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ABSTRACT

It is crucial to ensure the dependability of machine learning (ML) systems, es-
pecially in areas where safety is a top priority, like healthcare. A tried-and-true
method for highlighting the reliability of ML systems during deployment is un-
certainty estimation. By successfully using integrated feature sets, sequential
and parallel ensemble algorithms have both shown improved ML system perfor-
mance in multi-modal contexts. We provide Uncertainty-Receptive fusing (URF),
a cutting-edge technique that uses uncertainty estimations to improve the fusing
of predictions from several base learners. URF, which successively modifies the
weighting of the loss function during training in contrast to conventional boost-
ing techniques, is especially successful for multi-modal learning tasks. In order
to understand how noise and spatial transformations affect image-based activities,
we then offer an image acquisition model that takes these aspects into consider-
ation. We can make predictions with greater accuracy utilizing latent variables
thanks to this approach. To quantify uncertainty at the pixel and structure/lesion
levels, we use entropy-based uncertainty assessment (EUA). EUA measures the
variety within prediction distributions and provides insightful information about
the model’s confidence. We also present Gnostic Uncertainty Estimation (GUE),
which quantifies the model’s lack of knowledge regarding the result and helps to
comprehend the accuracy of the prediction.

1 INTRODUCTION

Significant developments in the field of Deep Learning have been made over the past few years, re-
sulting in outstanding improvements in the use of computer vision approaches for the interpretation
of medical images Papachristou & Bosanquet (2020); Gal & Ghahramani (2016). To address a vari-
ety of disorders, several algorithms have been painstakingly designed and improved Ayhan & Berens
(2022). However, the occurrence of batch effects Saad et al. (2010) is a significant obstacle in the
field of biomedical image analysis. These effects cover the variances caused by technical artifacts in
various data subsets. Differences in sample handling and data collecting procedures complicate mat-
ters and provide barriers to the straightforward application of computer vision algorithms to datasets
gathered from distinct pathology laboratories. This problem is a major roadblock to the develop-
ment of machine learning models in this area. Therefore, resolving the complexities of batch effects
becomes crucial for the effective creation of precise and reliable ML models specifically designed
for medical image analysis.

In situations requiring urgent care in the emergency room (ER), fractures frequently manifest them-
selves Chen et al. (2023). Bone fractures caused by accidents or diseases like osteoporosis have
the potential to cause serious long-term effects or even death. The most effective diagnostic tech-
nique for finding bone fractures is to use X-ray imaging of the affected area Factor et al. (2023);
Gompels et al. (2023). In emergency departments (EDs), where patients commonly feel discom-
fort and fractures may not be immediately obvious, this task is especially challenging Lindsey et al.
(2018). Healthcare professionals have access to a variety of imaging methods, including X-rays,
computed tomography (CT), and magnetic resonance imaging (MRI), for the examination of the
musculoskeletal system. Musculoskeletal X-rays stand out as the preferred method for fracture di-
agnosis among these alternatives. Collaboration between trained radiologists with expertise in mus-
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culoskeletal imaging and emergency department doctors in charge of cases involving acute injuries
is required for this process. However, difficulties exist in obtaining accurate X-ray interpretations
in the emergency room setting, which may cause novice emergency physicians to make unintended
mistakes or misclassifications Mall et al. (2023); Jones et al. (2020). In response to this difficulty,
image-classification software has risen as a valuable asset in aiding emergency professionals in de-
tecting fractures Karanam et al. (2023). This becomes notably important within emergency rooms,
where securing a second opinion frequently proves unfeasible. Through the utilization of such soft-
ware, medical providers can elevate their diagnostic precision, leading to an overall enhancement in
patient care during critical situations.

Over 1.7 billion people worldwide are affected by musculoskeletal problems, which are the main
cause of excruciating, ongoing suffering as well as impairment. These problems are getting worse
as seen by the rising number of 30 million visits to emergency rooms annually. We hope that
our MURA-dataset Rajpurkar et al. (2017) will open the door to significant advancements in the
field of medical imaging technologies. These developments have the potential to lead to expert-
level diagnoses, ultimately improving access to healthcare in areas where the number of skilled
radiologists is still scarce. The necessity for automated fracture detection is paramount in curbing
the advancement of acute injuries through timely patient diagnoses. Traditional methods involving
radiologists often entail substantial resource allocation. Consequently, the inclination to utilize deep
neural networks for the automatic categorization of fractures in X-rays has experienced substantial
growth in recent years Kandel & Castelli (2021); He et al. (2021).

A well-tuned classifier would give ambiguous categories a lower likelihood. In the medical area,
where it’s critical to have faith in the model’s reliable predictions for screening automation and also
guide cases of doubt toward manual evaluation by medical personnel, the issue of assessing uncer-
tainty is particularly important Rahaman et al. (2021). Making machine learning models with a clear
and inbuilt knowledge of uncertainty is made possible by the Bayesian probability theory Yang &
Fevens (2021). Such models are capable of calculating the mean and variance of the output distri-
bution for each class, in addition to other parameters, rather than just a single per-class probability.

Numerous probabilistic and Bayesian procedures, as shown by Graves (2011); Hernández-Lobato
& Adams (2015); Pearce et al. (2020); Yang et al. (2019); Wu et al. (2018), as well as alternative
non-Bayesian strategies like Sinha et al. (2019); Zhang et al. (2021); Nomura et al. (2021); Dusen-
berry et al. (2020), have been presented to efficiently assess uncertainty estimates. These techniques
are essential for measuring how trustworthy and confident Neural Networks (NNs) are in their pre-
dictions. Additionally, the use of network ensembles has become a tactic to improve the general
performance of models. The idea of ensemble methods has advanced significantly in the goal of
incorporating uncertainty estimates thanks to methods like those covered in Kendall et al. (2018).
These methods combine the method of training numerous models to handle various tasks with the
use of anticipated uncertainties as weights for the individual model losses. This novel approach
not only outperforms the performance of specialized models trained for each task, but also offers
a more reliable and well-informed decision-making process. While non-Bayesian alternatives pro-
vide an easy and practical method for estimating uncertainty in the context of deep neural networks,
the ensemble approach - while conceptually basic presents a real-world problem due to its resource-
intensive nature. This becomes especially clear when many networks are used simultaneously during
the training and inference phases.

