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ABSTRACT

Recently, diffusion models have been extensively studied as powerful generative
tools for image translation. However, the existing diffusion model-based image
translation approaches often suffer from several limitations: 1) slow inference due
to iterative denoising, 2) the necessity for paired training data, or 3) constraints
from learning only one-way translation paths. To mitigate these limitations, here
we introduce a novel framework, called Implicit Bridge Consistency Distilla-
tion (IBCD), that extends consistency distillation with a diffusion implicit bridge
model that connects PF-ODE trajectories from any distribution to another one.
Moreover, to address the challenges associated with distillation errors from consis-
tency distillation, we introduce two unique improvements: Distribution Matching
for Consistency Distillation (DMCD) and distillation-difficulty adaptive weight-
ing method. Experimental results confirm that IBCD for bidirectional translation
can achieve state-of-the-art performance on benchmark datasets in just one step
generation.

1 INTRODUCTION

Diffusion Models (DMs) (Ho et al., 2020; Song et al., 2021a;b), which learn the score function
of clean data, have demonstrated remarkable generation performance through iterative denoiso-
ing. They have shown superior performance compared to the classical generation models such as
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014a), Variational Autoencoders
(VAEs) (Kingma & Welling, 2014), etc. Furthermore, DMs have been widely explored across vari-
ous domains, e.g., text-to-image generation (Rombach et al., 2022), inverse image problems (Chung
et al., 2023), image editing (Mokady et al., 2022), and so forth.

Typically, diffusion models (DMs) can be classified into two groups based on the type of govern-
ing equation: Stochastic Differential Equations (SDEs) and Probability Flow Ordinary Differen-
tial Equations (PF-ODEs). Although PF-ODEs generally require fewer neural function evaluations
(NFEs) during sampling compared to SDEs, they still involve numerous iterative steps, leading to
slow inference speeds. To address this issue, various techniques have been explored to accelerate
the inference speed of DMs. One prominent approach is distillation-based methods, where a stu-
dent neural network learns the ODE trajectories generated by a pre-trained teacher diffusion model,
enabling one-step generation (Salimans & Ho, 2022; Song et al., 2023; Kim et al., 2024b). How-
ever, these methods primarily focus on learning deterministic paths from Gaussian noise to specific
data distributions, which restricts their applicability to arbitrary distributions, especially in unpaired
scenarios.

On the other hand, Schrödinger Bridge (Schrödinger, 1932) offers a promising approach for translat-
ing between two arbitrary distributions using entropy-regularized optimal transport. Various meth-
ods have been developed for translating between data distributions, such as those proposed in (Wang
et al., 2021; Chen et al., 2021; Liu et al., 2022), though many of these methods are limited to paired
settings. In contrast, DDIB (Su et al., 2023) addresses image-to-image translation by concatenating
the ODE trajectories of two distinct DMs, making it suitable for unpaired settings, yet it still relies
on numerous iterative steps. More recently, UNSB (Kim et al., 2024a) has been introduced to di-
rectly tackle unpaired image-to-image translation by regularizing Sinkhorn paths. However, UNSB
faces limitations due to its dependence on multiple iterative steps, unidirectional translation, and the
use of adversarial training with a discriminator, which can lead to training instability.
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Model One-Step Unpaired Bi-direction Discriminator

SDEdit ✗ ✓ ✗ ✗
ILVR ✗ ✓ ✗ ✗
EGSDE ✗ ✓ ✗ ✗
SDDM ✗ ✓ ✗ ✗
CycleDiffusion ✗ ✓ ✓ ✗
DDIB ✗ ✓ ✓ ✗
DDBM ✗ ✗ ✓ ✗
UNSB ✗ ✓ ✗ ✓

IBCD (Ours) ✓ ✓ ✓ ✗

Table 1: A systematic comparison of IBCD with
other diffusion-based image-to-image translation mod-
els highlights several key advantages of our approach.

Figure 1: PSNR-FID trade-off comparison
with baselines on the Cat→Dog (256) task.
The size of the marker represents the NFE.

To address the limitations of the existing method, we aim at the development of a bidirectional
one-step generator that enables translation between two arbitrary distributions in unpaired settings
without relying on adversarial losses (see a comparison in Table 1). To achieve this, we propose
Implicit Bridge Consistency Distillation (IBCD), an extension of the concept of consistency distilla-
tion (CD) that incorporates a diffusion implicit bridge model for translating between arbitrary data
distributions. Unlike CD, which learns paths from Gaussian noise to data, IBCD connects trajecto-
ries from one arbitrary distribution to another one using a Probability Flow Ordinary Differential
Equation (PF-ODE), allowing for flexible and efficient distribution translation.

However, simply extending CD can result in reduced distillation efficacy due to error accumula-
tion, as well as challenges related to model capacity and training, which arise from integrating two
trajectories and introducing bidirectionality. To address this, we propose a regularization method
called Distribution Matching for Consistency Distillation (DMCD). Furthermore, we introduce a
novel weighting scheme based on distillation difficulty, which applies a stronger DMCD penalty
specifically to samples where the consistency loss alone proves insufficient. By integrating these
advanced components, along with an additional cycle loss, our approach significantly enhances the
reality-faithfulness trade-off, achieving state-of-the-art performance in a single step, as shown in
Figure 1. The main contributions of our work are as follows:

• We propose a novel unpaired image-to-image translation framework, termed Implicit
Bridge Consistency Distillation (IBCD), which enables bidirectional translation using only
a single neural function evaluation (NFE), achieving state-of-the-art performance on bench-
mark datasets.

• We introduce additional improvements, including Distribution Matching for Consistency
Distillation (DMCD) and an adaptive weighting scheme based on distillation difficulty,
to effectively mitigate distillation errors inherent in the process. Additionally, the incor-
poration of cycle-loss further enhances image translation performance, resulting in more
accurate and reliable translations.

2 PRELIMINARIES

2.1 IMAGE TO IMAGE TRANSLATION WITH DIFFUSION MODELS

Diffusion Models (DM). In DMs (Ho et al., 2020; Song et al., 2021b), the predefined forward pro-
cess with the time variable t ∈ [0, T ] progressively corrupts data into pure Gaussian noise over
a series of steps T . Specifically, given a data distribution x0 ∼ p(x0) := preal(x), the distribu-
tion xT ∼ p(xT ) approaches an isotropic normal distribution as noise is added according to the
process p(xt | x0) = N (x0, t

2I). The reverse of this process can be described by an SDE or a
PF-ODE (Song et al., 2021b) as follows:

dxt
dt

= −t∇xt
log p(xt) =

xt − E[x0|xt]
t

, (1)

where the second equality follows from Tweedie’s formula, E[x0|xt] = xt+t
2∇xt log p(xt) (Efron,

2011; Kim & Ye, 2021). In practice, the neural network is trained to approximate the ground truth
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score function sϕ(xt, t) ≈ ∇xt
log p(xt) or the denoiser Dϕ(xt, t) ≈ E[x0|xt] by denoising score

matching (Vincent, 2011). By substituting the trained neural networks into Eq. (1), we can obtain
the denoised sample by numerically integrating from T to 0:

x0 = xT +

∫ 0

T

−t · sϕ(x, t) dt = xT +

∫ 0

T

xt −Dϕ(xt, t)

t
dt, (2)

To solve Eq. (2), an ODE solver, denoted as Solver(xT ;ϕ, T, 0) (with an initial state xT at
time T and ending at time 0, DM parameterized by ϕ) can be applied. Examples include the Eu-
ler solver (Song et al., 2021b; Ho et al., 2020), DPM-solver (Lu et al., 2022), or the second-order
Heun solver (Karras et al., 2022). The sampling process typically requires dozens to hundreds of
neural function evaluations (NFE) to effectively minimize discretization error during ODE solving.

