity bound between Q}; and QZ in terms of the total variation (TV)
distance between F, and FS[n]' Next, we bound the TV distance between F, and F Finally,
we bound the value differences between 7§} and 7* by bounding Q* (s, 7*(s)) — Q* (5 T (8))
and then using the performance difference lemma from Kakade & Langford 2002).

Step 1: Lipschitz Continuity Bound. To compare Q;;(sg, Fs,,a4) with Q*(s,a,), we prove a
Lipschitz continuity bound between Q}(sg, Fls, , ag) and Q5 (sg, Fs ., , a4) with respect to the TV

distance measure between sa € (* ["]) and sas € (S}C’,"]):

Theorem 4.1 (Lipschitz continuity in Qk) Forall (s,aq) € S x Ay, A € ( ) and A’ € ([k”,])
Qi (5, Fenrag) = Qi (Sg: Fonrag)l <21 =) ri(, oo - TV (Fins Fay)

We defer the proof of Theoremto Appendix See Figurefor a comparison between the QZ
learning and estimation process, and the exact ()-learning framework.

Step 2: Bounding Total Variation (TV) Distance. We bound the TV distance between F;, and

Fy, ., where AeU ( ) This task is equivalent to bounding the discrepancy between the empirical
drstrrbutron and the drstrrbutlon of the underlying finite population. Since each i € A is unrformly
sampled without replacement, standard concentration inequalities do not apply as they require the
random variables to be i.i.d. Further, standard TV distance bounds using KL divergence produce
a suboptimal decay as |A| — n (Lemma . Hence, we prove the following probabilistic result
(which generalizes the Dvoretzky—Kiefer—Wolfowitz (DKW) concentration inequality (Dvoretzky
et al.,|1956)) to the regime of sampling without replacement:

Theorem 4.2. Given a finite population X = (x1,...,x,) for X € 8", let A C [n] be a uniformly
random sample from X of size k chosen without replacement. Fix ¢ > 0. Then, for all x € S;:

|A|Zl{$¢:l‘}*%zl{%_ﬂ?}

i€[n]

Pr { sup
€S

< e} > 1 - 2|8 e AEETT

Then, by Theorem[4.2]and the definition of TV distance from Section[2] we have that for § € (0, 1],

Pr (TV(FSA,FW < \/"_k“ 2'?') >1-4 (17)

8nk

We then apply this result to our global decision-making problem by studying the rate of deca of the
objective function between our learned policy weSt and the optimal policy 7* (Theorem

Step 3: Performance Difference Lemma to Complete the Proof. As a consequence of the prior
two steps and Lemma L Q*(s,ay) and )t (54, Fin,a') become similar as k — n (see Theo-

k,m SA» g
rem ) We further prove that the value generated by their policies 7* and 7TeSt must also be very
close (where the residue shrinks as k& — n). We then use the well-known performance difference
lemma (Kakade & Langford, [2002) which we restate in Appendix [D.2] A crucial theorem needed
to use the performance difference lemma is a bound on Q*(s',7*(s")) — Q*(s', 7%, (55, Fyr, ))-
Therefore, we formulate and prove Theorem [4.3] which yields a probabilistic bound on this differ-

ence, where the randomness is over the choice of A € ([Z]):
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Theorem 4.3. Forafixed s' € S := Sy x 8" and for § € (0, 1], with probability atleast 1 — 2| A4|):

* * * ~es 2||r Y ") |loo n—Fk+1 2|8
Q" (s',7*(s')) — Q (s’,wk}n(s;,FszA)) < I i(_ ’)y” \/ Sk ln( |6l|> + 2€ m.

We defer the proof of Theorem and finding optimal value of § to[D.5in the Appendix. Using
Theorem {.3|and the performance difference lemma leads to Theorem 3.4]

5 EXPERIMENTS

This section provides examples and numerical simulation results to validate our theoretical frame-
work. All numerical experiments were run on a 3-core CPU server equipped with a 12GB RAM. We
chose parameters with complexity sufficient to only validate the theory, such as the computational
speedups, pseudo-heterogeneity of each local agent, and the decaying optimality gap.

Example 5.1 (Demand-Response (DR)). DR is a pathway in the transformation towards a sustain-
able electricity grid where users (local agents) are compensated to lower their electricity consump-
tion to a level set by a regulator (global agent). DR has applications ranging from pricing strategies
for EV charging stations, regulating the supply of any product in a market with fluctuating demands,
and maximizing the efficiency of allocating resources. We ran a small-scale simulation with n = 8
local agents, and a large-scale simulation with n = 50 local agents, where the goal was to learn an
optimal policy for the global agent to moderate supply in the presence of fluctuating demand.

Let each local agent i € [n] have a state s;(t) = (g;,¢;(t),d;(t)) € S := ExC xD C Z3.
Here, ¢; is the agent’s type, ¢;(t) is its consumption, and d;(t) is its desired consumption level.
Let s4(t) € Sy be the DR signal (target consumption set by the regulator). The global agent’s
transition is s, (t + 1) = 1154 (s,4(t) + a,(t)), i.e., ay(t) changes the DR signal. Then, s;(t + 1) =
(€i,¢i(t +1),d;(t + 1)), where d; (t + 1) fluctuates based on the agent’s type and prior demand:

) _fdi(t), di(t) < s4(t)
) = {500+ ) @01, 40 5 )

)+
At +uU{0,1}, =1
Gt +1) = {u[v], =27

where II¢ denotes a projection onto C in ¢;-norm. Intuitively, the local agent either chases its
desired consumption or reduces its consumption to match sg( t). The system’s reward at each step is
r4(sg,aq) = 15/s4 — 1{ay = —1} and ry(s;, 54) = ¢; — 1{cZ > s, WesetC =D = [3],€ =
{1,2},v = 0.9,m = 10, and the length of the decision game to be 7" = 300. We use T' = 300
iterations for the small-scale simulation, and 7" = 50 iterations for the large scale simulation.

For the small-scale simulation, Figure [Th illustrates the polynomial speedup of Algorithm 2] (note
that & = n exactly recovers mean-field value iteration (Yang et al.l 2018)), which we treat as our
benchmark for comparison). Figure [Ib plots the reward-optimality gap for varying k. Figure
plots the cumulative reward of the large-scale experiment. We observe that the rewards (on average)
grow monotonically as they obey our worst-case guarantee in Theorem [3.4]

Example 5.2 (Queueing). We model a system with n queues, where s;(t) € §; := N at time ¢
denotes the number of jobs at time ¢ for queue ¢ € [n]. We model the job allocation mechanism
as a global agent where s4(t) € S; = A, = [n]. Here, s,(t) denotes the queue to which the next
job should be delivered. We choose the state transitions to capture the stochastic job arrival and
departure: s4(t + 1) = a4(t), and s;(¢t + 1) = min{c, max{0, s,(¢) + 1{s4(¢) = i} — Bern(p)}}.
For the rewards, we set 74(s4,a4) = 0 and r;(s;, s4) = —s; — 10 - 1{s; > c}, where p = 0.8 is the
probability of finishing a job, ¢ = 30 is the capacity of each queue, and v = 0.9.

This simulation ran on a system of n = 50 local agents. The goal was to learn an optimal policy
for a dispatcher to send incoming jobs to. We ran Algorithm [2] for 7 = 300 empirical adapted
Bellman iterations with m = 30, and ran Algorithm I 3| for T’ = 100 iterations. Figure [2|illustrates
the log-scale reward-optimality gap for varying k, showing that the gap decreases monotonically as

k — n with a decay rate that is consistent with the O(1/+/k) upper bound in Theorem
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Figure 1: Demand-Response simulation. a) Computation time to learn frzsfn fork < n = 8. b)

Reward optimality gap (log scale) with WZ% running 300 iterations for £ < n = 8, c¢) Discounted

cumulative rewards for k£ <n =50. We note that k =n recovers the mean-field RL iteration solution.
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Figure 2: Reward optimality gap (log scale) with wzhfn running 300 iterations.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Conclusion. This work considers a global decision-making agent in the presence of n local homo-
geneous agents. We propose SUBSAMPLE—-Q which derives a policy 7> where k < nand m € N

are tunable parameters, and show that 7¢>! converges to the optimal policy 7* with a decay rate of

o(1/ VE + €k,m ), Where €, ,, is the Bellman noise. To establish the result, we develop an analytic
framework which constructs an adapted Bellman operator Ty, shows a Lipschitz-continuity result
for Q,*C, generalizes the DKW inequality, and proves a probabilistic bound on Q-functions with dif-
ferent actions. Further, we extend this result to the non-tabular setting with infinite state and action
spaces. Finally, we validate our theoretical result through numerical experiments.

Limitations and Future Work. We recognize several future directions. Firstly, this model studies
a ‘star-network’ setting to model a single source of density. It would be fascinating to extend this
subsampling framework to general networks. We believe expander-graph decompositions (Anand &
Umans}, 2023} [Reingold, 2008) are amenable for this. A second direction would be to find connec-
tions between our sub-sampling method to algorithms in federated learning, where the rewards can
be stochastic, and to incorporate learning rates (Lin et al.|[2021) to attain numerical stability. A third
limitation of this work is that we have only partially resolved the problem for truly heterogeneous
local agents by adding a ‘type’ property to each local agent to model some pseudoheterogeneity in
the state space of each agent. Finally, it would be exciting to generalize this work to the online set-
ting without a generative oracle. For this, we conjecture that tools from recent works on stochastic
approximation (Chen & Theja Maguluri,2022)) and no-regret RL (Jin et al., 202 1)) might be valuable.