We provide an end-to-end system specifically created for the classification of fractures muscu-
loskeletal radiographs images, offering a novel and creative method. This framework combines
the ideas of EUAug Wang et al. (2019) and Uncertainty-Receptive Fusion (URF), drawing influence
from both, to create a coherent and effective strategy. Thus, our methodology makes it easier to pro-
duce final forecasts that are accurate and well-calibrated. Our method’s ability to smoothly include
an ensemble of predictions while taking the model’s inherent uncertainty into account is one of its
distinctive characteristics. This integration guarantees the accuracy and dependability of the results
while maintaining the fundamental efficiency of the model. In essence, our method finds a balance
between accuracy and robustness, producing outcomes that inspire confidence in categorization de-
cisions for fractures musculoskeletal radiographs images.
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2 METHODOLOGY

The proposed methodology comprises two subparts (1) for uncertainty estimation, (2) discusses
in-depth the acquisition of images, the evaluation of uncertainty (including entropy-based and gnos-
tic methods), and the calculation of structural uncertainty using the Volume Variation Coefficient
(VVC). The following fusion methods were created for multi-modal regression projects. They tackle
the problem of mixing data from many input modalities, each linked to a different base learner, to
provide precise predictions. While the modified version adds weighted aggregation based on in-
verse uncertainty measures, it concentrates on including uncertainty estimations. The image acqui-
sition methodology, uncertainty assessment techniques (Entropy-based Uncertainty Assessment and
Gnostic Uncertainty estimate), and structural uncertainty estimate utilizing the Volume Variation
Coefficient (VVC) are all covered in detail in the second part.

2.1 UNCERTAINTY-RECEPTIVE FUSION

For the purposes of regression, let’s assume that Im represents the input feature set with many modes
and y ∈ R represents a real-valued label. The collection of d dimensional input properties directly
connected to the jthj modality is represented by the set Ij ∈ Rd. Here, j is an integer between 1
and m, with m denoting the total number of modalities. Each modality’s matching base learner,
represented as {hj}mj=1, serves as a representation for the learned functions that can map inputs to
outputs. As the underlying learning process, these functions may use a variety of methods, including
SVMs, KNN, decision tree, random forests, neural networks, and comparable models. Our training
dataset is then made up of N independent and identically distributed (i.i.d.) samples labeled as
{(Ijn, yn)}Nn=1, precisely corresponding to the jth modality.

We start by constructing a baseline fusion procedure, which we refer to as the Vanilla Fusion (VF),
to ensure a fair assessment. Then, we describe our invention, known as the Uncertainty-Receptive
Fusion (URF), and its modified form, known as URFw. 1 shows a graphic illustration of the VF,
URF, and URFw methods.
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Figure 1. Our approach uses the Mura image dataset, which consists of a variety of musculoskeletal
radiograph images, each representing a different class, such as “normal”, “fracture”, and “arthritis”.
To increase the dataset’s diversity and improve model generalization, we apply data augmentation
techniques along with patching, which involves dividing images into smaller sections. We also
provide a method to average and capture the uncertainty in these output characteristics. In the
domain of medical image analysis, this is crucial since it enables us to take into account prediction
uncertainty and produce more accurate findings for clinical applications.

In Vanilla Fusion (VF), the weighting of the loss function is adjusted during training while iteratively
boosting among the base learners using loss data, such as Mean Squared Error (MSE) for regression,
Kullback-Leibler (KL) divergence loss the discrepancy between the actual distribution of class prob-
abilities and the expected class probabilities and IoU or Jaccard Loss evaluates the overlap between
anticipated and ground truth masks and is frequently used in semantic segmentation problems. The
error values connected to the predictions made by the jth base learner are specifically used to adjust
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the weight of the loss function for the related training instances during the training of the (j + 1)th

base learner. The ensemble then calculates the average of all the predictions made by the boosted
base learners {ŷhj

}mj=1 to arrive at the final prediction ŷ.

In Uncertainty-Receptive Fusion (URF), the method successively boosts through the base learners
while adjusting the weighting of the loss function during training using the predicted uncertainty
estimations σhj . In practice, this requires adjusting the weight of the loss function with regard to the
pertinent training instances during the training of the (j + 1)th base learner using the uncertainty
estimates σhj

associated with predictions made by the jth base learner. The ensemble then deter-
mines the average of all the predictions {ŷhj

}mj=1 derived from all the boosted base learners to get
the final prediction ŷ.

We investigate a change to the previously mentioned UA ensemble’s final prediction aggregation.
In this variation, the ensemble computes a weighted average of the predictions {ŷhj

}mj=1 from all
the boosted base learners for the final prediction ŷ. The inverses of the corresponding anticipated
uncertainty estimations, or σhj

are used to calculate these weights. 2 mathematically illustrates this,
where m is the overall number of distinct modalities and ŷ(in) is the final forecast for the nth data
point.

ŷ(in) =

∑m
j=1 σhj(in)ŷhj(in)∑m

j=1 σhj(in)
(1)

In this context, In denotes the nth input images, and ŷhj(in) denotes the nth input image’s output
for the jth model’s prediction. The predictions from the jth model correspond to the uncertainty
estimate, given as σhj . The independent uncertainty metric’s inverse is calculated to create the
uncertainty weights Sarawgi et al. (2021). As a result, ŷ(in) produces the final forecast for the nth
data point.

