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Figure 1: A: A picture of the collection setup for the Alljoined-1.6M dataset. B: A comparison
between THINGS-EEG2 [17] and Alljoined-1.6M (ours) in terms of hardware cost and the number
of subjects in the dataset. C: A bifurcated plot displaying decoding performance against collection
cost. Costs include the purchase of the EEG headset and amplifier, and then a $50/hour collection
cost to compensate participants and technicians.

Abstract

We present a new large-scale electroencephalography (EEG) dataset as part of the
THINGS initiative, comprising over 1.6 million visual stimulus trials collected from
20 participants, and totaling more than twice the size of the current most popular
benchmark dataset, THINGS-EEG2. Crucially, our data was recorded using a
32-channel consumer-grade wet electrode system costing ∼$2.2k - around 27x
cheaper than research-grade EEG systems typically used in cognitive neuroscience
labs. Our work is one of the first open-source, large-scale EEG resource designed
to closely reflect the quality of hardware that is practical to deploy in real-world,
downstream applications of brain-computer interfaces (BCIs). We aim to explore
the specific question of whether deep neural network-based BCI research and
semantic decoding methods can be effectively conducted with such affordable
systems—filling an important gap in current literature that is extremely relevant for
future research. In our analysis, we not only demonstrate that decoding of high-
level semantic information from EEG of seen images is possible at consumer-grade
hardware, but also that our data can facilitate effective EEG-to-Image reconstruction
even despite significantly lower signal-to-noise ratios. In addition to traditional
benchmarks, we also conduct analyses of EEG-to-Image models that demonstrate
log-linear decoding performance with increasing data volume on our data, and
discuss the trade-offs between hardware cost, signal fidelity, and the scale of data
collection efforts in increasing the size and utility of currently available datasets.
Our contributions aim to pave the way for large-scale, cost-effective EEG research
with widely accessible equipment, and position our dataset as a unique resource
for the democratization and development of effective deep neural models of visual
cognition.
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1 Introduction

Electroencephalography (EEG) is a widely used non-invasive method to measure human brain
activity, with applications ranging from fundamental neuroscience to advanced brain-computer
interfaces (BCI). A longstanding challenge in the development of BCIs is the trade-off between
data quality and accessibility: high-density research-grade EEG systems provide high signal fidelity
but are prohibitively expensive and resource-intensive, limiting the scope of data collection and the
practicality of real-world applications. Consequently, most EEG studies rely on relatively small
datasets, and real-world applications are rare. Despite these current limitations, recent advances
in affordable EEG hardware and machine learning algorithms to decode brain data have begun to
change this equation.

The cost of consumer-grade EEG systems has declined substantially, potentially lowering the barrier
to BCI applications in medical and consumer sectors, as well as unlocking larger-scale neural data
collection efforts. Devices such as the Emotiv EPOC and Flex series are available at a fraction of the
cost of traditional research-grade systems, making them appealing for these scenarios. However, these
affordable systems generally suffer from reduced signal-to-noise ratio (SNR) and other technical
limitations [45, 38], and so research-grade EEG remains the standard for most current research efforts
and datasets. Nevertheless, an important open question remains: Can consumer-grade EEG systems
facilitate shallow and deep neural decoding efforts?

In this work, we aim to answer this question by combining the advantages of scale and accessibility.
We introduce a new EEG dataset that is, to our knowledge, the largest of its kind, comprising more
than twice the number of subjects as the previously largest human EEG object recognition dataset,
THINGS-EEG2 [17]. Unlike THINGS-EEG2, which used a 64-channel research-grade EEG system,
our dataset was collected with the Emotiv Flex 2, a 32-channel wireless headset retailing at roughly
∼$2.2k at the time of writing. Despite its lower cost, the Flex 2 can deliver full-scalp coverage and
up to 256 Hz sampling (sub-4 ms temporal precision), enabling many experiments that historically
required ∼$35 – $60k research-grade setups. Although the Flex 2 yields lower signal fidelity than
research-grade systems, we demonstrate that it is nevertheless useful for facilitating downstream
decoding tasks, such as semantic meta-category decoding, image retrieval, and EEG-to-Image
reconstruction using state-of-the-art ML models.

