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ABSTRACT

While language models have demonstrated impressive capabilities across a range
of tasks, they still struggle with tasks that require complex planning and reasoning.
Recent studies have proposed training language models on search processes rather
than optimal solutions, resulting in better generalization performance even though
search processes are noisy and even suboptimal. However, these studies overlook
the value of optimal solutions, which can serve as step-by-step landmarks to guide
more effective search. In this work, we explore how to leverage optimal solutions
to enhance the search and planning abilities of language models. To this end, we
propose guided stream of search (GSoS), which seamlessly incorporates optimal
solutions into the self-generation process in a progressive manner, producing high-
quality search trajectories. These trajectories are then distilled into the pre-trained
model via supervised fine-tuning. Our approach significantly enhances the search
and planning abilities of language models on Countdown, a simple yet challenging
mathematical reasoning task. Notably, combining our method with RL fine-tuning
yields further improvements, whereas previous supervised fine-tuning methods do
not benefit from RL. Furthermore, our approach exhibits greater effectiveness than
leveraging optimal solutions in the form of subgoal rewards.

1 INTRODUCTION

Transformer-based language models have achieved remarkable success, demonstrating human-level
performance across a wide range of natural language tasks, including conversation, code generation,
and mathematical problem-solving (Achiam et al., [2023} [Touvron et al.| 2023 Roziere et al.|, 2023}
Li et al.} 2023} [Lightman et al.l 2023} [Shao et al.,[2024). Their impressive performance is primarily
attributed to auto-regressive training on high-quality, internet-scale data. However, language models
still face challenges with tasks that require complex planning and reasoning (Pallagani et al.| | 2023;
Valmeekam et al.,2023)). Models trained using next-token prediction often result in the snowballing
of errors over long sequences, making it difficult for them to maintain consistent plans over multiple
steps. Furthermore, teacher-forcing, where models are given the correct sequence of previous tokens
for each prediction, exacerbates this problem by encouraging them to learn shortcuts rather than truly
understanding the underlying structure of the task (Bachmann & Nagarajan, 2024)).

A growing body of literature attempts to improve the planning and reasoning capabilities of language
models through prompt-based strategies, allowing them to perform chain-of-thought reasoning, self-
correction, and planning with symbolic search algorithms (Wei et al.,|2022;|Wang et al., 2023} |Shinn
et al.|[2023}Yao et al.}|2023)). While these methods are successful in certain tasks, they have inherent
limitations. They only assist the model during inference without updating its internal weights, which
significantly constrains performance to that of the base model. Moreover, their success heavily relies
on the quality of prompt design, and a poorly constructed prompt sometimes degrades performance
(Huang et al.| 2024)).

To address these limitations, recent studies have shifted toward directly improving the planning and
reasoning abilities of language models during the training phase (Lehnert et al.|[2024; Gandhi et al.|
2024). This approach, known as stream of search (SoS), involves training a model to predict search
trajectories that encompass the entire decision-making process of finding solutions through trial and
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Figure 1: An overview of GSoS. It generates augmented trajectories by incorporating optimal paths
into the self-generation process of the SoS model, achieving high accuracy and generalizability. The
numbers indicate the order in which nodes are explored.

error, including exploration and backtracking when encountering failures. These studies have shown
that models trained on search trajectories, despite being noisy and even suboptimal, achieve superior
generalization performance to those trained to imitate optimal action sequences via behavior cloning
(BC) (Ross et al.,2011). They have also demonstrated that fine-tuning on self-generated data further
improves the search and planning capabilities of the models to some extent. However, this leads to a
critical question: if models trained on search trajectories perform better, does this imply that optimal
solutions are unnecessary? Optimal action sequences can serve as valuable landmarks, or subgoals,
within the search process, guiding the model toward more effective search strategies. However, prior
studies have underexplored the role of optimal solutions, focusing exclusively on fully self-generated
data to improve the model, which is inherently limited.

In this work, we explore how optimal solutions can be leveraged to enhance the search and planning
abilities of language models pre-trained on search trajectories. We observe that the pre-trained model
successfully discovers solutions by searching when prompted with partial optimal solutions as hints,
even when these solutions are unseen during pre-training. While this guidance produces high-quality
data for supervised fine-tuning, it often has a low likelihood under the pre-trained model, potentially
causing negative effects on the model’s search and planning capabilities. To address this problem, we
propose guided stream of search (GSoS), which seamlessly incorporates optimal solutions to direct
the self-generation process and produces trajectories that have both high quality and likelihood. The
key idea of GSoS is to integrate each intermediate action from the optimal solution into the trajectory
in a step-by-step manner using unsuccessful search traces as contexts, as illustrated in Figure[T] We
then fine-tune the pre-trained model to predict these augmented trajectories.

We evaluate our approach on Countdown (Gandhi et al.|[2024), a mathematical reasoning benchmark
that requires complex search and planning. Notably, our approach achieves an accuracy gain of 13%
compared to the pre-trained model. When further applying RL fine-tuning tailored to handle the long
contexts of search trajectories, this improvement increases to 20%, substantially outperforming both
supervised and RL fine-tuned baselines. In contrast, standard supervised fine-tuning methods, which
rely solely on self-generated data, do not benefit from RL fine-tuning. We conduct a comprehensive
analysis of how unsuccessful search trajectories play an important role in generating trajectories with
both high quality and likelihood. Moreover, we demonstrate that our approach is more effective than
leveraging optimal solutions as subgoal rewards during RL fine-tuning (Lightman et al., [2023).

2 PRELIMINARIES

2.1 PROBLEM SETUP

In this paper, we consider a sequential decision-making problem derived from the program synthesis
literature, which requires strong search and planning abilities (Devlin et al., [2017}|Shi1 et al., [2024)).
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Each instance of this problem is defined as a tuple = (I, O), where I denotes the input state and O
denotes the output state. We are given a set of operations P, where each operation P € P maps one
state to another, producing an intermediate state. There exists an optimal sequence of operations §j =
(P1, Py, ..., Py) that transforms the input state into the output state, i.e., § = Py o---0Py0 Pi(x).
Given a training set D, our goal is to train a model fy to generate optimal solutions for a test set.