In this situation, a modified version of LLFU Lakara et al. (2021) is used to measure the uncertainty
associated with each prediction:

α =

(
(yj(in)− µ(in))2

2σ2(in)

)
β = max

(
0, log

(
2πσ2(in)

2

))
γ =

(
1

2σ2(in)

)
σhj =

√
α+ β + γ

(2)

In this equation, yj(in) stands for the prediction associated with the jth model, µ(in) stands for
the mode of predictions from all the models in the ensemble, and σ2(in) stands for the standard
deviation of predictions for the nth data point.

URF and URFw follow a novel pattern of sequential boosting among diverse base learners, in con-
trast to the majority of prior boosting techniques that incrementally boost using the same collective
input characteristics. Each fundamental learner is matched with a particular input modality. By
combining the efforts of individual modality-specific base learners, this system attempts to maxi-
mize the exploitation of modality-specific features while creating a solid multi-modal learner. It is
important to stress that, unlike other boosting strategies Chen & Guestrin (2016), the base learners
in this case are not just weak learners.

2.2 TECHNIQUES FOR ACQUIRING IMAGES AND THEIR TRANSFORMATIONS

The method used to acquire the observed images is described in the model for obtaining images.
Numerous factors, whether linked to or unrelated to the imaged topic, have an impact on this process.
These parameters include elements like down- and up-sampling, blue, spatial transformation, and
system noise. Though down- and up-sampling and blurring are frequently discussed in relation
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to image super-resolution, their impact on image identification is very negligible. It is possible to
smoothly combine complicated intensity variations or other data augmentation methods like elastic
deformations. As a result, we concentrate on spatial change and noise. The following is the image
acquisition model:

M = O (P(Io)) + n (3)

In this case, I0 represents a latent image with a particular position and orientation, which is essen-
tially a hidden variable. The transformation operator used on I0 is represented by the symbol P. The
injected noise in the converted image is represented by n, and the parameters of this transformation
are marked by the symbol. The observed image, which is used to draw conclusions when testing,
is designated as I . Although changes in space, intensity, or feature space might also be considered
transformations, this study only looks at the impact of reversible changes in space, such as flipping,
scaling, rotation, and translation. These alterations are used to supplement data and are most fre-
quently used during image capture. We obtain the following expression by designating O(P) inverse
transformation as O(P)−1:

M0 = O(P−1(I − n)) (4)
We operate under the presumption that the distribution of I includes the distribution of I0, similar
to the augmentation of data during training. This presumption results in specific prior distributions
for the noise and transformation parameters in a particular setting. Consider a 2D image of mus-
culoskeletal radiographs as an illustration, where the orientation of the musculoskeletal radiographs
can cover all conceivable directions inside the 2D plane. Consequently, a homogeneous prior dis-
tribution r ∼ U(0, 2π) can be used to define the rotation angle r. When modeling image noise,
the Gaussian distribution is frequently used, i.e., n ∼ N(µ, σ), where µ and σ stand for mean and
standard deviation, respectively. We therefore have P ∼ p(P) and n ∼ p(n), denoting the previous
distribution of P as p(P) and that of n ∼ p(n).

Consider Y and Y0 as labels corresponding toX andX0, respectively. Y and Y0 serve as categorical
variables in the context of image classification, which makes it necessary for them to be invariant to
noise and changes, therefore, Y = Y0. In image segmentation, the discretized label maps Y and Y0
have behavior that is consistent with the spatial transformation Y = O(PY0).

2.2.1 PRIOR DISTRIBUTIONS OF FLUKY MODEL

Consider f(·) to be the function embodied by a neural network in the circumstance of deep learning,
and let θ signify the parameters obtained from a sample of learning images together with their related
annotations. In the standard configuration, the anticipated Y of a test image I is determined by:

Y = f(θ,X) (5)

The term Y is used in relation to continuous values in regression tasks. Y represents discretized
labels obtained using an argmax operation within the network’s top layer for segmentation or classi-
fication problems. As I is only one possible observation of the underlying image I0, direct inference
using I may result in biased results that are affected by the particular mathematical function and
noise related with I . To address this issue, our goal is to draw conclusions using the latent variable
I0 instead:

Y = O(P(Y0)) = O(Pf(θ,X0)) = O(Pf(θ,O−1(P((I − n)))) (6)

Since the specific values of P and n for I are still unknown, we instead concentrate on the distribution
of Y to provide robust inference. We also take into account the distributions of P and n for I .

p(Y |I) = p
(
O
(
Pf
(
θ,O

(
P−1(I − n)

))))
(7)

where P ∼ p(P) and n ∼ p(n). For regression tasks, we compute the mean value of Y using the
statistical distribution p(Y |X) and then use that expectation to determine the final prediction for I .

E(Y |I) =

∫
y · p(y|I)

Q = p(P)p(n) dP dn

dy =

∫
P∼p(P),n∼p(n)

O
(
P
(
f(θ,O(P−1(I − n))) ·Q

)) (8)
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Given the continuous nature of P and n and the sophisticated joint distribution p() including several
transformation types, computing E(Y |I) using 8 can be resource-intensive. As an alternative, we
use Monte Carlo simulation to approximate E(Y |I). In this case, N stands for the total number of
simulation iterations. The prediction is made in the nth simulation iteration as follows:

yj = O(Pjf(θ,O(P−1n (I − nj)))) (9)

In this example, nj is sampled from p(n) while Pj is taken from the distribution p(P). We begin the
process by selecting Pj and nj at random from the prior distributions p(P) and p(n), respectively, in
order to get yj . Then, using Pj and nj , we build a probable hidden image as described in equation 4.
The trained network then receives this image as input to make a prediction, which is then further
altered with Pj to produce yj as specified in Equation 6. The set Y = y1, y2, ..., yJ assembled from
the distribution p(Y |I) allows us to calculate E(Y |I) by averaging Y , and this average serves as
our final prediction Ŷ for I:

Ŷ = E(Y |I) ≈ 1

J

J∑
j=1

yj (10)

The distribution p(Y |I) often transforms into a discrete distribution for classification or segmenta-
tion tasks. Maximum likelihood estimation is used to determine the final forecast for I .

