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ABSTRACT

Decision-makers are often experts of their domain and take actions based on their
domain knowledge. Doctors, for instance, may prescribe treatments by predicting
the likely outcome of each available treatment. Actions of an expert thus naturally
encode part of their domain knowledge, and can help make inferences within the
same domain: Knowing doctors try to prescribe the best treatment for their patients,
we can tell treatments prescribed more frequently are likely to be more effective.
Yet in machine learning, the fact that most decision-makers are experts is often
overlooked, and “expertise” is seldom leveraged as an inductive bias. This is
especially true for the literature on treatment effect estimation, where often the
only assumption made about actions is that of overlap. In this paper, we argue
that expertise—particularly the type of expertise the decision-makers of a domain
are likely to have—can be informative in designing and selecting methods for
treatment effect estimation. We formally define two types of expertise, predictive
and prognostic, and demonstrate empirically that: (i) the prominent type of exper-
tise in a domain significantly influences the performance of different methods in
treatment effect estimation, and (ii) it is possible to predict the type of expertise
present in a dataset, which can provide a quantitative basis for model selection.

1 INTRODUCTION

Those responsible for making important decisions are often experts of their domain, and they take
actions based primarily on domain knowledge. We rely on doctors, for instance, to make treatment
decisions for patients. When a patient visits the clinic, their doctor may try to predict the likely
outcome of each possible treatment and follow the best treatment route for the patient (Centor, 2007).
Another example is teaching: A good teacher would assess the different levels of understanding
within their classroom and may choose to tailor their explanations for those who are struggling the
most with the lesson (Rosenshine, 2012). When experts take informed actions based on domain
knowledge, they naturally impart part of their knowledge to those actions, hence expert actions can
in turn be informative in making inferences within the same domain. For instance, knowing that
doctors aim to prescribe the best treatment for their patients, we can infer that a treatment prescribed
more frequently is likely to be more effective than alternatives. Similarly, considering that teachers
focus their explanations on students who need the most help, we can identify more accurately which
students might be struggling to understand the lecture. Yet in some fields of machine learning, the
fact that most decision-makers tend to be domain experts is often overlooked as a potential source of
information. Expertise is seldom formalized as an assumption and leveraged as an inductive bias.

Perhaps the most prominent machine learning problem in which the notion of expertise arises quite
naturally, while its potential as an inductive bias is usually neglected, is that of personalized treatment
effect estimation. Estimating the effects of actions, treatments, or interventions is a central concern
in numerous domains, and as such, a plethora of machine learning methods has been proposed for
estimating treatment effects based on observational data collected by decision-makers (e.g. Bica et al.,
2020a; Curth & van der Schaar, 2021a). These methods become susceptible to confounding when
those decision-makers happen to be experts and assign treatments based on factors that influence the
outcomes of their assignments. As a consequence, treatment effects can generally only be identified if
all such confounding factors are recorded in data, and when this is the case, correcting for the resulting
shift in covariates across treatment groups is considered a major challenge of the setting (Johansson
et al., 2016; Shalit et al., 2017; Assaad et al., 2021). Surprisingly, despite often being one of the
principal reasons behind confounding, the expertise of decision-makers is almost never formalized as

∗Authors contributed equally. Correspondence to: Qiyao Wei <qw281@cam.ac.uk>

1

mailto:qw281@cam.ac.uk


Published as a conference paper at ICLR 2024

an assumption in the literature on treatment effect estimation. Rather, the standard—and often the
only–assumption made regarding a decision-maker’s policy is that of overlap. This assumption states
that all treatments must have a non-zero probability of being assigned to any individual so that the
resulting data has enough variability to identify treatment effects (Rubin, 2005). As far as expertise is
concerned, the overlap assumption means that the decision-maker cannot have perfect knowledge of
their domain, allowing them to consistently take the same action given the same situation. Then, by far
the most common approach in the machine learning literature for addressing the effects of confounding
is to try and remove the imbalances in data created by the decision-maker’s policy—for instance,
by learning balancing representations according to which the decision-maker’s actions appear to
be taken randomly with no expertise (Johansson et al., 2016; Shalit et al., 2017; Bica et al., 2019).

In this paper, we argue that methods for treatment effect estimation should consider making more
specific assumptions regarding expertise—-beyond just overlap, which only rejects the possibility
of perfect expertise. Specifically, identifying in what manner the decision-makers of a domain
typically exercise their expertise, should inform the design of methods in that domain. To this end, we
distinguish two types of expertise: (i) predictive expertise, where actions are based on treatment effects
only, and (ii) prognostic expertise, where actions are based on all potential outcomes more generally.1
For instance, the doctors in our earlier example happened to have predictive expertise as their goal
was to prescribe treatments with the largest benefit, whereas the teachers had prognostic expertise as
they aimed to identify students with an overall weaker understanding of the subject, rather than just
predicting how much the student could benefit from focused explanations. Our argument, then, is
that the prominent type of expertise within a domain matters when designing and selecting models.
For instance, we will see in our experiments that balancing representations could be a more suitable
approach in domains with predominantly prognostic expertise (e.g. education) than in domains with
predominantly predictive expertise (e.g. healthcare). This insight has practical value because model
selection is a fundamental issue in treatment effect estimation: The ground-truth treatment effects
are almost never observed, which makes conventional model validation infeasible Curth & van der
Schaar (2023). Reasoning about expertise thus offers one solution. In our experiments, we will
also see that it is possible to estimate the amount of predictive vs. prognostic expertise that the deci-
sion-maker collecting a dataset had, which can even provide a quantitative basis for model selection.

Contributions • Conceptually, we introduce the idea that a decision-maker’s policy should not
always be considered a nuisance that causes covariate shift, but rather the fact that it often may high ex-
pertise could be leveraged as an inductive bias. • Technically, we provide a definition of what it means
for a policy to have expertise (Sec. 3): Expertise is the extent to which variations in a policy’s actions
coincide with variations in treatment effects—for predictive expertise—or potential outcomes—for
prognostic expertise. We show theoretically that high expertise leads to a greater shift in covariates and
poor overlap, making it even more critical to leverage it as an inductive bias. • Empirically, we demon-
strate that: (i) the type and the amount of expertise present in a dataset significantly influences the
performance of different methods for treatment effect estimation (Sec. 4.1), and (ii) it may be possible
to classify datasets according to what type of expertise they reflect and thereby identify what methods
might be more or less suitable for a given dataset—we propose a pipeline that does this (Sec. 4.2).