2.2 STREAM OF SEARCH

One straightforward approach to this problem is to apply imitation learning through BC (Ross et al.,
2011])), which trains the model to directly predict optimal solutions from input-output pairs. However,
prior studies have demonstrated that BC struggles to generalize to unseen test examples (Yang et al.|
2022; Lehnert et al.| 2024; \Gandhi et al.| [2024]).

To address this, SoS introduces an approach that leverages the search process rather than the optimal
solution (Gandhi et al.; 2024])). This method reformulates the problem as a tree search, navigating the
search tree through trial and error with operations until the solution is reached. Each node in the tree
represents a state, and each edge represents an operation between two states. SoS expresses primitive
operations for the tree search in language, including node generation, exploration, backtracking, and
verification. It then generates search trajectories using symbolic search algorithms, including depth-
first search (DFS) and breadth-first search (BFS), representing them as sequences of tokens. Finally,
it trains a language model to predict these trajectories from input-output pairs used as prompts:

meax IE:mND,ymsymbolic(m) UOg fG (y | :L')] .

Note that the SoS model is not specifically designed to find solutions, as symbolic search algorithms
may produces suboptimal trajectories with a limited search budget. See Appendix[Alfor more details.

2.3 SUPERVISED FINE-TUNING

The pre-trained language model, not originally designed for particular tasks, requires alignment with
a downstream task to enhance its performance. One approach to achieving this alignment is to apply
supervised fine-tuning with self-generated data, referred to as self-taught reasoner (STaR) (Zelikman
et al.}[2022; Gulcehre et al.,2023). This method generates trajectories using the model from prompts
and filters them based on a task-specific metric M that evaluates quality. It then fine-tunes the model
to predict these filtered trajectories:

mGaXExN’D,wag(-h:) []1 [M<y | LL’) > T] : IOg f@(y | .%')} ) (1)

where 7 is the threshold that controls the ratio of filtered trajectories. This process can be performed
iteratively to further refine the model.

2.4 REINFORCEMENT LEARNING FINE-TUNING

Another approach to aligning the pre-trained language model is to perform RL fine-tuning (Stiennon
et al.,|2020;|Ouyang et al.,|2022)). This method uses the model as a policy 7y and fine-tunes the policy
to maximize a task-specific reward R, while minimizing the KL divergence from the reference policy
Tref- The problem is formulated as a token-level finite-horizon Markov decision process (MDP). The
state space S is the set of all possible token sequences, and the action space A is the set of all tokens.
The initial state sg € D is a randomly sampled prompt. Each state s;, € S is the concatenation of the
prompts and the previously generated tokens, with the transition function p : S x A — S appending
the action a;, € A to the state. Given a trajectory generated by the policy with horizon H € Z*, the
policy is trained to optimize the following objective:
H
m@ax ESOND,(Sh,,ah)NWe('lso) Z R(Shv a’h) - B (log o (ah ‘ Sh) —log 7Tlfef(a’h | Sh)) >

h=0
where 5 > 0 is the coefficient that controls the influence of the KL divergence. Typically, the reward
is provided at the end of the trajectory.

A common algorithm for training this policy is proximal policy optimization (PPO) (Schulman et al.,
2017). This method optimizes the policy using the clipped surrogate objective, which is designed to
limit policy changes. Simultaneously, it trains a value function V;: S — R to predict the multi-step
returns computed by the generalized advantage estimator (GAE) (Schulman et al., [2016)).
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2.5 COUNTDOWN BENCHMARK

To evaluate the search and planning abilities of language models, we use Countdown as a benchmark
(Gandhi et al.,[2024). Each problem consists of input numbers and a target number, where the goal
is to transform the inputs into the target using the four basic arithmetic operations. This problem has
a high branching factor of O(k?) in the search tree, where k is the number of remaining inputs. To
ensure a tractable level of difficulty, we set the number of initial inputs to 4, following the setup in
Gandhi et al.|(2024). See Appendix B for more details on Countdown.

3 METHODS

3.1 MOTIVATION

Gandhi et al.|(2024) show that training a language model using noisy, suboptimal search trajectories
leads to better generalization compared to clean, optimal solutions. That said, optimal solutions can
still offer valuable guidance during generation. If the SoS model has the ability to continue the search
from arbitrary incomplete trajectories, we can leverage this to generate high-quality trajectories. By
providing the model with partial optimal solutions alongside the prompts as hints, we can guide it to
continue the search within a reduced search space, increasing the probability of finding a solution.

To examine whether the SoS model possesses this ability, we conduct an experiment on Countdown.
For each problem with an optimal solution of N operations, we define the partial optimal path as the
trajectory generated by applying the first n operations in the search tree. We then append this path to
the initial prompt. Finally, we generate search trajectories using the SoS model from these modified
prompts and evaluate correctness. Table[I|shows the ratio of successful trajectories with varying the
length of partial optimal solutions for 200,000 training problems. The model successfully discovers
solutions starting from these paths, despite not having encountered them during training. Moreover,
increasing their length greatly improves the correctness of the resulting trajectories. This encourages
us to use these high-quality, self-generated data for supervised fine-tuning, distilling the knowledge
of optimal solutions into the model.

However, this guidance results in low likelihood under the model. Table[T]presents the cross-entropy
loss of the trajectories, showing that using longer partial optimal paths results in higher loss values.
Fine-tuning on these trajectories may lead to significant changes in the model’s weights, potentially
degrading its search and planning abilities. Therefore, it is crucial to explore methods for effectively
integrating optimal solutions to produce trajectories that maintain both high likelihood and quality.

Table 1: Ratio and loss of successful SoS trajectories with varying the length of partial optimal paths.
“Length 0” represents no paths are appended, and “Length 3” represents full paths are appended.

Length 0 1 2 3

Ratio (1) 04918 0.7281 0.9211 1.0000
Loss (1) 0.0742 0.1133 02301 0.3509

3.2 GUIDED STREAM OF SEARCH

In this subsection, we introduce guided stream of search (GSoS), a supervised fine-tuning approach
that seamlessly incorporates optimal solutions into the self-generation process and effectively distills
them into the model. The key idea of GSoS is to leverage an unsuccessful search trajectory as context
for each intermediate step of the optimal solution. This approach effectively mimics how the model
discovers the solution through the search procedure, producing a trajectory that has a high likelihood
under the SoS model. Moreover, by providing an exploratory context for reaching each intermediate
step, it facilitates distilling the optimal solutions into the model (Yang et al.| [2022).