Dual Diffusion Implicit Bridge (DDIB). DDIB (Su et al., 2023) is a simple yet effective method
for image-to-image translation that leverages the connection between DMs and Schrödinger bridge
problem (SBPs), where DMs act as implicit optimal transport models. DDIB requires training two
individual DMs for the two domains A and B, denoted as sϕa and sϕb . The sampling process involves
sequential ODE solving as follows:

xl = Solver(xa;ϕa, 0, T ), xb = Solver(xl;ϕb, T, 0). (3)

Here, xl represents the latent code in the pure noise domain, xa is the image in the source domain,
and xb is the estimated image in the target domain. Thanks to the intermediate Gaussian distri-
bution, DDIB automatically satisfies the cycle consistency property without requiring any explicit
regularization term (Zhu et al., 2017; Choi et al., 2018).

2.2 ONE-STEP ACCELERATION OF DIFFUSION MODELS WITH DISTILLATION

Consistency Distillation (CD). The aim of the consistency distillation (CD) (Song et al., 2023) is
to learn the direct mapping from noise to clean data. Specifically, the model is designed to predict
fθ(xt, t) = x0, and is constrained to be self-consistent, meaning that outputs should be the same
for any time point input within the same PF-ODE trajectory, i.e., f(xt, t) = f(xt′ , t

′) for all t, t′ ∈
[ϵ, T ], with the boundary condition fθ(xϵ, ϵ) = xϵ. Here, ϵ is a small positive number, to avoid
numerical instability at an t = 0. By discretizing the time interval [ϵ, T ] intoN−1 sub-interval with
boundaries t1 = ϵ < t2 < · · · < tN = T , the resulting objective function for CD is given by:

LCD(θ;ϕ) = E[λ(tn)d(fθ(xtn+1
, tn+1), fθ−(x̂tn , tn))], n ∼ U [1, N − 1]. (4)

where λ(tn) is weight hyperparameter, d(·, ·) measures the distance between two samples. θ− is
the exponential moving average (EMA) of the student parameter θ, and ϕ represents the pre-trained
teacher model, and U [·] refers to the uniform distribution. The target x̂tn is obtained by solving
one-step ODE solver, i.e., x̂tn = ODESolve(xtn+1 ;ϕ, tn+1, tn), from xtn+1 ∼ N (x, t2n+1I).

Distribution Matching Distillation (DMD). To distill the diffusion model sreal
ϕ into a one-step gen-

erator fθ(xT ) = x0, Yin et al. (2024) proposed DMD to minimize the Kullback-Leibler (KL) diver-
gence between the real data distribution, preal, and the student sample distribution, pfake

θ . Specifically,
DMD introduces an auxiliary fake DM, denoted as sfake

ψ , which serves to approximate the score func-
tion of the student-generated sample distribution – one that is otherwise directly inaccessible. This
estimator is trained concurrently using denoising score matching, dynamically adapting in real-time
to the evolving sample outputs as the student model progresses through training. The gradient of the
Distribution Matching Distillation (DMD) loss can then be approximated as the difference between
the two score functions:

∇θDKL(p
fake
θ ||preal) ≈ ∇θLDMD = E

xt,t,xT

[wt(s
fake
ψ (xt, t)− sreal

ϕ (xt, t))∇θfθ(xT )] (5)

where xt ∼ N (fθ(xT ), t
2I), t ∼ U(Tmin, Tmax), xT ∼ N (0, T 2I) and wt is a scalar weighting

factor. DMD serves as an effective distillation loss that optimizes the student model from the per-
spective of the distribution, without the need to rely on the instability associated with adversarial
loss (Goodfellow et al., 2014b).
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Figure 2: (a) IBCD performs one-step bi-directional translation using a distillation framework that
extends consistency distillation with a diffusion implicit bridge. (b) The IBCD framework bridges
two distributions by connecting the PF-ODE paths of two pre-trained diffusion models through bidi-
rectionally extended consistency distillation. To mitigate distillation errors, we introduce distribution
matching for consistency distillation and a cycle loss.

3 METHODS

Building upon existing approaches, our goal is to develop a distillation method for a one-step model
that enables bidirectional mapping between arbitrary probability distributions in an unpaired setting,
by leveraging pre-trained diffusion models. Specifically, given two domains XA,XB, and unpaired
datasets SA = {xa ∈ XA}, SB = {xb ∈ XB}, our translator fθ is designed to perform two translation
functions: fθ(xa, cb) : XA → XB and fθ(xb, ca) : XB → XA, where ca and cb represent class
embeddings for the target translation domain. In the following, we introduce our framework for
distilling bidirectional DDIB into a unified one-step model in an unpaired setting and then discuss
the associated challenges. To address these, we present a novel distillation approach by incorporating
distribution matching with a new adaptive weighting factor and a cycle loss to enable bidirectional
reconstruction.

3.1 IMPLICIT BRIDGE CONSISTENT DISTILLATION

Definition. Our model architecture and diffusion process are based on the PF-ODE using EDM (Kar-
ras et al., 2022). To handle both domains with one generator, a pre-trained class conditional
DMs, sϕ(xt, t, c), is jointly trained for each domain with class conditions ca and cb. Specifi-
cally, the teacher model sϕ is trained using denoising score matching (DSM) for continuous-time
t = σ ∼ Lognormal ∈ (0,∞) without any modification from EDM. The timestep discretization
for the sampling process is defined as [t0, t1, · · · , ti, · · · , tN ] = [σmax, σmax−1, · · · , σmin, 0]. Since
DDIB concatenates two independent ODEs into a single ODE, duplicated timesteps must be re-
defined for consistency distillation (CD). We introduce a unique discretized timestep index i and
redefine the timestep t for the concatenated trajectory (XA ↔ XB) as follows:

i = [−N,−N + 1, · · · ,−1︸ ︷︷ ︸
XA

, 0︸︷︷︸
XA∩XB

, 1, · · · , N − 1, N︸ ︷︷ ︸
XB

]

ti = σi = [−0,−σmin, · · · ,−σmax−1,+σmax,+σmax−1, · · · ,+σmin,+0] (6)

4
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Boundary Condition. Given that the output of the student model is enforced to be self-consistency
with respect to the timesteps in Eq. (6), we define the student as fθ(xt, t, c), where t is a non-zero
real-valued timestep and c ∈ {ca, cb} represents the target domain condition. For simplicity, we
define the superscript ′ as the opposite class embedding, i.e., when c = cb, c′ := ca. To enable
the bidirectional translation, we redefine the boundary condition of IBCD to depend on the target
domain condition c:

f(xϵ(c), ϵ(c), c) = xϵ(c), where ϵ(c) =
{
t−N+1 = −σmin, for c = ca
tN−1 = +σmin, for c = cb

. (7)

This boundary condition, alongside the IBCD loss introduced later, ensures that we can trans-
late samples by injecting the desired domain condition: f(xϵ(c), ϵ(c), c′) = xϵ(c′). Specifically,
f(xt, t, cb) transforms xt at any t between XA and XB into a clean domain XB image xtN−1

be-
longing to the same ODE trajectory, and vice versa. Since EDM/CD is not defined for negative t
values and is not directly aligned with our new boundary conditions, we extended the EDM/CD
formulation and applied it to the student model1. For further details on this extension, please refer
to Appendix B.

