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ABSTRACT

Diffusion models have emerged as a key pillar of foundation models in visual
domains. One of their critical applications is to universally solve different down-
stream inverse tasks via a single diffusion prior without re-training for each task.
Most inverse tasks can be formulated as inferring a posterior distribution over data
(e.g., a full image) given a measurement (e.g., a masked image). This is however
challenging in diffusion models since the nonlinear and iterative nature of the
diffusion process renders the posterior intractable. To cope with this challenge,
we propose a variational approach that by design seeks to approximate the true
posterior distribution. We show that our approach naturally leads to regularization
by denoising diffusion process (RED-diff) where denoisers at different timesteps
concurrently impose different structural constraints over the image. To gauge
the contribution of denoisers from different timesteps, we propose a weighting
mechanism based on signal-to-noise-ratio (SNR). Our approach provides a new
variational perspective for solving inverse problems with diffusion models, allow-
ing us to formulate sampling as stochastic optimization, where one can simply
apply off-the-shelf solvers with lightweight iterates. Our experiments for vari-
ous linear and nonlinear image restoration tasks demonstrate the strengths of our
method compared with state-of-the-art sampling-based diffusion models. The code
is available online 1.

1 INTRODUCTION

Diffusion models such as Stable diffusion (Rombach et al., 2021) are becoming an integral part of
nowadays visual foundation models. An important utility of such diffusion models is to use them
as prior distribution for sampling in various downstream inverse problems appearing for instance in
image restoration and rendering. This however demands samplers that are (i) universal and adaptive
to various tasks without re-training for each individual task, and (ii) efficient and easy to tune.

There has been a few recent attempts to develop universal samplers for inverse problems; (Kawar
et al., 2022a; Song et al., 2023; Chung et al., 2022a; Kadkhodaie & Simoncelli, 2021; Graikos et al.,
2022) to name a few. DDRM (Kawar et al., 2022a) was initially introduced to extend DDPM (Ho
et al., 2020) to handle linear inverse problems. It relies on SVD to integrate linear observations
into the denoising process. DDRM however needs many measurements to work. Later on, ΠGDM
was introduced (Song et al., 2023) to enhance DDRM. The crux of ΠGDM is to augment the
denoising diffusion score with the guidance from linear observations through inversion. In a similar
vein, DPS (Chung et al., 2022a) extends the score modification framework to general (nonlinear)
inverse problems. The score modification methods in DPS and ΠGDM, however, heavily resort to
approximations. In essence, the nonlinear and recursive nature of the backward diffusion process
renders the posterior distribution quite intractable and multimodal. However, DPS and ΠGDM rely
on a simple unimodal approximation of the score which is a quite loose approximation at many steps
of the diffusion process.

To sidestep the challenges for posterior score approximation, we put forth a fundamentally different
approach based on variational inference (Blei et al., 2017; Ahmed et al., 2012; Hoffman et al., 2013).
Adopting the denoising diffusion model as our data prior and representing the measurement model
as a likelihood, we use variational inference to infer the posterior distribution of data given the
observations. Our method essentially matches modes of data distribution with a Gaussian distribution

1https://github.com/NVlabs/RED-diff

1

https://github.com/NVlabs/RED-diff


Published as a conference paper at ICLR 2024

Figure 1: The schematic diagram of our proposed variational sampler (RED-diff). The forward denoising
diffusion process gradually adds noise to the estimate µ. The denoisers of the backward diffusion process apply
score-matching regularization to the measurement matching loss. The refined estimate using optimization is
then fed back to the forward process and the process repeats.

using KL divergence. That leads to a simple (weighted) score-matching criterion that regularizes
the measurement matching loss from observations via denoising diffusion process. Interestingly, the
score-matching regularization admits an interpretable form with simple gradients; see Fig. 1.

This resembles the regularization-by-denoising (RED) framework by Romano et al. (2016), where
denoisers at different stages of the diffusion process impose different structural constraints from
high-level semantics to fine details. This is an important connection that views sampling as stochastic
optimization. As a result, one can simply deploy the rich library of off-the-shelf optimizers for
sampling which makes inference efficient, interpretable, and easy to tweak. We coin the term RED-
diff to name our method. It is however worth noting that our framework differs from RED in several
aspects: piq we derive our objective from a principled variational perspective that is well studied and
understood, and piiq our regularization uses feedback from all the diffusion steps with different noise
levels while RED uses a single denoising model.

For the success of the score matching regularization, denoisers at different timesteps need to be
weighted properly. To do so, we propose a weighting mechanism based on densoing SNR at each
timestep that upweights the earlier steps in the reverse diffusion process and down-weights the later
timesteps. To verify the proposed idea, we conduct experiments and ablations for various linear and
nonlinear inverse problems. Our main insights indicate that: piq RED-diff achieves superior image
fidelity and perceptual quality compared with state-of-the-art samplers for image inverse problems;
piiq RED-diff has lightweight iterates with no score Jacobian involved as in DPS and ΠGDM, and as
a result, it is more memory efficient and GPU friendly; piiiq Our ablation studies suggest that the
optimizer parameters such as learning rate and the number of steps are suitable knobs to tweak the
trade-off between fidelity and perceptual quality.

Contributions. All in all, the main contributions of this paper are summarized as follows:
• We propose, RED-diff, a variational approach for general inverse problems, by introducing

a rigorous maximum-likelihood framework that mitigates the posterior score approximation
involved in recent ΠGDM (Song et al., 2023) and DPS (Chung et al., 2022a)

• We establish a connection with regularization-by-denoising (RED) framework (Romano
et al., 2016), which allows to treat sampling as stochastic optimization, and thus enables
off-the-shelf optimizers for fast and tunable sampling

• We propose a weighting mechanism based on denoising SNR for the diffusion regularization
• We conduct extensive experiments for various linear and nonlinear inverse problems that

show superior quality and GPU efficiency of RED-diff against state-of-the-art samplers such
as ΠGDM and DPS. Our ablations also suggest key insights about tweaking sampling and
optimization to generate good samples.

2 RELATED WORKS

Our work is primarily related to the following lines of work in the context of diffusion models.

Diffusion models for inverse problems: There are several recent works to apply diffusion models in
a plug-and-play fashion to inverse problems in various domains such as natural images (Kadkhodaie
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& Simoncelli, 2021; Jalal et al., 2021; Kawar et al., 2022a; Song et al., 2023; Chung et al., 2022a;b;
Graikos et al., 2022; Chung et al., 2023a;b), medical images (Jalal et al., 2021), and audio processing
(Kong et al., 2020). We primarily focus on images, where these works primarily differ in the way that
they handle measurements. As some of the early works, Kadkhodaie & Simoncelli (2021) and Jalal
et al. (2021) adopt Langevine dynamics for linear inverse problems and integrate the observation
guidance via either projection (Kadkhodaie & Simoncelli, 2021), or gradient of the least-squares
fidelity (Jalal et al., 2021). Some other works adopt DDPM (Ho et al., 2020) diffusion and alternate
between diffusion denoising and projection steps (Choi et al., 2021; Chung et al., 2022c). The
iterations however can accumulate error that pushes the trajectory off the prior manifold, and thus
MCG method (Chung et al., 2022b) proposes an additional correction term inspired by the manifold
constraint to keep the iterations close to the manifold. DDRM (Kawar et al., 2022a) extends DDPM
to solve linear inverse problems using matrix SVD, but it fails for limited measurements.