Our contributions are three-fold:

1. Dataset: We release Alljoined-1.6M as part of the THINGS initiative, a large scale EEG
dataset of visual perception containing 32-channel recordings from 20 participants, 4 ses-
sions each, totaling 1.6 M trials across 16,740 unique images, all collected on affordable
EEG hardware (Fig. 1A,B).

2. Benchmarks and Decoding Analysis: We provide extensive benchmarks and analysis
of existing EEG-to-Image reconstruction, retrieval, and semantic decoding models on our
dataset, setting a baseline for future research developing methods for decoding affordable
EEG responses to visual stimuli.

3. Scaling and Cost Analysis: We conduct a detailed analysis of the within-subject scaling
properties of our dataset, finding that, despite the lower SNR, decoding performance still
increases log-linearly no signs of saturation, demonstrating that scaling is still an effective
approach for improving decoding performance on consumer-grade EEG hardware. We also
demonstrate (in Fig. 1C) the degree of financial investment necessary to obtain certain
benchmarks for decoding performance.

Our findings demonstrate the growing potential of more cost-effective EEG headsets that mirror the
hardware constraints of many real-world BCI deployments. By publicly releasing Alljoined-1.6M12

and demonstrating its utility, we hope to democratize progress in EEG-based machine learning and
lower the entry barrier for research groups with limited resources.

1https://huggingface.co/datasets/Alljoined/Alljoined-1.6M
2https://github.com/Alljoined/Alljoined-1.6M
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2 Related Work

Low-Cost EEG Hardware. Consumer-grade EEG headsets from providers like Emotiv and OpenBCI
have dramatically lowered the cost and logistical barriers to neural recording, enabling at-home and
mobile experiments. Although these devices typically offer fewer channels and lower signal fidelity
than clinical systems, a growing body of work demonstrates that even low-density EEG can yield
meaningful biomarkers [4, 7, 29]. For example, Duvinage et al. [15] compared a 14-channel Emotiv
EPOC headset against a 128-channel ANT medical-grade system on a P300 speller task. Although the
Emotiv under-performed in single-trial classification, they concluded that the Emotiv could reliably
support non-critical applications.

Deep Learning for Neural Decoding. Recent advances in deep learning—most notably transformer
architectures [59], denoising diffusion probabilistic models [23], and contrastive language–image
pretraining (CLIP) [43]—together with the availability of large-scale datasets of human brain activ-
ity—have catalyzed a new wave of neural decoding studies [41, 47, 48, 53, 54, 26–28, 32, 2, 16, 49].
These approaches learn rich spatiotemporal representations from neural recordings, enabling the de-
coding of high-level semantic information that eluded earlier methods of analysis such as the study of
event-related potentials [35], EEG topographic analysis [37], and frequency-band metrics [42]. Such
semantically informed decoding frameworks hold great promise for downstream brain–computer
interface applications.

Scaling Laws in Neuroimaging. Recent research has demonstrated that scaling up neural data
collection efforts can log-linearly improve modeling and decoding performance [5, 46], echoing
trends observed in computer vision and natural language processing. Many advances in computer
vision have been driven by massive, high-variance image corpora such as ImageNet, which contains
over a million labeled images spanning a thousand object categories [13]. Inspired by this success,
the neuroimaging community has pursued analogous scaling: MEG repositories like OMEGA and
Cam-CAN amass hundreds of hours of data across dozens of participants [39, 57]; fMRI collections
such as BOLD5000 and Generic Object Decoding sample tens of thousands of distinct stimuli
[10, 25]; and the Natural Scenes Dataset comprises ∼30, 000 unique images viewed over 40+ 7T
sessions at an estimated cost of $450k [1]. Together, these efforts underscore a field-wide push for
larger, more diverse datasets to deepen our understanding of brain representations and to power
robust, generalizable models across modalities.