Implicit Bridge Consistency Distillation (IBCD). To generate data pairs (xt1 , x̂t2) that belong to
the same PF-ODE trajectory for IBCD, we perform forward diffusion on the dataset and predict the
next data point one step ahead using a suitable teacher model and ODE solver. For simplicity, we
denote the teacher model ϕ conditioned on class c as ϕc. The data pair generation process in the
direction of XA → XB (i.e. c = cb) for each domain is as follows:

x̂tna+1 = Solver(xtna
;ϕa, |tna |, |tna+1|), x̂tnb+1 = Solver(xtnb

;ϕb, |tnb |, |tnb+1|), (8)

where na ∼ U [−N +1,−1], nb ∼ U [0, N −2], xtna
∼ N (xa, t2na

I), xtnb
∼ N (xb, t2nb

I). Similarly,
in the direction XB → XA (i.e. c = ca), the data pair for each domain can be generated as:

x̂tna−1 = Solver(xtna
;ϕa, |tna |, |tna−1|), x̂tnb−1 = Solver(xtnb

;ϕb, |tnb |, |tnb−1|), (9)

where na ∼ U [−N +2, 0], nb ∼ U [1, N −1]. Given these distillation targets, our objective function
of IBCD is defined as follows:

LIBCD(θ;ϕ) = E
t1,xt1 ,c

[λ(t2)d(fθ(xt1 , t1, c), fθ−(x̂t2 , t2, c))], (10)

where xt1 = [xtna
;xtnb

], x̂t2 = [x̂tna±1
; x̂tnb±1

], c ∈ U [{ca, cb}]
t1 = [tna ; tnb ], t2 = [tna±1; tnb±1], θ

− = sg(µθ− + (1− µ)θ)

where n(·)±1 denotes time index for each distillation direction in Eqs. (8), (9) and sg indicates the
stop-gradient operator. For a detailed explanation, see Algorithm 1.

Note that employing a single domain-independent teacher model, rather than two separate mod-
els, not only reduces memory consumption but also provides an effective initializer for the student
model, serving as an integrated model for both domains. By sharing the class condition in the teacher
model and the target domain condition in the student model as a unified embedding, we can effec-
tively utilize the student’s initialization weights, since f(xt, t, c) is formulated to output a clean
image corresponding to domain c. This approach distinguishes itself from other methods in the lit-
erature (Kim et al., 2024b; Li & He, 2024), which extend CD in both directions or specify a target
timestep, without fully integrating the domain conditions into a cohesive framework.

3.2 LOSS FUNCTION FOR IMPLICIT BRIDGE CONSISTENCY DISTILLATION

While our IBCD framework facilitates one-step bidirectional transport of the student model in
unpaired settings, it faces certain challenges. First, the consistency loss relies on a local consis-
tency strategy (categorized by Kim et al. (2024b)), which aligns consistency only between adjacent
timesteps by recursively using the student’s output. This can lead to the accumulation of local er-
rors, resulting in a growing discrepancy between the student’s prediction fθ(xt, t, c) and the true
boundary value xϵ(c) as the distance from the boundary condition timestep increases. This issue
is particularly pronounced in IBCD due to its doubled trajectory length compared to standard CD.

1Note that this formulation is applied exclusively to the student model.
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Second, the student not only has to perform a bidirectional task but also has to learn two different
ODE trajectories. Considering that the two ODEs in the teacher model share time steps and are sepa-
rated only by conditions, this increased complexity can not only affect model capacity but also make
training more difficult. The degradation of consistency distillation performance due to the addition
of bidirectional features has also been reported by Li & He (2024). Third, unlike EGSDE (Zhao
et al., 2022), which can freely adjust the trade-off between reality and faithfulness by weighting
expert contributions, vanilla IBCD lacks an explicit mechanism to control this balance, potentially
limiting its ability to adapt to diverse scenarios.

Distribution Matching for Consistency Distillation (DMCD). To address these issues, we pro-
pose Distribution Matching for Consistency Distillation (DMCD), which extends the distribution
matching loss to fit within the consistency distillation framework. DMCD builds on the DMD loss
by optimizing the KL divergence between the student’s output samples and the target domain data
distributions across all timesteps in bidirectional tasks. Furthermore, it incorporates the distillation
difficulty adaptive weighting factor D̂(·, ·). This adaptive weighting scheme helps to focus the op-
timization on challenging samples, thereby enhancing the overall performance and stability of the
student model during training. The resulting DMCD is given by:

∇θLDMCD = E
t1,xt1 ,c,i,xti

[wtiD̂(sg(xt1), c)(sψ(xti , ti, c)− sϕ(xti , ti, c))∇θfθ(xt1 , t1, c)] (11)

where i ∼ U [0, N − 1], xti ∼ N (fθ(xt1 , t1, c), t
2
i I)

where t1,xt1 , c are defined per from Eq. (10), and w represents a time-dependent weighting factor
introduced in DMD. The term sψ(xt, t, c) denotes a class-conditional fake diffusion model (DM),
which is continuously trained via denoising score matching on outputs of student fθ, adapting as the
training progresses. Unlike DMD, DMCD functions as a regularizer rather than the main loss. This
distinction is crucial in unpaired settings, where relying solely on the DMCD loss does not ensure
a proper connection between two domains. IBCD bridges a trajectory between two distributions
using consistency loss, while DMCD addresses the distribution matching issue, working as a loss
to increase the reality of the results. This integration allows for improved performance and stability
without the drawbacks associated with adversarial training (Zhu et al., 2017; Parmar et al., 2024;
Kim et al., 2024a).

Distillation Difficulty Adaptive Weighting. DMCD effectively brings the translated distribution
closer to the target data distribution, enhancing the reality of the generated samples. However, this
can also cause a divergence from the teacher model’s estimations, thereby reducing faithfulness
to the source distribution. Ideally, DMCD should be applied more intensively to challenging PF-
ODE trajectories that the student model struggles to translate accurately, particularly those involving
source domain data points near the decision boundary of the source domain. To address this, we pro-
pose a distillation difficulty adaptive weighting strategy. To quantify the difficulty, we introduce the
concept of distillation difficulty, D([xt−N+1

, · · · ,xtN−1
], c) := d(fθ(xϵ(c′), ϵ(c

′), c),xϵ(c)), which
measures the challenge of distilling a given ODE trajectory generated by the teacher between do-
mains. This approach ensures that DMCD is applied more aggressively to the most difficult trajec-
tories, improving the overall translation performance by focusing on areas where the student model
needs it the most. Such a strategy could strike a balance between source faithfulness and reality by
applying the DMCD loss forcefully only to trajectories where the IBCD loss alone is insufficient.
However, estimating xϵ(c) and xϵ(c′) from a given xt using the ODE solver requires at leastN NFEs
with the teacher model for each DMCD loss calculation, which is computationally impractical. To
address this, we propose a one-step approximation of the weighting factorD(·, ·), defined as follows:

D̂(xt1 , c) = g(d(fθ(xt1 , t1, c), fθ−(x̂t2 , t2, c)))) (12)

where t1, t2,xt1 , x̂t2 are defined in Eqs. (10), (11) and g is any monotone increasing function. The
validity of the alternative weighting factor will be confirmed later through experiments.

Cycle Translation Loss. Similar to DDIB, our framework is designed to perform cycle translation
and must therefore satisfy cycle consistency. The objective function of enforcing this requirement
can be expressed as:

Lcycle = E
c,xϵ(c)

[d(fθ(fθ(xϵ(c), ϵ(c), c
′), ϵ(c′), c),xϵ(c))]. (13)

6
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Figure 3: (a) Bidirectional translation results on a toy dataset which highlights each component’s
cumulative contributions. (b) Visualization of distillation difficulty D(·, cb) and its one-step approx-
imation version Et[D̂(·, cb)] of A→B translation. The function g of D̂ was selected as a logarithm.