To address this shortcoming, recent methods aim to provide guidance by differentiating through the
diffusion model in the form of reconstruction guidance (Ho et al., 2022), which is further extended
in DPS (Chung et al., 2022a) to nonlinear inverse problems. ΠGDM (Song et al., 2023) introduces
pseudoinverse guidance that improves the guidance approximation by inverting the measurement
model. Its scope is however limited to linear and certain semi-linear tasks (such as JPEG (Kawar
et al., 2022b)). However, both ΠGDM and DPS heavily rely on an approximation of the intractable
posterior score, which is quite crude for non-small noise levels at many steps of the diffusion process.
Note also that, a different method has also been recently proposed by Graikos et al. (2022), which
regularizes the reconstruction term of inverse problems with the diffusion error loss. This is similar to
the traditional plug-and-play prior (P3) approach for inverse problems (Venkatakrishnan et al., 2013)
that roots back to ADMM optimization (Boyd et al., 2011). Our method is however closer in spirit to
the RED framework, which offers more flexibility for optimizer and tuning; see e.g., (Romano et al.,
2016; Cohen et al., 2021).

Diffusion models for 3D: A few recent works have adopted distillation loss optimization to generate
3D data from 2D diffusion priors, which is related to our view of treating sampling as optimization.
For instance, DreamFusion (Poole et al., 2022) and ProfilicDreamer (Wang et al., 2023) adopt a
probability density distillation loss as the criterion for text-to-3D generation. Followup works include
SparseFusion (Zhou & Tulsiani, 2022) that generates 3D given a few (e.g. just two) segmented input
images with known relative pose, and NeuralLift-360 (Xu et al., 2022) that lifts a single 2D image to
3D. All these methods use a distillation loss, that bears resemblance with our (unweighted) denoising
regularization. However, they aim to optimize for a parametric 3D NeRF model that is fundamentally
different from our goal.

3 BACKGROUND

In this section, we first review diffusion models in Section 3.1 and we discuss how they are used for
solving inverse problems in Section 3.2.

3.1 DENOISING DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b) consist of two
processes: a forward process that gradually adds noise to input images and a reverse process that
learns to generate images by iterative denoising. Formally the forward process can be expressed
by the variance preserving stochastic differential equation (VP-SDE) (Song et al., 2021b) dx “

´ 1
2βptqxdt`

a

βptqdw for t P r0, T s where βptq :“ βmin`pβmax´βminq t
T rescales the time variable,

and dw is the standard Wiener process. The forward process is designed such that the distribution of
xT at the end of the process converges to a standard Gaussian distribution (i.e., xT „ N p0, Iq). The
reverse process is defined by dx “ ´ 1

2βptqxdt´βptq∇xt
log ppxtq`

a

βptqdw̄ where ∇xt
log ppxtq

is the score function of diffused data at time t, and dw̄ is the reverse standard Wiener process.

Solving the reverse generative process requires estimating the score function. In practice, this is done
by sampling from the forward diffusion process and training the score function using the denoising
score-matching objective (Vincent, 2011). Specifically, diffused samples are generated by:

xt “ αtx0 ` σtϵ, ϵ „ N p0, Iq, t P r0, T s (1)

where x0 „ pdata is drawn from data distribution, σt “ 1 ´ e´
şt
0
βpsqds, and αt “

a

1 ´ σ2
t . Let’s

denote the parameterized score function (i.e., diffusion model) by ϵθpxt; tq « ´σt∇xt log ppxtq with
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parameters θ, we can train ϵθpxt; tq with a mixture of Euclidean losses, such as

min
θ

Ex0„pdatapx0q,ϵ„N p0,Iq,t„Ur0,T s

“

||ϵ ´ ϵθpxt; tq||22

‰

.

Other loss-weighting functions for t can be used as well. Given a trained score function, samples can
be generated using DDPM (Ho et al., 2020), DDIM (Song et al., 2020), or other solvers (Lu et al.,
2022; Zhang & Chen, 2022; Dockhorn et al., 2022).

3.2 SCORE APPROXIMATION FOR INVERSE PROBLEMS

Inverse problems can be formulated as finding x0 from a (nonlinear and noisy) observation:
y “ fpx0q ` v, v „ N p0, σ2

vIq (2)
where the forward (a.k.a measurement) model f is known. In many applications, such as inpainting,
this is a severely ill-posed task that requires a strong prior to find a plausible solution. Our goal is to
leverage the prior offered by (pretrained) diffusion models, in a plug-and-play fashion, to efficiently
sample from the conditional posterior. Let’s denote the prior distributions imposed by diffusion
models as ppx0q. The measurement models can be represented by ppy|x0q :“ N pfpx0q, σ2

vq. The
goal of solving inverse problems is to sample from the posterior distribution ppx0|yq.

As we discussed in the previous section, diffusion models rely on the estimated score function to
generate samples. In the presence of the measurements y, they can be used for generating plausible
x0 „ ppx0|yq as long as an approximation of the conditional score for ppxt|yq over all diffusion
steps is available. This is the idea behind ΠGDM (Song et al., 2023) and DPS (Chung et al., 2022a).
Specifically, the conditional score for ppxt|yq based on Bayes rule is simply obtained as

∇x log ppxt|yq “ ∇x log ppy|xtq ` ∇x log ppxtq (3)
The overall score is a superposition of the model likelihood and the prior score. While ∇x log ppxtq

is easily obtained from a pretrained diffusion model, the likelihood score is quite challenging
and intractable to estimate without any task-specific training. This can be seen from the fact that
ppy|xtq “

ş

ppy|x0qppx0|xtqdx0. Although ppy|x0q takes a simple Gaussian form, the denoising
distribution ppx0|xtq can be highly complex and multimodal (Xiao et al., 2022). As a result, ppy|xtq

can be also highly complex. To sidestep this, prior works (Song et al., 2023; Chung et al., 2022a;
Kadkhodaie & Simoncelli, 2021; Ho et al., 2022) resort to Gaussian approximation of ppx0|xtq

around the MMSE estimate

Erx0|xts “
1

αt
pxt ´ σtϵθpxt, tqq. (4)

4 VARIATIONAL DIFFUSION SAMPLING

In this section, we introduce our variational perspective on solving inverse problems. To cope with
the shortcomings of previous methods for sampling the conditional posterior ppx0|yq, we propose a
variational approach based on KL minimization

min
q

KL
`

qpx0|yq||ppx0|yq
˘

(5)

where q :“ N pµ, σ2Iq is a variational distribution. The distribution q seeks the dominant mode in
the data distribution that matches the observations. It is easy to show that the KL objective in Eq. 5
can be expanded as

KL
`

qpx0|yq}ppx0|yq
˘

“ ´Eqpx0|yq

“

log ppy|x0q
‰

`KL
`

qpx0|yq}ppx0q
˘

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

term (i)

` log ppyq
loomoon

term (ii)

(6)

where term (i) is the variational bound that is often used for training variational autoencoders (Kingma
& Welling, 2013; Rezende et al., 2014) and term (ii) is the observation likelihood that is constant
w.r.t. q. Thus, to minimize the KL divergence shown in Eq. 5 w.r.t. q, it suffices to minimize the
variational bound (term (i)) in Eq. 6 w.r.t. q. This brings us to the next claim.

Proposition 1. Assume that the score is learned exactly, i.e., ϵθpxt; tq “ ´σt∇xt
log ppxtq. Then,

the KL minimization w.r.t q in Eq. 5 is equivalent to minimizing the variational bound (term (i) in
Eq. 6), that itself obeys the score matching loss:

min
tµ,σu

Eqpx0|yq

„

}y ´ fpx0q}22

2σ2
v

ȷ

`

ż T

0

ω̃ptqEqpxt|yq

”

›

›∇xt log qpxt|yq ´ ∇xt log ppxtq
›

›

2

2

ı

dt, (7)
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where qpxt|yq “ N pαtµ, pα2
tσ

2 ` σ2
t qIq produces samples xt by drawing x0 from qpx0|yq and

applying the forward process in Eq. 1, and ω̃ptq “ βptq{2 is a loss-weighting term.

