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Abstract
Hierarchical reinforcement learning (HRL) learns
to make decisions on multiple levels of tempo-
ral abstraction. A key challenge in HRL is that
the low-level policy changes over time, making it
difficult for the high-level policy to generate effec-
tive subgoals. To address this issue, the high-level
policy must capture a complex subgoal distribu-
tion while also accounting for uncertainty in its
estimates. We propose an approach that trains
a conditional diffusion model regularized by a
Gaussian Process (GP) prior to generate a com-
plex variety of subgoals while leveraging prin-
cipled GP uncertainty quantification. Building
on this framework, we develop a strategy that se-
lects subgoals from both the diffusion policy and
GP’s predictive mean. Our approach outperforms
prior HRL methods in both sample efficiency and
performance on challenging continuous control
benchmarks.

1. Introduction

In the domain of Hierarchical Reinforcement Learning
(HRL), the strategy to simplify complex decision-making
processes involves structuring tasks into various levels of
temporal and behavioral abstractions. This strategy excels
particularly in environments where the challenges include
long-term credit assignment and sparse rewards, making
it a promising solution for long-horizon decision-making
problems. Among the prevailing HRL paradigms, goal-
conditioned HRL has been extensively explored in various
studies (Dayan & Hinton, 1992; Schmidhuber & Wahn-
siedler, 1993; Kulkarni et al., 2016; Vezhnevets et al., 2017;
Nachum et al., 2018; Levy et al., 2019; Zhang et al., 2020;
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Li et al., 2021; Kim et al., 2021; Li et al., 2023; Wang et al.,
2023a; 2024). Within this framework, a high-level policy
decomposes the primary goal into a series of subgoals, ef-
fectively directing the lower-level policy to achieve these
subgoals. The efficacy of this approach hinges on the abil-
ity to generate subgoals that are semantically coherent and
achievable, providing a strong learning signal for the lower-
level policies. The hierarchical structure not only enhances
the learning process’s efficiency but also considerably im-
proves the policy’s overall performance in solving complex
tasks.

The challenge with off-policy HRL lies in the simultaneous
training of both high-level and low-level policies, which
can lead to a changing low-level policy that causes past
experiences in reaching previously achievable subgoals to
become invalid. This issue requires the high-level policy
to swiftly adapt its strategy to generate subgoals that align
with the constantly shifting low-level skills. Previous works
like HIRO (Nachum et al., 2018) and HAC (Levy et al.,
2019) have attempted to address this problem through a
relabeling strategy that utilizes hindsight experience replay
(HER) (Andrychowicz et al., 2017a). This involves relabel-
ing past experiences with high-level actions, i.e., subgoals,
that maximize the probability of the past lower-level actions.
Essentially, the subgoal that induced a low-level behavior in
the past experience is relabeled so that it potentially induce
the similar low-level behavior with the current low-level
policy. However, the relabeling approach does not facil-
itate efficient training of the high-level policy to comply
promptly with updates to the low-level policy. Some studies
(Zhang et al., 2020; Kim et al., 2021) have proposed that
the problem of inefficient training is aggravated by the size
of the subgoal space, and attempted to constrain it. While
such constraints can improve performance in specific set-
tings, they often fail to scale effectively to more complex
environments.

To address these challenges, this work introduces a condi-
tional diffusion model-based approach for subgoal gener-
ation (Sohl-Dickstein et al., 2015; Song et al., 2021; Ho
et al., 2020). By directly modeling a highly expressive state-
conditioned distribution of subgoals, our method offers a
promising alternative to temporal difference learning, prov-
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ing less susceptible to the destabilizing interactions inherent
in the deadly triad (Sutton & Barto, 2018) and more adept at
handling stochastic environments. While diffusion models
excel at generating complex distributions, they often de-
mand substantial training data and lack explicit uncertainty
quantification. To mitigate these limitations and regularize
learning, we incorporate a Gaussian Process (GP) prior as
an explicit surrogate distribution for subgoals. The GP prior
facilitates more efficient learning of the diffusion model
based subgoal generation while simultaneously providing
uncertainty quantification, informing the diffusion process
about uncertain state regions.

Building upon this foundation, we further develop a sub-
goal selection strategy that combines the GP’s predictive
mean with subgoals sampled from a diffusion model, lever-
aging their complementary strengths. The GP’s predictive
mean, informed by state-subgoal pairs in the high-level re-
play buffer, aligns subgoals with feasible trajectories and
ensures consistency with the underlying structure of the
state space. This is achieved through the GP’s kernel, which
captures correlations between states and subgoals based on
patterns learned from the training data. To complement this
precision, the diffusion model introduces adaptability by
generating diverse subgoals from its learned distribution.
Together, these approaches form a hybrid strategy: the GP
offers structured, data-driven guidance towards reliable, low-
uncertainty subgoals, while the diffusion model provides
flexibility, enabling robust subgoal generation that balances
reliability with versatility.

Our main contributions are summarized as follows:

• We introduce a conditional diffusion model for subgoal
generation, directly modeling a state-conditioned dis-
tribution and reducing susceptibility to instability from
temporal difference learning.

• We employ a Gaussian Process (GP) prior to regularize
the diffusion model and explicitly quantify uncertainty,
promoting more efficient learning and reliable subgoal
generation.

• We introduce a subgoal selection strategy that com-
bines the GP’s predictive mean, which aligns subgoals
with feasible trajectories and ensures structural con-
sistency, with the diffusion model’s expressiveness,
resulting in robust and adaptive subgoal generation.

2. Preliminaries

Goal-conditioned HRL In reinforcement learning (RL),
agent-environment interactions are modeled as a Markov
Decision Process (MDP) denoted by M = ⟨S,A,P,R, γ⟩,
where S represents the state space, A denotes the action

set, P : S × A × S → [0, 1] is the state transition prob-
ability function, R : S × A → R is the reward function,
and γ ∈ [0, 1) signifies the discount factor. A stochastic
policy π(a|s) maps any given state s to a probability distri-
bution over the action space, with the goal of maximizing
the expected cumulative discounted reward Eπ[

∑∞
t=0 γ

trt],
where rt is the reward received at discrete time step t.

In a continuous control RL setting, modeled as a finite-
horizon, goal-conditioned MDP M = ⟨S,G,A,P,R, γ⟩,
where G represents a set of goals, we employ a Hierarchical
Reinforcement Learning (HRL) framework comprising two
layers of policy akin to (Nachum et al., 2018). This frame-
work includes a high-level policy πh(g|s) that generates a
high-level action, or subgoal, gt ∼ πh(·|st) ∈ G, every k
time steps when t ≡ 0 (mod k). Between these intervals,
a predefined goal transition function gt = f(gt−1, st−1, st)
is applied when t ̸≡ 0 (mod k). The high-level pol-
icy influences the low-level policy through intrinsic re-
wards for achieving these subgoals. Following prior work
(Andrychowicz et al., 2017a; Nachum et al., 2018; Zhang
et al., 2020; Kim et al., 2021), we define the goal set G as a
subset of the state space, i.e., G ⊂ S , and the goal transition
function as f(gt−1, st−1, st) = st−1 + gt−1 − st. The ob-
jective of the high-level policy is to maximize the extrinsic
reward as defined by rht =

∑t+k−1
i=t Ri, t = 0, 1, 2, . . .,

where Ri is the environmental reward.

The low-level policy aims to maximize the intrinsic reward
granted by the high-level policy. It accepts the high-level ac-
tion or subgoal g as input, interacting with the environment
by selecting an action at ∼ πl(·|st, gt) ∈ A at each time
step. An intrinsic reward function, rlt = −∥st+gt−st+1∥2,
evaluates the performance in reaching the subgoal g.

This goal-conditioned HRL framework facilitates early
learning signals for the low-level policy even before a profi-
cient goal-reaching capability is developed, enabling concur-
rent end-to-end training of both high and low-level policies.
However, off-policy training within this HRL framework en-
counters the non-stationarity problem as highlighted in Sec-
tion 1. HIRO (Nachum et al., 2018) addresses this by rela-
beling high-level transitions (st, gt,

∑t+k−1
i=t Ri, st+k) with

an alternate subgoal g̃t to enhance the likelihood of the ob-
served low-level action sequence under the current low-level
policy, by maximizing πl(at:t+k−1|st:t+k−1, g̃t:t+k−1).