Final Loss Functions. The final loss, weighted by λDMCD, λcycle, for training fθ is given by:

θ∗ = argmin
θ
LIBCD + λDMCDLDMCD + λcycleLcycle. (14)

Empirically, we found that the following adaptive training strategy further improves the performing:
the training process begins with only the IBCD loss; as the student model approaches convergence,
the DMCD and cycle consistency losses are additionally introduced to further refine the model’s
performance. Detailed training procedures and the complete algorithm can be found in Algorithm 2.

4 EXPERIMENTS

4.1 TOY DATA EXPERIMENT

To demonstrate the effectiveness of our framework in a controlled setting, we conducted bidirec-
tional translation experiments using a two-dimensional synthetic toy dataset, where the two domains,
A and B, were selected as the S-curve and Swiss roll distributions, respectively.

Validity of the IBCD. Figure 3(a) shows the translation results from domain A→B for various
models, highlighting the cumulative effectiveness of each component of our framework. Distilla-
tion using only the IBCD loss achieves basic translation, but some points are incorrectly mapped
to low-density regions of the target domain. These points originate from the decision boundaries of
the source domain (Appendix D.1). The addition of the DMCD loss improves translation by guid-
ing more points toward high-density regions of the target domain. However, it does not effectively
reposition target points that reside in low-density areas and instead reduces mode coverage by push-
ing points already in high-density regions to even denser areas. Introducing a cycle loss effectively
alleviates the reduction in mode coverage caused by the introduction of DMCD and sharpens the de-
cision boundaries within the target domain. Finally, incorporating the distillation difficulty adaptive
weighting into DMCD selectively corrects points that have drifted into low-density regions, mov-
ing them toward higher-density areas. The complete cycle translation between domains (A→B→A)
using a single model trained with our final approach effectively demonstrates the cycle consistency
property, validating the robustness and fidelity of our method.

Distillation Difficulty. Figure 3(b) illustrates the impact of distillation difficulty on the transla-
tion process. On the left, we show the decision boundary of the source domain resulting from
the translation from the target to the source domain by the DDIB teacher model. The mid-
dle and right panels depict D([xt−N+1

, · · · ,xtN−1
], cb) and its expected one-step approximation,

Et∼U [−N+1,N−2][D̂(xt, cb)] for the A→B translation, plotted at the source domain location xϵ(ca).
The distillation difficulty measure effectively captures the decision boundary, indicating challeng-
ing regions for the student model. As shown, its one-step approximation provides an accurate and

7
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Figure 4: Qualitative comparison of unpaired image-to-image translation tasks. Compared to
other diffusion-based baselines, our model achieves more realistic and source-faithful translations
in a single step. The numbers in parentheses represent inference NFE.

suitable representation of the distillation difficulty, demonstrating its utility in guiding the training
process and improving translation accuracy.

4.2 UNPAIRED IMAGE-TO-IMAGE TRANSLATION

In this section, we apply IBCD to various image-to-image (I2I) translation tasks, which are our
primary focus. We then perform a comprehensive evaluation of the method’s performance across
these tasks to demonstrate its effectiveness and robustness.

Evaluation. Following the evaluation methodology and code from EGSDE (Zhao et al., 2022),
a widely used benchmark for unpaired I2I tasks, we evaluated our approach on the Cat→Dog,
Wild→Dog tasks from the AFHQ dataset (Choi et al., 2020) and the Male→Female tasks from the
CelebA-HQ dataset (Karras, 2018). Initially, we trained AFHQ EDM and CelebA-HQ EDM models
to serve as teacher models. One-step Cat↔Dog and Wild↔Dog translation models were distilled
from the AFHQ EDM, while Male↔Female translation model was distilled from the CelebA-HQ
EDM. For training and evaluation, all datasets were resized to 256 pixels. The evaluation metrics
used were Fréchet Inception Distance (FID) (Heusel et al., 2017) and Density-Coverage (Naeem
et al., 2020) to assess the realism of the translation, and PSNR and SSIM (Wang et al., 2004) to
evaluate the faithfulness of the translation with the original images.

Baselines. As baselines, we compare our method against several GAN-based methods, including
CycleGAN (Zhu et al., 2017), Self-Distance (Benaim & Wolf, 2017), GcGAN (Fu et al., 2019),
LeSeSIM (Zheng et al., 2021), StarGAN v2 (Choi et al., 2020), and CUT (Park et al., 2020). We
also benchmark against diffusion model (DM)-based methods such as ILVR (Choi et al., 2021),

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Quantitative comparison of unpaired image-to-image translation tasks. Most results
are from the EGSDE paper, except those marked with *, which are from our re-implementation.
We additionally measured the density-coverage metric (Naeem et al., 2020). Marker † indicates a
hyperparameter configuration prioritizes reality over faithfulness.

Method NFE FID↓ PSNR ↑ SSIM ↑ Density ↑ Coverage ↑
Cat→Dog

CycleGAN (Zhu et al., 2017) 1 85.9 - - - -
Self-Distance (Benaim & Wolf, 2017) 1 144.4 - - - -
GcGAN (Fu et al., 2019) 1 96.6 - - - -
LeSeSIM (Zheng et al., 2021) 1 72.8 - - - -
StarGAN v2 (Choi et al., 2020) 1 54.88 ± 1.01 10.63 ± 0.10 0.270 ± 0.003 - -
CUT (Park et al., 2020) 1 76.21 17.48 0.601 0.971 0.696
UNSB∗ (Kim et al., 2024a) 5 68.59 17.65 0.587 1.045 0.706

ILVR (Choi et al., 2021) 1000 74.37 ± 1.55 17.77 ± 0.02 0.363 ± 0.001 1.036 0.572
SDEdit (Meng et al., 2022) 1000 74.17 ± 1.01 19.19 ± 0.01 0.423 ± 0.001 0.996 0.524
EGSDE (Zhao et al., 2022) 1000 65.82 ± 0.77 19.31 ± 0.02 0.415 ± 0.001 1.253 0.664
EGSDE† (Zhao et al., 2022) 1200 51.04 ± 0.37 17.17 ± 0.02 0.361 ± 0.001 1.540 0.836
CycleDiffusion (Wu & De la Torre, 2023) 1000(+100) 58.87 ± (-) 18.50 ± (-) 0.557 ± (-) 0.894 0.786
SDDM (Sun et al., 2023) 100 62.29 ± 0.63 - 0.422 ± 0.001 - -
SDDM† (Sun et al., 2023) 120 49.43 ± 0.23 - 0.361 ± 0.001 - -

DDIB∗ (Teacher) (Su et al., 2023) 160 38.91 17.58 0.588 1.528 0.934
IBCD (Ours) 1 47.42 19.50 0.701 1.416 0.938
IBCD† (Ours) 1 44.69 18.04 0.663 1.542 0.934

Wild→Dog

CUT (Park et al., 2020) 1 92.94 17.20 0.592 - -
UNSB∗ (Kim et al., 2024a) 5 70.03 16.86 0.573 1.035 0.704

ILVR (Choi et al., 2021) 1000 75.33 ± 1.22 16.85 ± 0.02 0.287 ± 0.001 1.313 0.548
SDEdit (Meng et al., 2022) 1000 68.51 ± 0.65 17.98 ± 0.01 0.343 ± 0.001 1.270 0.620
EGSDE (Zhao et al., 2022) 1000 59.75 ± 0.62 18.14 ± 0.02 0.343 ± 0.001 1.473 0.668
EGSDE† (Zhao et al., 2022) 1200 50.43 ± 0.52 16.40 ± 0.01 0.300 ± 0.001 1.714 0.776
CycleDiffusion (Wu & De la Torre, 2023) 1000(+100) 56.45 ± (-) 17.82 ± (-) 0.479 ± (-) 1.013 0.814
SDDM (Sun et al., 2023) 100 57.38 ± 0.53 - 0.328 ± 0.001 - -