10
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Outline of the Appendices.

* Appendix A presents additional definitions and remarks that support the main body.

* Appendix B-C contains a detailed proof of the Lipschitz continuity bound in Theorem 1]
and total variation distance bound in Theorem

* Appendix D contains a detailed proof of the main result in Theorem 3.4]

Table 1: Important notations in this paper.

Notation | Meaning
Il 1 £1 (Manhattan) norm;
Il oo { norm;
R4 The set of d-dimensional reals;
[n)] The set {1,...,n}, wheren € Z,;
([Z]) The set of k-sized subsets of {1,...,n};
ag ag € Ay is the action of the global agent;
S 54 € S, is the state of the global agent;
S1,..-,8n | S1,...,8, € S are the states of the local agents 1,...,n;
S s =(8g,81,...,8n) € Sq x S/ is the tuple of states of all agents;
SA For A C [n], and a collection of variables {s1,...,s,}, san == {s; : 1 € A};
o(sa,s’n) | Product sigma-algebra generated by sequences sa and s’y ;
/“C(Sl) /J/k(Sl) = {Oa 1/k72/k7”.71}|51‘;
IU‘(SI) /'L(Sl) = MTL(SZ) = {0,1/?1, 2/”;"'31}‘5”;
* 7* is the optimal deterministic policy function such that a = 7*(s);
ﬁzsﬁn 7sst is the optimal deterministic policy function on a k local agent system;
ﬂﬁfﬁn 7¢% s the stochastic policy mapping a ~ T (8) learned with parameter k;
P,(|sg,a4) | Py(-|s4,ay) is the stochastic transition kernel for the state of the global agent;
Py(-|siys9) | Pi(+|si,sq) is the stochastic transition kernel for the state of any local agent ¢ € [n];
r¢(Sg,ag) | T4 is the global agent’s component of the reward;
71(8s, g 77 is the component of the reward for local agent i € [n];
r(s,a) (s, a) =1y (s,a) = rg(sq,aq) + = 2 ic[n) "1(8i: Sg) is the reward of the system;
ra(s,a) ra(s,a)=rgy(sg, ag)—&—lfil > ica (84, 8) is the reward with |A| = k local agents;
T T is the centralized Bellman operator;
T 7Ty, is the Bellman operator on a constrained system of |A| = k local agents;
19 (y) 1 projection of y onto set ©.

A MATHEMATICAL BACKGROUND AND ADDITIONAL REMARKS

Definition A.1 (Lipschitz continuity). Given two metric spaces (X, dy) and (), dy) and a constant
L € Ry, amapping f : X — Y is L-Lipschitz continuous if for all z,y € X, dy(f(z), f(y)) <
L. dX (.’E, y)

Theorem A.2 (Banach-Caccioppoli fixed point theorem Banach|(1922)). Consider the metric space
(X,dx),and T : X — X such that T is a y-Lipschitz continuous mapping for v € (0,1). Then,
by the Banach-Cacciopoli fixed-point theorem, there exists a unique fixed point z* € X for which
T(z*) = x*. Additionally, z* = lims_,, T° (o) for any xg € X.

For convenience, we restate below the various Bellman operators under consideration.
Definition A.3 (Bellman Operator 7).

TQt(57ag) = Tn] (Svag) + ’Y]E s;~Pg(~|sg,a9), @ en
si~ePL(c]siysg) Vi€ln] ¢

max Q'(s', ay) (18)
Definition A.4 (Adapted Bellman Operator 75). The adapted Bellman operator updates a smaller

Q function (which we denote by Q1), for a surrogate system with the global agent and k € [n] local
agents, using mean-field value iteration:

> At o At
TrQ(Sg, Fsnsag) == 1a(s,a9) +7E 0~ Py(+]sg,a4), ar’nea,i{q Qk(sfm FS/A,CL;)

si~Pi(¢]84,84),Vi€EA Y

19)
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Definition A.5 (Empirical Adapted Bellman Operator ﬁ,m). The empirical adapted Bellman opera-

tor 77”,, empirically estimates the adapted Bellman operator update using mean-field value iteration
by drawing m random samples of s, ~ Py(-|sq,a4) and s; ~ Pi(:|s;,s4) for i € A, where for
J € [m], the j’th random sample is given by s/ and sJA:

T Qi (5g: Fsnrag) :==1a(s,a9) + — ;] gleaxg Qhn( ,Fsg,a’g) (20)
]E m

Remark A.6. We remark on the following relationships between the variants of the Bellman oper-

ators from Theorems to - First, by the law of large numbers, we have lim,,, _, o, ﬁ m = E,
where the error decays in O(1/+/m) by the Chernoff bound. Secondly, by comparing Theorem
and Theorem[A.3] we have 7, = 7.

Lemma A.7. For any A C [n] such that |A| = k, suppose 0 < 7a(s, ay) < 7. Then, ch < ﬁ
Proof. We prove this by induction on ¢ € N. The base case is satisfied as Q% = 0. Assume that
HQ Moo < fﬂ/. We bound ijl from the Bellman update at each time step as follows, for all
Sq € 8, Fsp € ui(S1]),aq € Ag:

At+1 _ At (. /
Qk (397 FSA’G‘Q) - TA(&G‘Q) + ’YE s/NPg(~\sg ag) max Qk(sg7 FS/ 70’9)
g ) ’ a’ EAg A
si~P(|si54),Vi€A 9

~ T
<Pty max Ql (s}, Py ) < ——
ageAg,SgESg,FS/AG;Lk(Sl) -

Here, the first inequality follows by noting that the maximum value of a random variable is at least
as large as its expectation. The second inequality follows from the inductive hypothesis. O

Remark A.8. Theoremis independent of the choice of k. Therefore, for £ = n, this implies an
identical bound on Q*. A similar argument as Theorem implies an identical bound on Q};’m

Recall that the original Bellman operator 7 satisfies a ~y-contractive property under the infinity

norm. We similarly show that 7Ty, and ﬁ,m satisfy a y-contractive property under infinity norm in
Theorem and Theorem [A.T0Ol

Lemma A.9. 7}, satisfies the y-contractive property under infinity norm:
1 T%Q — ThQklloe < VNQ% — Qkllos
Proof. Suppose we apply Tr. to Qi (s, Fin, ag) and Q) (sy, Fur, ay) for |A| = k. Then:

I17:Q% = Tr Qoo

/ /
=7 max By p (fs,a,), 08X QL) Fuy,0)) = By wp,(fs,.a,), 125 Q(sy, Fuy,ap)

€Sy,
;jEAgg, GNPL(|"17 g) 7 i NPL(‘%, ), 8 g
Fs , €pr(S1) VsiEsn, A
<7 max Q. (s", Fy O a
S;ESgyF‘S/AEMk;(SZ),a;EAg k( RN 9) ( sAv g)
=7Qk — Qxlloo

The equality implicitly cancels the common 74 (s, a,) terms from each application of the adapted-
Bellman operator. The inequality follows from Jensen’s inequality, maximizing over the actions, and
bounding the expected value with the maximizers of the random variables. The last line recovers the
definition of infinity norm. O
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Lemma A.10. ﬁ,m satisfies the y-contractive property under infinity norm.

PrOOf Similarly toTheorem Suppose  we apply ﬁ,m to Qk7m(897FSA)a£]) and
fm (89, Fon, ag). Then:

T A T oU _ 7 A j o A (J 7
1T m @k = TimQielloc = — j%}(aggg Qulsfs g ) = max Qi(s5 Foy )

A / 1 N1 /
S ryaéeAmsr/;lea‘S}'Z,sAeSf |Qk(sngs’Aaag) - Qk;(sga FS’A7a'g)|

The first inequality uses the triangle inequality and the general property |maxqeca f(a) —
maxpea f(0)] < maxeea |f(a) — f(b)]. In the last line, we recover the definition of infinity
norm. =

o

Remark A.11. Intuitively, the «-contractive property of 75 and 7A7€7m causes the trajectory of two

Qp and Qkym functions on the same state-action tuple to decay by + at each time step such that
repeated applications of their corresponding Bellman operators produce a unique fixed-point from
the Banach-Cacciopoli fixed-point theorem which we introduce in Theorems[A.12]and [A.T3]

Definition A.12 (QZ). Suppose Qg := 0 and let Q?‘l(sg,FsA,ag) = ﬁ@i(sg,FsA,ag) for
t € N. Denote the fixed-point of Ty, by Qz such that 7}@,’;(35], Fop,a9) = Q,’;(sg, Fs,,aq).