The relabeled subgoals are generally considered to be sam-
pled from a distribution that asymptotically approximates
an optimal high-level policy within a stationary data distri-
bution (Zhang et al., 2020; Wang et al., 2023a). This leads
to the conjecture that learning a conditional distribution
based on the relabeled subgoals inherently facilitates the
achievement of stationarity in the high-level policy.
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Diffusion Model Diffusion models (Sohl-Dickstein et al.,
2015; Song et al., 2021; Ho et al., 2020) have emerged as a
powerful framework for generating complex data distribu-
tions. These models pose the data-generating process as an
iterative denoising procedure pθ(xt−1|xt). This denoising
is the reverse of a diffusion or forward process which maps
a data example x0 ∼ q(x0) through a series of intermedi-
ate variables x1:T in T steps with a pre-defined variance
schedule βi, according to

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), (1)

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI). (2)

The reverse process is constructed as pθ(x0:T ) :=
N (xT ; 0, I)

∏T
t=1 pθ(xt−1|xt). Parameters θ are optimized

by maximizing a variational bound on the log likelihood of
the reverse process LELBO = Eq(x1:T |x0)[log

pθ(x1:T |x0)
q(x1:T |x0)

].

In this paper, we employ two distinct notations of timesteps:
one for the diffusion process and another for the reinforce-
ment learning trajectory. Specifically, we denote the diffu-
sion timesteps with superscripts i ∈ {1, . . . , N}, and the
trajectory timesteps with subscripts t ∈ {1, . . . , T}.

3. Proposed Method

In this section, we present our method — HIerarchical RL
subgoal generation with DIffusion model (HIDI), which
explicitly models the state-conditional distribution of sub-
goals at the higher level. By combining with the temporal
difference learning objective, the high-level policy promptly
adapts to generating subgoals following a data distribution
compatible with the current low-level policy.

3.1. Diffusional Subgoals

We formulate the high-level policy as the reverse process of
a conditional diffusion model as

πh
θh
(g|s) := pθh(g

0:N |s) = N (gN ;0, I)

N∏
i=1

pθh(g
i−1|gi, s),

with the end sample gi being the generated sub-
goal. Following Ho et al. (2020), a Gaussian distribu-
tion N(gi−1;µθh(g

i, s, i),Σθh(g
i, s, i)) is used to model

pθh(g
i−1|gi, s), which is parameterized as a noise predic-

tion model with learnable mean

µθh

(
gi, s, i

)
=

1
√
αi

(
gi − βi√

1− ᾱi
ϵθh
(
gi, s, i

))
and fixed covariance matrix Σθh

(
gi, s, i

)
= βiI .

Starting with Gaussian noise, subgoals are then iteratively
generated through a series of reverse denoising steps by the
noise prediction model parameterized by θh as

gi−1 =
1
√
αi

(
gi − βi

1− ᾱi
ϵθh(g

i, s, i)

)
+
√
βiϵ,

ϵ ∼ N (0, I) if i > 1, else ϵ = 0. (3)

The learning objective of our subgoal generation model
comprises three terms, i.e., diffusion objective Ldm(θh), GP
based uncertainty Lgp(θh, θgp) and RL objective Ldpg(θh):

πh = argmin
θh

Ld(θh) := Ldm(θh) + ψLgp(θh, θgp)

+ ηLdpg(θh), (4)

where ψ and η are hyperparameters.

We adopt the objective proposed by Ho et al. (2020) as the
diffusion objective,

Lh
dm(θh) = Ei∼U,ϵ∼N (0,I),(s,g)∼Dh

(5)[∥∥ϵ− ϵθh (√ᾱig +
√
1− ᾱiϵ, s, i

)∥∥2] , (6)

where Dh is the high-level replay buffer, with the subgoals
relabeled similarly to HIRO. Specifically, relabeling gt in
the high-level transition (st, gt,

∑t+k−1
i=t Ri, st+k) with g̃t

aims to maximize the probability of the incurred low-level
action sequence πl(at:t+k−1|st:t+k−1, g̃t:t+k−1), which is
approximated by maximizing the log probability

logπl
(
at:t+k−1 | st:t+k−1, g̃t:t+k−1

)
∝ − 1

2

t+k−1∑
i=t

∥∥ai − πl
θl
(si, g̃i)

∥∥2
2
+ const. (7)

The purpose of the above diffusion objective is to align the
high-level policy’s behavior with the distribution of “opti-
mal” relabeled subgoals, thereby mitigating non-stationarity
in hierarchical models.

While our method is versatile enough to be integrated with
various actor-critic based HRL frameworks, we specifically
utilize the TD3 algorithm (Fujimoto et al., 2018) at each
hierarchical level, in line with HIRO (Nachum et al., 2018),
HRAC (Zhang et al., 2020) and HIGL (Kim et al., 2021). Ac-
cordingly, the primary goal of the subgoal generator within
this structured approach is to optimize for the maximum
expected return as delineated by a deterministic policy. This
objective is formulated as:

Ldpg(θh) = −Es∼Dh,g0∼πθh

[
Qh(s,g

0)
]
. (8)

Given that g0 (hereafter referred to as g without loss of gen-
erality) is reparameterized according to Eq. 3, the gradient
of Ldpg with respect to the subgoal can be backpropagated
through the entire diffusion process.
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3.2. Uncertainty Modeling with Gaussian Process Prior

Whilst diffusion models possess sufficient expressivity to
model the conditional distribution of subgoals, they face two
significant challenges in the context of subgoal generation
in HRL. Firstly, these models typically require a substantial
amount of training data, i.e., relabeled subgoals, to achieve
accurate and stable performance, which can be highly sam-
ple inefficient. Secondly, standard diffusion models lack
an inherent mechanism for quantifying uncertainty in their
predictions, a crucial aspect for effective exploration and
robust decision-making in HRL. To address these issues,
we propose to model the state-conditional distribution of
subgoals at the high level, harnessing a Gaussian Process
(GP) prior as an explicit surrogate distribution for subgoals.

Given Dh, the relabeled high-level replay buffer, a zero-
mean Gaussian process prior is placed on the underlying
latent function, i.e., the high-level policy, g ∼ πθh , to be
modeled. This results in a multivariate Gaussian distribution
over any finite subset of latent variables:

p(g|s; θgp) = N (g|0,KN + σ2I), (9)

where the covariance matrix KN is constructed from a co-
variance function, or kernel, which expresses a prior no-
tion of smoothness of the underlying function: [KN ]ij =
K(si, sj). Typically, the covariance function depends on a
small number of hyperparameters θgp, which control these
smoothness properties. Without loss of generality, we em-
ploy the commonly used Radial Basis Function (RBF) ker-
nel:

K(si, sj) = γ2 exp

[
− 1

2ℓ2

D∑
d=1

(
s
(d)
i − s

(d)
j

)2]
,

θgp = {γ, ℓ, σ}. (10)

Here, D is the state space dimension, γ2 is the variance
parameter, ℓ is the length scale parameter, and σ2 is the noise
variance. The hyperparameters θgp are learnable parameters
of the GP model.

We leverage the GP prior to regularize and guide the opti-
mization of the diffusion policy. Specifically, we incorporate
the negative log marginal likelihood of the GP as an addi-
tional loss term Lgp:

Lgp =Es∼Dh,g∼πθh
[− log p(g|s; θh, θgp)]

=Es∼Dh,g∼πθh

[
− 1

2
g⊤(KN + σ2I)−1g

− 1

2
log
∣∣KN + σ2I

∣∣ − N

2
log 2π

]
.

(11)

By minimizing Lgp alongside the diffusion loss and RL
objective, we encourage the diffusion policy to generate sub-

goals that are consistent with the GP prior, particularly by fo-
cusing learning on feasible regions supported by previously
achieved transitions. This approach not only regularizes
the diffusion model but also incorporates the uncertainty
estimates provided by the GP, potentially leading to more
robust and sample-efficient learning.

To formalize the effect of the GP regularization on the
diffusion-based subgoal policy, we provide the following
theorem and proposition. The GP loss introduces a gradient
signal that guides subgoal generation toward reliable regions
identified by the GP posterior. Specifically:

Theorem 3.1 (GP Regularization Guides Subgoal Align-
ment). Let g = f(ϵ′, s; θh) be the subgoal generated by the
diffusion model conditioned on state s and noise ϵ′. Under
mild regularity assumptions, the GP regularization term
in the high-level objective encourages the learned distribu-
tion pθh(g|s) to align with the GP predictive mean µ∗(s) in
regions of low predictive variance σ2

∗(s).

We further quantify the mechanism through which this align-
ment occurs:

Proposition 3.2 (Gradient Weighting by GP Uncertainty).
Let g = f(ϵ′, s; θh) be the subgoal generated by the dif-
fusion model using the reparameterization trick. Then the
gradient of the GP loss with respect to θh satisfies:

∇θhLgp = Es,ϵ′

[(
g − µ∗(s)

σ2
∗(s)

)⊤

∇θhg

]
,

where µ∗(s) and σ2
∗(s) denote the GP predictive mean and

variance. This implies that the GP regularization applies
stronger gradient pressure for parameter updates in state
regions s where the GP is more confident (i.e., σ2

∗(s) is
small).