EEG Datasets and Benchmarks. Despite growing interest in deep learning for EEG across both de-
coding and representation learning [44, 31] domains, public EEG repositories remain overwhelmingly
tailored to behavioral paradigms (e.g., motor imagery, sleep staging) or clinical biomarkers. Although
there are available large-scale collections such as the TUH EEG Corpus with clinical recordings [40],
and BCI competitions centered on specific paradigms [56], neither facilitates high-level semantic de-
coding. While initial efforts to collect EEG datasets in response to visual stimuli were revealed to have
confounds in the block-design paradigm that allowed high-capacity models to exploit low-frequency
drifts rather than genuine visual features [50, 33, 34], more recent contributions from the THINGS
initiative have made strides in increasing the experimental rigor of such datasets: THINGS-EEG1
captured 22, 248 unique images across 50 subjects [20], and THINGS-EEG2 recorded ∼82, 350 trials
per participant over 16, 740 stimuli with a 64-channel lab-grade system [17] and a shuffled block
design with no overlap between training and testing image classes. While these datasets have been
massively successful in enabling researchers to decode semantic content from EEG brain activity,
they still rely on research-grade hardware, and often fall short of the scale and hardware accessibility
constraints necessary to develop for robust, consumer-facing brain-computer interfaces. To address
this gap, we release a multi-subject, million-trial EEG corpus collected entirely with a ∼$2.2k,
32-channel consumer headset, along with code and benchmarks to enable semantic decoding research
at scale.

3 Alljoined-1.6M

Hardware and Recording Setup. Alljoined-1.6M was collected using the Emotiv Flex 2 EEG
system 3 with sintered silver/silver-chloride (Ag/AgCl) gel-based electrodes. The Flex 2 supports
32 EEG channels—we configured a montage covering primarily occipital regions associated with

3https://www.emotiv.com/products/flex-gel
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Figure 2: Experimental paradigm for Alljoined-1.6M. Details can be found in Section 3.

visual perception (detailed in Appendix A.1). The Flex 2 streams data wirelessly via Bluetooth
5.2, at a sampling rate of 256 Hz (sufficient to capture event-related potentials). Notably, the entire
hardware setup (headset, sensors, software) cost only ∼$2.2k, in contrast to the research-grade
64-channel ActiChamp amplifier and cap used in THINGS-EEG2 which we estimated to cost ∼$60k.
Participants wore the Flex 2 in a dark and quiet room, positioned 60cm from the screen displaying
the stimulus images, with a viewing angle of 7◦. Throughout each sequence (including blank trials),
a small semi-transparent red fixation dot with a black border (0.2◦ × 0.2◦, 50% opacity) was present
at the center of the stimulus. Stimuli were shown against a gray background with an RGB value of
(127,127,127), and were presented with PsychoPy. Millisecond-accurate triggers delivered through
the Emotiv API aligned the onset of a stimulus image with the timeline of EEG acquisition.

Participants. We recruited 20 healthy adult volunteers (ages 23-63, 15 male, 5 female) from local
recruiting platforms in San Francisco, and filtered for participants who had high behavioral scores and
high task engagement (from an original pool of 48 subjects). All had normal or corrected-to-normal
vision, were provided written informed consent, and were compensated for four recording sessions
scheduled on separate days. This approach follows the precedent of NSD [1] and THINGS-EEG2
[17] in obtaining repeated measurements for matched stimuli across multiple recording sessions.
To ensure participant safety and to make potentially confounding variables explicit for downstream
analyses, we employed two electronic questionnaires whose (anonymized) responses are distributed
with the dataset. The screening form gathers stable participant traits—demographics, medical and
neurological history, sensory status, prior neuro-imaging, neurodivergence, and data-use consent—to
confirm eligibility and document potential confounds. The pre-session questionnaire records transient
state variables before each visit (recent caffeine, alcohol or drug use, sleep, fatigue, and meal
timing/content) so that session-specific physiological factors can be modeled or controlled. Together,
these forms provide a transparent account of both stable (trait) and fluctuating (state) factors for every
participant and session, enhancing the reproducibility and secondary-analysis value of the dataset.