2 PROBLEM SETUP: TREATMENT EFFECT ESTIMATION

We consider the standard static setup for treatment effect estimation (e.g. Curth & van der Schaar,
2021a). This setup assumes a data-generating process where, at each round of decision making, a new
subject arrives with features X ∈ X . These features are distributed according to α ∈ ∆(X ) such that
X ∼ α, where ∆(X ) is the set of all distributions overX . Each subject is intrinsically associated with
two potential outcomes (as in Rubin, 2005): Y0 ∈ Y is the baseline outcome that would be realized
without treatment and Y1 ∈ Y is the outcome that would be realized if the subject is to be treated.
These outcomes are distributed according to ρ0 ∈ ∆(Y)X and ρ1 ∈ ∆(Y)X respectively such that
Y0 ∼ ρ0(X) and Y1 ∼ ρ1(X). After the subject’s arrival, a decision-maker assigns them a treatment
Aπ ∈ {0, 1}, where Aπ = 0 denotes no treatment—which we call the “negative” treatment—while
Aπ = 1 denotes that the subject is treated—which we call the “positive” treatment. These assignments
are made according to some policy π ∈ ∆({0, 1})X such that Aπ ∼ π(X). Once a treatment is as-
signed, the corresponding potential outcome is realized and observed, which we denote as Y π = YAπ .

1This terminology is inspired by the medical literature; predictive biomarkers are informative of the treatment
effect and prognostic biomarkers are of outcomes regardless of treatment (Ballman, 2015; Sechidis et al., 2018).
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The treatment effect estimation problem Suppose we are given an observational dataset D =
{xi, ai, yi}ni=1 generated by the process we have just described, consisting of subjects xi ∼ α, actions
(i.e. treatment decisions) ai ∼ π(xi), and factual outcomes yi ∼ ρai(xi). Then, the treatment effect
estimation problem is to determine, based on this observational dataset D, the conditional average
treatment effects (CATE): τ(x) = E[Y1 − Y0|X = x]. Generally, this can only be achieved under
the overlap assumption—that is π(x)[a] > 0 for all x ∈ X , a ∈ {0, 1} (Rubin, 2005). Our setup
implicitly assumes no hidden confounding as features {xi} are fully observed in D and ai ∼ π(xi).

3 DEFINING EXPERTISE

Before we can provide quantitative evidence in support of our main argument—that is expertise can
act as an inductive bias and inform model selection in treatment effect estimation—we first need to
define formally what we refer to as expertise. This section first states mathematical definitions of prog-
nostic and predictive expertise, and then discusses the motivation behind these definitions (Section 3.1)
as well as their implications for the treatment effect estimation problem (Section 3.2). Later in Sec-
tion 4, we return back to our main argument and present empirical results based on our definitions here.

What we want to capture as expertise is to what extent the actions of a decision-maker are informed
by how a subject’s features shape their potential outcomes—we call this general type of expertise
prognostic expertise. When a policy π has high prognostic expertise, it should be possible to explain
variations in its actions Aπ mostly through the variability of potential outcomes Y0, Y1—the policy
should take different actions under different circumstances only because the potential outcomes are
also different. In a similar vein, we aim to capture predictive expertise, where actions are specifically
informed by the treatment effect (rather than the potential outcomes more generally). When a policy
π has high predictive expertise, variations in Aπ should mostly be due to the variability of Y1 − Y0.

As our intuitive understanding of expertise is tightly linked to the variability of actions under different
policies, we start by quantifying action variability as the entropy of actions Aπ for a given policy π:

H[Aπ] = −
∑

a∈{0,1}
P{Aπ = a} log2 P{Aπ = a} (1)

This entropy can be interpreted as a measure of the inherent “randomness” or “uncertainty” actionsAπ
have. Whenever Aπ is observed, this randomness is removed—or the uncertainty is resolved—hence
entropy H[Aπ] can also be interpreted as the amount of information carried by the observations of Aπ .

Since expertise has intrinsically to do with how much of this action variability is due to different
subjects having different potential outcomes, what we consider next is the entropy of Aπ conditioned
on potential outcomes: H[Aπ|Y0, Y1]. If variations in Aπ were to be entirely due to variations in
Y0, Y1, then Aπ would appear deterministic conditioned on Y0, Y1—that is H[Aπ|Y0, Y1] = 0. We
want to capture this as the case with maximal prognostic expertise. Conversely, if treatment decisions
are not informed by potential outcomes at all, which would be the case with no prognostic expertise,
then the action variability would stay the same regardless of whether we condition on Y0, Y1—that is
H[Aπ|Y0, Y1] = H[Aπ]. Generalizing these two extremes to a continuum: The higher the expertise is,
the less variable actions should appear to be conditioned on a specific pair of potential outcomes, and
the lower H[Aπ|Y0, Y1] should be relative to H[Aπ]. Hence, we define prognostic expertise as follows:

Definition 1 (Prognostic expertise). The prognostic expertise of policy π is defined as
Eπprog = 1−H[Aπ|Y0, Y1] / H[Aπ] (2)

Notice that Eπprog ∈ [0, 1], where Eπprog = 1 for the maximal-expertise case and Eπprog = 0 for the
no-expertise case. Based on our earlier interpretations of entropy, we can conceptualize prognostic
expertise in different ways. In those interpretations, actions had an inherent randomness or uncertainty,
and if one were to somehow observe both potential outcomes, a portion of this randomness would
disappear—or part of the uncertainty would be resolved. In this hypothetical scenario, prognostic ex-
pertise would be the portion of randomness regarding actions that remains—or part of the uncertainty
that is still not resolved—even after observing both potential outcomes. Alternatively, Eπprog is the
proportion of information carried by Aπ that is also informative of Y0, Y1 (cf. mutual information).

Similar to prognostic expertise, we define predictive expertise as the proportion of action variability
that is due to variations in the treatment effect Y1−Y0 specifically (and not just Y0, Y1 more generally):

Definition 2 (Predictive expertise). The predictive expertise of policy π is defined as
Eπpred = 1−H[Aπ|Y1 − Y0] / H[Aπ] (3)
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Finally, when a policy has unit expertise, meaning any variation in its actions Aπ is entirely due to
the variability of potential outcomes (or the treatment effect), we call that policy a perfect expert:

Definition 3 (Perfect prognostic/predictive expert). Policy π is a perfect prognostic expert ifEπprog = 1.
Similarly, policy π is a perfect predictive expert if Eπpred = 1.

3.1 DISCUSSION ON EXPERTISE

Why two types of expertise? Because actions can be informed by outcomes in two distinct ways:
First, treatments can be assigned based on treatment effects (cf. predictive expertise). This may happen
when the goal is to achieve the best possible outcome for each subject, which is often the case in health-
care (e.g. Graham et al., 2007; Caye et al., 2019). Alternatively, treatments can be assigned according
to the outcome that subjects would attain regardless of treatment (cf. prognostic expertise). This may
happen in cases of self-selection—for instance, in education, students who choose to attend optional
lectures might be those who already would have had higher grades even if they did not attend those lec-
tures (Kwak et al., 2019)—or when the goal is to equalize outcomes across subjects—for instance, in
social planning, institutions that receive the most funding might be the ones that need it the most, and
not necessarily the ones that would benefit the most (Ladd & Yinger, 1994; Betts & Roemer, 1999). In
our experiments, we will evaluate the performance of different treatment effect estimation methods for
treatment effect estimation under varying amounts of both expertise types (see Figure 4 in Section 4.1).