The detailed derivation and full proofs are provided in Ap-
pendix A.1.3.

While the GP framework provides explicit uncertainty quan-
tification, standard GP training requires O(N3) computa-
tion to invert the covariance matrix, which is infeasible for
large replay buffers (N ). To improve efficiency, we adopt a
sparse GP approach using M ≪ N inducing states s̄ (Snel-
son & Ghahramani, 2005). These inducing states act as a
summary of the full dataset Dh.

Given a new state s∗, the sparse GP yields a predictive
distribution for the subgoal g∗:

p(g∗|s∗,Dh, s̄) = N
(
g∗ | µ∗, σ

2
∗
)
. (12)

where the predictive mean µ∗ and variance σ2
∗ are given by:

µ∗ = k⊤
∗ Q

−1
M KMN (Λ + σ2I)−1g (13)
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and
σ2
∗ = K∗∗ − k⊤

∗ (K
−1
M −Q−1

M )k∗ + σ2. (14)

Here, k∗, QM , KMN , Λ, KM , and K∗∗ depend on the
kernel function evaluated at the inducing states s̄, the query
state s∗, and the states in the replay bufferDh. The inducing
states s̄ and GP hyperparameters θgp are learned by maxi-
mizing the marginal likelihood. The detailed derivation of
the sparse GP is provided in Appendix A.3. The learned in-
ducing states implicitly define regions of interest, informing
the subgoal generation process.

3.3. Inducing States Informed Subgoal Selection

Building on the predictive distribution of the sparse GP
model, we develop a subgoal selection strategy that primar-
ily relies on subgoals sampled from a diffusion model, with
the GP’s predictive mean acting as a complementary regular-
izer. At each high-level decision point, subgoals are selected
using a hybrid mechanism that integrates the expressive ca-
pabilities of the diffusion model with the structural guidance
provided by the GP.

Subgoals are predominantly sampled from the diffusion pol-
icy πθh(g | s∗), which generates diverse and adaptive sub-
goals from its learned distribution. Complementing this, the
GP’s predictive mean, µ∗ (Eq. 13), derived from the sparse
GP with inducing states and informed by state-subgoal pairs
in the high-level replay buffer, leverages its kernel to cap-
ture smoothness and correlations in the state space. This
regularizes subgoal selection by encouraging consistency
with the structure and dynamics observed in the training
data, anchoring the selection process to meaningful patterns
i.e., low-uncertainty regions supported by experience, while
mitigating over-reliance on the diffusion model’s flexibility.

The selection strategy is formalized as:

g∗ =

{
µ∗, with probability ε,

g ∼ πθh(g | s∗), with probability 1− ε.
(15)

To quantify the benefit of this subgoal selection, we consider
the single macro-step reward R(s,g) for taking subgoal
g ∈ G in state s, defined as:

R(s,g) = E
[k−1∑
i=0

rt+i

∣∣∣ st = s, gt = g
]
,

where k is the number of lower-level steps that attempt to
reach subgoal g.

Under a near-optimal diffusion policy assumption (inspired
by similar assumptions in actor-critic analysis (Kakade &
Langford, 2002)), we have the following guarantee for the
regret of our subgoal selection strategy:

Theorem 3.3 (Single-Step Regret Bound for the Subgoal Se-
lection). Let R∗(s) = maxg∈G R(s,g). Suppose there is a
baseline rewardRmin such that for all s ∈ S ,R

(
s,µ(s)

)
≥

Rmin. Under the assumption of a near-optimal diffusion
policy (see Appendix A.2 for the full statement), the subgoal
selection strategy defined above has a bounded single-step
regret.

Furthermore, under standard policy improvement assump-
tions (similar to those in policy gradient methods (Sutton
& Barto, 2018)), incorporating the GP mean provides a
theoretical guarantee for non-decreasing performance:

Proposition 3.4 (Single-Step Policy Improvement). Let
Qh(s,g) be the high-level Q-value. Under certain condi-
tions (see Appendix A.2 for the full statement), selecting
the GP mean subgoal with a certain probability does not
degrade performance in a single-step sense.

The detailed proofs for Theorem 3.3 and Proposition 3.4 are
provided in Appendix A.2 and A.2, respectively.

4. Related Work

HRL has been a significant field of study for addressing
challenges such as long-term credit assignment and sparse
rewards. It typically involves a high-level policy that breaks
down the overarching task into manageable subtasks, which
are then addressed by a more specialized low-level policy
(Dayan & Hinton, 1992; Schmidhuber & Wahnsiedler, 1993;
Kulkarni et al., 2016; Vezhnevets et al., 2017; Nachum et al.,
2018; Levy et al., 2019; Zhang et al., 2020; Li et al., 2021;
Kim et al., 2021; Li et al., 2023; Wang et al., 2023a; 2024).
The mechanism of this decomposition varies, with some
approaches utilizing discrete values for option or skill se-
lection (Bacon et al., 2017; Fox et al., 2017; Gregor et al.,
2017; Konidaris & Barto, 2009; Eysenbach et al., 2019;
Sharma et al., 2020; Bagaria & Konidaris, 2019), and others
adopting learned subgoal space (Vezhnevets et al., 2017;
Li et al., 2021; 2023). Despite these variations, a common
challenge is the difficulty of leveraging advancements in the
field of off-policy, model-free RL.

Recent efforts to enhance HRL’s learning efficiency through
off-policy training have highlighted issues such as insta-
bility and the inherent non-stationarity problem of HRL.
For instance, (Nachum et al., 2018) introduces an off-
policy method that relabels past experiences to mitigate
non-stationary effects on training. Techniques from hind-
sight experience replay have been utilized to train multi-
level policies concurrently, penalizing high-level policies
for unattainable subgoals (Andrychowicz et al., 2017a; Levy
et al., 2019). To address the issue of large subgoal spaces,
(Zhang et al., 2020) proposed constraining the high-level
action space with an adjacency requirement. Wang et al.
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(2020) improves stationarity by conditioning high-level de-
cisions on both the low-level policy representation and envi-
ronmental states. Li et al. (2021) develops a slowness ob-
jective for learning a subgoal representation function. Kim
et al. (2021) introduces a framework for training a high-level
policy with a reduced action space guided by landmarks,
i.e., promising states to explore. Adopting the deterministic
subgoal representation of Li et al. (2021), Li et al. (2022)
proposes an exploration strategy to enhance the high-level
exploration via designing measures of novelty and potential
for subgoals, albeit the strategy relies on on visit counts for
subgoals in the constantly changing subgoal representation
space.

The broader topic of goal generation in RL has also been
explored (Florensa et al., 2018; Nair et al., 2018; Ren et al.,
2019; Campero et al., 2021; Wang et al., 2023a). GoalGAN
(Florensa et al., 2018) employs a GAN to generate appropri-
ately challenging tasks for policy training, however it does
not condition on observations and the sequential training of
its GAN and policy. Nair et al. (2018) combines unsuper-
vised representation learning with goal-conditioned policy
training. Ren et al. (2019) proposes a method for generat-
ing immediately achievable hindsight goals. Campero et al.
(2021) introduces a framework wherein a teacher network
proposes progressively challenging goals, rewarding the net-
work based on the student’s performance. SAGA (Wang
et al., 2023a) introduces an adversarially guided framework
for generating subgoals in goal-conditioned HRL. How-
ever, akin to the common challenges associated with GANs,
SAGA may encounter issues such as stability and mode col-
lapse due to its implicit modeling of subgoal distributions.
In contrast, HIDI explicitly constructs subgoal distributions
by progressively transforming noise into sample data, effec-
tively capturing multimodal distributions and ensuring more
stable training dynamics.

Diffusion models have been introduced to offline RL do-
main recently (Janner et al., 2022; Wang et al., 2023b; Kang
et al., 2024; Li et al., 2023; Chen et al., 2024). Janner et al.
(2022) train an unconditional diffusion model to generate
trajectories consisting of states and actions for offline RL.
Approaches (Li et al., 2023; Chen et al., 2024) also extend
diffusion model to offline HRL and generate trajectories at
different levels. As a more related line of work, Diffsuion-
QL (Wang et al., 2023b) introduces diffusion models into
offline RL and demonstrated that diffusion models are su-
perior at modeling complex action distributions. Kang et al.
(2024) improve Diffsuion-QL to be compatible with max-
imum likelihood-based RL algorithms. The success of of-
fline RL methods leveraging diffusion policies (Wang et al.,
2023b; Kang et al., 2024) motivates us to investigate the im-
pact of using conditional diffusion model for the challenging
subgoal generation in off-policy HRL.