Stimuli and Experimental Design. We used a rapid-serial visual-presentation (RSVP) paradigm
paired with an orthogonal target-detection task to keep participants engaged (Fig. 2). Each trial
consists of an image presented for 100ms, followed by a 100ms blank screen. All stimuli were
drawn from the THINGS database [22], which contains 26,000 high-resolution photographs spanning
1,854 everyday object categories, and our experiment uses the same set of 16, 740 stimuli utilized
in THINGS-EEG2 [17] to facilitate direct comparison. Importantly, there is no overlap in the
images or image categories presented in the training and test partitions of the dataset, which helps
reduce experimental confounds and downstream model overfitting. Each participant completed four
recording sessions lasting ∼2 hours each, with each session comprising 19 RSVP blocks lasting
∼5 min each. The first 4 blocks of every session presented images from the 200 held-out test
images shown in 51 RSVP sequences of 20 images per run, totaling 4 × 51 × 20 = 4, 080 trials
for the test data. The remaining 15 blocks of each session presented the remaining 16, 540 training
images, randomly split into two equal subsets that were displayed in sessions 1–2 and 3-4. Each
test block consisted of 56 RSVP sequences of 20 images. Within a session, every image in the first
subset was shown twice, giving four presentations across the two sessions. Images were randomized
independently within each session, with the constraint that no image could repeat after fewer than
two intervening items (i.e. an ABA or AA pattern was disallowed). To encourage vigilance without
biasing perception toward any object category, our experiment also included attention check trials. At
the end of each sequence, participants given up to 2s to press a key for whether they saw the catch
trial of Woody appearing in (≈6% of images). Performance on these attention trials is described in
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Appendix A.4. A video recording of the stimulus presentation, is also provided for reference on our
Huggingface dataset.

Dataset Scale. Across the four sessions, each of the 20 participants completed 4× 20, 880 = 83, 520
image trials, resulting in a total dataset size of ∼1.6M trials. Training images were repeated 4–5
times per participant, whereas each test image was shown 80 times, permitting a within-subject
averaging procedure to be performed during inference to increase SNR. Total on-task recording time
per participant was ∼8 hours, punctuated by brief breaks.

Data Processing and Format. Raw EEG was stored in standard .edf files and pre-processed with
MNE-Python [19]. The Emotiv firmware first applies a dual 50/60 Hz notch filter, and continuous
recordings were then epoched from -200 ms to 1000 ms relative to image onset. Synchronization
mismatches in the Emotiv trigger stream led us to discard 0–0.6% of trials between all subjects,
which was comparable to exclusion rates reported in earlier Emotiv evaluations [3, 61]. Epochs were
baseline-corrected to the 200 ms pre-stimulus window and resampled to 250 Hz to match the format
of the THINGS-EEG2 benchmark [17]. As a final preprocessing step, we performed multivariate
noise normalization [21], to increase SNR, estimating the whitening matrix solely on the training
partition to avoid training-test contamination.

Meta-Category Groupings. The original THINGS-EEG2 dataset, with its 1,854 fine-grained object
categories, has been invaluable for benchmarking deep neural networks but poses challenges for
simpler machine learning models and traditional ERP analyses, which often perform better on coarser
distinctions facilitating insight into underlying brain activity. These simpler models are critical for
leveraging low-cost EEG data in low-resource or real-time settings. Prior work has largely focused
on the test set alone, without leveraging the train-test split structure to evaluate generalization across
broader semantic boundaries from trained to unseen test images [17, 49]. To address this, we cate-
gorize all trials of our dataset into seven broad meta-category groupings—Animals, Foods/Plants,
Vehicles, Tools, Furniture/Household Items, Body Parts/Clothing, and Toys/Games/Musical Instru-
ments. For details on how these categories were created, see Appendix A.6. Our meta-categories are
distributed consistently across training and test sets, enabling more interpretable classification and
testing of generalization while preserving the dataset’s fine-grained image metadata.