Are the two types of expertise related? Yes, predictive expertise implies prognostic expertise. This
is because the treatment effect Y1 − Y0 is a function of potential outcomes Y0, Y1, hence actions in-
formed by Y1−Y0 are also indirectly informed by Y0, Y1. However, the converse is not necessarily true:
A policy might have prognostic expertise but completely lack predictive expertise at the same time.

Can expertise be measured? Not directly—both types of expertise are oracle measures, meaning
they cannot be computed in practice as only one of the potential outcomes would be observed. But,
they can be estimated via models as we demonstrate with experiments (see Figure 5 in Section 4.2).

How does expertise differ from optimality? Optimality is tied to a specific success measure—
as in utility functions in economics (Kapteyn, 1985) or reward functions in control/reinforcement
learning (e.g. Sutton & Barto, 2018; Holt et al., 2023; 2024; Sun et al., 2024)—and entails high
performance w.r.t. that success measure. In contrast, expertise expresses the idea that any variability
in treatment assignments is solely motivated by what the potential outcomes (or the treatment effect)
could be—independent of any particular success measure. Dependence on a single success measure
can be problematic: Policies with factually incorrect information (lacking expertise) might lead to
high performance in some measures by coincidence. Conversely, actual experts might appear to be
performing poorly according to one measure only because they are trying to optimize another measure.

As an illustration of such cases, consider an environment with features X = (XA, XB , XC) such that
Xi ∼ U({−1, 0, 1}) for all i ∈ {A,B,C}, where U(S) is the uniform distribution over set S, and
outcomes Y0 = 0 and Y1 = XA+XB so that the treatment effect is τ(x) = xA+xB . One goal in this
environment could be to maximize realized outcomes with success measure E[Y π]. Then, consider
two policies: (i) a misinformed policy πmis(x) = 1{xA+xC > 0} which tries to maximize outcomes
by assigning the treatment whenever its effect is positive, but has incorrectly identified an irrelevant
variable XC in place of XB , and (ii) a risk-averse policy πrisk(x) = 1{xA + xB > 1} which has
correct information, but instead of maximizing outcomes, tries to avoid adverse negative outcomes
hence assigns the treatment only when its effect is overwhelmingly positive. In this scenario, the
misinformed policy still happens to perform better than the risk-averse policy in maximizing outcomes:
E[Y πmis ] > E[Y πrisk ]. However, its actions are varied based on variables that should ideally not be
a consideration in decision-making, and its performance comes at the expense of individuals with
features x who would have benefited from the treatment as τ(x) > 0 but did not receive it as xC � 0.
Appropriately, the (predictive) expertise of the risk-averse policy happens to be higher, Eπrisk

pred > Eπmis
pred.

Are experts more desirable than optimal policies? Sometimes yes, for instance in healthcare!
Since treatments might have different effects for different patients, variability is needed in which
treatments are prescribed to which patients. However, this variability should occur only with respect
to variables that are clinically relevant and not with respect to arbitrary characteristics. In this context,
policies like πrisk could be more desirable: It might fall short of maximizing outcomes but varies its ac-
tions only when needed. Policies like πmis, on the other hand, possibly have unwanted variation where
subjects are treated preferentially based on factors that should not be relevant to the outcome of interest.
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3.2 IMPLICATIONS OF EXPERTISE FOR TREATMENT EFFECT ESTIMATION

Before we move onto investigating, practically, how expertise can act as an inductive bias and inform
model selection in treatment effect estimation, it would be insightful to first understand the implica-
tions of having high expertise for the treatment effect estimation problem itself. Below, we show that
high expertise necessarily leads to poor overlap, which overall makes the problem more challenging.

Characterizing this mathematically requires us to first differentiate between two distinct sources of
action variability. To that end, supposeX ∼ B(1/2), whereB(p) is the Bernoulli distribution with suc-
cess probability p, and consider: (i) a uniform policy πunif(x)[a] = 1/2, which assigns treatments uni-
formly at random for all subjects, and (ii) a preferential policy πpref(x)[a] = 1{a = x}, which assigns
half of the subjects one treatment and the other half the other treatment. Both policies have the same
action variability, H[Aπunif ] = H[Aπpref ] = 1. However, while the uniform policy is highly stochastic,
the preferential policy behaves in a completely deterministic way given a subject x ∈ X . We capture
the difference between these two policies by defining the notion of in-context action variability:

Definition 4 (In-context action variability). The in-context action variability of policy π is defined as
Cπ = H[Aπ|X] / H[Aπ] (4)

Notice that Cπ ∈ [0, 1], and the uniform policy has unit in-context variability, Cπunif = 1, while the
preferential policy has zero in-context variability, Cπpref = 0. In-context action variability is useful to
define because it is related directly to the overlap assumption. For it to hold, the in-context variability
has to be non-zero,Cπ = 0 would imply that the overlap assumption is violated. On the other extreme,
when treatments are assigned uniformly at random (as in a randomized controlled trial), the in-context
variability would reach its maximal value. As such, in-context action variability can be thought of
more generally as a measure of the amount of overlap the decision-maker’s policy has or how “difficult”
it is to estimate treatment effects from data collected by a particular policy. Keeping this interpretation
in mind, what we show next is that the total expertise and in-context action variability of a policy is
bounded—meaning high expertise would lead to low in-context action variability hence poor overlap:2

Proposition 1 (Boundedness of expertise and in-context action variability). For all π ∈ ∆({0, 1})X ,
Eπprog + Cπ ≤ 1 and Eπpred + Cπ ≤ 1 (5)

0 1
0

1

Bound in Proposition 1

Best Case
Scenario

(e.g. randomized
controlled trials)

Worst Case
Scenario

(no overlap or expertise)

Cases where
leveraging expertise

becomes critical!

Expertise (Eπprog or Eπpred)

In
-c

on
te

xt
ac

tio
n

va
ri

ab
ili

ty
(C

π
)

Figure 1: The higher the expertise
of a policy, the lower its in-context
action variability, hence its overlap,
has to be (Prop. 1). When expertise
is high, leveraging it becomes criti-
cal as overlap would be low, making
CATE estimation more challenging.

Proof. Appendix C.