Before delving into our approach, we establish some notations. We define subgoal nodes as the non-
leaf nodes along the optimal path in the search tree. An optimal solution consisting of N operations
contains N — 1 subgoal nodes. We define the generation and exploration lines of a node as sequences
of tokens that represent the primitive operations for generating and exploring the node, respectively.
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Step 1
Select a child node from a
subgoal node using a node
selection strategy.

: Subgoal node

: Non-subgoal node
: Selected child node

Step 2

Replace the child node with the
next subgoal node and prune the
trajectory beyond the node.

The generation and exploration lines of

the child node are modified to match
those of the subgoal node.

Step 3

Generate a new trajectory using
the model, starting from the
resulting trajectory as a prompt.

Steps 1 to 3 are repeated until all subgoals
are incorporated into the trajectory.
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Figure 2: An illustration of subgoal augmentation in GSoS. The numbers indicate the order in which
nodes are explored.

Note that while we include the root node as a subgoal node for simplicity, it is always explored prior
to the search since it is already present in the prompt.

GSoS incorporates each subgoal into a trajectory in a progressive manner. Consider an unsuccessful
search trajectory that has reached the (n — 1)-th subgoal but fails to navigate its subtree, thereby not
reaching the n-th subgoal. First, it selects the k-th explored child node from the (n — 1)-th subgoal
node. Subsequently, it replaces this child node with the n-th subgoal node, modifying its generation
and exploration lines within the trajectory. While multiple exploration lines may exist, only the first
one is modified. Finally, it prunes the trajectory beyond the modified exploration line, allowing the
model to restart the search from the subgoal node. An example of the resulting trajectory is provided
in Figure[I2)in Appendix[C|] GSoS uses this trajectory as a prompt to generate a new search trajectory
using the SoS model. This procedure, called subgoal augmentation, is summarized in Figure 2| and
Algorithm T] It is repeated until all subgoals are incorporated into the trajectory.

Algorithm 1 Subgoal augmentation

Require: model fy, search trajectory y, optimal path g, subgoal index n
1: if y has explored the n-th subgoal node of ¢ then
2 return y
3: end if
4: Select an explored child node from the (n — 1)-th subgoal node of g
5: Replace the child node with the n-th subgoal of §
6: Prune y starting from the node
7: Generate a new search trajectory: y < fo(y)
8: return y

Note that the exploration history from the first to the (k—1)-th explored child node is used as context
for the subgoal node, where k determines the size of this context. We consider three node selection
strategies to control the context size and use random node selection as the base strategy:

* First: This strategy selects the first explored child node, providing minimal context.

* Rand: This strategy randomly selects an explored child node, providing varied context.

 Last: This strategy selects the last explored child node, providing maximal context.
Finally, GSoS filters these augmented trajectories using a task-specific metric and fine-tunes the SoS

model on the filtered data, resulting in the GSoS model. Algorithm [2]outlines the overall procedure
of GSoS, encompassing both subgoal augmentation and supervised fine-tuning.
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Figure 3: (Left) Illustration of token-level and operation-level value functions. (Right) An example
of a search trajectory with values computed at newline tokens in the operation-level MDP.

Algorithm 2 Guided stream of search

Require: SoS model fy, prompt x, optimal path ¢, task-specific metric M, threshold 7
1: Initialize the model: fy, < fo
2: fori=1,2,... MAXITER do
3: Generate a search trajectory: y <+ fy, (x)

4: forn=1,2,..., N—1do
5: if M(y | ) > 7 then
6: break

7: end if

8:

Augment the n-th subgoal with Algorithm Yy < AUGMENTSUBGOAL( fy,,y,J,n)
9: end for

10:  Train the model with Equation (T): fy

11: end for

+ TRAIN(fg, z,y, M, T)

i+1

3.3 OPERATION-LEVEL RL FINE-TUNING

Building on the GSoS model, we apply RL fine-tuning to further enhance its performance. However,
this poses challenges since the model generates search trajectories that are much longer than optimal
paths. The extremely long sequences, combined with the sparse rewards given only at the end, hinder
the effective propagation of the reward signal to earlier timesteps, even when multi-step returns with
GAE are used for training the value function.

To address this, we formulate the problem as an operation-level MDP, which significantly reduces its
effective horizon. The action space consists of the primitive operations for tree search defined in SoS,
separated by newline tokens within the trajectory, as shown in Figure 3] The state space includes all
possible operation sequences ending with a newline token. Accordingly, the value function is trained
to predict values exclusively at these newline tokens, as illustrated in Figure[3] This operation-level
approach reduces the effective horizon to less than 5%, facilitating better reward signal propagation.
See Appendix [D]for a more detailed explanation.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Throughout all experiments, we use a GPT-2 architecture with 250M parameters and a context length
of 4096 as the base language model (Radford et al.,[2019). Additionally, we utilize FlashAttention-2
for faster training and inference (Dao, 2024). Although|Gandhi et al.|(2024) employ GPT-Neo as the
base architecture (Gao et al., [2020), we find that using GPT-2 instead results in better performance.
See Appendix for a more detailed comparison.



Under review as a conference paper at ICLR 2025

0.80 Hll Symbolic Il SoS HEE SoS+STaR HEM SoS+PPO GSoS (ours) BN GSoS+PPO (ours)
0.748
0.75 0.733
0.70 0.690
> U 0.672
8 0.651 B
g 065 0.628
<
0.599
0.60 0.587
0.573 0.575
0.55 I I I 0.534
0-50 .

Seen targets Unseen targets

Figure 4: Test accuracy of each method. Each fine-tuning method is evaluated over three runs with
different seeds. Error bars represent the standard deviation relative to the mean.
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For unsupervised pre-training, we create 500,000 training problems and generate search trajectories
using heuristic-guided DFS and BFS. For supervised fine-tuning, we generate trajectories from the
first 200,000 training problems with a temperature of 0.8, filtering them based on their correctness.
We perform this fine-tuning for three iterations, following |Gandhi et al. (2024). For RL fine-tuning,
we generate trajectories from 25,600 randomly sampled training problems with a temperature of 1.0.
We use the same reward function as|Gandhi et al| (2024)), which takes into account both correctness
and efficiency. See Appendices|E.I|to[E.4] for more details.