4 Analysis and Preliminary Results

We conducted a series of analyses to characterize the dataset and to evaluate the central question of
our paper: can current consumer grade hardware facilitate meaningful downstream neural decoding
research? We conduct a series of analyses across a wide range of downstream tasks, including
semantic decoding, image retrieval, and EEG-to-Image reconstruction tasks.

ERP Analysis. To first demonstrate the reliability of the signal in this dataset, we visually inspected
all subjects’ session-wise and block-wise ERPs. We observed a pattern similar to the pattern shown
in Fig. 3 which is typical of a 200ms interval RSVP experiment, with a ∼100ms peak (P1) and a
∼200ms trough N200 [35]. Then, we ran a non-parametric spatio-temporal cluster-based permutation
test [36] to identify clusters of time points and electrodes where condition-specific ERPs diverged
significantly across semantic categories. This was performed on averaged ERPs for each condition
across trials, and differences were evaluated across subjects. Surprisingly, we found that 16 out
of all 21 possible category comparisons yielded significant clusters (p < 0.01). The fact that we
observe robust category-selective effects under these conditions—using low-cost, consumer-grade
EEG hardware—underscores both the sensitivity of the paradigm and the potential suitability for
such data for scalable, real-world BCI research. Cluster results are described in more detail in the
Appendix A.7.

Pairwise Decoding. To examine when category information becomes linearly separable, we first
adopted a pairwise Linear Discriminant Analysis (LDA) decoder. LDA is intentionally simple:
it is fast enough to evaluate every post-stimulus sample, needs no hyper-parameter tuning, and
yields a single weight vector per class pair, making the decision boundary transparent. Using
the training split, we fit LDA models and computed time-resolved ROC-AUC on held-out trials.
A cluster-based permutation test against the 0.50 chance level (multiple-comparison corrected)
revealed significant clusters (p < 0.01) peaking around 100 ms, 220 ms, and 400 ms after stimulus
onset (Fig. 4). Although the consumer-grade Emotiv headset in Alljoined-1.6M introduces more
noise than the research-grade hardware used in THINGS-EEG2, the decoder still achieved robust
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Figure 3: Average Event Related Potential (ERP) across all 20 subjects and all 4 sessions for a total
of 1.6 million trials. Topographical maps show changes in visual cortex activity as expected for
an RSVP experiment, with primary activity occurring in the occipital cortex for the duration of the
image presentation. Three peaks show the ERP peaks of the 200ms interval between image display,
essentially one peak per image shown.

Figure 4: Average pair-wise decoding across meta-category combinations. Fig. 4A depicts the
average decoding AUC scores across all 20 Alljoined-1.6M subjects (red) and across all 10 THINGS-
EEG2 subjects (blue). Results show significant decoding compared to baseline. Fig. 4B Depicts the
corresponding AUC performance scores for all individual subjects in both datasets.

above-chance performance, replicating the temporal structure reported with high-quality systems.
Thus, a lightweight, interpretable linear model is sufficient to expose the key temporal dynamics of
category-level signals in this dataset while providing a clear baseline for more complex approaches.