Above, the first term is the measurement matching loss (i.e., reconstruction loss) obtained by the
definition of ppy|x0q, while the second term is obtained by expanding the KL term in terms of the
score-matching objective as shown in (Vahdat et al., 2021; Song et al., 2021a), and ω̃ptq “ βptq{2
is a weighting based on maximum likelihood (the proof is provided in the supplementary material).
The second term can be considered as a score-matching regularization term imposed by the diffusion
prior. The integral is evaluated on a diffused trajectory, namely xt „ qpxt|yq for t P r0, T s, which is
the forward diffusion process applied to qpx0|yq. Since qpx0|yq admits a simple Gaussian form, we
can show that qpxt|yq is also a Gaussian in the form qpxt|yq “ N pαtµ, pα2

tσ
2 ` σ2

t qIq (see (Vahdat
et al., 2021)). Thus, the score function ∇xt

log qpxt|yq can be computed analytically.

Assuming that the variance of the variational distribution is a small constant value near zero (i.e.,
σ « 0), the optimization problem in Eq. 7 can be further simplified to:

min
µ

}y ´ fpµq}2
looooomooooon

recon

`Et,ϵ

“

2ωptqpσv{σtq
2||ϵθpxt; tq ´ ϵ||22

‰

loooooooooooooooooooooomoooooooooooooooooooooon

reg

, (8)

where xt “ αtµ ` σtϵ. In a nutshell, solving the optimization problem above will find an image µ
that reconstructs the observation y given the measurement model f , while having a high likelihood
under the prior as imposed by the regularization term.

Remark [Noiseless observations]. If the observation noise σv “ 0, then from equation 6 the
reconstruction term boils down to a hard constraint which can be represented as an indicator function
1ty“fpµqu that is zero when y “ fpµq and infinity elsewhere. In practice, however we can still use
equation 7 with a small σv as an approximation.

4.1 SAMPLING AS STOCHASTIC OPTIMIZATION

The regularized score matching objective Eq. 8 allows us to formulate sampling as optimization for
inverse problems. In essence, the ensemble loss over different diffusion steps advocates for stochastic
optimization as a suitable sampling strategy.

However, in practice the choice of weighting term ω̃ptq plays a key role in the success of this
optimization problem. Several prior works on training diffusion models (Ho et al., 2020; Vahdat
et al., 2021; Karras et al., 2022; Choi et al., 2022) have found that reweighting the objective over
t plays a key role in trading content vs. detail at different diffusion steps which we also observe
in our case (more information in Section 4.3). Additionally, the second term in Eq. 8 marked by
“reg” requires backpropagating through pretrained score function which can make the optimization
slow and unstable. Next, we consider a generic weighting mechanism ω̃ptq “ βptqωptq{2 for a
positive-valued function ωptq, and we show that if the weighting is selected such that ωp0q “ 0, the
gradient of the regularization term can be computed efficiently without backpropagating through the
pretrained score function.

Proposition 2. If ωp0q “ 0 and σ “ 0, the gradient of the score matching regularization admits

∇µregpµq “ Et„Ur0,T s,ϵ„N p0,Iq

“

λtpϵθpxt; tq ´ ϵq
‰

where λt :“
2Tσ2

vαt

σt

dωptq
dt .

First-order stochastic optimizers. Based on the simple expression for the gradient of score-matching
regularization in Proposition 2, we can treat time as a uniform random variable. Thus by sampling
randomly over time and noise, we can easily obtain unbiased estimates of the gradients. Accordingly,
first-order stochastic optimization methods can be applied to search for µ. We list the iterates under
Algorithm 1. Note that we define the loss per timestep based on the instantaneous gradient, which
can be treated as a gradient of a linear loss. We introduce the notation (sg) as stopped-gradient to
emphasize that score is not differentiated during the optimization. The ablations in Section D.4 show
that (descending) time stepping from t “ T to t “ 0, as in standard backward diffusion samplers
such as DDPM and DDIM, performs better than random time sampling in practice.

Remark [Non-zero dispersion]. Note that Proposition 2 derives the gradient for no dispersion case
(i.e., σ “ 0) for simplicity. The extension to nonzero dispersion is deferred to the appendix (A.3).
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Algorithm 1 Variational sampler (RED-diff)
Input: y, fp¨q, σv , L, tαt, σt, λtu

T
t“1

Initialize: µ0

for ℓ “ 1, . . . , L do
t „ Ur0, T s

ϵ „ N p0, Inq

xt “ αtµ ` σtϵ
loss “ }y ´ fpµq}

2
` λtpsgrϵθpxt; tq ´ ϵsqJµ

µ Ð OptimizerStepplossq

end for
Return: µ

4.2 REGULARIZATION BY DENOISING

Note that our variational sampler strikes resemblance with the regularization by denoising (RED)
framework (Romano et al., 2016). In essence, RED is a flexible way to harness a given denoising
engine for treating general inverse problems. RED regularization effectively promotes smoothness
for the image according to some image-adaptive Laplacian prior. To better understand the connection
with RED, let us look at the loss per timestep of our proposed variational sampler. From the gradient
expression in Proposition 2, it is useful to form the loss at timestep t as

}y ´ fpµq}2 ` λtpsgrϵθpxt; tq ´ ϵsqJµ (9)

This regularization term resembles RED. A small regularization implies that either the diffusion
reaches a fixed point, namely ϵθpxt; tq “ ϵ, or the residual only contains noise with no contribution
left from the image. It should however be noted that there is no need for Jacobian symmetry, or
the assumptions needed in the original RED Romano et al. (2016) since gradient of 9 is naturally
ϵθpxt; tq ´ ϵ (note the stopped gradient operation sg). Having said that, there are fundamental
differences with RED including the generative nature of diffusion prior, and the fact that we use the
entire diffusion trajectory for regularization . Nonetheless, we believe this is an important connection
to leverage RED utilities for improved sampling of diffusion models in inverse problems. It is also
worth commenting that the earlier work by Reehorst & Schniter (2018) also draws connections
between RED and score matching based on a single (deterministic) denoiser.

4.3 WEIGHTING MECHANISM

In principle, timestep weighting plays a key role in training diffusion models. Different timesteps are
responsible for generating different structures ranging from large-scale content in the last timesteps
to fine-scale details in the earlier timesteps (Choi et al., 2022). For effective regularization, it is
thus critical to properly tune the denoiser weights tλtu in our Algorithm 1. We observed that the
regularization term in Eq. 9 is sensitive to noise schedule. For example, in the variance-preserving
scenario, it drastically blows up as t approaches zero.

To mitigate the regularization sensitivity to weights, it is more desirable to define the regularization
in the signal domain, that is compatible with the fitting term as

}y ´ fpµq}2 ` λpsgrµ ´ µ̂tsq
Jµ, (10)

where λ is a hyperparameter that balances between the prior and likelihood and µ̂t is the MMSE
predictor of clean data. Here, we want the constant λ to control the trade-off between bias (fit to
observations) and variance (fit to prior). In order to come up with the interpretable loss in equation 10,
one needs to rescale the noise residual term ϵθpxt; tq ´ ϵ.

Recall that the denoiser at time t observes xt “ αtx0 `σtϵ. MMSE estimator also provides denoising
as

µ̂t “ Erµ|xts “
1

αt
pxt ´ σtϵθpxt; tqq. (11)

Thus, one can show that

µ ´ µ̂t “ pσt{αtqpϵθpxt; tq ´ ϵq

where we define SNRt :“ αt{σt as the signal-to-noise ratio. Accordingly, by choosing λt “ λ{SNRt,
we can simply convert the noise prediction formulation in equation 9 to clean data formulation in
equation 10.
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Figure 2: Comparison of the proposed variational sampler with alternatives for inpainting representative
ImageNet examples. Each sampler is tuned for the best performance.