Gaussian processes can encode flexible priors over func-
tions, which are a probabilistic machine learning paradigm
(Williams & Rasmussen, 2006). GPs have been adopted
in various latent variable modeling tasks in RL. In Engel
et al. (2003), the use of GPs for solving the RL problem of
value estimation is introduced. Then Kuss & Rasmussen
(2003) uses GPs to model the the value function and system
dynamics. Deisenroth et al. (2013) develops a GP-based
transition model of a model-based learning system, which
explicitly incorporates model uncertainty into long-term
planning and controller learning to reduce the effects of
model errors. Levine et al. (2011) proposes an algorithm
for inverse reinforcement learning that represents nonlinear
reward functions with GPs, allowing the recovery of both a
reward function and the hyperparameters of a kernel func-
tion that describes the structure of the reward. Wang et al.
(2024) proposes a GP based method for learning probabilis-
tic subgoal representations in HRL.

4.1. Environments

Our experimental evaluation encompasses a diverse set of
long-horizon continuous control tasks facilitated by the Mu-
JoCo simulator (Todorov et al., 2012), which are widely
adopted in the HRL community. The environments selected
for testing our framework, depicted in Figure 3, include
Reacher, Pusher, Point Maze, Ant Maze (U-shape), Ant
Maze (W-shape), Ant Fall, Ant FourRooms and variants
with environmental stochasticity for Ant Maze (U-shape),
Ant Fall, and Ant FourRooms by adding Gaussian noise
with a standard deviation of σ = 0.05 to the (x, y) positions
of the ant robot at each step. Additionally, we adopt another
variant labeled ‘Image’ for the large-scale Ant FourRooms
environment. In this variant, observations are low-resolution
images formed by zeroing out the (x, y) coordinates and
appending a 5× 5× 3 top-down view of the environment,
as described in (Nachum et al., 2019; Li et al., 2021). We
evaluate HIDI and baselines under dense and sparse reward
paradigms. Dense rewards are the negative L2 distance to
the target, while sparse rewards are 0 below a threshold and
-1 otherwise. Maze tasks use a 2D (x, y) goal space (Zhang
et al., 2020; Kim et al., 2021), Reacher uses a 3D (x, y, z)
goal space, and Pusher employs a 6D space including the
object’s position. Relative subgoals are used in Maze tasks,
and absolute schemes in Reacher and Pusher. 1

4.2. Analysis

We conduct experiments comparing with the following state-
of-the-art baseline methods: (1) HLPS (Wang et al., 2024):
an HRL algorithm which proposes a GP-based subgoal la-
tent space; (2) SAGA (Wang et al., 2023a): an HRL algo-

1Details about the environments and parameter configurations
are provided in the appendix.
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Figure 1. Learning curves of our method and baselines, i.e., HLPS (Wang et al., 2024), SAGA (Wang et al., 2023a), HIGL (Kim et al.,
2021), HRAC (Zhang et al., 2020), and HIRO (Nachum et al., 2018). Each curve and its shaded region represent the average success rate
and 95% confidence interval respectively, averaged over 10 independent trials.
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Figure 2. (a-b) Learning curves of various baselines: HIDI-A refers to HIDI without subgoal selection, HIDI-B refers to HIDI without
subgoal selection and GP priors. (c) HIDI performance with varying diffusion steps. (d) HIDI performance with varying probabilities for
subgoal selection.

rithm that introduces an adversarially guided framework for
generating subgoals; (3) HIGL (Kim et al., 2021): an HRL
algorithm that trains a high-level policy with a reduced sub-
goal space guided by landmarks; (4) HRAC (Zhang et al.,
2020): an HRL algorithm which introduces an adjacency
network to restrict the high-level action space to a k-step
adjacent region of the current state; (5) HIRO (Nachum
et al., 2018): an HRL algorithm that relabels the high-level
actions based on hindsight experience (Andrychowicz et al.,
2017b). Additionally, we present a theoretical analysis for
HIDI in the Appendix A.2.

Can HIDI surpass state-of-the-art HRL methods in
learning stability and asymptotic performance? Fig-
ure 1 illustrates the learning curves of HIDI in comparison
with baseline methods across various tasks. HIDI consis-
tently surpasses all baselines in terms of learning stability,
sample efficiency, and asymptotic performance. The advan-
tage of the hierarchical diffusion policy approach is more
pronounced in complex scenarios such as the Reacher and
Pusher robotic arm tasks, and the Stochastic Ant Maze task,
where the environmental stochasticity poses additional chal-
lenges in generating reasonable subgoals. These results
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highlight the benefits of employing generative models for
subgoal generation, as demonstrated by HIDI and SAGA.
However, SAGA exhibits signs of instability in the more
demanding robotic arm task Pusher, as well as considerably
lower sample efficiency compared to HIDI in most tasks.

Is HIDI capable of generating reachable subgoals to
address the issues commonly encountered in off-policy
training within HRL? Figure 5 in the Appendix illus-
trates generated subgoals and reached subgoals of HIDI and
compared baselines in Ant Maze (W-shape, sparse) with the
same starting location. This allows for an intuitive compari-
son of subgoals generated by HIDI, SAGA, HIGL, HRAC,
and HIRO. Notably, HIDI generates reasonable subgoals
for the lower level to achieve, as demonstrated by the small
divergence between the generated and reached subgoals,
which provides a stable learning signal for the low-level
policy. In contrast, subgoals generated by HIRO are of-
ten unachievable and fail to guide the agent to reach the
final target; subgoals generated by HRAC frequently get
stuck in local minima due to its local adjacency constraint;
HIGL and SAGA show improvement in both constraining
the subgoals locally while jumping out of the local opti-
mum of subgoals, yet the high-level policy is not adequately
compatible with the low-level skills, i.e., the increasing gap
between the generated subgoal and reached subgoal leads to
inferior performance compared with HIDI. This is further
confirmed by the measure of distance between the generated
subgoal and reached subgoal in Table 1. Subgoals gener-
ated by HLPS lie in a learned subgoal latent space and may
not be quantitatively or qualitatively compared with other
methods.

How do various design choices within HIDI impact its
empirical performance and effectiveness? To under-
stand the benefits of using a diffusion policy for generating
subgoals, we constructed several baselines. HIDI-A de-
notes a baseline without performing the proposed subgoal
selection strategy, HIDI-B is a baseline without adopting
GP regularization and subgoal selection, while Baseline,
adapted from a variant of the subgoal relabeling method i.e.,
HIGL, is HIDI without the diffusion model, GP regulariza-
tion, and subgoal selection strategy. Fig. 2 (a-b) illustrates
the comparisons of various baselines and HIDI:

• Diffusional Subgoals: The performance improvement
from Baseline to HIDI-B shows the benefit of adopting
conditional diffusional model for subgoal generation,
with a performance gain of ∼15%.

• Uncertainty Regularization: The sampling efficiency
and performance improvement ∼15% and ∼16% re-
spectively from HIDI-B to HIDI-A indicates the advan-
tage of employing the GP prior on subgoal generation

as a surrogate distribution which potentially informs
the diffusion process about uncertain areas. This high-
lights the GP’s role in focusing learning on feasible
regions consistent with past successful transitions.

• Subgoal Selection: Our proposed subgoal selection
strategy demonstrates clear benefits. Comparing HIDI
to HIDI-A shows performance improvements of ap-
proximately 7% and 8% on two challenging tasks.
HIDI also achieves better sample efficiency compared
to HIDI-A.

• Diffusion StepsN : Fig. 2 (c) shows the learning curves
of baselines using varying number of diffusion steps
N used in HIDI. It empirically demonstrates that as N
increases from 3 to 7, the high-level policy becomes
more expressive and capable of learning the more com-
plex data distribution of subgoals. Since N also serves
as a trade-off between the expressiveness of subgoal
modeling and computational complexity, we found that
N = 5 is an efficient and effective setting for all the
tasks during the experiment.

• Subgoal Selection Probability ϵ: ϵ controls the chance
to perform subgoal selection. As shown in Fig. 2 (d),
when ϵ is large, e.g., 0.25, the trade-off between the
expressiveness of subgoal modeling and uncertainty
information might be affected, i.e., excessive subgoals
sampled in uncertain regions may contribute to perfor-
mance instability. When ϵ is small, e.g., 0.05, the gain
from subgoal selection would be decreased, and we set
ϵ = 0.1 for all other results.

• Scaling Factor η: We investigate the impact of η in
Eq. 4, which balances the diffusion objective and RL
objective. As shown in Fig. 4 (Left), increasing η
improves performance at early training steps (0 ∼ 106),
while all three settings achieve similar performance
at larger training steps (4.2 × 106 ∼ 5 × 106). We
report all other results based on η = 5 without loss of
generality.