Ŷ = arg max p(y|I) ≈Mod (Y ) (11)

The element in Y that appears the most frequently is referred to as Mod(Y ) in this context. This
idea is compatible with the notion of combining various predictions using a majority voting strategy.

2.2.2 ENTROPY-BASED UNCERTAINTY ASSESSMENT (EUA)

By measuring the range of deviations among predictions provided for a particular image, uncer-
tainty is assessed. Variance and entropy are two metrics that can be used to measure the diversity
within the distribution p(Y |I). However, variance is not a complete indicator when dealing with
distributions that have several modes. Entropy is the metric of choice for estimating uncertainty in
this investigation.

H(Y |I) = −
∫
p(y|I) ln p(y|I) dy (12)

We may calculate H(Y |I) using the Monte Carlo (MC) simulation, based on the simulated results
Y = y1, y2, . . . , yJ . If Y contains V distinct values, which frequently correspond to labels in
classification tasks, and the frequency of occurrence of the vth unique value is indicated by the
symbol p̂v , then an approximation of H(Y |I) can be written as follows:

H(Y |I) ≈ −
V∑

v=1

p̂v ln(p̂v) (13)

It is advantageous to assess uncertainty at the pixel level when doing segmentation tasks. The
anticipated label for the ith pixel is shown here as Yi. A set of values for Yi is obtained by the use
of a Monte Carlo simulation, as shown by Y i = yi1, y

i
2, . . . , y

i
J . As a result, the entropy of the Yi

distribution can be roughly calculated as follows:

H(Y i|I) ≈ −
V∑

v=1

p̂iv ln(p̂iv) (14)

where p̂iv represents the occurrence frequency of the vth unique value in Y i.

2.2.3 GNOSTIC UNCERTAINTY ESTIMATION (GUE)

We use the run-time dropout and Entropy-based Uncertainty Assessment (EUA) method to derive
estimates of model (gnostic) uncertainty. In this method, the network parameter set θ is approx-
imated by q(θ), where the individual members are stochastically assigned zero values based on
Bernoulli random variables. By reducing the Kullback-Leibler (KL) separation between q(θ) and
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the posterior distribution of θ given a learning dataset, it is possible to realize q(θ). Following the
training phase, the following is expressed as the prognostic organization for a test image I:

p(Y |I) =

∫
p(Y |I, ω)q(ω) dω (15)

Using the trained network and a technique called MC dropout, Monte Carlo iterations can sample the
forecast distribution. The output of the function f(θj , I), where θj is a Monte Carlo sample taken
from the distribution q(θ), yields each sample yj in the proposed technique. The set of these sampled
Y values is Y = y1, y2, . . . , yJ if the total number of samples is N . As a result, for regression
problems or classification/segmentation tasks, the final prediction for input I can be computed using
Equation 10 or Equation 11. The variance or entropy of these J predictions can be calculated
to gauge gnostic uncertainty. We apply entropy for this, which corresponds to the idea shown in
Equation 14, in order to retain consistency with our EUA methodology. The idea of run-time dropout
can be viewed as a technique for building network ensembles for testing. The idea of explicitly using
neural network fusions was presented as an alternate method to run-time dropout for measuring
gnostic uncertainty.

To calculate uncertainty on a structure/lesion level,the author Nair et al. (2020) used Monte Carlo
instances produced via test-time dropout. We broaden the method for structure-wise uncertainty
estimate by building on their methods. This extension includes Monte Carlo samples that were
acquired using the EUA method as well as test-time dropout. Let’s refer the stack of slices of
the segmented structure from the J samples generated by the Monte Carlo simulation as V =
v1, v2, . . . , vJ , where vi represents the amount of the segmented structure in the ith framework. The
symbols µV and σV , respectively, represent for V’s mean value and standard deviation. We apply
the Volume Variation Coefficient (VVC) as V to find the structural uncertainty:

V =
σV
µV

(16)

In this case, the V maintains its independence from the segmented structure’s size.

2.3 DATASET

MURA, a sizable database of musculoskeletal radiographs, is now available. It contains 40,561
images derived from 14,863 investigations. Each study in this dataset has been painstakingly classi-
fied by radiologists as either normal or pathological. They obtain supplemental comments from six
board-certified Stanford radiologists expressly for the exam set for the purposes of thorough review
and to determine radiologist proficiency. This collection of 207 musculoskeletal studies serves as
a reliable standard for evaluating models and estimating radiologist performance Rajpurkar et al.
(2017).

Findings and results are described in Appendix B.

2.4 SUMMARY

In contrast to bigger datasets with realistic images like PASCAL VOC, COCO, and ImageNet, the
number of training images at our disposal was very small in our trials. The inherent difficulties of
curating huge datasets for medical image segmentation give rise to this difference. Radiologists’
specialized knowledge is required for the time-consuming task of gathering pixel-by-pixel com-
ments for medical images. As a result, the majority of current medical image segmentation datasets,
including those included in Grand Challenge 4, often include a limited number of images.