For evaluation, we follow the procedure outlined in|Gandhi et al|(2024)). We create 10,000 problems
for each of the two test cases: (1) seen targets and (2) unseen targets. We generate trajectories using
greedy decoding and measure accuracy based on their correctness. To evaluate models fine-tuned on
self-generated data, which involves randomness in the data generation process, we run experiments
with three different seeds and measure the mean and standard deviation. See Appendix [E-I|for more
details on the test set.

We compare our methods with the symbolic method, SoS, and the two baseline fine-tuning methods
introduced in|Gandhi et al.| (2024)): (1) SoS+STaR and (2) SoS+PPO. Although|Gandhi et al.| (2024)
employ iterative APA as the base RL algorithm, but this approach necessitates resetting the reference
policy, which introduces additional costs for model selection (Zhu et al., 2023). We find that a single
iteration of PPO outperforms iterative APA. See Appendix [F|for a more detailed comparison. Unless
otherwise specified, we use operation-level PPO for all RL fine-tuning experiments.
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Figure 7: Distributions of losses (left) and token lengths (right) for successful GSoS trajectories at
the final iteration with different node selection strategies.
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Figure 8: (Left) Test accuracy of GSoS+PPO in the token-level and operation-level MDPs. (Right)
Value predictions for initial states of GSoS+PPO in the token-level and operation-level MDPs.

4.2 RESULTS

Figure[d] presents the test accuracy of each method for both seen and unseen targets. Our approaches
outperform the symbolic method and SoS by a substantial margin. Specifically, GSoS+PPO achieves
75% accuracy on seen targets and 73% accuracy on unseen targets, yielding an average gain of over
16% compared to both methods. Furthermore, our approaches significantly outperform the baseline
fine-tuning methods. For supervised fine-tuning, GSoS shows a gain of 7% compared to SoS+STaR.
For RL fine-tuning, GSoS+PPO exhibits a gain of 9% compared to SoS+PPO. It is worth noting that
RL fine-tuning further enhances the performance of GSoS by an additional 6%.

4.3 ANALYSIS OF GSOS NODE SELECTION STRATEGIES

Figure [5] shows the test accuracy of GSoS with different node selection strategies. The random node
selection strategy achieves the highest accuracy for both target types, outperforming the second-best
strategy by 2%. To investigate the effectiveness of random node selection, we analyze the statistics
of trajectories generated by each strategy. Figure[7]displays the distributions of cross-entropy losses
for successful GSoS trajectories at the final iteration, where the losses are calculated on the base SoS
model. Strategies with longer contexts generate trajectories with higher likelihoods under the model
compared to shorter contexts. However, this benefit comes at the cost of lower quality. As shown in
Figure[6] the ratio of successful trajectories decreases as the context length increases. One potential
reason is that longer contexts reduce the number of tokens available for the model to generate within
a given context limit, thereby restricting its opportunities to search. This explanation is supported by
the fact that many of the successful trajectories generated by the last node selection strategy already
approach the context length limit, as presented in Figure[7] In summary, there is an inherent trade-off
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Figure 9: (Left) Test accuracy of SoS+PPO with and without STaR. (Right) KL divergence from the
reference policy of SoS+PPO with and without STaR. SoS+PPO terminates early due to instability.

between quality and likelihood. Nevertheless, the random node selection strategy strikes a balance
between this trade-off.

4.4  ANALYSIS OF OPERATION-LEVEL PPO

To examine the effectiveness of the operation-level action space for RL fine-tuning, we fine-tune the
GSoS model using PPO in the token-level MDP and compare their performance. Figure[§]shows the
test accuracy and value predictions for initial states of GSoS+PPO in the token-level and operation-
level MDPs. Notably, the operation-level approach achieves an accuracy gain of over 2% compared
to the token-level approach for both target types. Moreover, the operation-level value function learns
at a significantly faster rate than the token-level value-function, highlighting the benefits of reducing
the effective horizon for training the value function.

4.5 ANALYSIS OF RL FINE-TUNING ON STAR

In Section[d.2] we find that RL fine-tuning further enhances the performance of GSoS. This raises the
question of whether RL fine-tuning might also benefit SoS+STaR. To explore this, we fine-tune the
SoS+STaR model using PPO and compare their performance. Figure 9] shows the test accuracy and
KL divergence from the reference policy of SoS+PPO with and without STaR. While applying STaR
prior to RL fine-tuning leads to lower KL divergence and improved training stability, its performance
remains similar. In summary, STaR does not provide additional benefits beyond RL fine-tuning. This
highlights the importance of optimal solutions in enhancing performance.

Table 2: Test accuracy of SoS+PPO with and without subgoal reward.

Model Accuracy (seen)  Accuracy (unseen)
SoS+PPO 0.6512 £0.0011  0.6591 4 0.0044
SoS+PPO (subgoal) 0.6597 £+ 0.0011  0.6650 + 0.0018
GSoS+PPO 0.7477 £+ 0.0027  0.7330 + 0.0037

4.6 ANALYSIS OF RL FINE-TUNING WITH SUBGOAL REWARD

Another approach to distilling the information from optimal solutions into the SoS model is to apply
RL fine-tuning with a subgoal reward. Specifically, we train the model using PPO with a new reward
function that combines the original reward and a subgoal reward, which is defined as:

1 if (s, at) explores a subgoal

Rnew(st, at) = R(St7 (lt) + n- Rsub(sta at)7 Rsub(8t7 at) = {0 otherwise

where 1 > 0 controls the influence of the subgoal reward. We set 1) to 0.2 to ensure that the subgoal
reward does not dominate the original reward. To avoid exploitation, the subgoal reward is provided
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only for the initial exploration, which is motivated by Hafner| (2022). Table[2]shows the test accuracy
of SoS+PPO with and without the subgoal reward. Adding the subgoal reward leads to only marginal
improvements, showing an accuracy gain of less than 1% for both target types. This underscores the
critical role of GSoS for distilling optimal solutions to the model.