This is why leveraging expertise as an inductive bias is so crucial:
Cases where more information can be gained through expertise
(i.e. cases with high expertise) happen to align with cases where
treatment effect estimation is particularly hard due to poor overlap
(Figure 1). According to one extreme of Proposition 1, any perfect
expert—predictive or prognostic–must be making deterministic
decisions with respect to subject features—violating the overlap as-
sumption necessary for non-parametric treatment effect estimation:

Proposition 2 (Determinism of perfect experts). If policy π is a
perfect expert—that is either Eπprog =1 or Eπpred =1—then Cπ=0.

Now, a natural question one might ask next is: Should we still
care about treatment effect estimation when the decision-maker’s
policy is already a perfect expert? Possibly “Yes!” for two reasons:

(i) As we have stressed earlier, being an expert does not necessarily imply optimal performance
with respect to any arbitrary success measure. In particular, a decision-maker might be a perfect
expert because they are optimizing one success measure, while estimating potential outcomes or
the treatment effect accurately might allow us to optimize another success measure of interest.

(ii) Even if an expert were to be readily optimal with respect to a desired objective, one might still be
interested in formalizing their policy in mathematical terms—rather than being reliant on the in-
ternal thought process of a human—thereby extracting the knowledge that might otherwise only
be known (or intuitive) to the expert. In fact, this happens to be the main goal of inverse decision
modeling (Bica et al., 2020b; Qin et al., 2021; Jarrett et al., 2021; Hüyük et al., 2021; 2022a;b).

2In this paper, we continue to assume overlap and only ever consider policies with high expertise rather than
perfect expertise—having poor overlap does not mean that the overlap assumption is violated.
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4 APPLICATIONS TO TREATMENT EFFECT ESTIMATION

Having established the necessary language for discussing expertise (and action variability) in a quan-
titative manner, we can finally return to our main practical argument: Expertise—particularly the type
of expertise present in a dataset—can act as an inductive bias and inform the selection of methods for
treatment effect estimation—policies should not necessarily be viewed as nuisances only (as in balanc-
ing representations). This section provides two empirical demonstrations in support of our argument:

(i) In Section 4.1, we analyze the operating characteristics of various treatment effect estimation
methods under different expertise-related scenarios. Our analysis reveals an important insight:
Learning balancing representations can indeed hurt performance in treatment effect estimation
when decision-makers have predictive expertise. Under purely prognostic expertise however
(without any predictive expertise), balancing representations can select against features that
affect outcomes despite being unrelated to the treatment effect—thereby improving performance.

(ii) In Section 4.2, we estimate the amount of predictive vs. prognostic expertise a decision-maker
has, which not only enables one to evaluate the expertise of different decision-makers, but also
to predict which treatment effect estimation methods might perform better for a given dataset.

Simulation environment As is common in the treatment effect estimation literature, we need to con-
struct a synthetic data-generating mechanism to ensure that potential outcomes are known by design
(Curth et al., 2021; Hüyük et al., 2024). Inspired by the simulator in Crabbé et al. (2022), and similar
to them, we start with covariates X ∈ Rd from real-world datasets. We designate each covariate as
either being prognostic, predictive, or irrelevant such that X = (Xprog, Xpred, Xirr) ∈ Rdprog×dpred×dirr .
Then, we generate potential outcomes such that Ya = 〈wprog, Xprog〉+〈wa, Xpred〉+ηa, wherewprog ∈
Rdprog and w0, w1 ∈ Rdpred are weights with components sampled independently from the uniform dis-
tribution over [−1, 1], and η0, η1 are noise variables sampled from the normal distribution with µ = 0
and σ = 0.1. According to this process: (i) the treatment effect τ(x) = 〈w1−w0, xpred〉 depends only
on predictive variables and not on prognostic variables, and (ii) neither of the two potential outcomes
depend on irrelevant variables. (A full description of our simulator can be found in Appendix E.)
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Figure 2: During our simulations,
we increase the expertise: (i) by de-
creasing β in πsoft (Best→Expert),
which also decreases the in-context
action variability (i.e. the overlap),
and (ii) by decreasing d in πmis

(Worst→Expert, as seen in Fig. 1).

Decision-making policies Using Figure 1 as a map, we vary the
expertise of policies in this environment on two distinct axes (Fig-
ure 2): (i) from “best case scenario” to the high-expertise scenario
(Best→Expert), and (ii) from “worst case scenario” to the high-
expertise scenario (Worst→Expert). Consider the (soft) predic-
tive expert πsoft that is more likely to assign the positive treatment
if the treatment effect is positive: πsoft(x)[1] = σ(τ(x)/β), where
σ(x) = 1/(1 + e−x) is the sigmoid function and the temperature
parameter β ∈ R+ controls the in-context action variability. Then:

(i) For Best→Expert, we simply vary the parameter β. At the
limit β →∞, πsoft becomes equivalent to the random policy
πrand(x)[a] = 1/2 (i.e. the “best case scenario”). As β gets
smaller and smaller, πsoft gains more and more expertise.

(ii) For Worst→Expert, we fix β = 1/4—and with it also the
in-context action variability—but we slowly replace the pre-
dictive variables in Xpred that an expert would take into consideration with irrelevant variables
from Xirr instead. Letting d ∈ {0, . . . ,min{dpred, dirr}} be the number of predictive variables
that are replaced, we construct misspecified policies πmis(x) = σ(〈w1 − w0, x

′
pred〉/β) where

x′pred = ((xirr)1:d, (xpred)d+1:dpred). Note that πmis becomes equivalent to πsoft when d = 0.

We also consider policies without any predictive expertise that take actions based on a combination
of prognostic and irrelevant variables: πnon-pred(x)[1] = σ(〈wprog, x

′
prog〉/β) where x′prog = ((xirr)1:d,

(xprog)d+1:dprog). Similar to before, for Best→Expert, we fix d = min{dprog, dirr}/2 and vary β, and
for Worst→Expert, we fix β = 1/4 and vary d. Despite lacking predictive expertise, πnon-pred has prog-
nostic expertise (as long as d 6= dprog), hence why we will refer to this case as the prognostic setting.

Benchmark algorithms Below, we review the existing strategies for treatment effect estimation and
consider them through an expertise lens. In particular, we highlight the inductive biases regarding ex-
pertise that are implicitly encoded in different methods, which as we will discuss, arise as a by-product
of unrelated design motivations. (A full description of all algorithms can be found in Appendix F.)
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• Potential outcome predictors: The methods estimate CATE through prediction of the negative
and the positive outcomes separately. Many popular CATE estimators in the machine learning
literature (e.g. Johansson et al., 2016; Hassanpour & Greiner, 2019; Künzel et al., 2019; Curth &
van der Schaar, 2021b) fall into this class. In our experiments, we consider TARNet of Shalit et al.
(2017) as a representative of this class. TARNet first learns a shared representation φ : X → R,
which is then taken as input by two separate output prediction heads f : R× {0, 1} → Y . Finally,
the treatment effect is estimated as τ̂(x) = f(φ(x), 1)− f(φ(x), 0). By focussing on potential
outcome prediction only, these methods are essentially agnostic to any specialized structure that
the treatment effect estimation problem has, including policies and any relationship they might
have with the potential outcomes (or the treatment effect) such as expertise. Being a neutral
method in terms of how policies are treated, we use TARNet as our baseline method (“Baseline”).