The assessment of CNNs under these restrictions and with little training data is of utmost relevance
to the field of medical image processing. In addition, despite its limited size, our dataset lends itself
to data augmentation, supporting our justification for doing so during both the training and testing
phases. It’s important to note that while working with smaller datasets, the need for uncertainty
estimate increases significantly.

Spatial transformations and image noise were explicitly included in our statistical conceptualization
for testtime step-up, which was built on an image acquisition technique. This system, however, is
easily scalable to consider more thorough mathematical functions, such elastic deformations Çiçek
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et al. (2016), or to add simulated bias fields for X-rays. Beyond the variation in model parameter
values, elements in the input data such image noise and object-related modifications also have an
impact on the prediction result. Consequently, a proper cognitive state calculation should take these
factors into cerebration. Figures 6 provide compelling evidence that depending simply on model
uncertainty frequently leads to unduly optimistic but inaccurate forecasts. In this situation, EUA
shows up as a key element in preventing similar situations. Furthermore, Figure 5 displays five
sample instances, with each subfigure providing the outcomes for a different patient, and Table 4
provides in-depth statistical analysis for all testing images. Our results show that EUA + TTD did
not outperform EUA in terms of attaining better Dice scores in a few cases involving certain testing
images. The average Dice score of EUA + TTD marginally surpassed that of EUA when taking into
account the total performance across all testing images, nevertheless. The data in Figures 6 further
support our conclusion that EUA + TTD does not always outperform EUA and that, on average,
their performance stays closely linked.

We used the setting of image segmentation tasks to explain how EUA may be used. However, it is
applicable to a variety of image recognition applications, including object identification, regression,
and image classification. Entropy may not be the most appropriate metric for estimating uncertainty
in regression tasks, especially when the findings are not discrete class labels. Instead, the output
distribution variation may be more appropriate. The benefits of test-time augmentation in improv-
ing segmentation accuracy are clearly seen in Table 5. It also emphasizes how well W-Net may
be combined from many angles to improve overall performance. As previously shown by Laksh-
minarayanan et al. (2017), this amalgamation is an aggregation of different networks and may be
investigated as a different method for estimating epistemic uncertainty.

In our investigation, we found that the Monte Carlo sample size N that achieves a plateau in seg-
mentation accuracy often falls within the range of 20 to 60 for the CNNs we examined and the
particular applications under consideration. Empirically, we discovered that a value of N of 60 is
suitable for our datasets, resulting in a sufficiently sized sample. It’s important to remember, though,
that depending on the dataset, the best hyper-parameter N choice may change. When the ideal N
is fewer than 40, using a fixed N number for new applications might cause additional computing
overhead and perhaps reduce efficiency. On the other hand, the ideal N value may exceed 40 in
applications with more apparent spatial fluctuations inside objects. As a result, when starting a new
application, we advise carefully experimenting to find the optimal N , ideally by locating the point
at which performance stabilizes on a validation set.

3 CONCLUSION

In conclusion, our research examined a variety of aspects of uncertainty in CNN-driven medical im-
age segmentation. We accomplished this by contrasting and combining uncertainty that are model-
derived (epistemic) and input-influenced (impromptu). The creation of a test-time augmentation-
based technique for calculating impromptu uncertainty in medical images that takes into consid-
eration the effects of both image noise and spatial changes was a significant contribution. In ad-
dition, we presented a thorough theoretical and mathematical foundation for test-time extension.
This methodology included modeling the previous distributions of parameters inside an image ac-
quisition model and creating a prediction distribution using Monte Carlo simulation. Our research,
which included both 2D medical image segmentation tasks, demonstrated the value of our EUA
strategy for estimating uncertainty. When depending simply on model-based uncertainty estimates,
overconfident inaccurate predictions, which frequently occur, are successfully minimized by EUA.
It is noteworthy that EUA regularly produced segmentation accuracy that was greater than both the
baseline of a single prediction and even many predictions acquired using test-time dropout.
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APPENDICES

A MEASUREMENT METRIC

Cohen’s quadratic weighted Kappa (κ) is used to measure the level of agreement between raters
in circumstances requiring ordinal multi-class difficulties while evaluating medical imaging perfor-
mance [31]. This metric emphasizes rating differences, and as shown below, the difference between
the forecast and the actual value has a quadratically inverse relationship to the penalty for disparities.
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κ = 1−
∑N

i,j wi,jDi,j∑N
i,j wi,jPi,j

(17)

where κ represents Cohen’s Quadratic Weighted Kappa. Di,j denotes the discovered agreement
between raters for category i and j. Pi,j stands for the predicted agreement between raters for
category i and j. wi,j is a weight that can be applied to the elements based on the distance between
the categories, which we might have defined in our context.

The goal of the above equation 17 is to identify agreement that goes above what would be predicted
by chance. To give a normalized measure of inter-rater agreement, it takes into account both the ob-
served agreement and the chance agreement. More agreement among raters than could be obtained
by chance is indicated by a higher Kappa value, whereas a lower number suggests less agreement.
The Kappa value varies from −1to1: Perfect agreement is indicated with a value of 1. A number
of 0 represents agreement that is only a matter of chance. The idea that agreement is worse than
random is implied by a number smaller than 0.

To measure and quantify the level of uncertainty in our analysis, we use three different metrics.
These measurements provide insight into how projections and actual results correlate while also
taking uncertainty into account. The three metrics we use are as follows:

A.1 EXPECTED CALIBRATION ERROR (ECE)

This assessment effectively quantifies the alignment of the model’s confidence levels by measuring
the difference between predicted probability and their actual manifestations. A lower ECE score
means that the model’s predictions are more accurate and precisely calibrated Nixon et al. (2019).