DDIB∗ (Teacher) (Su et al., 2023) 160 38.59 17.03 0.552 1.594 0.924
IBCD (Ours) 1 48.68 18.25 0.653 1.541 0.920
IBCD† (Ours) 1 46.10 16.78 0.612 1.579 0.918

Male→Female

CUT (Park et al., 2020) 1 31.94 19.87 0.74 - -
UNSB∗ (Kim et al., 2024a) 5 28.62 19.55 0.687 0.576 0.635

ILVR (Choi et al., 2021) 1000 46.12 ± 0.33 18.59 ± 0.02 0.510 ± 0.001 - -
SDEdit (Meng et al., 2022) 1000 49.43 ± 0.47 20.03 ± 0.01 0.572 ± 0.000 0.788 0.373
EGSDE (Zhao et al., 2022) 1000 41.93 ± 0.11 20.35 ± 0.01 0.574 ± 0.000 0.880 0.453
EGSDE† (Zhao et al., 2022) 1200 30.61 ± 0.19 18.32 ± 0.02 0.510 ± 0.001 0.966 0.657
SDDM (Sun et al., 2023) 100 44.37 ± 0.23 - 0.526 ± 0.001 - -

DDIB∗ (Teacher) (Su et al., 2023) 160 23.69 18.70 0.664 0.969 0.808
IBCD (Ours) 1 24.89 20.51 0.749 1.150 0.811
IBCD† (Ours) 1 24.71 20.11 0.744 1.144 0.801

SDEdit (Meng et al., 2022), EGSDE (Zhao et al., 2022), CycleDiffusion (Wu & De la Torre, 2023),
and SDDM (Sun et al., 2023). Additionally, we compare our approach with UNSB (Kim et al.,
2024a), a few-step Schrödinger bridge-based method, and the teacher DDIB (Su et al., 2023). Most
of the comparison results are sourced from the EGSDE paper, while the results for UNSB and DDIB
are based on our re-implementations.

Comparison results. Figure 4 and Table 2 present qualitative and quantitative comparison results
between IBCD and baselines. The hyperparameter configuration for IBCD emphasizes a balance
between faithfulness and realism, while the configuration for IBCD† prioritizes realism. Our frame-
work consistently outperforms the baselines across various tasks and metrics, demonstrating the ef-
fectiveness of its components in improving the trade-off between faithfulness and reality. Although
the student model exhibits a decrease in realism compared to the teacher, it shows enhanced faithful-
ness. This reduction in realism may be attributed to errors from the distillation process, the one-step
conversion, and other contributing factors. Unlike the teacher, the student model simultaneously in-
corporates information about both domains, which may cause it to prioritize faithfulness along the
trade-off curve. In some instances, the student’s samples even surpass the teacher in terms of real-
ism, potentially due to the additional training dynamics introduced by auxiliary losses beyond the

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Qualitative ablation study results of IBCD in
the Cat→Dog task.

Table 3: Quantitative ablation study results
in the Cat→Dog task under the lowest FID.

Component FID↓ PSNR ↑
Teacher Source

IBCD only 48.12 18.27 19.02
+ DMCD 44.40 17.95 16.80
+ DMCD & Cycle 44.31 18.22 17.19
+ adap. DMCD & Cycle 44.69 18.97 18.04

Figure 6: Ablation study results demon-
strating improved PSNR-FID trade-off for
the Cat→Dog task.

IBCD loss. This suggests that the student’s ability to leverage information from both domains and
auxiliary training components can lead to further refinement and improvement in performance.

Ablation Study. We conducted an ablation study on the Cat→Dog task to assess component effec-
tiveness. For the ablation study, DMCD loss, cycle loss, and distillation difficulty adaptive weighting
(i.e. adaptive DMCD) were sequentially added to the IBCD loss-only model. Additionally, to mea-
sure distillation error, we calculated PSNR relative to the DDIB teacher results (PSNR-teacher),
complementing the standard PSNR used in the Table 2 (PSNR-source). Figure 5 and Table 3 show
results for each ablated model that achieved the lowest FID. Figure 6 presents PSNR-FID trade-
off curves for various hyperparameters (λIBCD, λcycle, and training steps) for each ablated model.
Each added component leads to a significant reduction in FID beyond the lower bound achievable
by vanilla IBCD, while minimizing the PSNR degradation due to the inherent trade-off of the task,
and minimizing distillation error. In particular, adaptive DMCD is effective when the lowest FID
is desired in the trade-off curve. These results confirm that the components of IBCD collectively
contribute to the improvement of the tradeoff between faithfulness and reality.

5 CONCLUSION

In this work, we introduced a novel unpaired bidirectional one-step image translation framework,
Implicit Bridge Consistent Distillation (IBCD). By distilling the diffusion implicit bridge through an
extended consistency distillation framework, we achieved bidirectional translation without the need
for paired data or adversarial training. Our approach addresses the limitations of traditional consis-
tency distillation through the proposed Distribution Matching for Consistency Distillation (DMCD)
and distillation difficulty adaptive weighting strategies. Empirical evaluations on both toy and high-
dimensional datasets demonstrate the effectiveness and scalability of IBCD. We believe that IBCD
represents a significant advancement in the field of general one-step image translation, providing
a versatile and efficient solution for various image tasks, including image restoration, especially in
scenarios with limited paired data.
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SUPPLEMENTARY MATERIAL

A ALGORITHMS

In this section, we present the vanilla implicit bridge consistency distillation algorithm (Algo-
rithm 1), which utilizes only the IBCD losses. Additionally, we introduce the final implicit bridge
consistency distillation algorithm (Algorithm 2), which incorporates all the losses discussed in the
text, including DMCD and adaptive weighting strategies, to enhance performance and address the
limitations identified in the vanilla version.

Algorithm 1: (Vanilla) Implicit Bridge Consistent Distillation (IBCD)
Input: Teacher diffusion model ϕ, datasets SA and SB, class conditions ca and cb.

1 j ← 0, θ ← ϕ, θ− ← ϕ
2 repeat
3 c← if (j%2 == 0 then ca else cb)
4 Sample xa ∼ SA, xb ∼ SB
5 if c == cb then
6 Sample na ∼ U [−N + 1,−1], nb ∼ U [0, N − 2]

7 else
8 Sample na ∼ U [−N + 2, 0], nb ∼ U [1, N − 1]

9 Sample xtna
∼ N (xa, t2na

I), xtnb
∼ N (xb, t2nb

I)

10 if c == cb then
11 Estimate x̂tna+1

, x̂tnb+1
with Eq. (8)

12 else
13 Estimate x̂tna−1

, x̂tnb−1
with Eq. (9)

14 t1 ← [tna ; tnb ], t2 = [tna±1; tnb±1]
15 xt1 ← [xtna

;xtnb
], x̂t2 ← [x̂tna±1 ; x̂tnb±1 ]

16 LIBCD ← [λ(t2)dIBCD(fθ(xt1 , t1, c), fθ−(x̂t2 , t2, c))]
17 θ ← θ − ζθ∇θLIBCD

18 θ− ← sg(µθ− + (1− µ)θ)
19 j ← j + 1
20 until LIBCD convergence;

Output: Unified one-step model fθ for bidirectional image translation.
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Algorithm 2: (Final) Implicit Bridge Consistent Distillation (IBCD)
Input: Teacher diffusion model ϕ, datasets SA and SB, class conditions ca and cb.