• Scaling Factor ψ: ψ adjusts the influence of GP prior
in learning the distribution of diffusional subgoals. As
shown in Fig. 4 (Middle) in the appendix, increasing ψ
gives stronger GP prior and may slightly affect the flex-
ibility of diffusion model learning, while decreasing
ψ renders the model to approximate baseline HIDI-B.
We set ψ = 10−3 for all other results.

5. Conclusion

In this paper, we presented a conditional diffusion model-
based framework for subgoal generation in hierarchical
reinforcement learning. By directly modeling a state-
conditioned subgoal distribution, the approach mitigates
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instabilities arising from off-policy training and leverages a
Gaussian Process (GP) prior for explicit uncertainty quan-
tification. We further proposed a subgoal selection strategy
that integrates the diffusion model’s expressiveness with
the GP’s structural guidance. This ensures subgoals align
with meaningful patterns in the training data while main-
taining robustness, supported by theoretical guarantees on
regret and policy improvement. Experimental results across
challenging continuous control benchmarks highlight the
efficacy of this integrated approach in terms of both sample
efficiency and performance.
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A. Appendix

A.1. Theoretical Analysis of Diffusion-Based Subgoal Generation and GP Regularization

In this section, we provide a theoretical analysis for: (i) the effectiveness of the diffusion model for subgoal generation in
hierarchical reinforcement learning (HRL), and (ii) the role of Gaussian Process (GP) regularization in guiding the diffusion
process to generate reachable and structured subgoals.

A.1.1. NOTATION AND PRELIMINARIES

Let:

• s ∈ S denote a state and g ∈ G ⊆ S denote a subgoal.

• The high-level policy is parameterized by θh and defined as a reverse diffusion process:

πh
θh
(g | s) = pθh(g0:N | s) = N (gN ; 0, I)

N∏
i=1

pθh(gi−1 | gi, s), (16)

where g0 = g is the final generated subgoal and N is the number of diffusion steps.

• The reverse diffusion step is defined as

gi−1 =
1
√
αi

(
gi − βi

1√
1− ᾱi

ϵθh(gi, s, i)

)
+
√
βi ϵi, ϵi ∼ N (0, I), (17)

with αi = 1− βi and ᾱi =
∏i

j=1 αj .

• The diffusion model is trained using the loss

Ldm(θh) = Ei∼U(1,N), ϵ∼N (0,I), (s,g)∼Dh

[∥∥ϵ− ϵθh (√ᾱi g +
√
1− ᾱi ϵ, s, i

)∥∥2] , (18)

where Dh is the high-level replay buffer of relabeled subgoals.

• A Gaussian Process (GP) prior is placed on the subgoal distribution conditioned on s:

p(g | s; θgp) = N
(
g; 0,KN + σ2I

)
, (19)

where KN is the covariance matrix defined via a kernel function K(s, s′), and σ2 is the noise variance.

• The GP regularization loss is defined as:

Lgp(θh, θgp) = E(s,g)∼Dh [− log p(g | s; θgp)] . (20)

• The overall high-level training objective combines the diffusion loss, GP regularization (weighted by ψ), and an RL
objective Ldpg(θh):

L(θh) = Ldm(θh) + ψLgp(θh, θgp) + ηLdpg(θh). (21)

A.1.2. VALIDITY OF THE LEARNED SUBGOAL DISTRIBUTION VIA DIFFUSION

We first establish conditions under which the reverse diffusion process yields a subgoal distribution close to the target
distribution q(g | s) (defined by the relabeled data in Dh).

Theorem A.1 (Validity of the Learned Subgoal Distribution). Let q(g|s) be the target distribution of subgoals given state s
(implicitly defined by the relabeled data in Dh). Let pθh(g|s) be the distribution generated by the reverse diffusion process
parameterized by θh. Assume the noise prediction network ϵθh is trained by minimizing the simplified objective:

Ldm(θh) = Ei∼U(1,N), ϵ∼N (0,I), (s,g0)∼Dh

[∥∥ϵ− ϵθh (√ᾱi g0 +
√
1− ᾱi ϵ, s, i

)∥∥2] . (22)
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If the expected loss achieved by the optimal parameters θ∗h is bounded, E[Ldm(θ∗h)] ≤ δ2, then the KL divergence between
the target distribution and the learned distribution is bounded, DKL(q(g|s)||pθ∗

h
(g|s)) ≤ B(δ,N, {βi}), where B is a

function that depends on the noise prediction error δ, the number of steps N , and the noise schedule {βi}, satisfying
limδ→0B(δ, . . . ) = 0. Consequently, by Pinsker’s inequality, the total variation distance is also bounded:

∥q(g|s)− pθ∗
h
(g|s)∥TV ≤

√
1

2
DKL(q(g|s)||pθ∗

h
(g|s)) ≤

√
1

2
B(δ,N, {βi}). (23)

Proof. The proof relies on connecting the simplified objective Ldm to the variational lower bound (ELBO) on the log-
likelihood log pθh(g0|s). The ELBO for the reverse process pθh(g0|s) conditioned on s, marginalizing over g1:N , is:

log pθh(g0|s) ≥ Eq(g1:N |g0,s)

[
log

pθh(g0:N |s)
q(g1:N |g0, s)

]
(24)

= Eq

[
log p(gN ) +

N∑
i=1

log pθh(gi−1|gi, s)−
N∑
i=1

log q(gi|gi−1, s)

]
(25)

= Eq[log pθh(g0|g1, s)]︸ ︷︷ ︸
Reconstruction Term

−Eq

[
N∑
i=2

DKL(q(gi−1|gi, g0, s)||pθh(gi−1|gi, s))

]
︸ ︷︷ ︸

KL terms

−DKL(q(gN |g0, s)||p(gN ))︸ ︷︷ ︸
Prior Matching Term

(26)

where q(gi−1|gi, g0, s) is the true posterior of the forward process, which is tractable and Gaussian: q(gi−1|gi, g0, s) =
N (gi−1; µ̃i(gi, g0), β̃iI) with µ̃i(gi, g0) =

√
ᾱi−1βi

1−ᾱi
g0 +

√
αi(1−ᾱi−1)

1−ᾱi
gi and β̃i =

1−ᾱi−1

1−ᾱi
βi.

The diffusion model pθh(gi−1|gi, s) = N (gi−1;µθh(gi, s, i), βiI) uses a learned mean µθh(gi, s, i) =
1√
αi

(
gi − βi√

1−ᾱi
ϵθh(gi, s, i)

)
and a fixed variance βiI (or sometimes β̃iI).

Ho et al. (2020) shows that minimizing the simplified objective Ldm(θh) (Eq. 22) is equivalent to optimizing a weighted
sum of the KL terms in the ELBO (26), specifically minimizing the discrepancy between the predicted noise ϵθh and the
actual noise ϵ used to generate gi =

√
ᾱig0 +

√
1− ᾱiϵ. Let LV LB(θh) = −Eq(g0|s)[ELBO for g0]. Then:

DKL(q(g0|s)||pθh(g0|s)) = LV LB(θh)−H(q(g0|s)), (27)

where H(q(g0|s)) is the entropy of the true data distribution, which is constant w.r.t. θh. Minimizing Ldm upper bounds the
terms contributing to LV LB . Specifically, the expected squared error in noise prediction relates to the KL divergence terms:

Eg0,ϵ[∥ϵ− ϵθh(
√
ᾱig0 +

√
1− ᾱiϵ, s, i)∥2] = CiEg0 [DKL(q(gi−1|gi, g0, s)||pθh(gi−1|gi, s))] + const, (28)

where Ci =
2σ2

i (1−αi)

β2
i

depends on the variance σ2
i = βi or β̃i used in pθh . (See Appendix B of (Ho et al., 2020) for details).

Summing over i (with appropriate weighting, often simplified in practice as in Ldm), if E[Ldm(θ∗h)] ≤ δ2, it implies that the
sum of the KL divergence terms in the ELBO expression (26) is bounded by some function B′(δ,N, {βi}).

LV LB(θ
∗
h) ≤ Eq(g0|s)[− log pθ∗

h
(g0|g1, s)] +B′(δ,N, {βi}) +DKL(q(gN |g0, s)||p(gN )) (29)

If we also assume the reconstruction term is well-behaved (or absorbed into the bound) and the prior matching term is
small (as T →∞), minimizing Ldm effectively minimizes an upper bound on LV LB . Thus, DKL(q(g0|s)||pθ∗

h
(g0|s)) =

LV LB(θ
∗
h)−H(q(g0|s)) is bounded by a function B(δ,N, {βi}) which incorporates B′ and other terms, and vanishes as

δ → 0.