5 EXPERIMENTS

In this section, we compare our proposed variational approach, so termed RED-diff, against recent
state-of-the-art techniques for solving inverse problems on different image restoration tasks. For the
prior, we adopt publicly available checkpoints from the guided diffusion model2 that is pretrained
based on 256ˆ256 ImageNet (Russakovsky et al., 2015); see details in the appendix. We consider the
unconditional version. For the proof of concept, we report findings for various linear and nonlinear
image restoration tasks for a 1k subset of ImageNet (Russakovsky et al., 2015) validation dataset3.
Due to space limitation, we defer more elaborate experiments and ablations to the appendix. Next,
we aim to address the following important questions:

• How does the proposed variational sampler (RED-diff) compare with state-of-the-art meth-
ods such as DPS, ΠGDM, and DDRM in terms of quality and speed?

• What is a proper sampling strategy and weight-tuning mechanism for the variational sampler?

Sampling setup. We adopt linear schedule for βt from 0.0001 to 0.02 for 1, 000 timesteps. For
simplicity, we always use uniform spacing when we iterate the timestep. For our variational sampler
we adopt Adam optimizer with 1, 000 steps, and set the momentum pair p0.9, 0.99q and initial learning
rate 0.1. No weight decay regularization is used. The optimizer is initialized with the degraded
image input. We also choose descending time stepping from t “ T to t “ 1 as demonstrated by the
ablations later in Section 5.3.2. Across all methods, we also use a batch size of 10 using RTX 6000
Ada GPU with 48GB RAM.

Comparison. For comparison we choose state-of-the-art techniques including DPS (Chung et al.,
2022a), ΠGDM (Song et al., 2023), and DDRM (Kawar et al., 2022a) as existing alternatives for
sampling inverse problems. We tune the hyper-parameters as follows:

• DPS (Chung et al., 2022a): 1, 000 diffusion steps, tuned η “ 0.5 for the best performance;
• ΠGDM (Song et al., 2023): 100 diffusion steps, tuned η “ 1.0, and observed that ΠGDM

does perform worse for 1000 steps;
• DDRM (Kawar et al., 2022a): tested for both 20 and 100 steps, and set η “ 0.85, ηb “ 1.0.

DDRM is originally optimized for 20 steps.

For evaluation, we report metrics including Kernel Inception Distance (KID, (Bińkowski et al., 2018)),
LPIPS, SSIM, PSNR, and top-1 classifier accuracy of a pre-trained ResNet50 model (He et al., 2015).

5.1 IMAGE INPAINTING

For inpainting evaluation, we adopt 1k samples from the ImageNet dataset and random masks from
Palette (Saharia et al., 2022). We tune λ “ 0.25 for the SNR-based denoiser weight tuning discussed
in Section 4.3. A few representative examples are shown in Fig. 2. For a fair comparison, we choose
a relatively hard example in the first row, and an easier one in the bottom row. It is evident that
RED-diff identifies the context, and adds the missing content with fine details. ΠGDM however

2https://github.com/openai/guided-diffusion
3https://bit.ly/eval-pix2pix
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Table 1: Performance of different samplers for ImageNet inpainting using pretrained unconditional guided
diffusion model. For RED-diff we set lr “ 0.5. For time per step (for each sample) we use the maximum batch
size that fits the GPU memory. All methods run on a single NVIDIA RTX 6000 Ada GPU with 48GB RAM.

Sampler PSNR(dB) Ò SSIM Ò KID Ó LPIPS Ó top-1 Ò time per step (sec) Ó max batch size Ò

DPS 21.27 0.67 15.28 0.26 58.2 0.23 15
ΠGDM 20.30 0.82 4.50 0.12 67.8 0.24 15
DDRM 20.72 0.83 2.5 0.14 68.6 0.1 25
RED-diff 23.29 0.87 0.86 0.1 72.0 0.05 30

Table 2: Performance of different samplers for nonlinear tasks based on ImageNet data.
Task Phase Retrieval HDR Deblurring
Metrics DPS RED-diff DPS RED-diff DPS RED-diff

PSNR(dB) Ò 9.99 10.53 7.94 25.23 6.4 45.00
SSIM Ò 0.12 0.17 0.21 0.79 0.19 0.987
KID Ó 93.2 114.0 272.5 1.2 342.0 0.1
LPIPS Ó 0.66 0.6 0.72 0.1 0.73 0.0012
top-1 Ò 1.5 7.2 4.0 68.5 6.4 75.4

fails to inpaint the hard example, and DPS and DDRM inpaint blurry contents. More examples are
provided in the appendix.

Quantitative results are also listed in Table 1. One can see that RED-diff consistently outperforms
the alternative samplers across all metrics such as KID and PSNR with a significant margin. This
indicates not only more faithful restoration by RED-diff but also better perceptual quality images
compared with alternative samplers.

Finally, note that RED-diff iterations are quite lightweight with only forward passing to the diffusion
score network. In contrast, DPS and ΠGDM require score network inversion by differentiating
through the diffusion denoisers. This in turn is a source of instability and renders the steps compu-
tationally expensive. Likewise, DDRM involves SVD calculations that are costly. We empirically
validate these by comparing the time per-step and GPU memory usage in Table 1.

5.2 NONLINEAR INVERSE PROBLEMS

For various nonlinear inverse problems we assess RED-diff on ImageNet data. We choose DPS as the
baseline since ΠGDM and DDRM only deal with linear inverse problems.

High dynamic range (HDR). We choose the nolinear HDR task as a candidate to verify RED-diff.
HDR performs the clipping function fpxq “ clipp2x,´1, 1q on the normalized RGB pixels. Again,
we choose λ “ 0.25 and lr “ 0.5, and 100 steps. For DPS we choose ζi “ 0.1

}y´Apx̂0pxiqq}
after grid

search over the nominator. While RED-diff converges to good solutions, DPS struggles to find a
decent solution even after tuning. The metrics listed under Table 2 demonstrate the gap.

Phase retrieval. We test on phase retrieval task as well. The task deals with reconstructing the phase
from only magnitude observations in the Fourier domain. It is a difficult task especially for ImageNet
dataset with diverse details and structures. Again, for RED-diff we use the weight λ “ 0.25 and
lr “ 0.5, while for DPS we optimize the step size ζi “ 0.4

}y´Apx̂0pxiqq}
. While both methods face with

challenges for recovering faithful images, RED-diff performs better and achieves higher scores for
most of the metrics; see Table 2. Note that, phase retrieval from arbitrary measurements is known to
be a challenging task. Thus, for a better assessment of RED-diff one can use supported measurement
models (e.g., to Gaussian or coded diffraction patterns) that lead to better quality Metzler et al. (2018).
That would however need a separate study that we leave for future research.

Deblurring. We also test another nonlinear scenario that deals with nonlinear deblurring. We adopt
the same setup as in DPS (Chung et al., 2022a) with the blur kernel adopted from a pretrained UNet.
For RED-diff we choose λ “ 0.25 and lr “ 0.5. For DPS also after grid search over the coefficients
we end up with ζi “ 1.0

}y´Apx̂0pxiqq}
. DPS struggles for this nonlinear tasks. In general, DPS is

8
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Figure 3: Ablation for denoiser weight tuning. Left: denoiser weight over timesteps (reversed); right: KID and
PSNR vs. λ for different monotonic functions of inverse SNR.

sensitive to step size and initialization, while RED-diff is not sensitive and achieves much better
scores as listed in Table 2.