1 j ← 0, θ ← ϕ, θ− ← ϕ, ψ ← ϕ
2 repeat
3 c← if (j%2 == 0 then ca else cb)
4 Sample xa ∼ SA, x

b ∼ SB
//
// IBCD loss

5 if c == cb then
6 Sample na ∼ U [−N + 1,−1], nb ∼ U [0, N − 2]

7 else
8 Sample na ∼ U [−N + 2, 0], nb ∼ U [1, N − 1]

9 Sample xtna
∼ N (xa, t2na

I), xtnb
∼ N (xb, t2nb

I)

10 if c == cb then
11 Estimate x̂tna+1

, x̂tnb+1
with Eq. (8)

12 else
13 Estimate x̂tna−1

, x̂tnb−1
with Eq. (9)

14 t1 ← [tna ; tnb ], t2 = [tna±1; tnb±1]
15 xt1 ← [xtna

;xtnb
], x̂t2 ← [x̂tna±1

; x̂tnb±1
]

16 LIBCD ← [λ(t2)dIBCD(fθ(xt1 , t1, c), fθ−(x̂t2 , t2, c))]
//
// DMCD loss

17 Sample i ∼ U [0, N − 1]
18 Sample xti ∼ N (fθ(xt1 , t1, c), t

2
i I)

19 D̂ ← sg(g(dDMCD(fθ(xt1 , t1, c), fθ−(x̂t2 , t2, c))))

20 ∇θLDMCD ← wtiD̂ · (sψ(xti , ti, c)− sϕ(xti , ti, c))∇θfθ(xt1 , t1, c)
//
// Cycle loss

21 Sample xϵ(ca) ∼ N (xa, σ2
minI), xϵ(cb) ∼ N (xb, σ2

minI)
22 t3 ← [ϵ(ca); ϵ(cb)], t4 ← [ϵ(cb); ϵ(ca)]
23 c3 ← [cb; ca], c4 ← [ca; cb]
24 xt3 ← [xϵ(ca);xϵ(cb)]
25 Lcycle ← dcycle(fθ(fθ(xt3 , t3, c3), t4, c4),xt3)

//
// Optimize the student

26 ∇θLtotal ← ∇θLIBCD + λDMCD∇θLDMCD + λcycle∇θLcycle
27 θ ← θ − ζθ∇θLtotal

28 θ− ← sg(µθ− + (1− µ)θ)
//
// Optimize the fake DM

29 LDSM ← DSM loss of EDM with sample fθ(xt1 , t1, c), class condition c, and fake DM ϕ
30 ϕ← ϕ− ζϕ∇ϕLDSM
31 j ← j + 1
32 until Ltotal convergence;

Output: Unified one-step model fθ for bidirectional image translation.
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B EXTENDING EDM/CD FOR THE IBCD

The EDM (Karras et al., 2022) parametrization for the student fθ in consistency distillation (Song
et al., 2023) is defined as follows for positive real-valued t and the neural network Fθ:

fθ(xt, t) = cskip(t)xt + cout(t)Fθ(cin(t)xt, t
′(t)). (15)

In CD, authors choose

cskip(t) =
σ2

data

(t− ϵ)2 + σ2
data

, cout(t) =
σdata(t− ϵ)√
σ2

data + t2
, cin(t) =

1√
σ2

data + t2
, (16)

t′(t) = 250 · ln(t+ 10−44) (17)

to satisfies the boundary condition f(xϵ, ϵ) = xϵ, and rescales the timestep.

For IBCD, we parametrize the student fθ for non-zero real-valued t and target domain condition c
as:

fθ(xt, t, c) = cskip(t, c)xt + cout(t, c)Fθ(cin(t, c)xt, t
′(t)), (18)

which reflects the necessity for cskip, cout, and cin depend on target domain condition c, ensuring
that the proper boundary conditions can be applied at t = ϵ(c) depending on the target domain
c ∈ {ca, cb} direction.

Although the student model is fully trained during the distillation process and does not theoretically
need to be compatible with the teacher model, initializing it using the teacher model makes it advan-
tageous to design the student to be as compatible as possible. We select cskip, cout, and cin according
to Eq. (19), (20), (21), ensuring continuity and compliance with the new boundary conditions while
maintaining the definitions within the target domain regions (t > 0 for c = cb, t < 0 for c = ca).

cskip(t, c) =


1+sign(t)

2
σ2

data
(t−ϵ(c))2+σ2

data
if c = cb

1+sign(−t)
2

σ2
data

(t−ϵ(c))2+σ2
data

if c = ca
(19)

cout(t, c) =


1+sign(t)

2
σdata(t−ϵ(c))√

σ2
data+t

2
+ 1−sign(t)

2 σdata if c = cb

− 1+sign(−t)
2

σdata(t−ϵ(c))√
σ2

data+t
2

+ 1−sign(−t)
2 σdata if c = ca

(20)

cin(t, c) =
1√

σ2
data + t2

(21)

We also extend the timestep rescaler as Eq. (22) to a symmetric and continuous form, ensuring
shape compatibility with the original positive-bound domain. This symmetric design reflects the
fact that the sign of the timestep separates the domains, while its absolute value represents the noise
magnitude:

t′(t) = 250 · sign(t)(ln(|t|+ 10−3)− ln(σmax + 10−44)). (22)
This approach preserves the structural integrity of the model and maintains consistent behavior
across both domains. The parametrization extension of EDM/CD, as presented here, is visually
illustrated in Figure 7.

C IMPLEMENTATION DETAILS

Model Architectures. All models used in this study – the teacher ϕ, student θ, and fake DM ψ –
employed the same model architecture as in EDM/CD (Karras et al., 2022; Song et al., 2023). The
architecture configuration followed that of the LSUN-256 teacher EDM model introduced by Song
et al. (2023). However, the student model was further modified with the model parametrization
described in Appendix B, while the teacher and fake DM maintained the original EDM parametriza-
tion.

Teacher Model Training. The teacher model was trained using the EDM implementation and the
LSUN-256 model training configuration provided by Song et al. (2023). The training setup included
a log-normal schedule sampler and L2 loss, with a global batch size of 288, a learning rate of 1e-4, a
dropout rate of 0.1, and an exponential moving average (EMA) of 0.9999. Mixed precision training
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Figure 7: Extension of EDM/CD model formulation for negative t in IBCD student model.
cskip, cout, and cin represent when c = cb (the translation direction is XA → XB).

was enabled, and weight decay was not applied. The teacher model was trained with class conditions
on two types of AFHQ-256 models (cat, dog, and wild) and CelebA-HQ-256 models (female and
male). The AFHQ and CelebA-HQ models were trained using their respective training sets from
the AFHQ (Choi et al., 2020) and CelebA-HQ (Karras, 2018) datasets. Each model was trained for
approximately 5 days, completing 800K steps on an NVIDIA A100 40GB eight GPU setup.

Implicit Bridge Consistency Distillation. The discretization of DDIB trajectories is defined by
extending the sampling discretization of EDM to satisfy Eq. (6):

ti = σi =

{
sign(i)(σ1/ρ

max + |i|
N−1 (σ

1/ρ
min − σ

1/ρ
max))ρ (N < i < N)

0 (i = ±N)
(23)

where sign(x) =
{
+1 (x ≥ 0)

−1 (x < 0)
, σmin = 0.002, σmax = 80, σdata = 0.5, N = 40, ρ = 7.0.