Finally, applying Pinsker’s inequality, ∥q(g|s)− pθ∗
h
(g|s)∥2TV ≤ 1

2DKL(q(g|s)||pθ∗
h
(g|s)), yields the desired bound on the

total variation distance.
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A.1.3. GP REGULARIZATION AND ITS INTERACTION WITH THE DIFFUSION MODEL

We now analyze how the GP regularization term influences the generated subgoal and guides the diffusion process.

Theorem A.2 (Guiding Effect of GP Regularization). Let the overall loss function for the high-level policy parameters θh
be

L(θh) = Ldm(θh) + ψLgp(θh, θgp) + ηLdpg(θh).

The GP regularization term is defined using the reparameterization trick, where

g = f(ϵ′, s; θh)

is the subgoal generated by the reverse diffusion process from base noise ϵ′ ∼ N (0, I) and state condition s:

Lgp(θh, θgp) = Es∼Dh, ϵ′∼N (0,I)

[
− log pGP

(
f(ϵ′, s; θh) | s;Dh, θgp

)]
, (30)

where
pGP (g | s;Dh, θgp) = N (g | µ∗(s), σ

2
∗(s)I)

is the predictive distribution of the (sparse) GP conditioned on the high-level data Dh (see Eq. 39), assuming isotropic
variance for simplicity. The gradient of this term with respect to the diffusion model parameters θh is given by:

∇θhLgp = Es∼Dh, ϵ′∼N (0,I)

[(
g − µ∗(s)

σ2
∗(s)

)⊤

∇θhg

]
, (31)

where g = f(ϵ′, s; θh). This gradient term encourages the parameters θh to be updated during training such that the
generated subgoals g tend to move closer to the GP predictive mean µ∗(s), with the influence being stronger in regions
where the GP has low predictive variance σ2

∗(s).

Proof. We analyze the gradient of the GP loss term Lgp with respect to the parameters θh of the diffusion model, which
defines the reverse process pθh(g | s).

The subgoal g generated by the diffusion model is given by

g = f(ϵ′, s; θh),

where ϵ′ ∼ N (0, I) and f(·) is differentiable with respect to θh. Using the reparameterization trick, we write:

∇θhLgp = ∇θhEs∼Dh, ϵ′∼N (0,I)

[
− log pGP

(
f(ϵ′, s; θh) | s;Dh, θgp

)]
= Es∼Dh, ϵ′∼N (0,I)

[
∇θh

(
− log pGP

(
f(ϵ′, s; θh) | s;Dh, θgp

))]
= Es∼Dh, ϵ′∼N (0,I)

[
(∇g (− log pGP (g | s;Dh, θgp)))

⊤∇θhg
]
g=f(ϵ′,s;θh)

.

For the Gaussian predictive distribution

pGP (g | s) = N (g | µ∗(s), σ
2
∗(s)I),

the negative log-likelihood is

− log pGP (g | s) =
1

2σ2
∗(s)
∥g − µ∗(s)∥2 +

D

2
log(2πσ2

∗(s)),

where D is the dimensionality of g. Differentiating with respect to g yields

∇g [− log pGP (g | s)] =
g − µ∗(s)

σ2
∗(s)

.
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Substituting this into our expression, we obtain

∇θhLgp = Es∼Dh, ϵ′∼N (0,I)

[(
g − µ∗(s)

σ2
∗(s)

)⊤

∇θhg

]
.

During optimization via gradient descent, the update for θh is given by

θh ← θh − α∇θhL(θh),

with α being the learning rate. The contribution from the GP loss term is −αψ∇θhLgp, which effectively drives the
parameters θh to adjust so that the generated subgoal g aligns more closely with the GP predictive mean µ∗(s), particularly
when σ2

∗(s) is small (indicating high confidence).

This completes the proof.

Remark A.3 (Connection to KL Divergence). The GP regularization term Lgp can be related to the KL divergence between
the learned conditional distribution pθh(g | s) and the GP predictive distribution

pGP (g | s) = N (g | µ∗(s), σ
2
∗(s)I).

Specifically,

Lgp(θh, θgp) = Es∼Dh

[
Eg∼pθh

(·|s) [− log pGP (g | s)]
]

= Es∼Dh

[
DKL

(
pθh(· | s)

∥∥∥pGP (· | s)
)
+H

(
pθh(· | s)

)]
,

where H(·) denotes differential entropy. Thus, minimizing Lgp reduces the KL divergence between the learned subgoal
distribution and the GP predictive distribution, thereby encouraging the diffusion model to produce subgoals that are aligned
with the GP’s predictions.

A.1.4. DISCUSSION

Diffusion Model Validity. Theorem A.1 demonstrates that if the noise prediction error is sufficiently small, the reverse
diffusion process accurately approximates the target state-conditioned subgoal distribution. Hence, under reasonable
conditions, the diffusion model is theoretically justified for subgoal generation in HRL.

GP Regularization Impact. Theorem A.2 shows that the GP regularization term actively pulls the generated subgoal
towards the GP predictive mean. In regions where the GP is confident (i.e., λmin(KN +σ2I) is large), the generated subgoal
is tightly coupled with the observed, reachable subgoals. This guides the diffusion model, ensuring that even if the learned
distribution is inherently non-stationary, the GP regularization mitigates extreme deviations by serving as a principled,
uncertainty-aware anchor.

A.2. Theoretical Analysis of Subgoal Selection

Assumption A.4 (Near-Optimal Diffusion Policy (for Single-Step)). We assume that after sufficient training and data
coverage, for every s ∈ S,

Eg∼πθh
(·|s)[R(s,g)] ≥ max

g′∈G
R(s,g′) − δ,

for some small δ > 0. This states that the diffusion-based subgoal distribution πθh nearly achieves the maximum possible
single-step reward at each s.

Detailed Proof of Theorem 3.3. Let R∗(s) = maxg∈G R(s,g) be the optimal single-step reward. The regret of the subgoal
selection strategy π̃h at state s is given by R∗(s)− Eg∼π̃h

[R(s,g)].
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By the definition of the subgoal selection strategy π̃h(g|s) = ε δµ(s)(g) + (1− ε)πθh(g|s), the expected reward under this
policy is:

Eg∼π̃h
[R(s,g)] =

∫
G
R(s,g)π̃h(g|s)dg

=

∫
G
R(s,g)

[
ε δµ(s)(g) + (1− ε)πθh(g|s)

]
dg

= ε

∫
G
R(s,g)δµ(s)(g)dg + (1− ε)

∫
G
R(s,g)πθh(g|s)dg

= εR
(
s,µ(s)

)
+ (1− ε)Eg∼πθh

[R(s,g)],

where we used the property of the Dirac delta function in the last step.

Given that R
(
s,µ(s)

)
≥ Rmin by assumption, and under Assumption A.4, we have Eg∼πθh

[R(s,g)] ≥ R∗(s)− δ, we can
lower bound the expected reward:

Eg∼π̃h
[R(s,g)] ≥ εRmin + (1− ε) (R∗(s)− δ).

Now, we can bound the single-step regret:

R∗(s)− Eg∼π̃h
[R(s,g)] ≤ R∗(s)− [εRmin + (1− ε) (R∗(s)− δ)]

= R∗(s)− εRmin − (1− ε)R∗(s) + (1− ε)δ
= εR∗(s)− εRmin + (1− ε)δ
= ε(R∗(s)−Rmin) + (1− ε)δ.

Thus, the single-step regret of the subgoal selection strategy is bounded by ε
(
R∗(s)−Rmin

)
+ (1− ε) δ.

Detailed Proof of Proposition 3.4. This proof relies on the principle of policy improvement, a fundamental con-
cept in reinforcement learning (Sutton & Barto, 2018). The value function of a policy π is given by J(π) =
Es0∼d0,gt∼π(·|st)

[∑∞
t=0 γ

trht
]
, where rht is the high-level reward. A single step of policy improvement involves changing

the policy in a way that increases the value function.

Consider the expected Q-value under the subgoal selection strategy π̃h at state s:

Eg∼π̃h(·|s)[Qh(s,g)] =

∫
G
Qh(s,g)π̃h(g|s)dg

=

∫
G
Qh(s,g)

[
ε δµ(s)(g) + (1− ε)πθh(g|s)

]
dg

= εQh

(
s,µ(s)

)
+ (1− ε)Eg∼πθh

(·|s)[Qh(s,g)].

Assume the high-level Q-function Qh(s,g) is Lipschitz smooth in g with constant L:

|Qh(s,g1)−Qh(s,g2)| ≤ L∥g1 − g2∥, ∀g1,g2 ∈ G. (32)

If the GP’s predictive mean µ(s) is close to subgoals g with high Qh, then µ(s) will inherit high Q-values through
smoothness. The GP is trained on state-subgoal pairs (s,g) from the replay buffer Bh, containing high-reward transitions
(by definition of R(s,g)). The GP kernel k(·, ·) captures correlations in S × G, enabling generalization of high-Q subgoals
to new states.