Definition A.13 (Q$* ). Suppose ng := 0and let Q1) (sy, Fin,aq) = ﬁ}mQLm(sw Fs,,aq)

k,m k,m
for t € N. Denote the fixed-point of Ty m by stfn such that ’ﬁc7,,Lszﬁn(sg,FsA,ag) =

A%f:n(s.‘]?FSA?ag)‘

Furthermore, recall the assumption on our empirical approximation of Qz:
Theorem For all k& € [n] and m € N, we assume that:

Q5 — Qillse < €km Q1)

Corollary A.14. Observe that by backpropagating results of the y-contractive property for T steps:
1Q5 = QF lloe <" - Q% — Q2 (22)

105, = @l <" - 11Q3%, — QP lloo (23)

Further, noting that QO = Qg)m =0,

Qi lloo < % and ||stsn||oo < 1f,y Sfrom Theorem@-

Ax AT < TL 24
1@k — Qklloo < - (24)

A A T

Q%% — @k pmlloo < vTﬁ (25)

Remark A.15. Theorem characterizes the error decay between Q7 and Q} as well as between

am and 5’7, and shows that it decays exponentially in the number of corresponding Bellman
iterations with the v7" multiplicative factor.

Furthermore, we characterize the maximal policies greedy policies obtained from Q*, Qz, and

Yest
k,m*

Definition A.16 (7*). The greedy policy derived from Q* is

* o * )
m*(s) : argargneaj(gQ (s,aq)
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Definition A.17 (7}). The greedy policy from Q}; is

(8¢, Fsn) 1= arg max QZ(’ng Fsu.aq).
ag€A,
Definition A.18 (7§°) ). The greedy policy from Q?ﬁn is given by

Aok (595 Fos) = g, max Qh, (s, Fas ).
g g

Figure [3| details the analytic flow on how we use the empirical adapted Bellman operator to perform

value iteration on Qy, ,,, to get Q*  which approximates Q*.

2,7”(897 FSA ’ a’g)

]|
Yest

k,m(s_(]?FSA?ag) — QZ(‘Sg,FSAvag) — QA;kL(Sg’FS[n]’ag)

—
no

) 3)

Q*(sga Sin]s ag)

Figure 3: Flow of the algorithm and relevant analyses in learning Q*. Here, (1) follows by perform-
ing Algorithm (SUBSAMPLE-Q: Learning) on Qg}m. (2) follows from Theorem (3) follows
from the Lipschitz continuity and total variation distance bounds in Theorems [d.T|and[4.2] Finally,
(4) follows from noting that Q;‘L =Q*.

Algorithm [] provides a stable implementation of Algorithm 2} SUBSAMPLE-Q: Learning, where
we incorporate a sequence of learning rates {7; }+<|7] into the framework (Watkins & Dayan), 1992).
Algorithmf]is also provably numerical stable under fixed-point arithmetic (Anand et al.[[2024)).

Algorithm 4 Stable (Practical) Implementation of Algorithm[2} SUBSAMPLE-Q: Learning

Require: A multi-agent system as described in Section[2] Parameter 7 for the number of iterations
in the initial value iteration step. Hyperparameter k& € [n]. Discount parameter v € (0, 1).
Oracle O to sample s), ~ Py(-[sy, a,) and s; ~ Pi(+|s;, s,) forall i € [n]. Sequence of learning
rates {1; }+<|7) where n; € (0, 1].

1: Choose any A C [n] such that |A| = k.
2: Set QY (5g, Fsnrag) = 0for (sg, Fss,a9) € Sy X p1i(Sr) x Ag.
3: fort =1toT do
4:  for (sg4, Fs,) € Sy x ui(S;) do
5: for a, € A, do
6: Zﬂ"ﬂl@(sg, Foyrag) < (1—m) 1;67m(89’ Fou,a9) + 7lt77c.,mQ§c,m(sgv Fsuag)
7: Forall (sg, Fs,) € Sy X pu(Sp), let the approximate policy be

ﬁIij(SQ7 FSA) = arg max ng(sg7 FSAﬂa‘Q)’

ag€A,

Notably, ) Z,m in Algorithmdue to a similar ~y-contractive property as in Theorem [A.9] given an
appropriately conditioned sequence of learning rates 7);:

Theorem A.19. As T — oo, ifzz;l Ny = 00, and Zle n? < oo, then Q-learning converges to
the optimal Q) function asymptotically with probability 1.

Furthermore, finite-time guarantees with the learning rate and sample complexity have been shown
recently in (Chen & Theja Maguluri| (2022), which when adapted to our Q) »,, framework in Algo-
rithm ] yields:
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Theorem A.20 (Chen & Theja Maguluri (2022)). Forallt € [T] and € > 0, if n; = (1 —v)*€? and
T = kIS, || Ay l1Sil/ (1 = 7)°€

”Qg,m istcm ‘ <e

This global decision-making problem can be viewed as a generalization of the network setting to a
specific type of dense graph: the star graph (Figure 4). We briefly elaborate more on this connection
below.

Definition A.21 (Star Graph S,,). For n €N, the star graph S,, is the complete bipartite graph K ,,.

S, captures the graph density notion by saturating the set of neighbors for the central node. Fur-
thermore, it models interactions between agents identically to our setting, where the central node is
a global agent and the peripheral nodes are local agents. The cardinality of the search space simplex
for the optimal policy is |Sy||S;|™|A4|, Which is exponential in n. Hence, this problem cannot be
naively modeled by an MDP: we need to exploit the symmetry of the local agents. This intuition
allows our subsampling algorithm to run in polylogarithmic time (in n). Further, works that lever-
age the exponential decaying property that truncates the search space for policies over immediate
neighborhoods of agents still rely on the assumption that the graph neighborhood for the agent is
sparse Lin et al.| (2021); |Qu et al.| (2020ajb); |Lin et al.| (2020); however, the graph S,, violates this
local sparsity condition; hence, previous methods do not apply to this problem instance.

Figure 4: Star graph S,

B PROOF OF LIPSCHITZ-CONTINUITY BOUND

This section proves the Lipschitz-continuity bound Theorem 4.1| between Qk and @Q* in Theo-
remd includes a framework to compare ( ) ZAE( ) Qk(sg7 sasg) and Q*(s, agy) in The-
B.17]

orem|B The following definition will be relevant to the proof of Theorem[@.1]

Definition B.1. [Joint Stochastic Kernels|The joint stochastic kernel on (s,, sa) for A C [n] where
|A| = k is defined as Jy, : Sy X SF x Sy x Ay x SF — [0, 1], where

T (55, 5Al8g5 g, 5a) := Pr((sy, 57 ) 545 ag, 5] (26)

Theorem B.2 (Q7 is ( tT;Ol 29H)|71(+, -) | so-Lipschitz continuous with respect to Fy . in total vari-
ation distance). Suppose A, A’ C [n] such that |A| = k and |A'| = K. Then:

‘Qg(sganAva ) Qk’(sg7 SA/7 ‘ (Z 2'7) |rl ”oo TV (FSAﬂFSA/)

Proof We prove this inductively. Note that QO( ,ht) = Q % (-,+,+) = 0 from the initialization step
in Algorithm l 2l which proves the lemma for 7" = 0 since TV(-,-) > 0. For the remainder of this
proof, we adopt the shorthand Esg s, to refer to Es/q~P_ (-59209),5,~PL(-]51,54) ViEA-
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Then, at T = 1:
|Q11c<sgaE9Ava’g) - Qllc'(sngsAmag”
= ﬁ@%(sganA7a'g) _ﬁ’QAg’(sgaFSA/aag)
= ‘T(SganAaag)_F’Y]Es' SA ma’X Qk( gaF’ )

LN Gg

—1(8g, Fsniya9) = VEg; o1, mea,i QM (sl Fy ,,ay)l

ay
= ‘T(Sg, FSA?ag) - T(Sg7FSA/7ag)|
1 1
z > rilsg.si) — o > ri(sg, i)
i€A iEA

= [Esinr 11(8g,80) = Egur, |, 7i(sg, 51)]

In the first and second equalities we use the time evolution property of Q,lc and Qzla by applying
the adapted Bellman operators 75, and 75 to Q9 % and QO 4> tespectively, and expanding. In the third
and fourth equalities, we note that Q9(-,-,-) = Q% (-,-,-) = 0, and subtract the common ‘global
component’ of the reward function.

Then, noting the general property that for any function f : X — Y for |X| < oo we can write

f(@) =32, cx [(y)1{y = x}, we have:
|QA116(893 FsAaag) - Q/lcl(sg, FSA,,ag)|

EstsA lz ri1(8g,2)1{s; = 2}

ZE€S)

e [t

z€S)

=1 11(59,2) - Boyear Ut = 2} — Eper,, st = 23|

ZES;
B ‘ Zrl sgv ' SA(Z)_FSA/(Z))‘
zES)
< \maxrl 8¢, % Z |Fsn(2) = Fs ., (2)]
zZES;

< 2ffri( oo - TV(Fsns Fsy/)
The second equality follows from the linearity of expectations, and the third equality follows by
noting that for any random variable X ~ X, Ex1[X = 2| = Pr[X = z]. Then, the first inequality
follows from an application of the triangle inequality and the Cauchy-Schwarz inequality, and the
second inequality follows by the definition of total variation distance. Thus, when T' = 1, Q is
(2]|71(+, -)||co )-Lipschitz continuous with respect to total variation distance, proving the base case.