For the distance function d in each loss, dIBCD and dDMCD were based on LPIPS (Zhang et al., 2018),
while dcycle used the L1 loss. The EMA parameter of the EMA model θ− was 0.95, and an additional
EMA with a separate parameter 0.9999432189950708 was applied to the student model θ and used
during inference. The global batch size was 256, with the student learning rate of 4e-5 and the fake
DM learning rate of 1e-4. Dropout and weight decay were not used, and mixed precision learning
was employed.

The ODE solver used was the 2nd order Huen solver (Ascher & Petzold, 1998), consistent with
EDM/CD. The weight scheduler for the IBCD loss employed λ(t) = 1, while the DMCD loss used
the weight schedulerwt as suggested in Yin et al. (2024). For the three tasks, Cat↔Dog, Wild↔Dog
models were distilled using the AFHQ-256 teacher model and its corresponding training dataset.
The Male↔Female models were distilled using the CelebA-HQ-256 teacher model and its training
dataset.

The distillation process began with only the IBCD loss and transitioned to using the full loss set
once the FID (Heusel et al., 2017) evaluation metrics stabilized (i.e. transition step). Distillation was
conducted on the same NVIDIA A100 40GB eight hardware used for training the teacher model.
Additional hyperparameters for each model and configuration are detailed in Table 4.

Evaluation. We followed the evaluation methodology and tasks outlined in EGSDE (Zhao et al.,
2022). The publicly available evaluation code2 was used without modification. Validation sets from
the AFHQ and CelebA-HQ datasets were used as the evaluation datasets. All images in each val-
idation set were translated using the respective task-specific models. For each image pair (source
domain and translated target domain), PSNR and SSIM were computed, and the average values
across all pairs were reported.

2https://github.com/ML-GSAI/EGSDE
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Table 4: Specific hyperparameters employed by different models and configurations.
Model Cat↔Dog Wild↔Dog Male↔Female

Configuration IBCD IBCD† IBCD IBCD† IBCD IBCD†

λDMCD 1 0.18 0.2 0.2 0.02 0.02
λcycle 0.03 0.003 0.001 0.0003 0.00001 0.00003
g(·) 1 min(log(·) + 10)

transition step 200K 200K 200K 200k 500K 500K
total distillation step 210K 230K 210K 230K 510K 520K

FID (Heusel et al., 2017) was calculated using the pytorch-fid3 library to measure the distance
between the real target domain image distribution and the translated target image distribution. Fol-
lowing the methodology of Choi et al. (2020) and Zhao et al. (2022), images from the CelebA-HQ
dataset were resized and normalized before FID calculation, while images for other tasks were evalu-
ated without additional preprocessing. L2 distance measurement was not included in this evaluation.

Density-coverage (Naeem et al., 2020) was computed using prdc-cli4 between the distribution
of real target domain images and the distribution of images translated into the target domain, similar
to the FID measurement. The measurement mode was T4096 (features of the fc2 layer of the
ImageNet pre-trained VGG16 (Simonyan, 2014) model). The metric was computed for the entire
dataset at once, without using mini-batches. Unlike FID, no specific transformation was applied for
the CelebA-HQ dataset.

Reproductions. To evaluate our method, we replicated UNSB and DDIB, two approaches that
have not been previously evaluated on our benchmark datasets. For UNSB, we used the publicly
available official code for both training and inference, following the default configuration for the
Horse→Zebra task and training the model for 400 epochs. During inference, we performed 5 steps.
For DDIB, we implemented the method within our framework. Specifically, DDIB was executed by
first solving the ODE backward from the source domain, then solving it forward again to the target
domain using the EDM model trained for IBCD. The ODE solver was implemented in the same
manner as the EDM sampler, utilizing the same sampling hyperparameters defined for EDM/IBCD.
This setup ensured consistency in the evaluation and allowed for a direct comparison of performance
across methods.

We also re-sampled the result from models (CUT, ILVR, SDEdit, EGSDE, CycleDiffusion) for
which the density-coverage (Naeem et al., 2020) metric was not originally reported. The density-
coverage metric was measured for these models using the method described above and included the
results in Table 2. The target of measurement for density-coverage was limited to baseline models
that met the following criteria: 1) Open-source code and checkpoints were available. 2) FID, PSNR,
and SSIM values reported by the authors could be reproduced using the reported sampling strategy.
This ensured that all metrics in Table 2 were measured on consistent samples.

D FURTHER EXPERIMENTAL RESULTS

D.1 DISTILLATION ERROR IN VANILLA IBCD

Figure 8 illustrates the distillation error that arises when using only vanilla IBCD loss on the syn-
thetic toy dataset. When generating samples from pure noise to domain B (Figure 8 (a)) or trans-
lating samples from domain A to domain B (Figure 8 (b)) using only IBCD loss, the translated
results often fall in the low-density region of the target distribution. These translated points pri-
marily originate from the source domain decision boundary, which is the boundary separating the
partition in the source domain that should be mapped to two different target domain modes. Transla-
tion errors are more pronounced in longer neural jump paths, such as those involved in translations
(i = −N + 1→ N − 1), compared to shorter paths in generation (i = 0→ N − 1).

3https://github.com/mseitzer/pytorch-fid
4https://github.com/Mahmood-Hussain/generative-evaluation-prdc
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Figure 8: Incorrect mapping to low-density regions due to the distillation error. (a) Generation
with vanilla IBCD and (b) translation with vanilla IBCD.

Figure 9: Effect of the auxiliary loss weights (λDMCD, λcycle) for the Male→Female task. In (a)
λcycle was set to 0, and in (b) λDMCD was set to 0.10. Distillation difficulty adaptive waiting was not
applied.

D.2 EFFECT OF THE AUXILIARY LOSS WEIGHTS

Following the component ablation study of IBCD in the main text, we further investigated the in-
fluence of auxiliary loss weights on translation outcomes. Specifically, we varied the weight of the
DMCD loss λDMCD and the cycle loss λcycle in the Male→Female task (Figure 9). During these ex-
periments, distillation difficulty adaptive weighting was not applied. The results aligned with expec-
tations: as λDMCD increases, the realism of the translation result improved, while increasing λcycle
enhanced the faithfulness of the translation. Thus, in the realism-faithfulness trade-off curve, the
DMCD loss emphasizes realism, whereas the cycle loss emphasizes faithfulness.

D.3 APPROXIMATED DISTILLATION DIFFICULTY IN IMAGE-TO-IMAGE TRANSLATION

To explore the implications of the approximated distillation difficulty for real image-
to-image translation tasks, we computed an expected approximated distillation difficulty
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Figure 10: Relationship between self-assessed approximate distillation difficulty Et[D̂(·, cFEMALE)]
and the translations performed in the Male→Female task.

Table 5: Quantitative comparison of model inference times. ∗Not supported parallel sampling.
Method Batch size NFE Time [s/img] ↓ Relative Time ↓
StarGAN v2 (Choi et al., 2020) 256 1 0.058 5.5
CUT (Park et al., 2020) 1∗ 1 0.068 6.4
UNSB (Kim et al., 2024a) 1∗ 5 0.104 9.9

ILVR (Choi et al., 2021) 50 1000 12.915 1224.2
SDEdit (Meng et al., 2022) 70 1000 6.378 604.5
EGSDE (Zhao et al., 2022) 13 1000 15.385 1458.3
CycleDiffusion (Wu & De la Torre, 2023) 1∗ 1000(+100) 26.032 2467.5

DDIB (Teacher) (Su et al., 2023) 165 160 0.956 90.6
IBCD (Ours) 165 1 0.011 1

Et∼U [−N+1,N−2][D̂(xt, cFEMALE)] for all trajectories generated with the DDIB teacher in the
Male→Female task using the vanilla IBCD model. We then selected the trajectories with the top
10 and bottom 10 approximate distillation difficulties and performed Male→Female translation us-
ing the vanilla IBCD model for these trajectories, as shown in Figure 10 without cherry-picking.
The results indicate that the IBCD model struggles to effectively transform source images from
trajectories with high approximate distillation difficulty into target images compared to those with
low approximate distillation difficulty. Specifically, the translation results within the top 10 distilla-
tion difficulty group exhibit relatively inferior image quality, highlighting the impact of distillation
difficulty on translation performance.