EEG-to-Image Reconstruction. One of the most promising areas of BCI research is the development
of models trained to reconstruct seen images from human brain activity. The number of research
efforts tackling the adjacent task of fMRI-to-Image reconstruction tasks has taken off recently
[41, 47, 48, 53, 54, 26–28, 11]. However EEG-to-Image efforts have lagged behind, with the
first large-scale EEG-to-Image datasets THINGS-EEG1 and THINGS-EEG2 released only in 2022
[20, 17]. For our analysis, we took all publicly available EEG-to-Image reconstruction methods
(ENIGMA [2], ATM-S [32], and Perceptogram [16]) and reproduced their methods on our dataset. In
line with research in fMRI-to-Image research [48], we also conducted a human behavioral experiment
(n=545) to evaluate the identification accuracy of the reconstructions. Details on this behavioral

6



Figure 5: Qualitative comparison of EEG-to-Image reconstruction methods on Alljoined-1.6M.
Reconstructions selected are the outputs sampled from each method and stimulus with the highest
scores on all of the image feature metrics in Table 1.

experiment are provided in Appendix A.3. Image reconstructions from these methods can be seen in
Fig. 5, and quantitative results in Table 1. We find that despite the high modeling difficulty of this task
and the low SNR produced by the Emotiv hardware, several available EEG-to-Image reconstruction
methods trained on Alljoined-1.6M produced reconstructions with quantitative scores comparable
to those of THINGS-EE2 [2]. In our results we do notice that complex architectures like ATM-S
[32] underperform on our data relative to simpler linear methods (Perceptogram [16], or more robust
multi-subject models like ENIGMA [2]. We hope the release of Alljoined-1.6M will help spur further
research translating existing approaches to the lower SNR data produced by the consumer-grade EEG
setup in our study, as architecture clearly matters for bridging this gap.

Method Low-Level High-Level Retrieval Human Raters

PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ Eff ↓ SwAV ↓ Top-1 ↑ Top-5 ↑ Top-10 ↑ Ident. Acc. ↑
THINGS-EEG2

ENIGMA 0.159 0.422 81.89% 88.34% 75.09% 78.90% 0.870 0.546 27.60% 59.35% 71.15% 83.06%
ATM-S 0.136 0.392 73.85% 80.83% 67.56% 71.28% 0.909 0.601 30.15% 60.15% 73.60% 77.14
Perceptogram 0.247 0.431 85.46% 88.03% 70.40% 71.98% 0.902 0.581 – – – 79.17%

Alljoined-1.6M

ENIGMA 0.079 0.416 63.62% 67.84% 59.57% 62.91% 0.942 0.620 6.00% 16.25% 25.35% 65.43%
ATM-S 0.090 0.374 55.91% 58.25% 54.07% 56.25% 0.960 0.673 0.50% 2.00% 5.00% 60.31%
Perceptogram 0.094 0.401 67.36% 69.28% 58.18% 59.94% 0.945 0.637 – – – 62.00%

Table 1: Quantitative comparison between reconstruction quality of available methods on the
THINGS-EEG2 and Alljoined-1.6M datasets. PixCorr is the pixel-level correlation score. SSIM is
the structural similarity index metric [60]. AlexNet(2) and AlexNet(5) are the 2-way comparisons
(2WC) of layers 2 and 5 of AlexNet [30]. CLIP is the 2WC of the output layer of the CLIP ViT-L/14
Vision model [43]. Incep is the 2WC of the last pooling layer of InceptionV3 [52]. EffNet-B and
SwAV are distance metrics gathered from EfficientNet-B13 [55] and SwAV-ResNet50 [9] models.
Details on the human identification accuracy metric are provided in Appendix A.3. For EffNet-B
and SwAV distances, lower is better. For all other metrics, higher is better. Bold indicates best
performance, and underlines second-best performance. Additional details on the metrics used are in
Appendix A.2.

Saliency Maps. To locate the spatiotemporal features that underpin our semantic predictions, we
applied Integrated Gradients [51] with each meta-category’s mean CLIP embedding as the target. For
every category (animals, household items, foods/plants, tools) we averaged the training-image CLIP
vectors, computed attributions over the full EEG tensor (channels × time), smoothed them with an
11-sample boxcar, and projected the result onto the 10-20 montage. All categories yield a pronounced
attribution peak over occipital sensors at 160–300 ms post-stimulus (Fig. 6), pointing to early visual
activity [12, 58].
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Figure 6: Spatiotemporal saliency for ENIGMA. Warm colors indicate electrodes whose activity
diverges most strongly from the grand-average VEP and therefore pushes the model toward the CLIP
centroid of that category. All four rows reveal a shared peak over occipital sensors around 160–300
ms (yellow), consistent with the early P1/N1 complex that dominates low-level visual processing.