5.3 ABLATIONS

We provide ablations to verify the role of different design components in the proposed algorithm such
as denoiser weight tuning, and sampling strategy.

5.3.1 DENOISER WEIGHTING MECHANISM

As discussed in Section 4.2, the variational sampler resembles regularization by the denoising
diffusion process. When sampling in descending order, namely from t “ T to t “ 1, each denoiser
regularizes different structures from high-level semantics to low-level fine details, respectively. To
effect prior at different image scales, each denoiser needs to be tuned properly. We proposed inverse
SNR (i.e., 1{SNRt) as the base weight per timestep in Section 4.3. To validate that choice, we ablate
different monotonic functions of SNR to weight denoisers over time. The weights are plotted in Fig. 3
(left) over timesteps. The corresponding KID and PSNR metrics are also shown in Fig. 3 (right)
for Platte inpainting for different weighting mechanisms. It is observed that the square root decay
(1{

?
SNR) and linear schedule (1{SNR) are the best strategies for KID and PSNR, respectively.

5.3.2 TIMESTEP SAMPLING

We consider five different strategies when sampling the timestep t during optimization, namely: (1)
random sampling; (2) ascending; (3) descending; (4) min-batch random sampling; and (5) mini-batch
descending sampling. We adopt Adam optimizer with 1, 000 steps and choose the linear weighting
mechanism with λ “ 0.25. Random sampling (1) uniformly selects a timestep t P r1, T s, while
ascending and descending sampling are ordered over timesteps. It is seen that descending sampling
performs significantly better than others. It starts from the denoiser at time t “ T , adding semantic
structures initially, and then fine details are gradually added in the process. This appears to generate
images with high fidelity and perceptual quality. We also tested batch sampling with 25 denoisers
per iteration, for 40 iterations. It is observed that batch sampling smears the fine texture details. See
appendix for more details.

6 CONCLUSIONS AND LIMITATIONS

This paper focuses on the universal sampling of inverse problems based on diffusion priors. It
introduces a variational sampler, termed RED-diff, that naturally promotes regularization by the
denoising diffusion process (DDP). Denoisers at different steps of DDP concurrently impose structural
constraints from high-level semantics to low-level fine details. To properly tune the regularization, we
propose a weighting mechanism based on denoising SNR. Our novel perspective views sampling as
stochastic optimization that embraces off-the-shelf optimizers for efficient and tunable sampling. Our
experiments for several image restoration tasks exhibit the strong performance of RED-diff compared
with state-of-the-art alternatives for inverse problems.

One of the limitations of our variational sampler pertains to the lack of diversity. It is mode-seeking
in nature and promotes MAP solutions. We will investigate methods that encourage diversity e.g.,
by tuning the optimizer, introducing more expressively in the variational distribution, or modifying
the criterion by adding dispersion terms as in Stein variational gradient descent Liu & Wang (2016).
Additionally, more extensive experiments for 3D generation tasks will solidify the merits of our
variational sampler.
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A PROOFS AND DERIVATIONS

A.1 PROOF OF PROPOSITION 1

As discussed in section 4, using Bayes rule, one can re-write the KL objective in equation 5 as

KL
`

qpx0|yq}ppx0|yq
˘

“ ´Eqpx0|yq

“

log ppy|x0q
‰

` KL
`

qpx0|yq}ppx0q
˘

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

termpiq

` log ppyq
loomoon

termpiiq

For minimization purposes, term(ii) is a constant, and we can ignore it. The term(i) however has
also two parts. The first part is simply the reconstruction loss. Based on the measurement model
in equation 2 of the main paper, since we assumed noise is i.i.d. Gaussian, the first part is simply
derived as

Eqpx0|yqrlog ppy|x0qs “ ´
1

2σ2
v

Eqpx0|yqr}y ´ fpx0q}2s

Using Theorem 2 in Song et al. (2021a), assuming that the score is learned exactly, namely ϵθpxt; tq “

´σt∇xt
log ppxtq, under some mild assumptions on the growth of log qpxt|yq and ppxtq at infinity,

we have

KLpqpx0|yq}ppx0qqq “

ż T

0

βptq

2
Eqpxt|yq

”

›

›∇xt
log qpxt|yq ´ ∇xt

log ppxtq
›

›

2
ı

dt (12)

over the denoising diffusion trajectory txtu for positive values tβptqu. This essentially implies that
a weighted score-matching over the continuous denoising diffusion trajectory is equal to the KL
divergence. In practice, however, we are often interested in a reweighting of r.h.s. in Eq. 12 that leads
to other divergence measures Song et al. (2021a).

A.2 PROOF OF PROPOSITION 2

The regularization term is essentially the score matching loss in the r.h.s. of equation 12. In practice,
we often use a weighting scheme different than βptq{2 that corresponds to maximum likelihood
estimation Song et al. (2021a). For re-weighting, it is useful to recognize the following Lemma,
which leverages integration by part, with the complete proof provided in Song et al. (2021a).

Lemma 1. The time-derivative of the KL divergence at timestep t obeys

dKL
`

qpxt|yq}ppxtq
˘

dt
“ ´

βptq

2
Eqpxt|yq

”

›

›∇xt
log qpxt|yq ´ ∇xt

log ppxtq
›

›

2
ı

(13)

This Lemma is intuitive based on equation 12. Now, to allow a generic weighting, one can simply
weight equation 13 with ωptq, Then, under the condition ωp0q “ 0, the r.h.s. of equation 12 can be
written as (see e.g., Song et al. (2021a))

ż T

0

βptq

2
ωptqEqpxt|yq

”

›

›∇xt
log qpxt|yq ´ ∇xt

log ppxtq
›

›

2
ı

dt

“ ´

ż T

0

ωptq
dKL

`

qpxt|yq}ppxtq
˘

dt
dt

paq
“ ´ωptqKL

`

qpxt|yq}ppxtq
˘

ıT

0
looooooooooooooooomooooooooooooooooon

“0

`

ż T

0

ω1ptqKL
`

qpxt|yq}ppxtq
˘

dt

“

ż T

0

ω1ptqEqpxt|yq

”

log
qpxt|yq

ppxtq

ı

dt

where ω1ptq :“ dωptq
dt . The equality in (a) holds because ωptqKL

`

qpxt|yq}ppxtq
˘

ıT

0
is zero at t “ 0

and t “ T . This is because ωptq “ 0 by assumption at t “ 0, and xT becomes a pure Gaussian noise at
the end of the diffusion process which makes ppxT q “ qpxT |yq and thus KL

`

qpxT |yq}ppxT q
˘

“ 0.
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For simplicity, let us suppose σ “ 0 in the variational distribution, and thus x0 “ µ is deter-
ministic. The forward diffusion process is then xt “ αtµ ` σtϵ for ϵ „ N p0, 1q. Applying the
re-parameterization trick, the gradient w.r.t µ can be simply written as

∇µregpµq “ 2σ2
v

ż T

0

ω1ptqEϵ„N p0,1q

”

`

∇xt
log qtpxt|yq ´ ∇xt

log ppxtq
˘J dxt

dµ

ı

dt

“ 2σ2
v

ż T

0

ω1ptqEϵ„N p0,1q

”

`

p´
ϵ

σt
q ´ p´

ϵθpxt; tq

σt
q
˘J

pαtIq

ı

dt

where qpxt|yq “ N pαtµ, σ
2
t Iq, and ∇xt

log qtpxt|yq “ ´pxt ´ αtµq{σ2
t “ ´ϵ{σt. Note, the

gradient was exchanged with the expectation since both gradient terms exist and are bounded. Finally,
we can rearrange terms to arrive at the compact form

∇µregpµq “
1

T

ż T

0

Tω1ptq
2σ2

vαt

σt
Eϵ„N p0,1q

“

pϵθpxt; tq ´ ϵq
‰

dt

“ Et„Ur0,T s,ϵ„N p0,1q

“

λtpϵθpxt; tq ´ ϵq
‰

for λt :“ Tω1ptq2σ2
vαt{σt. Note that we can ignore the second term inside the expectation since ϵ

has a zero mean.