• Propensity-weighted predictors: One potential issue that potential outcome predictors are ignorant
of is the possibility of covariate shift—that is the distribution of covariates in the training set for
each potential outcome predictor, f(φ(x), 0) and f(φ(x), 1), not being equal to the marginal distri-
bution α of features X . One straightforward correction for covariate shift is importance weighting,
which in the CATE estimation case is also known as inverse propensity weighting (IPW, e.g. Wager
& Athey, 2018; Hassanpour & Greiner, 2019; Assaad et al., 2021; Dorn & Guo, 2022). IPW can be
applied to the same architecture as TARNet (i.e. Baseline) (“Propensity”). In TARNet, functions
φ, f are trained according to some loss function L =

∑
i ‖yi − f(φ(xi), ai)‖, where ‖ · ‖ denotes

an arbitrary distance metric. IPW corrects for shifts in covariates by re-weighting the contribution
of individual data points to this loss function: L′ =

∑
i ‖yi − f(φ(xi), ai)‖/π(xi)[ai]. Now

notice that IPW requires policy π to be known (or estimated) beforehand, and given a policy π, it
does not leverage any relationship between π and the potential outcomes Y0, Y1. In other words,
IPW is indifferent to any expertise the decision-maker’s policy might have (but corrects for the
possible effects of covariate shift). However, there is one caveat: IPW is extremely sensitive to
the stochasticity of policy π since propensity scores π(x)[a] appear in denominators—more deter-
ministic policies with smaller propensity scores for certain actions lead to estimates with higher
variance (Cortes et al., 2010). Having high expertise might mean policies with less in-context vari-
ability in their actions (according to Proposition 1) hence less stable estimates when IPW is used.

• Balancing representations: While IPW requires a policy to be fully specified beforehand and
ignores any relationship between that policy and the potential outcomes, balancing representations
(e.g. Johansson et al., 2016; Yao et al., 2018; Bica et al., 2019; Du et al., 2021; Huang et al., 2022)
actively try to disentangle the decision-maker’s policy and the estimates for potential outcomes
from each other. For instance, CFRNet proposed by Shalit et al. (2017) (“Balancing”) uses the
same architecture as TARNet, except that the bias caused by policy π is addressed by training func-
tion φ to generate representations that are predictive of potential outcomes Y0, Y1 but not of actions
Aπ, so that actions ai appear to be random with respect to learned representations zi = φ(xi).
A typical loss function for learning such representations would be L =

∑
i ‖yi − f(zi, ai)‖ +

‖{zi}i:ai=0 − {zi}i:ai=1‖. This approach originates from domain adaptation (Ganin et al., 2016),
where it was proposed to avoid the variability issues of importance-weighted estimators. In our
experiments however, we will see that, when policies have predictive expertise, balancing repre-
sentations actively remove the information carried by that expertise, which is not always desirable.

• Action-predictive representations: Finally, in stark contrast with balancing representations, we
consider a final strategy that learns function φ so that representations zi = φ(xi) are actually
predictive of actions ai. This strategy encodes predictive expertise as an inductive bias in the sense
that it assumes that policies and outcome predictors can be represented in a joint spaceR from
which it is easier to learn function f then from the original space. Such a strategy is implemented
as DragonNet in Shi et al. (2019) (“Action-predictive”)—albeit motivated from a different angle.3
The loss function for DragonNet looks like L =

∑
i(‖yi − f(zi, ai)‖ + log g(zi)[ai]) where

function g : R → ∆({0, 1}) is trained jointly with functions φ, f to predict action distributions.

Performance metric As our main metric of performance, we consider precision in estimation of het-
erogeneous effects (PEHE)—that is EX∼α[(τ̂(X)− τ(X))2]1/2 for an estimator τ̂(x). In the main pa-
per, we focus on a single simulation environment, additional experiments can be found in Appendix D.

3Shi et al. (2019) consider average treatment effect estimation—that is the estimation of E[Y1 − Y0]. In this
context, policy π plays a different, special, role: It is sufficient for adjustment (Rosenbaum & Rubin, 1983),
which is what Shi et al. (2019) propose to exploit. Note that π is not sufficient for adjustment in CATE estimation
unless µa(x)

.
= E[Ya|X = x] is a function of π(x) alone.
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4.1 PERFORMANCE UNDER DIFFERENT EXPERTISE SCENARIOS
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Figure 3: As Best→Expert (i.e.
away from the “best case scenario”),
treatment effect estimation gets gen-
erally harder and the performance
of Baseline degrades. Similarly, as
Worst→Expert (i.e. away from the
“worst case scenario”) the perfor-
mance of Baseline improves instead.

When varying policy π as in Figure 2, as we move away from the
“best case scenario” in Figure 1 to the case with high expertise and
eventually to the “worst case scenario” (Best→Expert→Worst),
the treatment effect estimation problem gets generally harder—
see Figure 3. In order to compensate for this inherent change in
the difficulty of estimating treatment effects, in this subsection,
we measure the performance of all methods relative to Baseline.

Figures 4a and 4b show the PEHE improvement of different meth-
ods over Baseline for the setting with predictive expertise. Three
observations stand out: First, Action-predictive achieves better and
better performance over Baseline as the decision-maker’s expertise
increases. This is because Action-predictive learns variables that
are predictive of actions, and when the expertise is high, these
variables happen to be good predictors of the treatment effect as
well. Second, the performance of Balancing degrades relative to
Baseline as the expertise increases. This is because more relevant
features becoming predictive of the actions forces Balancing to exclude more of those features from
its representation space.4 Third, the relative performance of Propensity appears to degrade more
consistently as Best→Expert than Worst→Expert. This supports our earlier intuition that Propensity is
mostly sensitive to in-context action variability (and overlap) rather than expertise directly—remember
that Best→Expert reduces the in-context action variability whereas Worst→Expert does not (Figure 2).