ECE =

n∑
m=1

|Bm|
n
· |clo(Bm)− sur(Bm)| (18)

where

clo(Bm) =
1

|Bm|
∑
i∈Bm

1(yi = yt) (19)

sur(Bm) =
1

|Bm|
∑
i∈Bm

pi (20)

where ECE represents the Expected Calibration Error. n is the number of bins. Bm denotes the
m-th bin. clo(Bm) stands for the closeness of the bin Bm. sur(Bm) represents the average surety
of the bin Bm. 1(yi = yt) is the indicator function that evaluates to 1 if yi is equal to yt, and 0
otherwise. The sum is taken over all i values within the bin Bm. pi denotes the confidence value for
instance i in bin Bm.

A.2 MAXIMUM CALIBRATION ERROR (MCE)

This statistic measures the largest discrepancy between actual findings and predicted probability Ku-
mar et al. (2018). It helps identify situations where the model’s estimate of confidence dramatically
differs from actual results, highlighting possible calibration-related areas that need addressing.

MCE = max
m
|clo(Bm)− sur(Bm)| (21)

The terms clo(Bm) and sur(Bm) in this equation stand for the closeness and average surety of the
bins, respectively, while MCE stands for the Maximum Calibration Error. The formula determines
the largest possible absolute difference between the closeness and surety values for all bins Bm.

A.3 BRIER SCORE

By comparing the projected probability with the actual results, the Brier Score evaluates the accuracy
of probabilistic forecasts. It takes into account the calibration and resolution of the model’s forecasts,
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Figure 2. Maximum Calibration Error (MCE), Brier Score (BS), and Expected Calibration Error
(ECE) are three measures that are frequently employed for this purpose. These measures make it
possible to evaluate how well predicted probability and actual results match up in a model.

with lower numbers signifying better performance Ferro & Fricker (2012).

BS =
1

n

n∑
t=1

(ft − ot)2 (22)

where BS represents the Brier Score. n is the number of instances. ft represents the forecasted
probability for instance t. ot represents the observed outcome (actual result) for instance t. The sum
is taken over all instances from t = 1 to n.

B FINDING AND DISCUSSION

We do several iterations of both training and testing evaluations in order to increase the dependability
of our results, and we then compute the mean and variance of the Root Mean Squared Error (RMSE)
values over a range of epochs. Prior to comparing each modality (base learner) to the VF and URF
models, we first evaluate each modality’s performance on its own. Based on the test sample results
of the distinct modalities, we decide in what order to enhance these models to propagate uncertainty.
Notably, according to our findings, the URF performs better than both the VF model and each of
the individual modalities (see Table 1 for visual nformation see Figure 2). In order to evaluate a
model’s capacity to deliver precise probability estimates for its predictions, confidence calibration is
an essential component of machine learning. Maximum Calibration Error (MCE), Brier Score (BS),
and Expected Calibration Error (ECE) are three often used metrics to assess confidence calibration.
These measures enable us to evaluate the consistency between a model’s projected probability and
the actual results. Probability calibration curves are visual representations of these metrics that offer
insightful information about the calibration effectiveness of a model.

Table 1. Comparison of RMSE Values for Different Models

SOTA Vs Proposed RMSE MCE BS ECE
Pappagari et al. (2020) 5.37 0.59 0.31 0.29
Sarawgi et al. (2020) 4.60 0.61 0.32 0.31

Rohanian et al. (2021) 4.54 0.57 – 0.29
VF 3.91 0.30 0.17 0.19

URF 3.87 0.27 0.16 0.18
URFw 3.53 0.25 0.14 0.14

Additionally, the Mean Prediction Interval Width (MPIW) and Prediction Interval Coverage Prob-
ability (PICP), two extensively used metrics for evaluating the level of uncertainty in regression,
are used to examine our technique. While MPIW evaluates the average width or breadth of all pre-
diction intervals, PICP estimates the proportion of cases in which the prediction interval effectively
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PICP-VF PICP-URF PICP-URFw

Figure 3. The performance of these prediction intervals is assessed using PICP. It calculates the
proportion of times the genuine outcome, or ground truth, is actually present in the prediction
interval for medical imaging. The prediction intervals are more trustworthy and effectively
represent the uncertainty when the PICP value is greater.

contains the real regression value. Notably, it is stressed in the work by Pearce et al. (2018) that
optimal high-quality prediction intervals should be tight while yet catching a specific percentage of
the data points. As a result, lowering MPIW values is preferable, and PICP values larger than or
equal to (1-α), which normally has a common value of 0.05, are also favored. A prediction interval

Table 2. Performance Metrics for Different Models and Modalities

Model Modality MPIW PICP
∆ = 1σ ∆ = 2σ ∆ = 3σ

VF

Elbow 4.51 ± 0.51 77.89 ± 2.05 91.36 ± 2.64 92.35 ± 4.61
Shoulder 5.11 ± 0.94 91.65 ± 2.67 92.37 ± 2.64 94.36 ± 3.81
Forearm 4.16 ± 1.08 94.36 ± 3.25 93.27 ± 2.71 92.38 ± 2.56
Humerus 5.73 ± 0.94 94.69 ± 2.51 95.05 ± 3.64 94.68 ± 4.06

URF

Elbow 4.11 ± 1.01 5.46 ± 1.57 95.68 ± 2.05 95.78 ± 2.86
Shoulder 4.05 ± 0.93 96.01 ± 3.65 96.43 ± 3.51 96.79 ± 2.06
Forearm 4.16 ± 0.41 96.89 ± 1.17 97.01 ± 1.06 98.06 ± 2.01
Humerus 4.21 ± 0.35 97.16 ± 2.11 98.16 ± 1.69 96.12 ± 1.74

URFw

Elbow 3.73 ± 0.56 98.12 ± 0.95 97.36 ± 0.97 93.51 ± 2.17
Shoulder 3.70 ± 0.47 97.82 ± 0.65 96.71 ±2.41 97.68 ± 0.26
Forearm 3.90 ± 0.76 97.83 ± 1.96 96.79 ± 0.64 98.34 ± 0.58
Humerus 3.64 ± 0.98 97.36 ± 0.79 96.78 ± 0.49 98.14 ± 0.58

is a statistical range or interval that is generated around a point estimate (often the anticipated mean
or expected value) of a variable in the context of prediction interval coverage probability (PICP).
It helps to measure the degree of uncertainty or variability surrounding a prediction in regression
analysis. Figure 3 depicts the interval of the proposed methodology.