D.4 MODEL INFERENCE EFFICIENCY

To reflect real-world constraints such as model size and inference algorithms, we conducted an in-
ference speed comparison experiment. Instead of relying solely on NFE comparisons, we measured
the actual inference time for a Cat→Dog task on a single NVIDIA GeForce RTX 4090 GPU. Table 5
presents the average inference time per image and the relative time for each methodology. The batch
size was set to maximize GPU VRAM utilization (24 GB), and if the official code did not support
parallel sampling, a batch size of 1 was used. The results demonstrate that our methodology is the
most computationally efficient even in real-world sampling scenarios.

D.5 FAILURE CASES

IBCD occasionally produces failure cases as illustrated in Figure 11. The primary failures can be
attributed to incomplete translations (Figure 11(a)) and incorrect cycle translations (Figure 11(b)),
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which are likely due to distillation errors and the side effects of auxiliary losses. Distillation errors
from the CD, in particular, appear to be the primary reason. The DMCD and cycle translation loss
can also contribute to these issues, with the former leading to incorrect cycle translations and the lat-
ter to incomplete translations. Minimizing distillation errors through improved distillation methods
and advanced weighting strategies for auxiliary losses might address this issue.

D.6 BIDIRECTIONAL TRANSLATIONS

To evaluate IBCD’s bidirectional translation capabilities, we compared it to baseline methods
through two tasks: opposite translation and cycle translation. Opposite translation involves revers-
ing the main translation task (Dog→Cat, Dog→Wild, Female→Male), while cycle translation in-
volves performing the reverse task after the main translation (Cat→Dog→Cat, Wild→Dog→Wild,
Male→Female→Male). To ensure a fair comparison of bidirectional performance, we used the same
model and sampling hyperparameters for each domain pair (Cat↔Dog, Wild↔Dog, Male↔Female)
in both opposite and cycle translation tasks.

Given the limited number of models capable of bidirectional translation, we selected StarGAN
v2 (Choi et al., 2020), CycleDiffusion (Wu & De la Torre, 2023), and DDIB (teacher) (Su et al.,
2023) as baselines. We measured FID for the final target domain for the cycle translation task. It’s
worth noting that StarGAN v2’s inference process differs from its main translation task (Table 2)
performed by Zhao et al. (2022) for a better fair comparison. It inputs the same source image as both
the source and reference images, enabling it to achieve both high reality and faithfulness.

Table 6 and Figures 12, 13 demonstrate that our model also excels in reverse and cycle translation
tasks, exhibiting the best performance and high efficiency. This further supports its strong bidirec-
tional translation capabilities.

D.7 MORE QUALITATIVE RESULTS

In this section, we present additional qualitative results obtained through cycle translation
tasks (Cat→Dog→Cat, Wild→Dog→Wild, Male→Female→Male). The results of the Cat↔Dog,
Wild↔Dog, and Male↔Female model are illustrated in Figures 14, 15, 16. These results highlight
our model’s one-way and bidirectional translation capabilities.
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Figure 11: Example of failure cases, which are (a) incomplete translation and (b) incorrect cycle
translation.
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Table 6: Quantitative comparison of unpaired image-to-image translation tasks (opposite &
cycle translation). The opposition task used the same model and inference hyperparameters as the
main direction task using bi-directionality.

Method NFE FID↓ PSNR ↑ SSIM ↑ Density ↑ Coverage ↑
Dog→Cat

StarGAN v2 (Choi et al., 2020) 1 37.73 16.02 0.399 1.336 0.778
CycleDiffusion (Wu & De la Torre, 2023) 1000(+100) 40.45 17.83 0.493 1.064 0.774
DDIB (Teacher) (Su et al., 2023) 160 30.28 17.15 0.597 2.071 0.902
IBCD (Ours) 1 28.99 19.10 0.695 1.699 0.894
IBCD† (Ours) 1 28.41 17.40 0.653 2.112 0.920

Dog→Wild

StarGAN v2 (Choi et al., 2020) 1 49.35 16.17 0.386 0.772 0.478
CycleDiffusion (Wu & De la Torre, 2023) 1000(+100) 27.01 16.99 0.421 0.816 0.752
DDIB (Teacher) (Su et al., 2023) 160 13.20 16.80 0.583 1.202 0.760
IBCD (Ours) 1 18.79 17.56 0.671 0.900 0.830
IBCD† (Ours) 1 16.67 16.22 0.646 1.058 0.814

Female→Male

StarGAN v2 (Choi et al., 2020) 1 59.56 15.75 0.465 1.145 0.587
DDIB (Teacher) (Su et al., 2023) 160 26.98 18.74 0.668 1.154 0.858
IBCD (Ours) 1 31.28 19.93 0.733 1.300 0.808
IBCD† (Ours) 1 31.49 19.51 0.726 1.311 0.809

Cat→Dog→Cat

StarGAN v2 (Choi et al., 2020) 1 30.53 16.30 0.382 1.717 0.890
CycleDiffusion (Wu & De la Torre, 2023) 1000(+100) 39.59 19.01 0.434 0.731 0.676
DDIB (Teacher) (Su et al., 2023) 160 16.56 25.88 0.804 1.330 0.990
IBCD (Ours) 1 22.42 22.35 0.767 1.322 0.992
IBCD† (Ours) 1 24.03 20.28 0.724 1.749 0.988

Wild→Dog→Wild

StarGAN v2 (Choi et al., 2020) 1 37.76 15.30 0.285 1.102 0.566
CycleDiffusion (Wu & De la Torre, 2023) 1000(+100) 19.43 16.39 0.281 0.649 0.616
DDIB (Teacher) (Su et al., 2023) 160 6.75 26.08 0.803 1.118 0.974
IBCD (Ours) 1 9.89 20.56 0.739 1.118 0.972
IBCD† (Ours) 1 10.66 18.80 0.693 1.259 0.968

Male→Female→Male

StarGAN v2 (Choi et al., 2020) 1 57.80 15.39 0.502 1.634 0.728
DDIB (Teacher) (Su et al., 2023) 160 28.29 27.70 0.853 0.821 0.993
IBCD (Ours) 1 39.84 22.22 0.790 1.341 0.979
IBCD† (Ours) 1 39.96 21.85 0.783 1.332 0.984
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Figure 12: Qualitative comparison of unpaired image-to-image translation tasks (opposite
translation). Compared to other baselines, our model achieves more realistic and source-faithful
translations in a single step. The numbers in parentheses represent inference NFE.
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Figure 13: Qualitative comparison of unpaired image-to-image translation tasks (cycle trans-
lation). Compared to other baselines, our model achieves consistent cycle translations in a single
step. The numbers in parentheses represent inference NFE.
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Figure 14: Result of the bi-directional cycle translation with a single model for the Cat↔Dog task
(IBCD†).
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Figure 15: Result of the bi-directional cycle translation with a single model for the Wild↔Dog task
(IBCD†).
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Figure 16: Result of the bi-directional cycle translation with a single model for the Male↔Female
task (IBCD†).
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