A.3 ADDING DISPERSION TO VARIATIONAL APPROXIMATION

The results in Proposition 2 are presented for Dirac distribution with no dispersion, namely qpx0|yq „

δpx0 ´ µq. We however can easily extend those to optimize for Gaussian dispersion as well. The
interesting observation is that the gradient w.r.t. the mean µ remains the same, and the gradient w.r.t.
σ is simple and tractable.

In this case, we have qpx0|yq „ N pµ, σ2Iq. The diffusion signal at timestep t can then be represented
in a compact form using reparameterization trick as xt “ αtµ `

a

α2
tσ

2 ` σ2
t ϵ. Let’s define

ηt :“ p1 ` σ2pαt

σt
q2q1{2 so that xt “ αtµ ` ηtσtϵ. Note, for no dispersion case ηt “ 1. Then,

gradient w.r.t. the mean is obtained as

∇µregpµ, σq “
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Similarly, the gradient w.r.t. the dispersion is found as
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ı

The dispersion gradient has close form. However, we believe the Gaussian dispersion is not the right
choice to add stochasticity and diversity to natural images since simply perturbing an image with
Gaussian noise does not lead to another legitimate image. In essence, one needs a proper dispersion
on the image manifold that needs more sophisticated dispersion models such as in Wang et al. (2023).

Finally, it is also useful to note that we believe our framework can be extended to more complex
variational distributions such as hierarchical, multimodal, or normalizing flow-based distributions as
in VAEs, following the recipe in the previous work such as Vahdat et al. (2021).
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Figure 4: Comparison of the proposed variational sampler with alternatives for superresolution of
representative ImageNet examples. Each sampler is tuned for the best performance.

Table 3: Performance of different samplers for ImageNet 4x superresolution. We adopt unconditional guided
diffusion model for the score function. We choose Adam lr “ 0.25.

Sampler PSNR(dB) Ò SSIM Ò KID Ó LPIPS Ó top-1 Ò

DPS 24.83 0.71 10.01 0.16 71.5
ΠGDM 25.25 0.73 10.9 0.15 71.02
DDRM 25.32 0.72 14.0 0.23 63.9
RED-diff 25.95 0.75 10.0 0.25 66.7

B ADDITIONAL EXPERIMENTS

B.1 PRETRAINED DIFFUSION MODEL

We adopt the score function from the pretrained guided diffusion model, which uses no class
conditioning. It is trained on 256 ˆ 256 ImageNet dataset. Architecture details are listed in section 3
of Dhariwal & Nichol (2021).

B.2 IMAGE SUPERRESOLUTION

We perform 4x superresolution on a 1k subset of ImageNet dataset. Bicubic degradation is applied
to create the low-resolution inputs. After tuning λ “ 0.25, Adam iterations are run for 1, 000 steps.
A few samples are illustrated in Fig. 4, where one can notice that RED-diff strikes a good balance
between image fidelity and perceptual quality. One can play with this trade-off by tuning the Adam
learning rate. Smaller learning rates lead to higher fidelity, while larger learning rates give rise to
higher perceptual quality. See supplementary material for more examples.

Quantitative results are also listed in Table 3. One can see that RED-diff significantly outperforms
the alternative samplers in terms of PSNR and SSIM. Table 3 however indicates that RED-diff is
not as good as other alternatives in terms of the perceptual quality. We want to note the trade off we
observe between fidelity (e.g., PSNR) and perceptual quality (e.g., LPIPS). It seems that one can
achieve better perceptual quality at the expense of lower fidelity by tuning the regurlization weight λ
that control the bias-variance trade off. Other hyperparamaters such as step size and number of steps
can be tuned alternatively. Fig. 5 depicts the trade off between PSNR-LPIPS, where the red-cross
denotes the point reported in Table 3.
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Figure 5: LPIPS vs. PSNR (dB) trade-off for 4x superresolution.

B.3 MORE EXAMPLES FOR COMPARISONS

We provide additional examples to compare RED-diff with alternative methods for inpainting and
superresolution. The inpainting examples are shown in Fig. 6. Superresolution examples are also
shown in Fig. 7. For both tasks, the same setup as discussed n the main paper was used for each
scheme.

B.4 DIVERSITY

To verify the sample diversity for RED-diff, Fig. 8 illustrates different samples for the ImageNet
inpainting task when the seed for ϵ is changing. We choose Adam optimizer with lr “ 0.25, and
1, 000 steps. From the examples, we observe that RED-diff samples are sufficiently diverse. To
further enhance the diversity, one can play with the optimizer parameters, for example by choosing a
larger learning rate for Adam, or using a smaller number of steps.

B.5 DIFFUSION EVOLUTION

To understand the restoration process with diffusions, we plot the evolution of the diffusion model
over timesteps in Fig. 9. We visualize µ̂ as the outputs from every 100 steps over 1, 000 timesteps.
To gain further insights into the generation process and how the image structures are generated, the
evolution of diffusion steps is also plotted in the frequency domain. Fig. 10 illustrates the magnitude
and phase every 100 steps over 1, 000 timesteps. It can be observed that the earlier denoisers add
high frequency details, while the later denoisers generate low frequency structures.

C ADDITIONAL SCENARIOS

We include additional tasks to assess RED-diff for noisy inverse problems. We consider noisy
inpainting and compressed sensing MRI.

C.1 COMPRESSED SENSING MRI

We adopt the pretrained diffusion model from Jalal et al. (2021), and sample via RED-Diff. The
pretrained diffusion has been trained based on fastMRI brain data. We test sampling for both in-
domain brain, and out-of-domain knee data. The performance is compared with CSGM-Langevin
Jalal et al. (2021) for which the codebase is publicly available, and serves as a state-of-the-art for
complex-valued medical image reconstruction. We use the multi-coil fastMRI brain dataset Zbontar
et al. (2018) with 1D equispaced undersampling, and the fully-sampled 3D fast-spin echo multi-coil
knee MRI dataset from Ong et al. (2018) with 2D Poisson Disc undersampling mask, as in Jalal
et al. (2021). We used 6 validation volumes for fastMRI, and 3 volumes for Mridata by selecting 32
middle slices from each volume. We use exactly the same tuning parameters as for the inpainting
task. The results for different undersampling rates (R) are shown in Table 4. Obviously, RED-Diff
outperforms CSGM method (with Langevin sampling) consistently in terms of PSNR, that is the
measure of interest in MRI reconstruction. For more details see Ozturkler et al. (2023). Representative

17



Published as a conference paper at ICLR 2024

Figure 6: Comparison of the proposed variational sampler with alternatives for inpainting representa-
tive ImageNet examples. Each sampler is tuned for the best performance.

18



Published as a conference paper at ICLR 2024

Figure 7: Comparison of the proposed variational sampler with alternatives for superresolution of
representative ImageNet examples. Each sampler is tuned for the best performance.
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Figure 8: Sampling diversity for ImageNet inpainting. A few random realizations are shown, where
the first column is the masked input image, and the last one is the reference image.

Figure 9: Evolution of RED-diff over iterations. Descending sampling direction is used. Denoisers
from large to small t restore high-level to low-level features, respectively. Adam with 1, 000 steps
used and every 100 iterations are visualized.