The predictive mean µ(s) minimizes the posterior expected squared error:

µ(s) = argmin
g′

Eg∼p(g|s,Bh)

[
∥g′ − g∥2

]
, (33)

where p(g|s,Bh) is the posterior subgoal distribution. If high-Q subgoals in Bh cluster around µ(s), then:

Qh(s,µ(s)) ≥ Eg∼p(g|s,Bh)[Qh(s,g)]. (34)

16



Hierarchical Reinforcement Learning with Uncertainty-Guided Diffusional Subgoals

This holds under unimodality or concentration of high-Q subgoals in Bh.

The diffusion policy πθh generates subgoals through a stochastic generative process. TD3 employs deterministic high-level
actions with exploration noise. However, the diffusion model’s sampling process inherently encourages diversity by gradually
denoising from a Gaussian distribution. This results in subgoals distributed around high-reward regions in G, with a trade-off
between exploitation (high-Qh subgoals) and exploration (diverse subgoals).

Let g∗ = argmaxgQh(s,g) denote the optimal subgoal. The diffusion policy πθh samples subgoals such that:

Eg∼πθh
[Qh(s,g)] ≤ Qh(s,g

∗)−∆,

where ∆ > 0 quantifies the exploration penalty due to the diffusion process’s stochasticity. Meanwhile, the GP mean µ(s)
acts as a deterministic proxy for subgoals frequently visited in high-reward trajectories within Bh. If µ(s) approximates g∗

with error ϵ (i.e., ∥µ(s)− g∗∥ ≤ ϵ), Lipschitz continuity of Qh implies:

Qh(s,µ(s)) ≥ Qh(s,g
∗)− Lϵ.

Thus, for Lϵ < ∆, we have:
Qh(s,µ(s)) ≥ Qh(s,g

∗)− Lϵ ≥ Eg∼πθh
[Qh(s,g)].

Therefore:

Eg∼π̃h(·|s)[Qh(s,g)] ≥ εEg∼πθh
(·|s)[Qh(s,g)] + (1− ε)Eg∼πθh

(·|s)[Qh(s,g)]

= Eg∼πθh
(·|s)[Qh(s,g)].

The value function can be expressed as J(π) = Es∼dπ

[
Eg∼π(·|s)[Qh(s,g)]

]
, where dπ is the stationary distribution of

states under policy π.

If the induced state distribution dπ̃h
remains close to dπθh

, which is a common assumption for a single-step policy
improvement analysis as the change in policy is controlled by ε, then:

J(π̃h) = Es∼dπ̃h
[Eg∼π̃h

[Qh(s,g)]]

≥ Es∼dπ̃h

[
Eg∼πθh

[Qh(s,g)]
]

≈ Es∼dπθh

[
Eg∼πθh

[Qh(s,g)]
]

= J(πθh).

Thus, J(π̃h) ≥ J(πθh), indicating that the subgoal selection strategy achieves a value function at least as good as the
original policy πθh in a single step.

A.3. Sparse Gaussian Process Derivation

As mentioned in the main text, standard Gaussian Process (GP) regression involves inverting an N ×N covariance matrix,
where N is the number of data points in the high-level replay buffer Dh. This has a computational complexity of O(N3),
which is prohibitive for large datasets typical in RL. To address this, we employ a sparse GP approximation using inducing
points (Snelson & Ghahramani, 2005).

We introduce a smaller set of M inducing states s̄ = {s̄m}Mm=1, where M ≪ N . These inducing states are associated with
corresponding ”imaginary” target subgoals ḡ = {ḡm}Mm=1. The core idea is that the predictive distribution for any new state
s∗ depends only on these M inducing points, which summarize the full dataset.

Let D̄ = (s̄, ḡ) denote the pseudo-dataset of inducing points. The joint distribution of the observed subgoals g (from Dh)
and the imaginary subgoals ḡ under the GP prior is:

p(g, ḡ|s, s̄) = N

([
g

ḡ

]∣∣∣∣∣0,
[
KNN + σ2I KNM

KMN KMM

])
,
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where KNN , KNM , KMN = K⊤
NM , and KMM = KM are covariance matrices computed using the kernel function K

between the states s in Dh and the inducing states s̄. Specifically, [KNM ]nm = K(sn, s̄m) and [KMM ]mm′ = K(s̄m, s̄m′).

The sparse approximation assumes that the observed subgoals g are conditionally independent given the imaginary subgoals
ḡ. The likelihood of a single subgoal g given a state s and the inducing variables (s̄, ḡ) is formulated based on the conditional
distribution p(g|s, s̄, ḡ) =

∫
p(g|s, f)p(f |s̄, ḡ)df , where f are latent function values. A common approximation (used by

Titsias (2009), related to FITC by Snelson & Ghahramani (2005)) leads to:

p(g|s, D̄, ḡ) ≈ N
(
g|k⊤

s K
−1
M ḡ,Kss − k⊤

s K
−1
M ks + σ2

)
, (35)

where [ks]m = K(s, s̄m) and Kss = K(s, s).

The overall likelihood for the set of observed subgoals g given corresponding states s and the inducing variables is
approximated as:

p(g|s, s̄, ḡ) ≈
N∏

n=1

p(gn|sn, s̄, ḡ)

≈ N
(
g | KNMK−1

M ḡ,Λ + σ2I
)
.

(36)

where Λ is a diagonal matrix with [Λ]nn = K(sn, sn)− k⊤
nK

−1
M kn, and kn is the vector of kernel evaluations between sn

and all inducing states s̄. Note that [KNM ]nm = K(sn, s̄m).

A standard Gaussian prior is placed on the imaginary subgoals ḡ:

p(ḡ|s̄) = N (ḡ|0,KM ). (37)

Using Bayes’ rule on Eq. 36 and Eq. 37, the posterior distribution over the imaginary subgoals ḡ given the observed data
Dh = (s,g) and inducing states s̄ can be derived as:

p(ḡ|Dh, s̄) ∝ p(g|s, s̄, ḡ)p(ḡ|s̄)
= N

(
ḡ | KMQ−1

M KMN (Λ + σ2I)−1g,

KMQ−1
M KM

)
.

(38)

where QM = KM +KMN (Λ + σ2I)−1KNM . Note the inversion now involves M ×M matrices, making computation
feasible (O(NM2) or O(M3) depending on the exact method).

Finally, given a new state s∗, the predictive distribution of the corresponding subgoal g∗ is obtained by integrating the
approximate likelihood (Eq. 35 applied to s∗) against the posterior (Eq. 38):

p(g∗|s∗,Dh, s̄) =

∫
dḡ p(g∗|s∗, s̄, ḡ) p(ḡ|Dh, s̄)

= N
(
g∗ | µ∗, σ

2
∗
)
.

(39)

where the predictive mean µ∗ and variance σ2
∗ are:

µ∗ = k⊤
∗ Q

−1
M KMN (Λ + σ2I)−1g (40)

and
σ2
∗ = K∗∗ − k⊤

∗ (K
−1
M −Q−1

M )k∗ + σ2. (41)

Here, k∗ is the vector [k∗]m = K(s∗, s̄m) and K∗∗ = K(s∗, s∗).

The inducing states s̄ and the GP hyperparameters θgp = {γ, ℓ, σ} are typically optimized by maximizing the marginal
likelihood (evidence) p(g|s, s̄), which can also be computed efficiently using the inducing points. This optimization
encourages the inducing states to adaptively summarize the data distribution in the state space.
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Algorithm 1 HIDI

1: Input: Higher-level actor πh
θh

, lower-level actor πl
θl

, critics Qh, Ql, goal transition h(·), higher-level frequency k,
training episodes N .

2: for n = 1 to N do
3: Sample initial state s0
4: t← 0
5: repeat
6: if t ≡ 0 (mod k) then
7: Sample subgoal via Eq. 15
8: else
9: Compute gt = h(gt−1, st−1, st)

10: end if
11: Sample action at ∼ πl

θl
(a|st, gt)

12: Execute at, observe st+1 ∼ P(s|st, at)
13: Compute intrinsic reward rt ∼ R(r|st, gt, at)
14: Store transition (st−1, gt−1, at, rt, st, gt)
15: Sample done signal
16: t← t+ 1
17: until done is true
18: if Training higher-level policy πh

θh
then

19: Sample relabeled experience (st, g̃t,
∑
rt:t+k−1, st+k)

20: Update πh
θh

and GP hyperparameters via Eq. 4
21: Update critic Qh

22: end if
23: if Training low-level policy πl

θl
then

24: Sample experience (st, at, gt, rt, st+1)
25: Update πl

θl
and critic Ql

26: end if
27: end for

A.4. Implementation

We implement the two-layer hierarchical policy network following the architecture of the HRAC (Zhang et al., 2020), which
uses TD3 (Fujimoto et al., 2018) as the foundational RL algorithm for both the high and low levels.