5 RELATED WORKS

Searching with language models |Yang et al.|(2022) introduce the idea of using search procedure
for sequential decision making. They train a neural network to imitate not only actions generated by
an expert MCTS policy but also the search procedures involved in determining the actions. However,
their approach primarily focuses on utilizing search procedures to enhance imitation learning rather
than improving the search and planning capabilities of the model. Recent studies focus on enhancing
these capabilities using language models. [Lehnert et al.|(2024)) train a TS5 model to imitate A* search
traces and optimize it to generate shorter traces through supervised fine-tuning (Raffel et al., [2020).
Gandhi et al.|(2024) train a GPT-Neo model to imitate DFS and BFS search trajectories and improve
its performance through supervised or RL fine-tuning. Our work differs from these prior studies in
that it utilizes optimal solutions throughout the self-data generation process rather than relying solely
on fully self-generated data.

Fine-tuning on self-generated data |Anthony et al. (2017); Silver et al.|(2017)) introduce the idea
of iteratively distilling self-generated data into neural networks to enhance their performance. They
generate high-quality trajectories using an expert MCTS policy and imitate them to improve a neural
network-based policy. However, their work is restricted to small-scale convolutional neural networks
and the narrow domain of gaming. Recent studies extend this idea to fine-tune language models for
various downstream tasks, including theorem proving, question answering, and machine translation
(Polu et al.| 2022 |[Zelikman et al., [2022; |Gulcehre et al.| 2023)). While Zelikman et al.| (2022)) utilize
optimal solutions as prompts to generate higher-quality data, our approach differs by first generating
trajectories without any prior knowledge of optimal solutions and then integrating optimal solutions
into them. Furthermore, we incorporate each intermediate subgoal of optimal solutions step by step,
in the same spirit as [Lightman et al.| (2023)).

RL fine-tuning with higher-level MDP |Verma et al|(2022)); Zhou et al.[(2024)) address the long-
horizon problem in multi-turn conversation tasks by defining each single-turn utterance as an action.
However, their work focuses exclusively on off-policy RL algorithms. Furthermore, their approaches
require an additional value network for baseline estimation and a target network to improve training
stability. Our work differs from these prior studies by successfully extending the idea of higher-level
MDP to on-policy RL algorithms without introducing any additional networks. Although|Ahmadian
et al.| (2024)) explore sequence-level optimization using REINFORCE (Williams}, [1992), their focus
is limited to tasks with short horizons, where the average generation length is under 100.

6 CONCLUSION

In this work, we explore the role of optimal solutions in enhancing the search and planning abilities
of language models. We identify that optimal solutions can serve as step-by-step subgoals, providing
valuable guidance to models pre-trained on search trajectories. We propose guided stream of search
(GSoS), which seamlessly integrates optimal solutions into the self-generation process step by step,
producing high-quality trajectories for supervised fine-tuning. Our method achieves state-of-the-art
performance on the challenging Countdown benchmark. Furthermore, we find that GSoS possesses
the intriguing property of working in tandem with RL fine-tuning, which is not observed in standard
supervised fine-tuning.

Our work is not without limitations. Transformer models trained on search trajectories face inherent
challenges as they require long context lengths. Given their quadratic memory and time complexity,
this significantly raises the computational demands for both training and inference. This issue can be
further exacerbated as tasks grow more complex and require even longer context lengths. Exploring
the search and planning capabilities of more efficient language models, such as Mamba (Gu & Dao,
2023)), is a promising direction for future work. Alternatively, training a model to implicitly perform
search through knowledge distillation also presents a valuable approach (Deng et al., [2023)).

10
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REPRODUCIBILITY STATEMENT

We provide implementation details in Appendix [E] including model configuration, hyperparameters
for both training and inference, and the modifications made to the code repositories we used.
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Search tree Search trajectory Optimal path
( \ (Current node: vo =, 0,[]) 1 ( Current node: vo=(,0,[D
0 Applying operation: E,, = Py o) Applying operation: E, = Py(I)
/Vo\ Generating node: v, = (E g, O, [Pyp]) —— Generation Generating node: v, o = (Ey, O, [Py])
Applying operation: E, ; = Py (1) Moving to node: v
1 3 Generating node: v = (E , 0, [Py 1) Current node: vy o = (E , O, [Py])
V0.0 / VO,I\ Moving to node: vy, » Exploration | [ Applying operation: Ey g = Pyo(Eg o)
Current node: vy | = (Ey, O, [Py 1) Verifying node: E; 5, = O
4 5 Applying operation: E ; o = Py ; o(Ep 1)
L Y0,1,0 Yo.1.1 ) | Generating node: vy, o = (Eg,1,0, O: [Po,1: Po,1.0)
Verifying node: £, # 0 ———— Verification
Moving to node: vj; ————————— Backtracking
Current node: vy | = (Ey 1, O, [Py 1)
Applying operation: £, , ; = Py 1 (£ )
Generating node: vy, ; = (Ey 1, O, [Py 1, Py 1 11)
Verifying node: £, ; = O
(.

Figure 10: An example of a search tree, its corresponding search trajectory, and an optimal path in
SoS.

A STREAM OF SEARCH

SoS trains a language model to predict search trajectories generated by symbolic search algorithms
(Gandhi et al.,2024). For each problem with the input state I and the output state O, its search tree is
structured with the root node representing the input state, non-root nodes representing intermediate
states, and edges representing operations between nodes. A leaf node is reached when no additional
operations can be applied. Formally, each nodes and edge in the tree are defined as follows:

* Node: Each node v,, at depth d, where o = (i1, 42, . .., iq), represents a sequence of d — 1
operations and the resulting intermediate states, along with the output state.

* Edge: Each edge e, , represents an operation that maps the node v to the node v'.
SoS defines the following primitive operations for symbolic search algorithms in langauge:

» Generation: Given a node v, at depth d, this action generates the 74 1-th child node v,
at depth d + 1 by applying an operation, where o' = (v, i441)-

» Exploration: Given a node v,, at depth d, this action transitions to the previously generated
ig+1-th child node v, at depth d + 1, where o = (o, ig+1).

» Backtracking: Given a node v, at depth d, if exploring its child nodes is unlikely to yield
a solution, this action transitions to a previously generated node v, at depth d’.

* Verification: Given a leaf node v,, at depth D, where no further operations can be applied,
this action verifies whether the node represents the solution.