Figure 10: Evolution of RED-diff over iterations in the frequency domain. Middle row shows the
log-magnitude, and the bottom row shows the phase.
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Zero-Filled Ground TruthCSGM-Langevin RED-diff
PSNR: 23.62
SSIM: 0.726

PSNR: 35.47
SSIM: 0.816

PSNR: 36.15
SSIM: 0.856

PSNR: 23.85
SSIM: 0.591

PSNR: 26.93
SSIM: 0.831

PSNR: 32.25
SSIM: 0.766

Figure 11: Representative reconstructed images for brain with R “ 4, and knee with R “ 12.

Table 4: Compressed sensing MRI PSNR (dB) for fastMRI brain and Mridata knee dataset with Rx
undersampling. CSGM is a SOTA method for complex-valued MRI with a public codebase.

Anatomy Brain Knee time
Sampler R “ 4 R “ 12 R “ 16 (sec/iter)
CSGM 36.3 31.4 31.8 0.344

RED-diff 37.1 33.2 32.7 0.114

samples are also shown in Fig. 11. At this point, it is also worth noting that RED-diff relates to other
variational approaches in the imaging literature such as Knoll et al. (2011); Portilla et al. (2003);
Kobler et al. (2017). A through comparison is needed and that is left for future research.

C.2 NOISY INPAINTING

To see the effects of measurement noise on RED-diff performance, we add Gaussian noise with
σv “ 0.1 to the masked Palette images for inpainting. We compare RED-diff with DPS and PGDM,
where for all we use 100 steps. For RED-diff we choose λ “ 0.25 similar to all other scenarios with
lr “ 0.25. For DPS, we choose η “ 0.5, and the step size run ζ “ 0.5{}y ´ Apx̂0pxqq} adopted
from Chung et al. (2022a) where we run a grid search over the range r0, 1s for the coeffficient. Table
5 shows the metrics. It is seen that RED-diff outperforms DPS and PiGDM in most metrics.

Table 5: Noisy inpainting with σy “ 0.1 for Palette data with 100 steps.

Sampler PSNR(dB) Ò SSIM Ò KID Ó LPIPS Ó top-1 Ò

DPS 16.98 0.39 1.9 0.52 8.8
ΠGDM 16.15 0.31 3.6 0.45 42.4
RED-diff 18.92 0.41 3.4 0.4 43.3
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Figure 12: Evolution of signal residual }µ̂t ´µ}2 (red) and noise residual }ϵθpxt; tq ´ ϵ}2 (blue) over
time for ImageNet inpainting when equally weighting diffusion denoisers at different timesteps.

D ABLATIONS

D.1 DENOISER WEIGHTING MECHANISM

It was discussed in section 4.3 that the noise residual blows up at the last timesteps of the diffusion
process. Here, we illustrate that in Fig. 12 when denoisers are equally weighted. It shows the
magnitude of both the signal and noise residuals. It is clearly seen that the noise residual goes up
drastically at around t “ 1, 000. Similarly, the signal residual also blows up at earlier steps. This
suggests a mechanism that guarantees a relatively small signal residual at all iterations that led to the
SNR ruler for weighting the denoisers.

D.2 OPTIMIZING RED-DIFF FOR MORE EPOCHS

Since RED-diff is an optimization-based sampling, one may ponder that using more iterations by
going over the denoisers more than once can improve the sample quality. To test this idea, we choose
different epochs for ImageNet inpainting, when we use Adam optimizer with 1, 000 steps per epoch.
A few representative examples are shown in Fig. 13. It is observed that adding more epochs has
negligible improvement on the sample quality.

D.3 OPTIMIZATION STRATEGY

The proposed variational sampler relies on optimization for sampling. To see the role of optimizer,
we first ablate SGD versus Adam. We found SGD more sensitive to step size which in turn demands
more careful tuning. We tune the hyperparameters in each case for the best performance for ImageNet
inpainting with λ “ 0.25. We use Adam with parameters discussed in the beginning of Section 5.
Fig. 14 shows representative inpainting examples, where SGD is tested with momentum (0.9) and
without momentum. It appears that SGD with momentum can be as good as the Adam optimizer,
which indicates that RED-diff is not sensitive to the choice of optimizer. Our future direction will
explore accelerated optimization for faster convergence.

For the Adam optimizer, we also ablated the initial learning rate to see its effect on the quality of the
generated samples. The results are depicted in Fig. 15 (right). It appears that tuning Adam learning
rate is important, where a smaller learning rate (e.g., 0.05) leads to better reconstruction quality since
the optimizer can better converge to the (optimal) MAP estimate. However, using a larger learning
rate (e.g., 0.5) leads to better perceptual quality measured with KID.
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Figure 13: RED-diff outputs for a different number of epochs. From left to right: input, epochs=1,2,10,
and the reference, respectively. Adding more epochs does not make any noticeable difference.

Figure 14: Ablation of optimization strategy for an inpainting example from ImageNet dataset. Adam
and SGD (with momentum 0.9) seem to perform similarly.

KID for a range of λ is also depicted in Fig. 15 (left). It is evident that there is an optimal λ, which
confirms that with proper tuning of the bias-variance trade-off one can gauge the sampling quality.

D.4 TIMESTEP SAMPLING STRATEGY

We ablate the timestep sampling strategy and the number of sampling steps. For comparison, we
consider five different strategies when sampling from t during optimization. This includes (1)
random sampling; (2) ascending; (3) descending; (4) min-batch random sampling; and (5) mini-batch
descending sampling. We adopt Adam optimizer with 1, 000 steps and choose the linear weighting
mechanism with λ “ 0.25. Random sampling (1) uniformly selects a timestep t P r1, T s, while
ascending and descending sampling are ordered over timesteps. As shown in the inpainting example
in Fig. 16, it is seen that descending sampling performs significantly better than others. It starts from
the denoiser at time t “ T , adding semantic structures initially, and then fine details are gradually
added in the process. This appears to generate images with high fidelity and perceptual quality.
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Figure 15: KID versus the optimizer learning rate (right), and the weight λ (left).

The aforementioned sampling strategies choose a single denoiser at a time, but one may ponder what
if one performs batch sampling to regularize based on multiple denoisers at the same time. This is
also computationally appealing as it can be executed in parallel based on our optimization framework.
To test this idea, we sort 1, 000 time steps in descending order, and use a batch of 25 denoisers per
iteration, for 40 iterations. It is again observed from Fig. 16 that batch sampling smears the fine
texture details. This needs further investigation to find out the proper weighting mechanism that
enables parallel sampling. In conclusion, descending sampling with a single (or a few) denoiser at a
time seems to be the best sampling strategy. More details are found in the supplementary material.

Table 6: Performance of RED-diff for inpainting under different step counts, when λ “ 0.25 and lr “ 0.25.

steps PSNR(dB) Ò SSIM Ò KID Ó LPIPS Ó top-1 Ò

10 18.83 0.75 22.05 0.21 59.4
100 23.13 0.87 1.93 0.12 70.8
1000 23.86 0.88 2.17 0.11 69.8

It is also useful to understand how many steps RED-diff needs to generate good samples. To this end,
we evaluated ImageNet inpainting for a different number of steps in Table 6. One can observe that
with 100 steps the best perceptual quality is achieved where KID=1.93. With more steps, the optimizer
tends to refine the fidelity so a better reconstruction PSNR is achieved. This ablation suggests that
not many steps are needed for the variational sampler. This is in contrast with DreamFusion Poole
et al. (2022) which uses a large number of iterations (15k) to generate samples.