Because our baseline is the grand-average EEG, the maps capture deviations from the canonical VEP
that the network uses to match each category’s CLIP centroid. The virtually identical occipital P1/N1
footprint across categories implies that the model relies almost entirely on low-level visual cues—an
outcome we ascribe partly to the constraints of the RSVP paradigm [24].

Scaling Analysis. To contextualize Alljoined-1.6M within current scaling debates, we followed
Banville et al.’s subsampling protocol [5] and trained ENIGMA [2], the leading EEG-to-Image model,
on progressively larger subsets. Reconstruction quality was summarized by the normalized mean of
the metrics in Table 1. Figure 7A plots ENIGMA’s log–log learning curves for Alljoined-1.6M and, for
comparison, the higher-SNR THINGS-EEG2. Performance increased almost linearly with log-trial
count and showed no sign of saturating at the full dataset size. As expected, the consumer-grade
recordings scaled less efficiently, underscoring the noise penalty of low-cost headsets. This limitation
is also a strength: our dataset provides a realistic benchmark for methods that must cope with
low-SNR data. The pattern mirrors findings across machine learning: more data reliably boosts
accuracy - and the low price of consumer hardware should allow still larger datasets in the future,
potentially offsetting the SNR gap through sheer quantity.

A B

Figure 7: (A) Scaling analysis of model performance for Alljoined-1.6M and THINGS-EEG2.
The number of training samples are plotted on a log-scale X-axis, and the normalized average of
feature metrics presented in Table 1 is plotted on the Y-axis. (B) Channel count analysis of model
performance for each dataset. The number of channels in each dataset was progressively reduced,
while the remaining channels focus primarily on occipital cortex. The Y axis is plotted the same as
Fig. 7A.

Channel Count Analysis. One of the most obvious differences between the research grade Ac-
tiChamp amplifier used in the THINGS-EEG2 dataset and the Emotiv Flex 2 hardware used in
our dataset is the number of channels (64 vs 32). We performed an analysis to evaluate how the
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number of channels affects decoding performance using the ENIGMA model, and to explore whether
this difference was a significant contributor to differences in performance. We sub-sampled both
datasets to varying numbers of electrodes, while retaining a focus on covering occipital cortex with
the electrodes selected. We find that while performance did drop with fewer channels, it is not the
most significant factor accounting for the performance difference between the datasets, and that
performance gains start to drop off after 24 channels, suggesting that future studies might still be able
to achieve reasonable decoding performance with even fewer channels.

5 Discussion

We have introduced Alljoined-1.6M, the largest publicly available EEG dataset for visual cognition to
date, and collected using a consumer-grade EEG headset. Our analyses provide encouraging evidence
that EEG data collected on consumer-grade EEG hardware—such as the Emotiv Flex 2 utilized in
our study—is still rich enough to train modern semantic decoding algorithms, a promising sign for
the development of affordable brain-computer interfaces! We also find that scaling up data collection
remains an effective way of increasing decoding performance even despite hardware limitations,
opening doors to new large scale data collection efforts for affordable hardware. These findings have
significant implications for the future of BCI research and cognitive neuroscience: large-scale EEG
acquisition is now feasible for small labs, classrooms, and citizen-science projects. Alljoined-1.6M
therefore serves as a benchmark for algorithmic progress, a blueprint for affordable data collection,
and a concrete step toward democratizing neurotechnology.