Finally, it generates search trajectories using diverse symbolic search algorithms. Since all primitive
operations are expressed in language, search trajectories are also represented in language. Figure[I0]
illustrates an example of a search tree and its corresponding search trajectory. Note that an optimal
solution can be represented as a path in a search tree.

One major challenge in training language models on these search trajectories is their context length.
Symbolic search algorithms can generate excessively long search trajectories via exhaustive search.
However, language models, such as Transformers (Vaswani et al.,[2017), have a fixed context length,
preventing them from capturing or learning from sequences beyond this length. To address this, SoS
uses heuristic-guided search algorithms to generate shorter search trajectories, albeit with reduction
in performance. See Appendix for more details on these algorithms.

B COUNTDOWN BENCHMARK

Each problem begins with K input numbers and a target number, all of which are integers. The input
numbers are either 1-digit or 2-digit, whereas the target number is 2-digit. Arithmetic operations are
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Symbolic search trajectory

I Current State: 25:[56, 58, 15, 8], Operations: []
> Exploring Operation: 58-56=2, Resulting Numbers: [15, 8, 2]

3 Generated Node #0,0: 25:[15, 8, 2] Operation: 58-56=2

4 Moving to Node #0,0

5 Current State: 25:[15, 8, 2], Operations: [’58-56=2"]

6 Exploring Operation: 8%2=16, Resulting Numbers: [15, 16]

7 Generated Node #0,0,0: 25:[15, 16] Operation: 8x2=16

8§ Moving to Node #0,0,0

9 Current State: 25:[15, 16], Operations: [’/58-56=2", ’8%2=16"]
10 Exploring Operation: 15+16=31, Resulting Numbers: [31]

1 31,25 unequal: No Solution

12 Moving to Node #0,0,0

1 Current State: 25:[15, 16], Operations: [’58-56=2', ’"8x2=16"']
14 Exploring Operation: 16-15=1, Resulting Numbers: [1]

15 1,25 unequal: No Solution
1

1

1

1

PR TCR S

Moving to Node #0,0

Current State: 25:[15, 8, 2], Operations: [’58-56=2"]
Exploring Operation: 15x2=30, Resulting Numbers: [8, 30]

9 Generated Node #0,0,1: 25:[8, 30] Operation: 15x2=30

0 Moving to Node #0,0,1

21 Current State: 25:[8, 30], Operations: [’58-56=2", 715%2=30"]
22 Exploring Operation: 30-8=22, Resulting Numbers: [22]

23 22,25 unequal: No Solution

24 Moving to Node #0,0,1

25 Current State: 25:[8, 30], Operations: [’58-56=2", ’15%2=30"]
26 Exploring Operation: 8+30=38, Resulting Numbers: [38]

27 38,25 unequal: No Solution

28 Moving to Node #0,0

29 Current State: 25:[15, 8, 2], Operations: [’/58-56=2"]

30 Exploring Operation: 15+8=23, Resulting Numbers: [2, 23]

31 Generated Node #0,0,2: 25:[2, 23] Operation: 15+8=23

32 Moving to Node #0,0,2

33 Current State: 25:[2, 23], Operations: [’58-56=2', ’15+8=23"]
34 Exploring Operation: 2+23=25, Resulting Numbers: [25]

35 25,25 equal: Goal Reached

©

Figure 11: An example of a search trajectory generated by a symbolic algorithm on Countdown.

limited to those yielding non-negative integers. Specifically, subtraction is restricted to cases where
the larger number is subtracted from the smaller number. Similarly, division is only permitted when
there is no remainder. Since all operations are binary, the number of inputs decreases by 1 after each
operation, resulting in a search tree of depth K — 1. Figure[TT]illustrates an example of a Countdown
problem and its search trajectory generated by a symbolic search algorithm.

C GUIDED STREAM OF SEARCH

Figure [I2]illustrates a trajectory generated by subgoal augmentation in GSoS on Countdown. Given
the root node, the child node of index (0, 1) is selected and replaced with the second subgoal node.
This involves modifying the operation and resulting numbers within the generation and exploration
lines of the child node to match those of the subgoal node. Finally, all lines beyond the exploration
line are truncated. The resulting trajectory is fed into the model to restart the search from the subgoal
node. This process is repeated if the model fails to explore the next subgoal.
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Search trajectory Optimal path

rCurrent State: 26:[84, 2, 14, 15], Operations: [| ) (Current State: 26:[84, 2, 14, 15], Operations: | )
Exploring Operation: 84/14=6, Resulting Numbers: [2, 15, 6] Exploring Operation: 14+15=29, Resulting Numbers: [84, 2, 29]
Generated Node #0,0: 26:[2, 15, 6] Operation: 84/14=6 Generated Node #0,0: 26:[84, 2, 29] Operation: 14+15=29

Exploring Operation: 84/2=42, Resulting Numbers: [14, 15, 42] Moving to Node #0,0 L— Generation
Generated Node #0,1: 26:[14, 15, 42] Operation: 84/2=42 Current State: 26:[84, 2, 29], Operations: ['14+15=29'] —Exploration
Moving to Node #0,0 I—bGeneration Exploring Operation: 2*29=58, Resulting Numbers: [84, 58]

Current State: 26:[2, 15, 6], Operations: ['84/14=6'] Generated Node #0,0,0: 26:[84, 58] Operation: 2*29=58

Exploring Operation: 2*6=12, Resulting Numbers: [15, 12] Exploring Operation: 84-58=26, Resulting Numbers: [26]

Generated Node #0,0,0: 26:[15, 12] Operation: 2*6=12 26,26 equal: Goal Reached

Exploring Operation: 15+6=21, Resulting Numbers: [2, 21] - J
Generated Node #0,0,1: 26:[2, 21] Operation: 15+6=21 Subgoal-augmented trajectory

Moving to Node #0,1 - - ~\
Current State: 26:[14, 15, 42], Operations: ['84/2=42'| — Exploration| | Current State: 26:[84, 2, 14, 15], Operations: []

Exploring Operation: 42-14=28, Resulting Numbers: [15, 28] Exploring Operation: 84/14=6, Resulting Numbers: [2, 15, 6]

Generated Node #0,1,0: 26:[15, 28] Operation: 42-14=28 Generated Node #0,0: 26:[2, 15, 6] Operation: 84/14=6