D.5 CONNECTION AND DIFFERENCES WITH RED

We want to further elaborate the connections with the RED framework. It is useful to recognize that
the classical RED adds no noise to the input for denoising, and it is simply a fixed-point problem.
RED also uses a single deterministic denoiser. RED-diff is however fundamentally different. It
is generative and add noise to the input of all denoisers in the diffusion trajectory. As a result it
stochastically navigates towards the prior. This seems crucial to find a plausible solution. To highlight
of the strength of the RED-diff regulrization over RED we performed two simple experiments. In the
first experiment, we removed noise from the input of all denosiers, namely xt “ µt, and then ran
RED-diff iterations for the image inpainting task. It appears that iterations do not progress and they
get stuck around the initial masked image as seen in Fig. 17. In the second experiment, we just used
a single denoiser at time t “ 0, which has a very small noise, and thus resembles RED the most. We
observe again that the solution gets stuck and cannot navigate to the real region of prior to fill out
the masked areas in the image. We tested for a single denoiser picked from other time steps such as
t “ 500, and observed the same behavior.
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Figure 16: Ablation of sampling strategy for ImageNet inpainting. For mini-batch sampling, the batch size is
25. Sampling in descending direction performs significantly better than the rest. Adam optimizer is used with an
unconditional ImageNet guided diffusion score.

Figure 17: Evolution of diffusion when the noise to each denoiser is removed and xt “ µ.

D.6 COMPARISON WITH PLUG-AND-PLAY (PNP) METHODS

Plug-and-Play (PnP) methods are an important class of techniques for solving inverse problems; see
e.g., Kamilov et al. (2023); Zhang et al. (2021;?); Wei et al. (2022); Laumont et al. (2022); Hurault
et al. (2021); Xu et al. (2020); Pesquet et al. (2021). PnP and RED methods are indeed related and
connected through fixed-point iterations Cohen et al. (2021). It thus deserves to compare RED-diff
with PnP framework. To demonstrate the benefits of RED-diff with respect to PnP methods we
compare with two representatives namely DPIR Zhang et al. (2021) and DiffPIR Zhu et al. (2023).
DPIR integrates deep denoiser prior into PnP methods. In essence, it first trains a CNN for denosing.
It then plugs the deep denoiser prior as a modular part into a half quadratic splitting iterative algorithm
for solving inverse problems.

We consider the inpainting task and use the code from public repository DPIR 4 with IRCNN denoiser.
To be consistent with the experiments in the paper, we use ImageNet data and random Palette masks
as described in section 5.1 of the main paper. For 10 random samples, we compare PSNR and LPIPS
in Table 7, and show representative samples in Fig. 18. It is evident that RED-diff achieves a much
better quality images thanks to the diffusion prior. Note that DPIR is a purely deterministic method.

For completeness, we also compare with DiffPIR Zhu et al. (2023). It is worth noting that the DiffPIR
paper Zhu et al. (2023) has appeared after our initial arXiv submission. For DiffPIR we adopt the
code from the public repository 5 with unconditional guided diffusion score function. The results
are again shown in Table 7, and representative samples in Fig. 18. RED-diff performs slightly better
than DiffPIR Zhu et al. (2023). One however should note that RED-diff provides a rigorous treament
from the maximum likelihood perspective (and MAP estimator for no dispersion case) as it directly
minimizes the KL divergence, and as a result it better lends itself optimization and tuning. In essence,
the optimization step in Algorithm 1 can be replaced with any off-the-shelf optimizer. With the SNR
weighting mechanism described in section 4.3, we observe better quality images compared with
DiffPIR; see Fig 18 and Table 7. A more through analysis and comparison is left for future research.

4https://github.com/cszn/DPIR
5https://github.com/yuanzhi-zhu/DiffPIR
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Table 7: Comparison with plug-and-play prior methods for image inpainting for samples from Imagenet data.
RED-diff and DiffPIR use 100 diffusion timesteps and both use unconditional guided diffusion score function.

Sampler PSNR(dB) Ò SSIM Ò KID Ó LPIPS Ó top-1 Ò

DPIR 16.50 0.792 42.62 0.237 60.0
DiffPIR 27.29 0.8728 7.96 0.1401 70.0
RED-diff 26.06 0.8792 7.92 0.1060 90.0

Figure 18: Comparison between RED-diff and plug-play-methods, namely DPIR and DiffPIR for
Palette inpainting.

D.7 EXTENSION TO OBSERVATIONS WITH POISSON NOISE

We used Gaussian noise for the observation model in 2 to simplify the exposition. In essence, the
variational formulation is flexible with the choice of the observation noise as it eventually reflects in
the reconstruction loss in 6, namely ´Eqpx0|yq

“

log ppy|x0q
‰

. Here, we extend the reconstruction loss
to Poisson noise distribution, namely y „ Poissonpλ “ fpx0qq, with discrete and positive values
such as photon counts in imaging. Suppose that rfpµqsj ą 0 for all j. Then, assuming i.i.d. Poisson
noise,

ppy|x0q “

n
ź

j“1

rfpx0qs
yj

j exppr´fpx0qsjq

yj !
(14)

As a result

log ppy|x0q “

n
ÿ

j“1

yj logrfpx0qsj ´ rfpx0qsj ´ log yj ! (15)

Assuming Dirac distribution for qpx0|yq “ N pµ, σ2q with σ Ñ 0, the reconstruction loss admits a
simple form

´Eqpx0|yq

“

log ppy|x0q
‰

“

n
ÿ

j“1

yj ´ logrfpµqsj ` rfpµqsj ` log yj ! (16)

where the last term in constant. With this loss expression, one can apply (sub)gradient based
algorithms to solve RED-diff. It is important to recognize that in contrast with DPS, there is no need
for intractable likelihood log ppy|xtq. As a result, there is no need to for Gaussian approximation
of Poisson distribution that limits DPS to work only when the signal intensity is large. This indeed
shows another benefit of our variational approximation over DPS.
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Figure 19: RED-diff under different timestepping strategies. From left to right: timestepping schedule,
masked image input, linear timestepping, logarithmic timestepping, and exponential timestepping
output.

D.8 TIMESTEPPING EXPLORATION

Since the ascending sampling works best among the sampling strategies in Fig. xx, we tested
ascending sampling with nonuniform timestepping to see if it can reduce the number of steps. We test
logarithmic and exponential timestepping. For the discrete timesteps t P r1, 1, 000s, we choose 100
timsteps with logarithmic and exponential spacing; see Fig. 19 (left). We test RED-diff for inpainting
task. The sample results are shown in Fig. 19, and compered with uniform spacing. It appears that
uniform spacing works the best, and then the logarithmic spacing. This indicates that it is important
to sufficiently sample low noise denoisers to recover fine details.

D.9 CLARIFICATIONS ON THE PROS AND CONS OF VARIATIONAL APPROXIMATION

As it was stated in the main paper, we introduced variational approximation to address the caveats
of PGDM and DPS that approximates the likelihood with Gaussian distribution around the MMSE
estimate. We should note that our variational method is also a unimodal approximation, but it
approximates the posterior with Gaussian distribution. The benefits of posterior approximation are
however threefold: piq it requires no score Jacobian as opposed to DPS and PGDM that need costly
and unstable score network inversion; piiq due to its optimization nature, it is less sensitive (and more
interpretable) to hyperparameter tuning as opposed to DPS; piiiq it is flexible about the observation
noise that appears in the reconstruction lossEqpx0|yqr´ log ppy|x0qs. For instance it can easily handle
Poisson noise as as well as Gaussian noise as discussed in section D.8. This in contrast with DPS
that needs to approximate the likelihood log ppy|xtq, and thus resorts to approximation which require
strict assumptions. For instance, for Poisson noise, it requires the signal intensity to be large enough
so Poisson is approximated with Gaussian distribution. Last but not least, our variational framework
allows forming more expressive distributions for the posterior ppx0|yq (e.g., hierarchical, multimodal,
or normalizing flow based as done in Vahdat et al. (2021)). However, we leave this to future work.
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