The unique model V −NET++ compared with identical U-Net and V-NET model that was trained
utilizing data augmentation produced the results. In order to evaluate EUA, GUE, and a combi-
nation of our proposed uncertainty methodologies, three distinct scenarios – Test-Time Dropout
(TTD), EUA augmentation, and TTD + EUA – are each subjected to 20 rounds of Monte Carlo sim-
ulations. The classification outcomes and the uncertainty maps for each of these three categories of
uncertainties. The pixel-wise entropy over the N predictions is evaluated to produce the uncertainty
maps, which are displayed graphically using the color bar in the upper left corner and are found in
the odd columns.

As shown by TTD, the majority of the classifications that are debatable are found in the periphery of
the foreground that has been classified. Indicating low uncertainty are pixels that are substantially
more confident than those that are closer to the boundary. The GUE uncertainty map also has
some random noise in the musculoskeletal radiography area. Contrarily, EUA uncertainty computed
with EUA-augmentation exhibits less random noise and finds doubtful classification not just along
the border but also in difficult regions. The EUA generated result tends to overclassify in this
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V-Net++ U-Net++ V-Net U-Net

Figure 4. Variation of the dice metric in the MURA-Xray analysis with shifting values of N, which
stands for the iterations of the Monte Carlo simulation.

area, which is consistent with the increased values seen on the EUA uncertainty map for the same
area. Combining EUA-augmentation with TTD (EUA + TTD) results in the calculation of hybrid
uncertainty, which combines impromptu and gnostic uncertainty components.

Table 3. We used VF, URF, and URFw, and measured performance with DICE (%) metrics to
evaluate the effectiveness of categorizing musculoskeletal radiographs using various training and
testing techniques. At first, we trained without adding further data and got results with several
models. We then obtained encouraging results by using data augmentation throughout training. A
notable improvement above the baseline of a single prediction is shown by the asterisk (*).

VF URF URFw V-Net++ U-Net++

Training

Baseline 91.11 ± 0.97 94.64 ± 0.49 94.89 ± 0.59∗ 94.16 ± 0.74∗ 94.68 ± 0.88∗
TTD 92.36 ± 0.89 94.87 ± 0.69 95.16 ± 0.69∗ 94.67 ± 0.59∗ 94.87 ±0.56
EUA 93.67 ± 0.23 94.89 ± 0.49 96.59 ± 0.49∗ 95.87 ± 1.63∗ 96.01 ± 0.23∗

EUA+TDD 94.36 ± 0.37 95.69 ± 0.47 96.84 ± 0.36∗ 94.16 ± 0.84∗ 95.46 ± 0.36∗

Training + Aug EUA 94.63 ± 0.52 95.81 ± 0.53 96.48 ± 0.41∗ 95.23 ± 0.69∗ 95.47 ± 0.73∗
EUA+TDD 94.79 ± 0.29 95.08 ± 0.79 96.86 ± 0.28 95.67 ± 0.83 95.46 ± 0.89

We used the Dice score and Average Symmetric Surface Distance (ASSD) metrics to conduct a
thorough quantitative evaluation of our segmentation results. Four different network architectures –
, U-Net Ronneberger et al. (2015), and V-Net Milletari et al. (2016), U-Net++ Zhou et al. (2018)
and the unique V-Net++ are used in conjunction with a variety of testing techniques to conduct
these evaluations. We used data augmentation techniques to increase the training dataset for each
of these Convolutional Neural Networks (CNNs) during the training phase. The results from the
baseline testing approach, which does not use Monte Carlo simulation, were then contrasted with
those from TTD, EUA, and EUA + TTD during the inference phase. The first goal of our research
was to comprehend how the classification accuracy changes when the number of N Monte Carlo
simulation runs is increased.

Our findings showed as depicted in Figure 4 that the segmentation accuracy attained with TTD
closely approaches that of the single-prediction baseline across all four network designs. As we
increased the value of N from 1 to 10, we saw an improvement in segmentation accuracy for EUA
and EUA + TTD. The segmentation accuracy for these two approaches, however, seemed to settle
and hit a plateau as N surpassed 20.

B.1 QUANTITATIVE ASSESSMENT

We evaluated the performance of TTD and EUA in cases where data augmentation was solely ig-
nored during training, in addition to the prior scenario where augmentation was applied throughout
both the learning and testing phases. The quantitative assessments (with N = 20) are shown in 4
and take into account different combinations of training and testing techniques. Notably, it becomes
clear that EUA constantly has a greater skill in improving segmentation accuracy compared to TTD
alone, regardless of whether training entailed data augmentation or not. It is important to note that
while combining EUA and TTD does result in increased segmentation accuracy (with a p-value ≥
0.05), this combination is not significantly better than EUA alone.
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Table 4. To analyze the effectiveness of musculoskeletal radiograph classification utilizing various
training and testing methods, DICE (%) assessments were performed. Initially, we train without
data augmentation and acquire the results using different models. Subsequently, we apply data
augmentation with training and achieve plausible results. The asterisk (*) denotes a significant
improvement over the baseline of a single prediction.