Following the parameterization of Ho et al. (2020), the diffusion policies are implemented as an MLP-based conditional
diffusion model, which is a residual model, i.e., ϵθ(gi, s, i) and ϵθ(ai, s, g, i) respectively, where i is the previous diffusion
time step, s is the state condition, and g is the subgoal condition. ϵθ is implemented as a 3-layer MLP with 256 hidden units.
The inputs to ϵθ comprise the concatenated elements of either the low-level or high-level action from the previous diffusion
step, the current state, the sinusoidal positional embedding of time step i, and the current subgoal if it is a high-level policy.
We provide further implementation details used for our experiments in Table 3.

A.5. Algorithm

We provide Algorithm 1 to show the training procedure of HIDI.

A.6. Environments

Our experimental evaluation encompasses a diverse set of long-horizon continuous control tasks facilitated by the MuJoCo
simulator (Todorov et al., 2012), which are widely adopted in the HRL community. The environments selected for testing
our framework include:

• Reacher: This task entails utilizing a robotic arm to reach a specified target position with its end-effector.
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(a) Reacher (b) Pusher (c) Point Maze (d) Ant Fall

(e) Ant Maze (U) (f) Ant Maze (W) (g) Ant FourRooms

Figure 3. Environments used in our experiments.

• Pusher: A robotic arm must push a puck-shaped object on a plane to a designated goal position.

• Point Maze: A simulation ball starts in the bottom left corner of a “ ⊃”-shaped maze, aiming to reach the top left
corner.

• Ant Maze (U-shape): A simulated ant starts in the bottom left of a “ ⊃”-shaped maze, targeting the top left corner.

• Ant Maze (W-shape): A simulated ant starts at a random position within a “∃”-shaped maze, aiming for the middle
left corner.

• Ant Fall: This task introduces three-dimensional navigation. The agent begins on a platform elevated by four units,
with the target positioned across a chasm that it cannot traverse unaided. To reach the target, the agent must push a
block into the chasm and then ascend onto it before proceeding to the target location.

• Ant FourRooms: In this task, the agent must navigate from one room to another to achieve an external goal. The
environment features an expanded maze structure measuring 18 × 18.

• Variants: Following (Zhang et al., 2020; Kim et al., 2021), we adopt a variant with environmental stochasticity for Ant
Maze (U-shape), Ant Fall, and Ant FourRooms by adding Gaussian noise with a standard deviation of σ = 0.05 to the
(x, y) positions of the ant robot at each step. Additionally, we adopt another variant labeled ‘Image’ for the large-scale
Ant FourRooms environment. In this variant, observations are low-resolution images formed by zeroing out the (x, y)
coordinates and appending a 5× 5× 3 top-down view of the environment, as described in (Nachum et al., 2019; Li
et al., 2021).

We evaluate HIDI and all the baselines under two reward shaping paradigms: dense and sparse. In the dense setting, rewards
are computed as the negative L2 distance from the current state to the target position within the goal space, whilst the sparse
rewards are set to 0 for distances to the target below a certain threshold, otherwise -1. Maze tasks adopt a 2-dimensional
goal space for the agent’s (x, y) position, adhering to existing works (Zhang et al., 2020; Kim et al., 2021). For Reacher, a
3-dimensional goal space is utilized to represent the end-effector’s (x, y, z) position, while Pusher employs a 6-dimensional
space, including the 3D position of the object. Relative subgoal scheme is applied in Maze tasks, with absolute scheme used
for Reacher and Pusher.
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HIDI SAGA HIGL HRAC HIRO

∆ 0.82±0.08 0.95±0.13 1.57±0.05 1.72±0.06 10.90± 2.04

Table 1. The distance between generated subgoals and the reached subgoals, i.e., the final state of k-step low-level roll-out, averaged over
10 randomly seeded trials with standard error.
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Figure 4. (Left) Impact of η, which balances the diffusion objective and RL objective. (Middle) Impact of ψ, which adjusts the influence
of GP prior in learning the distribution of diffusional subgoals. (Right) Visualization of the learned inducing states (2D coordinates)
compared with the complete training data.

A.7. Additional Results

Figure 5 shows the generated subgoals and reached subgoals of HIDI and compared baselines in Ant Maze (W-shape, sparse)
with the same starting location. HIDI generates reasonable subgoals for the lower level to accomplish, as evidenced by the
minimal divergence between the generated and achieved subgoals which in turn provides a stable learning signal for the
low-level policy. In contrast, the subgoals generated by HIRO are unachievable and cannot guide the agent towards the
final target. Subgoals from HRAC frequently get stuck in local minima due to its local adjacency constraint. While HIGL
and SAGA demonstrate improvement in constraining subgoals locally while escaping local optima, the high-level policy
is inadequately compatible with the low-level skills. Specifically, the increasing gap between the generated subgoal and
reached subgoal leads to inferior performance compared to HIDI.

We qualitatively study the learned inducing states in Fig. 4 (Right), where the states of the complete set of training batch
(100) and the final learned inducing states (16) are visualized. Note, only the x, y coordinates are selected from the state
space in both cases for visualization purpose. We can observe that with a significantly smaller number of training data, the
inducing points capture the gist of the complete training data by adapting to cover more critical regions of the state space,
e.g., the turning points in the Ant Maze (W-shape) task.
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Tasks HIDI HLPS SAGA HIGL HRAC HIRO

Sp
ar

se
Reacher 0.95±0.01 0.54±0.14 0.80±0.05 0.89±0.01 0.74±0.10 0.76±0.02

Pusher 0.78±0.02 0.62±0.12 0.20±0.12 0.31±0.10 0.17±0.06 0.19±0.06

Point Maze 1.00±0.00 0.99±0.00 0.99±0.00 0.71±0.20 0.99±0.00 0.89±0.10

Ant Maze (U) 0.91±0.03 0.83±0.02 0.82±0.02 0.52±0.05 0.80±0.03 0.72±0.03

Ant Maze (W) 0.87±0.02 0.83±0.02 0.70±0.03 0.70±0.03 0.51±0.17 0.59±0.03

Stoch. Ant Maze (U) 0.91±0.02 0.80±0.05 0.81±0.01 0.75±0.03 0.73±0.02 0.61±0.03

Stoch. Ant Fall 0.84±0.02 0.78±0.04 0.48±0.05 0.52±0.02 0.25±0.03 0.28±0.03

Stoch. Ant FourRooms (Img.) 0.64±0.03 0.55±0.05 0.32±0.03 0.31±0.02 0.00±0.00 0.00±0.00

D
en

se

Point Maze 1.00±0.00 1.00±0.00 0.94±0.04 0.98±0.02 0.99±0.00 0.81±0.19

Ant Maze (U) 0.88±0.01 0.83±0.01 0.80±0.04 0.83±0.07 0.76±0.04 0.75±0.07

Ant Maze (W) 0.88±0.05 0.80±0.02 0.68±0.03 0.78±0.04 0.75±0.07 0.50±0.04

Stoch. Ant Maze (U) 0.92±0.01 0.88±0.03 0.87±0.03 0.82±0.03 0.70±0.04 0.80±0.03

Table 2. Final performance of the policy obtained after 5M steps of training with sparse rewards, averaged over 10 randomly seeded trials
with standard error.

(a) HIDI (b) SAGA (c) HIGL

(d) HRAC (e) HIRO

Figure 5. Visualization of generated subgoals and reached subgoals of HIDI and compared baselines in Ant Maze (W-shape, sparse) with
the same starting location.
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Module Parameter Value
D

iff
us

io
na

lP
ol

ic
y

Number of hidden layers 1

Number of hidden units 256

Nonlinearity, Mish

Optimizer Adam

Learning rate 10−4

Hyperparameter for RL objective η 5

Number of diffusion steps N 5

GP loss weight 10−3

GP learning rate 3× 10−4

Subgoal selection probability ε 0.1

Number of inducing states 16

Tw
o-

la
ye

rH
R

L
,c

ri
tic

ne
tw

or
ks

Number of hidden layers 1

Number of hidden units per layer 300

Nonlinearity ReLU

Optimizer Adam

Learning rate, critic 10−3

Batch size, high level 100

Batch size, low level 128

Replay buffer size 2× 105

Random time steps 5× 56

Subgoal frequency 10

Reward scaling, high level 0.1

Reward scaling, low level 1.0

Table 3. Network architecture and key hyperparameters of HIDI
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