Figures 4c and 4d show the PEHE improvement of the same methods but for the prognostic setting.
In general, we see that the performance of Action-predictive becomes worse than Baseline. For
Action-predictive, learning variables that influence actions the most, which happen to be prognostic
or irrelevant variables, is no longer directly informative in estimating the treatment effect (but can
still be informative in predicting potential outcomes). For Balancing on the other hand, having
non-predictive variables—especially irrelevant variables—determine actions, most of the time, helps
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Figure 4: Performance improvements over Baseline. For predictive expertise, Action-predictive is able to improve
more and more upon Baseline by exploiting the increasing expertise (both as Best→Expert and Worst→Expert).
In contrast, Balancing gets worse with increasing expertise since the information it discards about the policy
becomes more correlated with the treatment effects. However, for prognostic expertise, we observe that having
non-predictive variables determine actions can help Balancing select against those variables when forming
representations, improving performance upon Baseline—in most configurations as opposed to Action-predictive.
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Figure 5: Estimated predictive/prognostic expertise. Balancing fails completely since, by design, it removes all
information that would have been predictive of expertise. Propensity is more sensitive to changes in expertise as
Best→Expert than Worst→Expert (especially for predictive expertise) since the in-context action variability—
hence the magnitude of propensity scores—changes as Best→Expert while it stays the same as Worst→Expert.

4This is related to information loss in representations as analyzed theoretically in Johansson et al. (2019) for
domain adaptation. Their results can potentially be adapted to our setting to provide generalization bounds.
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Balancing eliminates those variables from its representations, which regularizes the estimation of
treatment effects. However, Balancing still suffers if the policy depends only on prognostic variables.

Finally, perhaps the most important insight we gain from results in Figure 4 is that, on average, differ-
ent methods perform the best under predictive vs. prognostic expertise. While Action-predictive may
be more suitable for domains with high predictive expertise, such as healthcare, Balancing may be
more suitable for domains with high prognostic (and importantly low predictive) expertise, such as edu-
cation. In the next section, we demonstrate that the prominent type of expertise present in a dataset can
be identified by estimating the relative amounts of predictive and prognostic expertise reflected in that
dataset with one of our benchmark algorithms. This provides a quantitative basis for deciding whether
to use Action-predictive or Balancing when estimating treatment effects given a particular dataset.

4.2 ESTIMATING EXPERTISE

Figure 5 shows that, although expertise is an oracle metric—meaning it cannot be computed directly
using observable data—it can be estimated by plugging potential outcome predictions, which all of our
methods learn, into (2) and (3). Specifically, given a partition of the outcome space Y = Y1∪· · ·∪Yk,
the predictive expertise can be estimated by treating outcome predictions {ŷia} as discrete variables:

Êpred = 1−
∑

a∈{0,1}
j∈[k]

|i:ai=a,ŷi1−ŷ
i
0∈Yj |

n log2
|i:ai=a,ŷi1−ŷ

i
0∈Yj |

|i:ŷi1−ŷi0∈Yj |
/
∑

a∈{0,1}
|i:ai=a|

n log2
|i:ai=a|

n (6)

Prognostic expertise can be estimated in a similar manner as well. All methods except Balancing per-
form well in this task. This is no surprise as one of the training goals of Balancing is to remove all in-
formation regarding the decision-maker’s policy, including any indicators of its expertise. We see once
again that Propensity is more sensitive to changes in expertise as Best→Expert than Worst→Expert
(since Best→Expert affects the magnitude of propensity scores whereas Worst→Expert does not).

Estimate Epred and Eprog

using Action-predictiveDataset D

Êpred

Êprog
> 1

2?

Estimate τ(x)
using Balancing

Estimate τ(x)
using Action-predictive

no yes

Figure 6: Flow diagram of Expertise-informed. First,
the dominant type of expertise present in dataset D
is identified using Action-predictive. Then, a suitable
method for CATE estimation is selected accordingly.

Table 1: PEHE of various methods averaged across
predictive, prognostic, and all datasets. By accurately
identifying the type of expertise present in datasets,
and then selecting between Action-predictive and Bal-
ancing for CATE estimation accordingly, Expertise-in-
formed achieves the best-of-both-worlds performance.

Method Predictive
Datasets

Prognostic
Datasets

All
Datasets

Baseline 0.784 (0.130) 1.483 (0.258) 1.134 (0.194)
Propensity 0.786 (0.126) 1.511 (0.259) 1.149 (0.193)
Balancing 0.936 (0.131) 1.439 (0.243) 1.188 (0.187)
Action-predictive 0.751 (0.128) 1.495 (0.259) 1.123 (0.194)

Expertise-informed 0.751 (0.128) 1.439 (0.243) 1.096 (0.185)

Notice that Action-predictive performs the best in
estimating expertise universally across all config-
urations, hence it can be used to identify whether
a dataset has predominantly predictive expertise
or prognostic expertise, and according to the
identified expertise type, choose between Action-
predictive or Balancing for estimating treatment
effects. Given a dataset D, we first estimate both
Epred and Eprog using Action-predictive. Then,
we determine which treatment effect estimation
method to use based on the ratio Êpred/Êprog: If
this ratio is larger than a threshold of 1/2, we use
Action-predictive for treatment effect estimation,
otherwise we use Balancing. We call this pipeline
“Expertise-informed” (Figure 6). Table 1 reports
the performance of all our methods, including this
new pipeline, averaged across the datasets gener-
ated by all the policies we have considered so far—
that is πsoft/mis and πnon-pred with varying {β, d}
as Best→Expert and Worst→Expert. We see that,
by accurately identifying the prominent type of
expertise present in a dataset, and selecting the
most suitable method between Action-predictive
and Balancing for that dataset, Expertise-informed achieves the best-of-both-worlds performance.

5 CONCLUSION

In this paper, we introduced a technical language that defines what expertise should be conceptualized
as in treatment effect estimation. Using this language, we have provided an initial demonstration of
an important phenomenon: Encoding the intuition that decision-makers are usually experts of their
domain—particularly that they often have a certain type of expertise—can act as an inductive bias
in estimating treatment effects. In our experiments, we were able to identify what type of expertise
is present in a given dataset and select the most suitable treatment effect estimation method for
that dataset accordingly. We hope that the definitions we have provided, along with our empirical
demonstrations, will encourage future research to capture the same intuition with new approaches.
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REPRODUCIBILITY STATEMENT

We have described the details of our experimental setup in Appendix E for the simulation environ-
ment and in Appendix F for the benchmark algorithms. Moreover, the code for reproducing our
main experimental results can be found at https://github.com/QiyaoWei/Expertise
and https://github.com/vanderschaarlab/Expertise. We have provided rigorous
proofs in Appendix C of Propositions 1 and 2 (as well as the additional Propositions 3 and 4 that
appear in Appendix B), which refer to the assumptions we have made in the main paper as needed.
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A FURTHER DISCUSSION

Why entropy over statistical measures? Our definitions of expertise are based on the concept
of entropy. An alternative approach could have been to define expertise using statistical measures
such as variance. Although variance, similar to entropy, is also indicative of how “random” a random
variable is, the two quantities measure fundamentally different things: Variance quantifies the amount
of spread around a mean while entropy quantifies uncertainty. When defining expertise, our aim was
to capture the uncertainty of outcomes when the actions of a decision-maker are known vs. unknown
to an outside observe (the bigger the difference between the two cases, we say the larger the expertise
is). Hence, a more direct measure of uncertainty was naturally more suitable to our aim and use case.