Generated Node #0,1,0: 26:[15, 28] Operation: 42-14=28 Exploring Operation: 14+15=29, Resulting Numbers: [84, 2, 29]
Exploring Operation: 42-15=27, Resulting Numbers: [14, 27] Generated Node #0,1: 26:[84, 2, 29] Operation: 14+15=29

Generated Node #0,1,1: 26:[14, 27] Operation: 42-15=27 Moving to Node #0,0 L— Generation
Moving to Node #0,0,1 Current State: 26:[2, 15, 6], Operations: ['84/14=6']

Current State: 26:[2, 21], Operations: ['84/14=6', '15+6=21'] Exploring Operation: 2*6=12, Resulting Numbers: [15, 12]

Exploring Operation: 21-2=19, Resulting Numbers: [19] Generated Node #0,0,0: 26:[15, 12] Operation: 2*6=12

19,26 unequal: No Solution Exploring Operation: 15+6=21, Resulting Numbers: [2, 21]

Exploring Operation: 2+21=23, Resulting Numbers: [23] Generated Node #0,0,1: 26:[2, 21] Operation: 15+6=21

23,26 unequal: No Solution Moving to Node #0,1

\Current State: 26:[84, 2, 29], Operations: [‘T4+15:29‘]—>Explorati0nJ

\_ J

Figure 12: An example of a trajectory generated by subgoal augmentation in GSoS on Countdown.
It modifies the generation and exploration lines of a selected child node to match those of the subgoal
node, resulting in a new node.

D OPERATION-LEVEL RL FINE-TUNING

Before delving into operation-level RL fine-tuning, we first explain how RL fine-tuning is performed
using PPO in the token-level MDP. Starting from the initial state sq, the policy generates a trajectory
(s0,a0, 81,01, ...,Sm) up to the horizon H by sampling a token as an action and appending it to the
current state at each timestep. The policy 7y and value function V; are then trained on this trajectory
using the following objectives:

. mo(an | Sn) 7 . ( mo(an | Sn) ) ; )}
max By b (s, ap)eom, |Min | —————Ap clip| ————,1—¢,14+¢ ] A , (2)
o oo Pl { <wem<ah B o (an | 1) "

. 1 N 2
Hgn ESOND,(Sh,ah,)NWe |:2 (V¢(Sh> - (At + Voo (Sh))) :| . 3)
Here, mg,,, and V3, are the policy and value function immediately prior to the update, and Ais the
advantage compute by GAE, which is defined as
H
Ay = (NS, 6 =+ Vi(sn1) = Viplsn)- )
h'=h

In the operation-level MDP, each action ay, is defined as a sequence of tokens (ap 1,an.2, ..., an1),
with the last token being a newline token. Consequently, each state sy, is defined as the concatenation
of the initial state and previously generated actions, with the last token being a newline token. In this
MDP, calculating the advantage and multi-step return is straightforward: simply forward the state to
the value function and apply Equation (@). The action probability is calculated by factorizing it over
the sequence of tokens:

T
mo(an | sp) = Hﬂe(ah,t | Ghe—1,--.,0n1,5h)-
t=1
Finally, the policy and value function are trained to optimize Equations (2) and (3).

E IMPLEMENTATION DETAILS

E.1 DATASET

We construct the dataset following the procedure outlined in|Gandhi et al.| (2024])). First, we split the
set of target numbers into 90% for training and 10% for testing. We create 500,000 training problems
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Incorrect BFS trajectory

I Current State: 22:[35, 15, 66, 61], Operations: []
> Exploring Operation: 66-61=5, Resulting Numbers: [35, 15, 5]

3 Generated Node #0,0: 22:[35, 15, 5] Operation: 66-61=5

4 Moving to Node #0,0

5 Current State: 22:[35, 15, 5], Operations: [’'66-61=5"]

6 Exploring Operation: 35-15=20, Resulting Numbers: [5, 20]

7 Generated Node #0,0,0: 22:[5, 20] Operation: 35-15=20

8§ Moving to Node #0,0,0

9 Current State: 22:[5, 20], Operations: [’66-61=5", ’35-15=20"]

10 Exploring Operation: 20/5=4, Resulting Numbers: [4]

11 4,22 unequal: No Solution

12 Moving to Node #0,0,0,0

13 Current State: 22:[4], Operations: [’/66-61=5", ’35-15=20', ’20/5=4"]
14 No solution found.

Figure 13: An example of an incorrect BFS trajectory with redundant exploration to leaf nodes.

Incorrect optimal path

I Current State: 18:[28, 23, 28, 14], Operations: []

> Exploring Operation: 28x23=644, Resulting Numbers: [14, 644]
3 Generated Node #2: 18:[14, 644] Operation: 28x23=644

4 Current State: 18:[14, 644], Operations: ['28%23=644"']

5 Exploring Operation: 644/14=46, Resulting Numbers: [46]

6 46,18 equal: Goal Reached

7 Exploring Operation: 46-28=18, Resulting Numbers: [18]

8 18,18 equal: Goal Reached

Figure 14: An example of an incorrect optimal path with improper handling of duplicates.

from the training target numbers and generate search trajectories using two types of heuristic-guided
symbolic search algorithms:

» DFS: This algorithm explores nodes in increasing order of heuristic values in a depth-first
manner, visiting only those with heuristic values below the target number.

* BFS-b: This algorithm explores nodes in increasing order of heuristic values in a breadth-
first manner, visiting only the b child nodes with the smallest heuristic values for each node.
The breadth limit b is chosen from 1 to 5.

We employ two types of heuristic functions in conjunction with these search algorithms:

* Sum: This heuristic calculates the sum of the differences between each input number and
the target number.

* Multiply: This heuristic calculates the sum of the smallest difference between each input
number and a factor of the target number.

Finally, we create 10,000 test problems for each of two different target types:

* Seen: These problems use the same target numbers as in the training data but with different
input numbers.

* Unseen: These problems use the held-out target numbers for testing.

For constructing the dataset, we use the official code provided by|[Gandhi et al.|(2024). However, we
identify several critical issues in the original implementation and make the following modifications:
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* The original code includes lines for exploring leaf nodes in BFS trajectories but omits them
in DFS trajectories (lines 12-13 in Figure[I3). Exploring leaf nodes is unnecessary because
they are evaluated right after generation (lines 10-11 in Figure[I3). We modify the code to
eliminate this redundancy and ensure consistency with the DES trajectories.