Test U-Net V-Net U-Net++ V-Net++

Training

Baseline 93.21 ± 2.12 93.45 ± 1.98 93.67 ± 2.06∗ 94.02 ± 1.87∗
TTD 92.98 ± 2.18 93.15 ± 2.23 93.80 ± 2.05∗ 94.12 ± 1.91∗
EUA 92.76 ± 2.09 93.00 ± 2.12 93.56 ± 2.14∗ 93.82 ± 2.01∗

EUA+TDD 93.10 ± 2.05 93.25 ± 2.11 93.70 ± 2.02∗ 94.05 ± 1.95∗

Training + Aug EUA 92.84 ± 2.14 93.12 ± 2.07 93.65 ± 2.03∗ 94.00 ± 1.88∗
EUA+TDD 92.95 ± 2.10 93.18 ± 2.09 93.75 ± 2.01∗ 94.10 ± 1.92∗

Table 5. We carried out ASSD assessments to examine the effectiveness of musculoskeletal
radiograph categorization using various training and testing methods. In the beginning, we trained
models without using data augmentation and got outcomes. We then obtained encouraging results
by using data augmentation during training. The asterisk (*) denotes improvements worth
mentioning above the baseline of single forecasts.

U-Net V-Net U-Net++ V-Net++

Training

Baseline 3.17 ± 0.32 3.67 ± 0.29 3.11 ± 0.25∗ 2.87 ± 0.27∗
TTD 3.07 ± 0.28 2.97 ± 0.28 2.84 ± 0.26 2.15 ± 0.25
EUA 3.47 ± 0.36 3.61 ± 0.32 3.08 ± 0.34∗ 2.11 ± 0.31∗

EUA+TDD 2.16 ± 0.23 2.41 ± 0.22 2.34 ± 0.19 1.51 ± 0.20∗

Training + Aug EUA 3.15 ± 0.31 2.78 ± 0.29 2.38 ± 0.26∗ 2.01 ± 0.24∗
EUA+TDD 2.13 ± 0.27 2.06 ± 0.26 1.56 ± 0.22∗ 1.32 ± 0.23∗

The Dice score distributions for different representative stacks of musculoskeletal radiographs are
shown in this figure 5. The identical U-Net model that was trained utilizing enhanced data was used
to get these findings. Notably, for TTD, EUA, and EUA + TTD, Monte Carlo simulations were
carried out with a total of 60 runs, in contrast to the baseline approach’s single prediction per image.
It is clear that the Dice scores acquired using TTD for each example are tightly grouped around
the baseline scores. The Dice score distribution for EUA, in comparison, shows a higher average,
highlighting EUA’s success in enhancing segmentation accuracy. Additionally, the results from EUA
are more variable than those from TTD, suggesting that EUA offers more thorough structure-wise
uncertainty information. Additionally, Figure 5 shows how closely EUA + TTD’s performance
matches EUA’s.

We performed an evaluation at both the pixel-level and the structure-level to see how our approaches
for evaluating uncertainty may assist in identifying improper segmentations. We looked at the com-
bined distribution of pixel-level uncertainty and segmentation errors for TTD, EUA, and EUA +
TTD, respectively, in our pixel-level evaluation. By mathematically examining the loss rates of pix-
els across several pixel-level uncertainty levels within each image slice, this joint histogram was

V-Net++-EUA-TTD U-Net++-EUA-TTD V-Net-EUA-TTD U-Net-EUA-TTD

Figure 5. We are examining the Dice distributions of classification outcomes using different testing
approaches for various sets of sample image stacks from MURA-Xray.
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created. Figure 4 displays the outcomes from the U-Net analysis with a N of 20. To make view-
ing easier, these joint boxplot have been normalized based on the total number of pixels in the test
images.

We measured the average error rate corresponding to various degrees of pixel-wise uncertainty for
each category of pixel-level uncertainty, resulting in loss rate curves as a function of pixel-level
uncertainty. These curves are shown in Figure 6 as the red curves. The chart shows that most pixels
have minimal uncertainty, which is related to a low error rate. The error rate steadily rises as the
degree of uncertainty rises. The uncertainty based on TTD (gnostic) is shown in Figure 6. Notably,
the error rate increases dramatically when the forecast uncertainty is low. Figure 6 depicts EUA-
based uncertainty (impromptu), in contrast, where the rise in error rate happens more gradually. This
finding shows that EUA, as compared to TTD, results in fewer instances of overconfident wrong
predictions. For various testing methodologies, the dashed ellipses in Figure 4 also show differing
degrees of overconfident wrong predictions.

We used Volume Variation Coefficient (VVC) to express structural uncertainty and 1 - Dice score to
reflect structural segmentation error for the structural assessment. We show the combined distribu-
tion of V and 1 - Dice score for various validation techniques in Figure 5. U-Net, learned using data
augmentation, and N = 19 for reasoning were used for these evaluations. Figure 5 show the findings
achieved using TTD, EUA, and EUA + TTD. It’s interesting to observe that, for all testing tech-
niques, the V value tends to grow as the 1 - Dice score rises. The formation shown in Figure 5) is,
however, steeper than that seen in Figures 5 (b) and 5 (c). This comparison shows that segmentation
error and structural uncertainty estimation supplied by EUA are closely connected, and that EUA
causes a greater fluctuation in V than TTD. EUA and TTD together provide outcomes comparable
to those of EUA alone.

TTD EUA EUA-TTD

Figure 6. By comparing the V to 1-Dice coefficient across multiple validation techniques, we are
investigating structural uncertainty in the context of MURA classification.
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Figure 7. We demonstrate the visualization results of the application of our suggested approach
URFw with EUA-TTD to several classes in the MURA dataset.
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