On a more technical level, attempting to define expertise through variance would have had two
immediate shortcomings:

(i) First, variance is not well defined for categorical variables, such as binary actions in our work,
unless we assign numerical values to each category. Even if we were to assign such numeric
values (for instance, Aπ = 0 for the negative treatment and Aπ = 1 for the positive treatment),
the resulting variance would be sensitive to our assignments (for instance, the variance of Aπ
would have increased if we were to represent the negative treatment as Aπ = −1 instead of
Aπ = 0, which should not be a meaningful change as far as expertise is concerned).

(ii) Variance depends on the scale of variables whereas entropy does not. For instance, the
variance of 2Y would be double the variance of Y , while their entropies would be the same:
H[Y ] = H[2Y ]. Such sensitivity to scale is undesirable when defining expertise—the fact that
outcomes are recorded twice as large in a dataset (maybe due to a change of units) should have
no effect on expertise.

Why not use the graphical framework of Pearl? We refrained from using the graphical framework
of Pearl (2009) when defining expertise because it is specifically not well-equipped to distinguish
between prognostic and predictive variables. This is because directional acyclic graphs (DAGs) are
notoriously bad at representing effect modification (i.e. predictive variables) natively. There have
been proposals to extend the graphical framework to better depict effect modifiers Weinberg (2007),
but to the best of our knowledge, no solution has been well established in the literature to this data.

Expertise in terms of mutual information It should be mentioned that the expertise definitions
we arrived at in Section 3 happen to be exactly equal to the mutual information between actions and
outcomes: For predictive expertise, Eπpred = I(Aπ;Y1 − Y0)/H[Aπ], and for prognostic expertise,
Eπprog = I(Aπ;Y0,Y1)/H[Aπ].

Expertise in experimental data Experimental data constitute a noteworthy extreme when viewed
through the lens of expertise. Particularly in a randomized controlled trial, when the propensity scores
are uniform across treatment, there would be no expertise, and appropriately, both the predictive and
the prognostic expertise would be equal to zero for datasets collected through a randomized controlled
trial (this can be inferred from Proposition 1, a uniform policy πunif would have Cπunif = 1 hence
E
πunif
pred = 0 andEπunif

prog = 0). Consequently, expertise as an inductive bias would of course be less helpful
in estimating treatment effects using such datasets, however in that case, the datasets would already be
ideal for treatment effect estimation with no confounding bias (the best case scenario in Figure 1). This
is why we mainly focused on the high expertise, low overlap setting (the amber region in Figure 1).

While taking advantage of expertise would not be possible for datasets collected through a randomized
controlled trial, estimating expertise (as in Section 4.2) can still act as a data-driven way to determine
whether the data we have is effectively randomized or not: The closer both Epred and Eprog are to 0,
the closer the data would be to trial data, in which case we might prefer conventional supervised
learning methods over algorithms specialized for treatment effect estimation.

B THEORY OF EXPERTISE

We have mentioned two fairly straightforward facts regarding expertise without formally stating
and proving them: (i) the fact that predictive expertise implies prognostic expertise (in Section 3.1),
and (ii) the fact that having zero in-context action variability implies that the overlap assumption
is violated (in Section 3.2). In this section, we formally state these facts as Proposition 3 and
Proposition 4 respectively with accompanying formal proofs in Appendix C.
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Proposition 3. Eπpred ≤ Eπprog for all π ∈ ∆({0, 1})X .

Proposition 4. Cπ = 0 implies that π(x)[a] = 0 for some x ∈ X , a ∈ {0, 1}.

C PROOFS OF PROPOSITIONS

Proof of Proposition 1 We unify the proof by letting Z denote (Y0, Y1) in the case of prognostic
expertise and Y1 − Y0 in the case of predictive expertise. Then, for both types of expertise, we have

Eπ + Cπ = 1−H[Aπ|Z] / H[Aπ] + H[Aπ|X] / H[Aπ] (7)
= 1−H[Aπ|Z] / H[Aπ] + H[Aπ|X,Z] / H[Aπ] (8)
≤ 1−H[Aπ|Z] / H[Aπ] + H[Aπ|Z] / H[Aπ] (9)
= 1

where (7) is by definitions of Eπ and Cπ , (8) holds since Z ⊥⊥ Aπ|X according to our problem setup,
and (9) is because conditioning never increases entropy.

Proof of Proposition 2 This proposition is a corollary of Proposition 1. If policy π is a perfect
expert such that Eπ = 1, then Eπ + Cπ ≤ 1 implies that Cπ = 0 (since Cπ ∈ [0, 1]).

Proof of Proposition 3 We have
Eπpred = 1−H[Aπ|Y1 − Y0] / H[Aπ]

≤ 1−H[Aπ|Y0, Y1, Y1 − Y0] / H[Aπ] (10)
= 1−H[Aπ|Y0, Y1] / H[Aπ] (11)
= Eπprog

where (10) is because conditioning never increases entropy, and (11) holds since Y1 − Y0 is a
deterministic function of (Y0, Y1) hence Y1 − Y0 ⊥⊥ Aπ|Y0, Y1.

Proof of Proposition 4 If Cπ = H[Aπ|X]/H[Aπ] = 0, then

H[Aπ|X] = −
∑

x∈X ,a∈{0,1}
P{Aπ = a,X = x} logP{Aπ = a|X = x}

=
∑

x∈X ,a∈{0,1}
α[x] · (−π(x)[a] log π(x)[a]) (12)

= 0

First, notice that both α[x] and −π(x)[a] log π(x)[a] are non-negative for all x ∈ X , a ∈ {0, 1},
hence each summand in (12) must be equal to zero (for the overall sum to also be equal to zero). Now,
consider some x∗ ∈ X such that α[x∗] > 0. This would imply that −π(x∗)[a] log π(x∗)[a] = 0
for all a ∈ {0, 1}, which in turn would imply that π(x∗)[a] = 0 or π(x∗)[a] = 1 for all a ∈ {0, 1}.
Since it cannot be the case that π(x∗)[0] = π(x∗)[1] = 1, there exists some a∗ ∈ {0, 1} such that
π(x∗)[a∗] = 0.