Broader Impacts. Alljoined-1.6M highlights many considerations for the design of future datasets
in brain decoding. While many efforts to collect neuroimaging datasets emphasize high channel
counts or ultra-high-resolution signals, we believe that we need more datasets that are representative
of real-world use cases. Our results (among others [5]) also point to the underexplored value of sheer
volume, repetition, and participant diversity—factors that become significantly more tractable with
affordable hardware. Alljoined-1.6M is a promising first step in shifting away from collecting a
small amount of pristine signal, to instead optimizing for scale, signal diversity, and accessibility. We
suggest that future datasets prioritize these axes, leveraging low-cost, high-throughput paradigms
to explore larger-scale representational learning across subjects and tasks, much like large vision
or language datasets [14, 8, 13] have done for deep learning. We envision a future where brain
data collection is not bottle-necked by cost, and where massive EEG datasets fuel breakthroughs in
understanding the brain and building BCI technologies to make a difference to people around the
world.

Limitations and Future Work. Our dataset evaluates only one low-cost consumer-grade headset
(Emotiv Flex 2). Testing other affordable devices, and guiding research-based product design in
amplifiers and materials could further boost signal quality and sharpen the cost–performance frontier.
We also observed roughly log-linear scaling; rigorously tracking accuracy as we grow from 106 to 107

trials, and exploring smarter sampling or augmentation strategies should help to further clarify these
dynamics. Because the current corpus involves healthy adults in a controlled lab, future efforts should
gather at-home, asynchronous recordings from diverse populations, transforming EEG collection
into crowd-sourced neuroscience. It may also be exciting to merge multiple low-cost wearables or
hybrid EEG + peripheral sensor arrays to narrow the gap to clinical-grade rigs. Methodologically,
we observe the RSVP paradigm drops SNR at later latencies, so alternative task designs warrant
exploration. Finally, our release offers a testbed for large-scale, multi-subject modeling: training a
single network on the full corpus could yield generalizable neural representations transferable across
users and downstream tasks, paralleling recent self-supervised EEG work [6].

Ethical Considerations. Efforts to collect and utilize neuroimaging datasets of human brain activity
is rapidly growing in scale and capability. While this research promises clear downstream benefits in
a variety of applications, we believe it is important to consider the ethical burden of gaining access to
the internal cognitive states of individuals, and we recognize the potential for this technology to be
misused. It is therefore important to begin developing an ethical framework for the application of
brain-decoding devices and datasets that rigorously safeguards users data [18], and ensures that the
technology is deployed transparently, responsibly, and for the benefit of humankind.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the downstream research goals and immediate research goals are laid out
in the abstract and introduction, and are supported by our results throughout the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a discussion of the current limitations of our research in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our paper presents primarily empirical research and does not contain any
proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Along with our submission, we release the dataset and code to reproduce our
preprocessing steps. Code to reproduce many of our analyses can be found in the cited
works for the open source models we utilized. A link to our dataset can be found in Section
1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Both the THINGS-EEG2 and Alljoined-1.6M are publicly available via their
respective citations. Our source code for the ENIGMA model is linked in Section 1.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details of the training procedures can be found in the citations for the open
source methods utilized. Details of our data collection protocols are provided in Section 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we provide a table of statistical significance measures in Appendix ??.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Significant computing resources were not used in our analysis. For the
resources needed to train open source models utilized in our analysis, see the cited original
works.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We make significant efforts to adhere to all ethical standards throughout our
research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, both positive and negative societal consequences are discussed in Section
5.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses no risks for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We own all data and assets released with this research paper, and use all
existing datasets within their license restrictions.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our dataset is well documented and released with all appropriate implementa-
tion details.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Section ?? discusses the protocols of our behavioral experiment used for
reconstruction evaluations, as well as details about compensation. Section 3 discusses the
protocols for our EEG data collection effort.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: While our research was not subject to an IRB, all participants in our experiment
and dataset provided informed consent before participating, and no risks were posed to them
in our research.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The meta-categories described in Section 3 were in part created by an LLM.
For details on our process, see Appendix ??
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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