We now assume that for T’ < ¢/ € N:

Qg(sganA7a ) Qk’(597 SAI7 ‘ (Z 2'7 > ||7’l ||oo : TV (FSA7F8A/)
Then, inductively we have:
T AT
IQ +1(397 SAaag) k/+1(5ganA/7ag)|
|A| Z” (59 i |A/\ > ilsg, 51)
€A’
+’7 ES;7SIA ar’neajl( Qg( Fs’ ) g) ]Es SA/ ar’gIlean Q£(5;7FS/A,7@;)

< 2/ri( oo - TV (Fay, o)

NT () / A /
+ v ‘ES o)y Inax Qy (g, For yay) — Eor s, nax Qk,(s F, ,,ag)
g 9 g g
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In the first equality, we use the time evolution property of Q % T+1 and QTH by applying the adapted-

Bellman operators 7, and Ty to Q}: and Q7, 1> respectively. We then expand and use the triangle
inequality. In the first term of the second inequality, we use our Lipschitz bound from the base case.
For the second term, we now rewrite the expectation over the states s, sx, S, into an expectation
over the joint transition probabilities 7 and Ji- from Theorem@

Therefore, using the shorthand IE(S/Q,S/A)N 7, to denote IE(S/Q,S/A)N Tu( )» we have:

RRCETLPTEIN
|Qg+1(597 Fs,, ag) - Agfl(sga FsA/ ) ag)‘
< 2[ri (Moo - TV(Fsy, Fiy, )

=+ ’7|E(s 80 )~ Tk amax Qk ( SA’ g) ]E(ag,sA,)Njk/ ar’neax Qk/( g7 FS'A,aalg)|
< 2[ri (Moo - TV(Fisy s Fiy, )

T meax |E 9:5a) NJRQ}C ( 9’ FSA’a’Q) E(5;13/A/)~Jk/Q£ (S;7 FS/A/ ’ alg)|

<2|ri(, Yoo - TV(Fin, Fiy,) +7<Z 27> 703 ) loo - TV(Fay, Fi )

<Z27 ) Hrl HOO 'TV(FSAvFSA/)

In the first inequality, we rewrite the expectations over the states as the expectation over the joint
transition probabilities. The second inequality then follows from Theorem [B.9]

To apply it to Theorem we conflate the joint expectation over (s4, saua’) and reduce it back to
the original form of its expectation. Finally, the third inequality follows from Theorem

Then, by the inductive hypothesis, the claim is proven. O

Lemma B.3. For all T € N, for any ay,a, € Ay, 5, € Sg,5a € Sf, and for all joint stochastic
kernels Ji as defined in Theorem we have that E(s;7S/A)N\7k(‘7.|sg7%7sﬁ)Qk (sp, For,yay) is

SA ) g
( t 0 )29)]|71(+, )]l s )-Lipschitz continuous with respect to Fi, in total variation distance:

B st s m T lsgagsm) Qb (855 Fargs @) = Esy s )m G (- fsgrag,5a0) @i (85 Fir 5 0|

(Z 2’7) [7i(-, )loo - TV (Fsy, Fs )

Proof. We prove this inductively. At T' = 0, the statement is true since Qg(-, )= Qg, (,)=0
and TV(-,-) > 0. For T = 1, applying the adapted Bellman operator yields:

AL (o /
‘E(Sq’SA)NJk( ‘ngag’SA)Qk( O’FS,A’ 9) E(S_@’S/A/)Njk’(""sgfag#SA’)Qk'(sg’FS/ a9)|

N

1
a7 2~ g 2o s H

1€EA €A

- E(S/

g?S/AUA/)N‘leUA/‘ (lsgrag,sauar)

E(s/g*slAuAl)ijuA’\('w'lsg’a.quAuA’) [Z 'I"l(S Z) (FS,A (Z) - FS'A/ (Z))‘| ‘
Z€S;

Similarly to Theorem we implicitly write the result as an expectation over the reward func-
tions and use the general property that for any function f : X — ) for |[X| < oo, we
can write f(z) = > cy f(y)I{y = =z}. Then, taking the expectation over the indicator

variable yields the second equality. As a shorthand, let ® denote the distribution of s’g ~
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>y eslaua Jiaua| (-, SauarlSg, ag, sauar). Then, by the law of total expectation,
AUA/ L

ALt ’ A1 / /
(st 50 )T (- l5gsag,58) @r (Sgs Fsy s g) = Bst o1 )mTs (159,005 @i (555 For > ag)|

= ‘E5;~© Z rl(slgy Z)Es/AuA,NJ‘AuA/‘(-\s;,sg,ag,sAuA/)(Fs’A (Z) - FS'A/ (Z))l

Z€S)
< ||T'l(', )”oo . ES;’\CD Z |Es’AuA,~J‘AuA/‘(~|s’g,sg,ag,sAuA/)(Fs’A (Z) - FS'A/ (Z))|
zZES;
<21, oo - Baynn TV (Euy 1oy Fory By 15, For)

<2715 )loo TV (Fea, sA,)

In the ensuing inequalities, we first use Jensen’s inequality and the triangle inequality to pull out
Es; >~ .cs, from the absolute value, and then use Cauchy-Schwarz to further factor [|7;(-, -)||oc-

The second inequality follows from Theorem and does not have a dependence on s; thus
eliminating Es/g and proving the base case.

We now assume that for T < ¢’ € N, for all joint stochastic kernels 73, and 7y, and for all a’g €A,

AT AT
B sy 500 )i el gsag,50) @k (Sgs F @) = Bsy s ) (olsguagosan) @i (55 Fsry, > )|

y7SA/

Z 29" | i oo - TV(Fons Fuy,)

For the remainder of the proof, we adopt the shorthand IE(S si)~g to denote

E(s1 s )~ a) (- lsgag,50)> AN B o) 7 1o denote Bor sy w4 (- ls) a5 )
Then, inductively, we have:

T AT
Esr sp)ma @k T (55: Fay s ag) = E(ay o ) Qi (), Far s )]
= [B(sp,5, i~ [1(8gs 8 ag) = 7(sg, siars ay)

AT
+ ’VE(sg,sA A .7[ Wea} Qk( st’ a ) - agleaij Qk’(sngsx,vag)m

< 2fri(s oo - TV(Fan, Fiy,)
" " ANT (M "
+7|E(s NJ[E(ag,sAuA,) J[max Qk( gangaag) 7;?3}{] Qk/(sg7st,;ag)H|

aSauar)

Here, we expand out QT'H and QAZ,'H using the adapted Bellman operator. In the ensuing inequality,
we apply the triangle 1nequality and bound the first term using the base case. Then, note that

1
Bty a T ol saa B sl T o lsppat sl ) 25 Qk (g, Fuy, ay)

is, for some stochastic function ‘-7|/Au AP equal to

" "
E(S;’,’SXUA’)N‘Z/ALJA’\('7'|597a975AuAl) ng{ Qk( H’E‘;Z’ag)’

where J' is implicitly a function of a; which is fixed from the beginning.

In the special case where a, = a;, we can derive an explicit form of J’ which we show in Theo-
rem@ As a shorthand, we denote E(,/ by E(, ~T

XUA’) j‘AuA/‘(v“sgvagvéAuA’) J’SAUA’)
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Therefore,
ANT+1/ ./ / ANT+1/ ./ I
|E(s;,s’ﬁ)~\7Qk‘ <5gan’A7a ) - E(s;,s’A/)NJQk/ (ngFs/A,vag”

<2070 Moo - TV(Fan, Foo)) + YEr s i amg%y@f(sgfsgva'g')

ERRINSIN

AT (.1 "
=B s ~a Jnax Qi (sg, Fyy, ag)
g g

< 2||ri (oo - TV(Fia s FSA/) + 7(}}163} |E(5;/,32UA,)~J’Q£(S/gla Fsgﬂg)
g g

_E(s” s’ )NJ’QZ/(S;/ang,aa/g/)'

9’7 AUA’

T-1
<20 )loo - TV(Fsn, Fopr) +7 (Z 2’%) 1725 Moo - TV(Fsas Fs /)
=0

T
= (Z W) 725 Moo - TV(Fsas Fsy/)
t=0

The second inequality follows from Theorem where we set the joint stochastic kernel to be
~7|/Au INIE In the ensuing lines, we concentrate the expectation towards the relevant terms and use the

induction assumption for the transition probability functions 7, and 7/,. This proves the lemma.
O

Remark B.4. Given a joint transition probability function Jjaua/| as defined in Theorem we
can recover the transition function for a single agent ¢« € A U A’ given by J; using the law of
total probability and the conditional independence between s; and sy U s[,)\; in Equation @) This
characterization is crucial in Theorem [B:3]and Theorem [B.6l

/ / 1.7
J1(|8, 89, ags 8i) = Z J\avar(Savanis SilSgs Sgs ags Sauar) (27
A A/ —
SlAuA’\iNSL‘ uA’|—1

Lemma B.S. Given a joint transition probability J|aua-| as defined in Theorem@
TV(E, < TV(Fy,,F.