D ADDITIONAL EXPERIMENTS

In the main paper, we focused on a single simulation environment based on the covariate from the
TCGA dataset (Weinstein et al., 2013; Schwab et al., 2020). In this section, we repeat our experiments
for two more environments: (i) Linear News, which is based on the covariates from the News dataset
(Newman, 2008), and (ii) Non-linear TCGA, which is still based on the TCGA dataset, but in which,
outcomes have a non-linear relationship to features. In Non-linear TCGA, outcomes are generated as

Ya = e−〈wprog,xprog〉2/2 + e−〈wa,xpred〉2/2 + ηa (13)
The results for Linear News are given in Figures 7, 8, and Table 2, while the results for Non-linear
TCGA are given in Figures 9, 10, and Table 3. These results mostly support the same conclusions as the
main results in Figures 4, 5, and Table 1. One notable exception is that, while Expertise-informed still
achieves the best-of-both-worlds performance in Linear News, it fails to do so in Non-linear TCGA.
This is because, in Non-linear TCGA, Balancing no longer happens to be the best performing method
under prognostic expertise, which Expertise-informed relies on. Otherwise, Expertise-informed still
correctly identifies the type of expertise present in datasets as it still matches the performance of
Action-predictive under predictive expertise and of Balancing under prognostic expertise. Regarding
why Balancing does not perform as well in Non-linear TCGA, this might be a side effect of the fact
that we implemented all algorithms specifically linear outcomes in mind (see Appendix F for details).
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Figure 7: Performance improvements over Baseline in the Linear News environment.
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(Ê

pr
og

) Baseline
Propensity
Balancing
Action-predictive

(c) Best→Expert
for prognostic expertise

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

0.00

0.05

0.10

0.15

0.20

0.25

Ground-truth Prognostic Expertise (Eprog)

E
st

im
at

ed
Pr

og
no

st
ic

E
xp

er
tis

e
(Ê
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Figure 8: Estimated predictive/prognostic expertise in the Linear News environment.
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Figure 9: Performance improvements over Baseline in the Non-linear TCGA environment.
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Figure 10: Estimated predictive/prognostic expertise in the Non-linear TCGA environment.

Table 2: PEHE of various methods averaged across
datasets from the Linear News environment.

Method Predictive
Datasets

Prognostic
Datasets

All
Datasets

Baseline 0.495 (0.082) 0.847 (0.155) 0.671 (0.118)
Propensity 0.786 (0.126) 1.511 (0.259) 1.149 (0.193)
Balancing 0.556 (0.083) 0.832 (0.148) 0.694 (0.115)
Action-predictive 0.465 (0.085) 0.839 (0.154) 0.652 (0.119)

Expertise-informed 0.465 (0.085) 0.832 (0.148) 0.648 (0.117)

Table 3: PEHE of various methods averaged across
datasets from the Non-linear TCGA environment.

Method Predictive
Datasets

Prognostic
Datasets

All
Datasets

Baseline 0.403 (0.069) 0.305 (0.055) 0.354 (0.062)
Propensity 0.408 (0.069) 0.315 (0.057) 0.361 (0.063)
Balancing 0.496 (0.070) 0.320 (0.055) 0.408 (0.063)
Action-predictive 0.392 (0.069) 0.305 (0.057) 0.349 (0.063)
Expertise-informed 0.392 (0.069) 0.320 (0.055) 0.356 (0.062)
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E DETAILS OF THE SIMULATION ENVIRONMENT

In the environments based on the TCGA dataset, we used the measurements from the 100 most
variable genes—these are all continuous features and the data is log-normalized with each feature
scaled in the [0, 1] interval. Meanwhile, the News dataset consists of 10,000 randomly samples
news items,each with 2858 word counts. Similar to Shalit et al. (2017), we perform principal
component analysis (PCA) and use the first 100 principal continuous features as covariates. In the
case of both dataset, we decompose the feature space as (Xprog, Xpred, Xirr) ∈ R40×40×20—that
is dprog = dpred = 40 and dirr = 20. During this decomposition, we choose which features are
prognostic, predictive, or irrelevant completely at random.

We consider a variety of policies in our environments, namely πsoft and πmis as the predictive settings,
and πnon-pred as the prognostic settings. In the predictive setting, for Best→Expert, we fix d = 0
and vary β ∈ {0.25, 0.28, 0.33, 0.40, 0.50, 0.66, 1, 2, 10}, and for Worst→Expert, we fix β = 0.25
and vary d ∈ {0, 2, 4, . . . , dirr = 20} (Figure 2). In the prognostic setting, for Best→Expert, we fix
d = dirr/2 = 10 and vary β ∈ {0.25, 0.28, 0.33, 0.40, 0.50, 0.66, 1, 2, 10}, and for Worst→Expert,
we fix β = 0.25 and vary d ∈ {0, 2, 4, . . . , dirr = 20}.

F DETAILS OF THE BENCHMARK ALGORITHMS

We benchmark across four models: TARNet (i.e. Baseline), TARNet with IPW (i.e. Propensity),
CFRNet (i.e. Balancing), and DragonNet (i.e. Action-predictive). We use the PyTorch implementa-
tions of these models provided in the python package CATENets (Curth & van der Schaar, 2021a).
All models have a representation network (i.e. function φ) with one hidden layer with 100 hidden
units, and linear prediction layers (i.e. function f ) for potential outcomes as well as action predictions
when applicable. We use dense layers with the ReLU activation function. All models are trained using
the Adam optimizer with learning rate 0.001, batch size 1024, and early stopping on a validation set,
where we employ a standard train-validation split of 70%–30%. We used a virtual machine with six
6-Core Intel Xeon E5-2690 v4 CPUs, one Tesla V100, and 110GB of RAM to run all experiments.
For all experiment results, we average over 10 seeds to obtain error bars.

Computing the ground-truth expertise as well as estimating it using any one of our benchmark
algorithms would normally require knowing the marginal distributions of potential outcomes Y0, Y1.
Since we do not have access to these marginal distributions, we rely on a numerical approximation
instead. Whenever we need to compute an expertise measure for a dataset D, we first build a
histogram of the observed outcomes {yi} ∈ D by letting numpy automatically determine which bins
to use: Y = Y1 ∪ · · · ∪ Yk. Then, we discretize outcome predictions/observations {yi0} and {yi1}
according to those bins, which leaves us with an approximate categorical distribution of potential
outcomes Y0, Y1 to compute the expertise with as follows:

Êprog = 1−

∑
a∈{0,1},j0,j1∈[k]

|i:ai=a,yi0∈Yj0 ,y
i
1∈Yj1 |

n log2
|i:ai=a,yi0∈Yj0 ,y

i
1∈Yj1 |

|i:yi0∈Yj0 ,y
i
1∈Yj1 |∑

a∈{0,1}
|i:ai=a|

n log2
|i:ai=a|

n

(14)

Êpred = 1−

∑
a∈{0,1},j∈[k]

|i:ai=a,yi1−y
i
0∈Yj |

n log2
|i:ai=a,yi1−y

i
0∈Yj |

|i:yi1−yi0∈Yj |∑
a∈{0,1}

|i:ai=a|
n log2

|i:ai=a|
n

(15)
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