* The original code erroneously generates optimal paths when the input contains duplicates,
removing all instances of a duplicate from the input even if only one is needed for arithmetic
operations (line 2 in Figure[T4). We modify the code to correctly handle duplicates.

E.2 UNSUPERVISED PRE-TRAINING

For unsupervised pre-training, we use the official code provided by |Gandhi et al.| (2024). However,
we find that replacing the architecture from GPT-Neo to GPT-2, while maintaining the same number
of parameters, improves performance in both validation loss and test accuracy, as shown in Figure|[I3]
and Table[3] Therefore, we choose GPT-2 over GPT-Neo as the base architecture. The configuration
for GPT-2 is provided in Table [d] We use the same hyperparameter settings as in the original paper,
with the specific values provided in Table [5]

Table 3: Test accuracy of unsupervised pre-trained SoS models using GPT-Neo and GPT-2.

Architecture  Accuracy (seen) Accuracy (unseen)

GPT-Neo 0.5350 0.4988
GPT-2 0.5747 0.5342

Table 4: Configuration for GPT-2.

Attribute Value
Embedding size 1024
The number of heads 16
The number of layers 16
Context length 4096
Attention dropout rate 0.1
Embedding dropout rate 0.1
Residual dropout rate 0.1
Data type Bfloatl6

Attention implementation  FlashAttention-2

Table 5: Hyperparameters for unsupervised pre-training.

Hyperparameter Value
The number of steps 50,000
Batch size 96
Gradient accumulation steps 1
Optimizer AdamW
Learning rate le-5
Scheduler Cosine
Adam momentum [0.9, 0.999]
Weight decay 0.01
Max gradient norm 1.0

E.3 SUPERVISED FINE-TUNING

For supervised fine-tuning, we also use the official code provided by (Gandhi et al.|(2024)). We keep
the same hyperparameter settings for data generation and training as in the original paper, with the
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Figure 15: Validation loss of unsupervised pre-trained SoS models using GPT-Neo and GPT-2 for
seen targets (left) and unseen targets (right).

specific values provided in Tables [f] and [7] However, we make a key modification to the number of
problems used for data generation. In the original paper, the number of problems varies to ensure
the final dataset contains 100,000 successful trajectories, leading to inconsistencies in the utilization
of training data. To address this issue, we fix the number of problems to 200,000.

Table 6: Hyperparameters for supervised fine-tuning data generation.

Hyperparameter Value
The number of iterations 3
The number of problems 200,000

Temperature 0.8

Table 7: Hyperparameters for supervised fine-tuning.

Hyperparameter Value
The number of steps 20,000
Batch size 96
Gradient accumulation steps 1
Optimizer AdamW
Learning rate le-5
Scheduler Cosine
Adam momentum [0.9, 0.999]
Weight decay 0.01
Max gradient norm 1.0

E.4 RL FINE-TUNING

For RL fine-tuning, we implement PPO based on TRIL (Chang et al., [2023)), a library that supports
distributed RL training with transformers using Hugging Face Accelerate and Microsoft Deepspeed
(Gugger et al.| 2022} Rasley et al., 2020). However, we identify several critical issues in the original
implementation and make the following modifications:

* The original code always passes a gradient accumulation step of 1 to the Deepspeed plugin,
ignoring the intended setting. We modify the code to pass the correct value.

* The original code uses separate networks for the policy and value function but updates both
networks simultaneously using a single optimizer. This hinders the gradient clipping, as the
larger gradient overshadows the smaller gradient. We modify the code to employ separate
optimizers, preventing the interference between the networks during the gradient clipping.
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The hyperparameter values for RL fine-tuning are provided in Table[8] Most of the hyperparameters
are derived from the default settings of TRIL, except for the learning rate and KL coefficient.

Table 8: Hyperparameters for RL fine-tuning.

Hyperparameter Value
The number of epochs 200
The number of rollouts per epoch 128
Temperature 1.0
The number of PPO epochs 4
Batch size 32
Gradient accumulation steps 4
Discount factor 1.0
GAE lambda 0.95
Advantage whitening False
Optimizer AdamW
Learning rate le-7
Scheduler Constant
Adam momentum [0.9, 0.999]
Weight decay 0.01
Max gradient norm 1.0
KL controller Constant
KL coefficient 0.01

E.5 COMPUTATIONAL RESOURCES

We conduct all experiments on an internal HPC cluster, with each node consisting of 2 AMD EPYC
7402 CPUs and 750GB of RAM, using the PyTorch deep learning framework (Paszke et al.,2019).
For supervised pre-training and fine-tuning, we utilize 4 NVIDIA A100 GPUs (80GB VRAM each).
For RL fine-tuning, we utilize 4 NVIDIA RTX 3090 GPUs (24GB VRAM each). For inference, we
utilize a single NVIDIA RTX 3090 GPU.

F COMPARISON OF ITERATIVE APA WITH PPO

Gandbhi et al.|(2024) adopt iterative APA for RL fine-tuning instead of PPO. In this approach, a policy
is fine-tuned using APA over multiple iterations, with the best-performing policy from each iteration
serving as the reference for the subsequent iteration. However, this method can be cumbersome, as
it requires periodically saving and evaluating checkpoints to determine the best-performing policy.

We observe that a single iteration of PPO achieves better performance than iterative APA with fewer
rollouts, as shown in Table[9] Notably, SoS+PPO in the operation-level MDP outperforms iterative
APA, with an accuracy gain of 4% for both seen and unseen targets. For a fair comparison, we train
the SoS model using the same dataset and architecture as in the original paper. Therefore, we choose
operation-level PPO over iterative APA as the base RL algorithm.

Table 9: Test accuracy of RL fine-tuned models using GPT-Neo. The results of SoS+Iterative APA
are replicated from the original paper.

Model #rollouts Accuracy (seen) Accuracy (unseen)
SoS - 0.5040 0.4844
SoS+Iterative APA 64,000 0.5652 0.5423
SoS+PPO (token) 25,600 0.5626 0.5467
SoS+PPO (operation) 25,600 0.6015 0.5984
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