AuA/~\7|AUA’| ('\S;:Sg’ag»SAuA')FS,A ’ ES/AUA/N‘y\AUA’\ ('lsgvsy’ag’SAuA’)FSIA/ ) SAY T S/ )

Proof. Note that from Theorem [B.6}

E F,

N ES’ANJIA\(""S;:ngag75A)FslA

= TJ1(-|sq(t +1),84(t),aq(t), ) Fsn

’
SAuA/N:]\AuA’\('7"5;»591‘1975AUA’)

Then, by expanding the TV distance in ¢;-norm:
TV(E,

AuAINJ\AUA/\('|5§,a5g:agvsAuA/)E€'A ) ES'AuA/ijuA/\ (-\s;,SQ,ag,sAuA/)FS’A/ )

%||31(~\8g(t +1),84(1),ag(t), ) Fon = T1(|sg(t + 1), 8¢(), ag(t), ) Fs [

1
171 (lsg(t +1), 89(2), ag(t), s - 51 Fsa = Fop lls
1
§||E9A _FSA/ Hl
= TV(FSA)F‘SA/)

IN

IN

In the first inequality, we factorize || J1(-|sq(t + 1), 54(), ag(t))|l1 from the ¢;-normed expression
by the sub-multiplicativity of the matrix norm. Finally, since 7; is a column-stochastic matrix, we

bound its norm by 1 to recover the total variation distance between F;, and Fj ,. ]
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Lemma B.6. Given the joint transition probability Jj, from Theorem|B.I}
Es puar (41~ anar Clsg (1), (0,0 (0,8 a0 () Foa (1) 7= Ti([sg(t+1), 54(2), ag(2), ) Fsa (1)

Proof. First, observe that for all x € S;:

B nnr (1)~ Tia ) Clsg (t41),59 (8 (8),5 a0 a0 () Fsa (t41) ()

N ﬁ i;EsAuA/(t+1)~J|AUAf|(~\sg(t+1>,sg(t),ag(t>7sAuA/(t))ﬂ(si(t +1)=2)
= ﬁ gPr[si(t +1) =x|sg(t + 1), 54(t), ag(t), savar(t))]

_ ﬁ gpr[si(t 1) = 2lsy(t+ 1), 54(1), ag(t), 5:(t)]

— Mi“ggjl(gjsg(t +1),54(t), ag(t), si(t))

In the first line, we expand on the definition of F, ;41)(). Finally, we note that s;(t + 1) is
conditionally independent to saua\s, Which yields the equality above. Then, aggregating across
every entry x € S,

s goar (1)~ a0 Clag (441,35 (.05 (05080 () Fsat+1)
1 -
~ 3 D Tillsglt+ 1), (t), ag (), ) Loy
i€EA
= J1(lsg(t 1), 54(1), ag(t), -) Fis
Notably, every x corresponds to a choice of rows in J1(-|sq(t + 1),54(),a4(t),-) and every
choice of s;(t) corresponds to a choice of columns in Ji(-|sq(t + 1), s4(t), aq(t),-), making
TJi(+|sq(t + 1), 54(t), ae(t),-) column-stochastic. This yields the claim. O

Lemma B.7. The total variation distance between the expected empirical distribution of sa (¢ + 1)
and sa/(t + 1) is linearly bounded by the total variation distance of the empirical distributions of
sa(t) and sa-(t), for A, A’ C [n):

v (Esi<t+1>~a<-si<t>,sg<t>>,FSA<t+1>7]ESi<t+1>~PL(<|s7:<t>,sg<t>>,FsA/<t+1>> STV (Foatrys Foprvy)
VieA VieA'

Proof. We expand the total variation distance measure in #1-norm and utilize the result from Theo-
rem |B. 10| that ESi(tJrl)Npl )’Sg(t))FSA(tJrl) =B (|Sq (t))FsA(t) as follows:
Vi

(+|si(t
€A

TV (ESi<t+1>~PL<-|5i<t>,sg<t>>FSA<t+1>v]ESi<t+1>~Pz<~|Si<t>,sg<t>>FsA/<t+1>>
VieA VicA'

1
2

B, t1)~ P (153 (8),50 () Fsa(t41) = By (t41)~ Pl (8),50 (6) Fs o0 (841)
ViEA VieA'

1
1
=3 [P(L 89 () Foaqry = PGl 89 (0) Fo o
1
< B sg@)ll - 51Esay = Foph

=[[B(| sg@)l - TV(Fsaqys Fspr)
In the last line, we recover the total variation distance from the ¢; norm. Finally, by the column
stochasticity of P(+|-, s4), we have that | P,(-|-, s¢)|l1 < 1, which then implies

TV <]Es,-(t+1)~Pl(-|si(t),sg(t))EsA(t—i-l),Esi(t+1)~PZ(~si(t),sg(t))FsA/(t—i-l)) STV(Fouys Fo o))
VieA Vie A’

This proves the lemma. ]
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Remark B.8. Theorem can be viewed as an irreducibility and aperiodicity result on the
finite-state Markov chain whose state space is given by S = S; x S*. Let {s;}1en denote the
sequence of states visited by this Markov chain where the transitions are induced by the transition
functions P, P;. Through this, Theorem@] describes an ergodic behavior of the Markov chain.

Lemma B.9. The absolute difference between the expected maximums between Qk and Qk/ is
atmost the maximum of the absolute difference between @), and @)/, where the expectations are
taken over any joint distributions of states 7, and the maximums are taken over the actions.

AT (.1 / AT (.1 /
‘E(s;,s’AuA,)NJ‘AuA/‘(~,-\sg,ag,sAuA/)[argneax Qy, (54, For yay) — I,HeaX Qi (5g: For,, 5 ag)]]

Sanlea_/)l{ |IE sy oa)~Tavar (5 lsg.ag,saua7) [Q ( sAa g) Qk’( A,7ag>]|
Proof.
= ) Fy ar = ) Fy ,ad
a, = arg I,gnaj(g Qk (5 sl g) a, = arg ar'gneaj(g Qk’(s s/ ,)a‘g)

For the remainder of this proof, we adopt the shorthand Es’ms'AuA/ to refer to
Es s

95nua)~Tauar (5 lsg,ag,5a0a7)"

Then, if By, o maxq ca, Qg(s;, Fy ,ay) — Eg s, MaXar e, Qk,(s Fy ay) >0, we
have:
!/ !
|E€2] S U ameaj( Qk( ES'A;U’Q) Es;,eAuA, ameaj( Qk/( ES'A,7ag)|
AT (! AT ~
—]Es;,s'AuA,Qk; (ngFs’Avafg) ‘Sg"SAuA Qk; ( 5 ,aa;)
AT AT
< ]ES,ZI‘S/AUA/QIC ( Fs’ ) g) s/ As/ Qk ( Fs’ ,aa;)
= alneaj\( |Eslg s/AuA’Qk ( Fy, ’ag) L ILNN, Qk/( A’ ’ a9)|
Similarly, if Ey, o maxqsea, QF (s} FSIA, ay) —Eg o maxeea, Q(sy, Fy, ay) <0,
an analogous argument by replacing ag w1th ag ylelds an identical bound. O

Lemma B.10. Forallt € Nand A C [n],
Esi(t+1)~PL(~|Z,y(t),sg(t))[-FsA(t—i-l)] = Pi(-],54()) Fs 5 1)
vie

Proof. Forall x € S;:

Bt 1)~ lsi(0).59(0) Foarn (2)] i= ‘A| Z st 1)~ Py (s (1).55 (1) [L (8 (E + 1) = )]
VieA IEA
|A| o ST Pl 4 1) = alsilt + 1) ~ BCsi(t) 5,(0)]
iIEA
Py(x]si(t),54(t))
=y X Pl

In the first line, we are writing out the definition of F, (;41)(«) and using the conditional indepen-
dence in the evolutions of A\ 7 and 4. In the second line, we use the fact that for any random variable
X € X,Ex1[X = z] = Pr[X = z|. In line 3, we observe that the above probability can be written
as an entry of the local transition matrix P;. Then, aggregating across every entry = € S;, we have
that:

Es, (t41)~ Py (-155(0),54 (0) [Fsa(t41)] = \A\ ZPz (-[si(t),s4(1))
VieA i€A
7 S Py () Eay = P30 (0) Fese
‘ ‘ 1EA
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Here, ]Tsi(t) € {0, 1}|‘Sl| such that ]Tsi(t) is 1 at the index corresponding to s;(t), and is 0 everywhere
else. The last equality follows since P;(+|-, s4(t)) is a column-stochastic matrix which yields that
P, sg(t))]_l'si(t) = Pi(-|si(t), s4(t)), thus proving the lemma. O

Lemma B.11. For any joint transition probability function on sg, s, where |A| = k, given by
T Sg % SI‘A‘ X Sy x Ay X SllAl — [0, 1], we have:
E (st 50 )nT (-1-159,00,55) []E(s",sg)Njk(.,.s;,,ag,s'A) f,;leai( Qk( ,Foy s ag )}
_E(SN sR)I~TZ (- lsg.ag,54) I,?éji‘{ Qk( F‘Sg’a )

Proof. We start by expanding the expectations:

E(s1 5 )~ T (- rl5g,09,55) []Ewusg)wk<-,-|s_;,ag,sg> max QF (sy, Fuy, )}

al €A,
- > S Tilsy s 5gyag, 58] Tklsy SAL Sy, ag, SA] Jnex QF (s4, Fyy,al)
(5,5 )€Sg xS 2 (57,54 ) €Sy S*
= Z jk[ gaSAasg7agaSA] rpax Qk( staa )
al €A,

(s”,sX)ESQXSllA‘

NT (M I
- E(s” SEINTE (- lsghag,sa) ar’neaj( Qk (ngp‘sxaag)
gS&Ag

The right—stochasticity of Jk implies the right-stochasticity of J?2. Further, observe that
T[Sy, Sns Sgs g, SAlTk[Sy, S Sy g, S5 ] denotes the probability of the transitions (sg,sa) —
(s4,5n) — (sy,sA) with actions a4 at each step, where the joint state evolution is governed by Jj.
Thus, Z(é 50) €S, xS Tklsgs Sn» Sgs gy SAlTk[Sy, A+ 8y, Ag, Sy is the stochastic probability
function correspondmg to the two-step evolution of the joint states from (sg,sa) to (sy, siA) un-

der the action a4, which is equivalent to 72 (855 S'A» Sg» Qg Sa]. In the third equality, we recover the
definition of the expectation, where the joint probabilities are taken over J2. O

The following lemma bounds the average difference between Q;{ (across every choice of A € ([Z]))
and Q* and shows that the difference decays to 0 as 7" — oo.

Lemma B.12. Forall s € S, x S|}, and for all a, € A,, we have:

1 A
" $,0g) — Tny SQ’ sarlg) < g

. -7
F Ac()

Proof. We bound the differences between QZ at each Bellman iteration of our approximation to @*.

1

Q*(S,ag)_(T) Z QF (89, Fsn,aq)

k Ae([’k‘])
=TQ"(s,a4) ( ) Z ToQT (s, Fi v ay)

k ae(h
= 7o) (392 5] @9) 9B o Py (150, X Q" (s, ay)
s~ Py (+|si,84),Vi€n]) 77
1
_ (ni) Z [r[A]<Sg,SA7ag)+’YE 9 ~Py(-|sg,ag) I/nea‘i( Qk( FSIA’alg”
k Ae([n]) s NP,( |si,84),ViEA 9
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Next, observe that 7,1 (g, S[n], @g) = A ) ZAG([H]) (a](8¢,5A,a4). To prove this, we write:

1 1
n) Z ra)(8g, 5, ag) = m Z (rg(sq,aq) + T ZT‘Z (si,84))
k Ae([’;]) k Ae(["]) i€EA
1
=1g4(8g,aq) + 71 Z 1(si; sg)
k i€ln
1
=14(8g,09) + - Z 71(83,89) = T[] (8¢5 5[], Gg)
i€[n]

In the second equality, we reparameterized the sum to count the number of times each 7;(s;, s,) was
added for each ¢ € A, and in the last equality, we expanded and simplified the binomial coefficients.

Therefore:

* 1 A
sup [Q (Svag) Y Z Q (597 n]7a )]
(s:0,) €Sx4, &) aEgy
k
* 1 - AT —
= sup [TQ (Svag) DY 776 f l(sngS[n]7a'g)]
(s:0) €8x A, &) agy
k
1
=7 Sup [E’ /QNP( \sq,aq Q ( ) ﬁ Z ES;NP (‘|sgrag) ’GX Qk ( Sg Fy 7ag
(5:00)€8% A5 P (Jags)"7 Kag(n) si~Pillsisy)
Vi€ ([n] k VieA
1 AT
=7 Sub E sg~Py(-lsg,a4), [ameax Q (8 ’ag) n) arlnea./z\( g 1(8,9’F5/A’a/9)}
(S7llg)ES><Ag sngz(-Isi,sg),Vie[n] g g9 k AG([n]) g g

<7 sup E s NP(\sg,ag) max [Q (5 a ( ) Z QT 1 S Fs’ ) g)]
84 ~Pl( [si,84),Vi€[n] 9 AG(

(s,04)ESX A, al €A, )
k

<7 sup  [Q"(s, ay, ( Z Qr- Fy, ., ay)]

(s',al)ESXAqy AE( )

We justify the first inequality by noting the general property that for positive vectors v, v’ for which
v = v’ which follows from the triangle inequality:

1 1
o=z 3 e 2 Mol — 3 ¥l
() A%) ) Agﬂ)

k
S T
()
Mae()
1
lev\\oo—@ >l
*ae(h)
Therefore:
* 1 A
Q (Svag)_m Z Q (3g7 SA’ag)
M oae(R)
* 1 A
<" osup [QF(5,a) — Z Qu(s,, Fy . a})]
(s',a9)ESXAg (k AE(M])
k
_ '
=1
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The first inequality follows from the y-contraction property of the update procedure, and the ensuing
equality follows from our bound on the maximum possible value of () from Theorem[A.7)and noting

that QY :=
Therefore, as T — oo,

Q*(s,ay4) Z sg7 Fs,,a9) =0,

r:

which proves the lemma. O

C BOUNDING TOTAL VARIATION DISTANCE

As |A| — n, the total variation (TV) distance between the empirical distribution of s{,,; and s goes
to 0. We formalize this notion and prove this statement by obtaining tight bounds on the difference
and showing that this error decays quickly.

Remark C.1. First, observe that if A is an independent random variable uniformly supported on
(I"]), then s is also an independent random variable uniformly supported on the global state (*L).
To see this, let 11 : [n] — S, where ¥(i) = s;. This naturally extends to ¥y : [n]* — SF
given by ¥y (i1, ...,4k) = (Siy,.-.,8i, ), for all k € [n]. Then, the independence of A implies the
independence of the generated o-algebra. Further, 15, (which is a Lebesgue measurable function of
a o-algebra) is a sub-algebra, implying that sA must also be an independent random variable.

For reference, we present the multidimensional Dvoretzky-Kiefer-Wolfowitz (DKW) inequality
Dvoretzky et al.| (1956); [Massart| (1990); Naaman| (2021) which bounds the difference between an
empirical distribution function for so and sp,; when each element of A for [A| = k is sampled
uniformly randomly from [rn] with replacement.

Theorem C.2 (Dvoretzky-Kiefer-Wolfowitz (DFW) inequality |Dvoretzky et al.| (1956)). By the
multi-dimensional version of the DKW inequality Naaman)| (2021), assume that S; C Re. Then,
for any € > 0, the following statement holds for when A C [n] is sampled uniformly with replace-

ment.
n

|A|Zl{8’ x}f%Z]l{si:m}

IEA i=1

sup <e|l >1—d(n+ 1)e*2|m62~
€S,
We give an analogous bound for the case when A is sampled uniformly from [n] without replace-

ment. However, our bound does not have a dependency on d, the dimension of S; which allows us
to consider non-numerical state-spaces.

Before giving the proof, we add a remark on this problem. Intuitively, when samples are chosen
without replacement from a finite population, the marginal distribution, when conditioned on the
random variable chosen, takes the running empirical distribution closer to the true distribution with
high probability. However, we need a uniform probabilistic bound on the error that adapts to worsz-
case marginal distributions and decays with k.

Recall the landmark results of Hoeffding and Serfling in|Hoeffding|(1963) and|Serfling| (1974)) which
we restate below.

Lemma C.3 (Lemma 4, Hoeffding). Given a finite population, note that for any convex and con-
tinuous function f : R — R, if X = {w1,...,x1} denotes a sample with replacement and
Y ={uy1,...,yr} denotes a sample without replacement, then:

e (xe) <o (5

Lemma C.4 (Corollary 1.1, Serfling). Suppose the finite subset X C R such that |X| = n is

bounded between [a,b]. Then, let X = (x1,.. xk) be a random sample of X of size k chosen
uniformly and without replacement. Denote i := Z _1 Ti. Then:
1 & gk
Pr z ;xl —pl > €] <2 G-
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We now present a sampling without replacement analog of the DKW inequality.

Theorem C.5 (Sampling without replacement analogue of the DKW inequality). Consider a finite
population X = (x1,...,x,) € S]'. Let A C [n] be a random sample of size k chosen uniformly
and without replacement.

Then, forall x € S;:

2\A|ne

1
Pr | sup Z]l{x, m}—gz Iz, =x} <e| >1-2|8le »-TaM1

TES 1€[n]

Proof. For each x € S, define the “x-surrogate population” of indicator variables as

.)Ex = (]]-{:zl:a:}w”;]]-{wn:a:}) S {O,l}n 28)
Since the maximal difference between each element in this surrogate population is 1, we setb—a =1
in Theorem when applied to X, to get:

1 _ 2|Alne?
Pr A ZIL{L x}fﬁ Z I{z; =z} <e| >1—2e RoTATE

i€A i€[n]

In the above equation, the probability is over A C ([Z]) and it holds for each « € S;. Therefore, the
randomness is only over A.

Then, by a union bounding argument, we have:

1
Pr {Sup {z; =a}—— {a; =2} < e}
1
= Pr ﬂ |A|Z]1{xl x}—gz I{z; =z} <e
TES; i€EA 1€[n]
1
zl—ZPr A Z]l{xl m}—fZ]l{xizx} >e€
€S, | | 1€EA " i€[n]
Alne?
>1— 2|Sl‘€ n- |A‘+1
This proves the claim. O

Then, combining the Lipschitz continuity bound from Theorem .1 and the total variation distance
bound from Theorem [.2] yields Theorem [C.6]

Theorem C.6. Forall s,€ 8y, 51,...,5, €S[', aqg € Ay, we have that with probability atleast 1 — 0:

. Uril, Moo 1 —|A]+1
O (50 Fass1) = QE sy, Py )] < 212C \/n Sl IS

Proof. By the definition of total variation distance, observe that
TV(Fss, Fypy) <€ = ;gg |Foa — Fspy
l

Then, let X = S; be the finite population in Theorem and recall the Lipschitz-continuity of Qf
from Theorem [B.2}

(29)

Qg(sg7F8A7 ag) - QZ(SgaFS[npag)‘

IN

(Z 27) Hrl ||00'TV(F8A’F )

2
1725 oo - €
-7
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By setting the error parameter in Theorem [C.5]to 2¢, we find that Equation (29) occurs with proba-
bility at least 1 — 2|S;[e~2/AIne*/(n—[Al+1),

AT AT 2¢ 8n|Ale?
Pr ’Qk (8g: Fsasag) — Qn(SQ’FS[n]’a!])‘ < 1= ,YHTI(" Moo| =1 =2[S|e” »=TaTFT

Finally, we parameterize the probability to 1 — ¢ to solve for ¢, which yields

n—|Al+1
= 1 2 .
e \/ A 1S/

This proves the theorem. O

The following lemma is not used in the main result; however, we include it to demonstrate why
popular TV-distance bounding methods using the Kullback-Liebler (KL) divergence and the
Bretagnolle-Huber inequality (Tsybakovl |2008) only yield results with a suboptimal subtractive

decay of 1/|A|/n. In comparison, Theoremachieves a stronger multiplicative decay of 1/+/]A]|.

Lemma C.7.

TV(FSAaF )S \/1_|A|/n

Proof. By the symmetry of the total variation distance, we have TV (Fy,, Fs,) = TV(Fs,, Fy,))-

S[n]a SAY

From the Bretagnolle-Huber inequality [Tsybakov| (2008) we have that TV(f,g9) =

V1 — e~ DPxu(fll9), Here, Dky,(f|g) is the Kullback-Leibler (KL) divergence metric between prob-
ability distributions f and g over the sample space, which we denote by X and is given by

Diw(fllg) == f(x (30)

reX
Thus, from Equation (30):

nY ien {5 = x}
DxL(Fsu || Fs,,,) = Z ( Np Z 1{s; = x}) In Al ZzeA o

g, <§ 1{s; = w}) In W
G (G
< In(n/|A])

In the third line, we note that 3 s > ;- 1{s; = 2} = |A[ since each local agent contained
in A must have some state contained in S;. In the last line, we note that )., 1{s; = z} <
> icn) 1{si = }, for each z € S, and hence the summation of logarithmic terms in the third line
is negatlve

Finally, using this bound in the Bretagnolle-Huber inequality yields the lemma. O
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D USING THE PERFORMANCE DIFFERENCE LEMMA TO BOUND THE
OPTIMALITY GAP

Recall from Theorem that the fixed-point of the empirical adapted Bellman operator ’f}m is
CSt . Further, recall from Theorem [3.3that ||Q} — CSt tlloo < €kome

Lemma D.1. Fix s € S := S, x S'. Suppose we are given a T-length sequence of i.i.d. random
variables Ay, ..., Ay, distributed uniformly over the support ([”]) Further, suppose we are given
a fixed sequence 51, ...,07 € (0,1). Then, for each action a, € A, and for ¢ € [T, define events
B such that:

. " n—k+1, 2/S 2
BIo:={ |Q* (59, 81a): a) — k:n<sg,Fsm,ag>\>\/ S 5 T I e+ ek

Next, for ¢ € [M], we define “bad-events” B; such that B; = an cA, Bf” . Next, denote B =
UL, B;. Then, the probability that no “bad event” occurs is:

T
Pr(B] >1—|Ag> 4
i=1

Proof.

Q" (g Sin)» Og) — Qis,:n(sga Fsu,a9)

< ’Q*(ng S[n]» ag) — QZ(ngFSmag)
+‘QZ(SQ7FSA7G’9) ?%(Sganuflg)‘
< ’Q*(sgas[n]aag) - QZ(SQ7FSA7G’Q)’ + €km

The first 1nequa11ty above follows from the triangle 1nequahty, and the second inequality uses

|Q (ngs[n]’ag) Qk(sg’F5A7a’g)| <@ (ngs n aag) Qk(s.l]?FsA’ag)”OO < €x,m, wWhere € ,,
is defined in Theorem [3.3] Then, from Theorem | we have that with probability at least 1 — d;,

* A g n—k—i—l 2|Sl| 2
@ <sg7s[n]7ag>—Qk<sg,FSA7ag>\s\/ LR S LIORI[

So, event B; occurs with probability atmost §;. Thus, by repeated applications of the union bound,
we get:

1oy i

EAg
> 1-]Ay ZPr[Bfg]
=1

Finally, substituting Pr[B;*] < §; yields the lemma. O

Recall that for any s € S := S, x S = S,, the policy function 7>t (s) is defined as a uniformly

k,m

est evaluated on all possible choices of A. Formally:

random element in the maximal set of 7}
est ~ est A [Tl]
7Tk m(s) ~U Trk nL(ng ) € k (31)

We now use the celebrated performance difference lemma from |Kakade & Langford| (2002),
restated below for convenience in Theorem [D.2] to bound the value functions generated between
Ty, and .
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Theorem D.2 (Performance Difference Lemma). Given policies 71, o, with corresponding value

functions V7™, VV72;
T T 1
V() = V™(s) = T E ygn [A™ (S, a))

a;~7r1(~|s')

Here, A™(s',a}) := Q™ (s',a}) — V™(s') and dT'(s') = (1 —~) > p—o7" Prj'[s, s] where
Pryt[s’, s] is the probability of 7; reaching state s” at time step A starting from state s.

Theorem D.3 (Bounding value difference). Forany s € S := S, x S* and (1, 02) € (0,1]% we
have:

oo 271 )loo [n—k+1 2/S)|
V)~ VTR (s) < (1—7)? 2nk o o1 +(1—7)

2€k,m
5 Mgl + T2

Proof. Note that by definition of the advantage function,
Eaymgst (157 AT (5',05) = Bay omser (1) [Q7 (57, a) = VT (5)]
=By st (s W™ (5',a}) — Eqmre (15 Q" (5, ag)]
= Eagw'rrzf;(-|s’)EagN7r*(~\S/)[Qﬂ—* (s'y a;) - QW* (s'sag)].
Since 7* is a deterministic policy, we can write:

Ea’ G, (¢ |s’)Ea ~r* (|8’ )Aﬂ-* (S/a a;) = Ea gy (- \s’)[Qﬂ—* (S/a a:;) - Qﬂ—* (5/,71'*(5/))]

1 T ~es T *
=y 2 Q7 AT F)) — Q7 (7 ()
k Ae([n])
Then, by the linearity of expectations and the performance difference lemma (while noting that

Qﬂ*('v ) = Q*(7 ))
VIO VIR = 1 3 R, [€7 60 60) @ 6 A Py

_WAg([Z]) b)) sl
1 1
=705 L B [T ) - @ A Fy)]
ac(t) k) Sls

Next, we use Theorem [D.4]to bound this difference (where the probability distribution function of

est

D is set as dg’“”" as defined in Theorem while letting 0; = do:
V™ (s) — Vim (s)

Z 2Hrl v )Mo [m—k+1 n 2|8
-7 2nk 61 1-—
Ae([;;
2l )Mloe /m—k+1 2|8 2r 2€k m
< 1 5 ;
2 e N A e A e
This proves the theorem. O

Lemma D.4. For any arbitrary distribution D of states S := Sy x S]', for any A € ([2]) and for
91,02 € (0, 1], we have:

Eynpl@(s',77(s) = Q" (s, 7 (sg, )]

2ri(s oo fn—k+1 21| 28| ;
S N —_ -
= 1—n 8nk In 51 +q/n 5 +t1o 7|Ag|(§1 + 62) + 2€5.m
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Proof. Denote C,‘z:A = Q*(s,7(s)) — Q" (s, 75, (5g, Fsn ). We define the indicator function
T:8xNx(0,1] x (0,1] by:

2 Moo fr—k+1 (] 218y 25
T k61 6)) =1 s,A < ’ 1 1 2 m
(57 501, 2) <k,m — 1_7 Snk n 51 + . 52 * *

We then study the expected difference between Q*(s', 7*(s")) and Q* (s, 75%y, (s, Fr, ). Observe
that:

EvnplGim) = Evnn[Q7 (57 () = Q" (s, 450 (s Fiy))]
=Eynp [Z(s',k,01,02)(Q"(s', 7(5")) — Q" (5", 7 (55, Firy )]
+Eyopl(1 —Z(s', k,01,02))(Q(s", 77(s")) — Q" (' ffﬁ?fn(sg Fo )l
Here, we have used the general property for a random variable X and constant ¢ that E[X] =
E[X1{X < ¢}] +E[(1 — 1{X < ¢})X]. Then,
Eyp[Q(s',7(5") — Q" (s, i (55, Fiy )]

2 Moo fn—k+1 2|5 2|8
< ] I 2 m
=T, Sk R NI

+ " (1 — ES’NDI(S/7 ka 61762)))
L—n
2y lee fr—k+1 ([ 2AS] f 218
- In =20 4 I 220 4 2¢gm
- 1—x 8nk " 01 T d2) e

77;
+ ﬁ|Ag|(51 +d2)

For the first term in the first inequality, we use E[X1{X < c¢}] < ¢. For the second term, we
triVially bound Q*(s', 7*(s")) — Q* (8", 75y, (55, Fir, )) by the maximum value Q* can take, which

Theorem .

In the second inequality, we use the fact that the expectation of an indicator function is the
conditional probability of the underlying event. The second inequality follows from Theorem
which yields the claim. O

1S1

Lemma D.5. Forafixed s’ € S :== S§; x SJ*, forany A € ([Z]), and for 61,92 € (0, 1], we have
that with probability at least 1 — | A,4|(61 + 02):

2 )M oo —k+1 2 2
Q (s ()~ Q" (< gt (s, Py ) < A1 C e fr = K %n Slu%n Sl o,

1-— Yy &nk (51 (52 o

Q" (s, 7(5") — Q" (5", A (5, Firy)
=Q"(s', 7" (s )) Q* (' A (5 Fupg)) + Qi (5 8, ™ (5)
A (5 s, ™ (8")) + Zsﬁn(sg,%ﬁz‘?ﬁn(' Fy.))
— Qi (s Foy A0 (5, By )
By the monotonicity of the absolute value and by the triangle inequality,
Q" (s',7(5") — Q*(5', A (5, Firy )
<1Q™(s", 7 (s) — Qi (s, Fary o m™(5)]
QN (54 Fuy s i (55 o)) = Q7 (8, 75 (8, Fary))|

33



Under review as a conference paper at ICLR 2025

The above inequality crucially uses the fact that the residual term Qebt (85, P, m(s)) —

Zsfn( Sy Fa s T (54, Fir ) < 0, since 7% is the optimal greedy policy for eSt

Finally, applying the error bound derived in Theorem|D.T|for two timesteps completes the proof. [

Corollary D.6. Optimizing parameters in Theorem[D.3]yields:

. 2F n—k+1 1 26k m
™ () — Ve (s) < In(2 — | 4 Zhm
V(s) < VTR ) € o (% st 0 |‘<>*1|Ag¢E>+¢E)+17

Proof. Recall from Theorem [D.3]that:

2m (Moo [n—k+1 2|8, 2
(s Moe =k 1 ([ 2SI | 2l

« 2€k,m
T _ s m <
VI (s) = Vim(s) < =305 2k 5 (1—)?

1—-

H°°|A |6 + —=

Note ||+, *)[|oc < 7 from Assumption[2.2] Then,

. o n—k+1, 28| %erm
™ _ Tk, m < ?
V™ (5) = VThm(s) < \/ o 5 + | Agld1 | + -~

Finally, setting 6; = yields the claim. O

D S
K12 A

Corollary D.7. Therefore, from Theorem[D.6] we have:

' Ekm
<\/E<1 VS AV + 7)

1—~)"2 m
oz )
Vi 1—vy
This yields the bound from Theorem 3.4]

V™ (s) — V™m(s) < O

E BEYOND THE TABULAR SETTING (IN THE LINEAR BELLMAN COMPLETE
SETTING)

This section extends our result to non-tabular settings where the global agent’s state space S, can
be a compact infinite set, and the global agent’s action space A, and each local agent’s state space
S; is a finite set. In order to solve this problem, we make assumptions on the underlying MDP. A
common assumption made is the linearity of value functions with respect to some known features

(Sutton et al.| [1999b} [Chen & Theja Maguluri, [2022; [Min et all,[2023).

At a high-level, this section learns the non-tabular function stfn using function approximation
methods from [Golowich & Moitra| (2024)) under assumptions of Linear Bellman completeness, and
using the triangle inequality to bound the performance between the optimal policy and the subsam-
pled policy learned via sampling and linear function approximation.

Typically, existing works in the literature assume the existence of a map ¢ such that ¢ : S X
A — RY, where d is the dimension of the embedding ¢. The weakest assumption made on the
value function is that @ is linear: for some w € RY, Q(s,a) = (w, $(s,a)) for all (s,a) € S x
A. However, it is conjectured that it is impossible to computationally learn a near-optimal policy
under this assumption. Therefore, in accordance with |Golowich & Moitra| (2024), we make the
stronger assumption that the underlying Markov decision process on the subsampled @Q-function,
stzn satisfies Linear Bellman completeness. This class of Linear Bellman completeness captures
a variety of function classes: for instance, it subsumes the set of linear MDPs and MDPs with low
Bellman-Eluder (BE) dimension, which in turn contains rich subclasses such as functions with low
Eluder dimension or low Bellman rank.
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Definition E.1 (Linear Bellman Completeness). Firstly, for ¢ € N and k& < n, let B), ; denote the set
of coefficient vectors bounding linear functions on S, x SF x A, such that

B;%t = {Hk S Rd : |<¢k7t(sg,5A,a9),9k>\ < 1,V(sg,sA,at) eSS x Slk X Aq)}
Then, a Markov decision process is said to be linear Bellman complete with respect to the feature
mapping {¢x.¢ }¢c|r] if for each t € [T] and k < n, there is a mapping My, ; : By 111 — Byt such
that for all 0, € By, ¢ and all (s, sa,a,) € Sy X SF x A,

(Ph,t(Sgs 58, ag), Mitbk) = Esr s/ oP(-]s5y,5a,09) max (Dr,i1(sy,5n,a),0k) |, (32)

’
ag€Ag

and such that the reward ra (s, a4) is given by ra(s, ag) = (:(sq, SA, ag), Ok.¢), for O 4 € By ;.

Therefore, we make the following assumptions:

Assumption E.1. For all £ < n, the corresponding MDPs underlying the dynamics of Qz is Linear
Bellman complete.

Assumption E.2. 7, and r; have a linear form, such that the structured reward function ra (s, ag) =
T4(Sg,ag) + £ Y ica T1(8i, S4) can be linearly decomposed to satisfy linear Bellman completeness.

Under the above assumptions of Linear Bellman completeness, the problem of learning the subsam-
pled Q¢ in the non-tabular setting is amenable to Algorithm 1 from |Golowich & Moitra| (12024|),

k,m
which provides the following theoretical guarantee:

Lemma E.2 (Adapting theorem 5.10 from Golowich & Moitral (2024)). Suppose Algorithm 1 has

7 samples and produces policy 62?;1 which is used to derive a subsampling policy ogbﬁn Then, if

azs;“n is used 1" times, we have:

U
[V TEim () — Vo (s)] < 64Tff{fg‘|. (33)
T g

Remark E.3. We refer the interested reader to Algorithm 1 of |Golowich & Moitral (2024). At a
high-level, their algorithm designs exploration bonuses for which B, ; is linear, and uses policy
search through dynamic programming to design the bonus. This idea can be viewed as a variant of
optimistic exploration. The result then follows by applying a variant of least-squares value iteration
(LSVI) on these locally optimistic rewards.

Corollary E.4. Applying the triangle inequality, we see that:
V™ (s) = VIR (s) = V™ (s) = Vi () + V7 (5) = Vhim (s)

est est

S VT (s) = VT (s)] 4 [V (5) = VOl (s)
2r —k+1 1 2epm  647'd|A
d <\/” 2 (IS4, 1VR) + \/E> 4 R A,

<
T (1—7)2 2nk 1—7v T1/1A,]

Therefore, as the number of samples 7 goes to infinity, we recover an optimality gap that decays
with k as k — n.

F ADDITIONAL DISCUSSIONS

Discussion F.1 (Tighter Endpoint Analysis). Our theoretical result shows that V7" (s) — VTim
decays on the order of O(1/V/k + €k ). For k = n, this bound is actually suboptimal since Q
becomes QQ*. However, placing |A| = n in our weaker TV bound in Lemma we recovers a
total variation distance of 0 when k£ = n, recovering the optimal endpoint bound.

Discussion F.2 (Choice of k). Discussion [3.6] previously discussed the tradeoff in & between the
polynomial in k& complexity of learning the Qy, function and the decay in the optimality gap of
O(1/Vk). This discussion promoted k = O(logn) as a means to balance the tradeoff. However,
the “correct” choice of & truly depends on the amount of compute available, as well as the accuracy
desired from the method. If the former is available, we recommend setting k& = Q(n) as it will yield
a more optimal policy. Conversely, setting & = O(logn), when n is large, would be the minimum &
recommended to realize any asymptotic decay of the optimality gap.
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