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ABSTRACT

We address private deep offline reinforcement learning (RL), where the goal is to
train a policy on standard control tasks that is differentially private (DP) with respect
to individual trajectories in the dataset. To achieve this, we introduce PRIMORL, a
model-based RL algorithm with formal differential privacy guarantees. PRIMORL
first learns an ensemble of trajectory-level DP models of the environment from
offline data. It then optimizes a policy on the penalized private model, without any
further interaction with the system or access to the dataset. In addition to offering
strong theoretical foundations, we demonstrate empirically that PRIMORL enables
the training of private RL agents on offline continuous control tasks with deep
function approximations, whereas current methods are limited to simpler tabular
and linear Markov Decision Processes (MDPs). We furthermore outline the trade-
offs involved in achieving privacy in this setting.

1 INTRODUCTION

Despite Reinforcement Learning’s (RL) notable advancements in various tasks, there have been
many obstacles to its adoption for the control of real systems in the industry. In particular, online
interaction with the system may be impractical or hazardous in real-world scenarios. Offline RL
(Levine et al., 2020) refers to the set of methods enabling the training of control agents from static
datasets. While this paradigm shows promise for real-world applications, its deployment is not
without concerns. Many studies have warned of the risk of privacy leakage when deploying machine
learning models, as these models can memorize part of the training data. For instance, Rigaki &
Garcia (2020) review the proliferation of sophisticated privacy attacks. Of the various attack types,
membership inference attacks (MIAs) (Shokri et al., 2017) stand out as the most prevalent. In these
attacks, the adversary, with access to a black-box model trainer, attempts to predict whether a specific
data point was part of the model’s training data. Unfortunately, RL is no exception to these threats.
In recent work, Gomrokchi et al. (2023) exploit the temporal correlation of RL samples to perform
powerful membership inference attacks using convolutional neural classifiers. More precisely, they
demonstrate that given access to the output policy, an adversary can learn to infer the presence of a
specific trajectory — which is the result of a sequence of interactions between a user and the system
— in the training dataset with great accuracy. The threat of powerful MIAs is particularly concerning
in reinforcement learning, where a trajectory can unveil sensitive user information. For instance,
when using RL to train autonomous vehicles (Kiran et al., 2022), we need to collect a large number of
trips that may disclose locations and driving habits. Similarly, a browsing journey collected to train a
personalized recommendation engine may contain sensitive information about the user’s behavior
(Zheng et al., 2018). In healthcare, RL’s potential for personalized treatment recommendation (Liu
et al., 2022) underscores the need to safeguard patients’ treatment and health history.

A large body of work has focused on protecting against privacy leakages in machine learning.
Differential Privacy (DP), which allows learning models without exposing sensitive information
about any particular user in the training dataset, has emerged as the gold standard. While successfully
applied in various domains, such as neural network training (Abadi et al., 2016) and multi-armed
bandits (Tossou & Dimitrakakis, 2016), extending differential privacy to reinforcement learning
poses challenges. In particular, the many ways of collecting data and the correlated nature of training
samples resulting from online interactions make it difficult to come up with a universal and meaningful
DP definition in this setting, despite several attempts such as local and joint DP. In addition to its
practical significance, the offline RL setting arguably offers a more natural framework for privacy
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compared to the classic online setting. An offline RL method can indeed be seen as a black-box
randomized algorithm h taking in as input a fixed dataset D, partitioned in trajectories, and outputting
a policy π̂. An adversary with access to π̂ may successfully learn to infer the membership of a specific
trajectory in D, which can, as emphasized before, reveal sensitive user information. Hence, similarly
to Qiao & Wang (2023a), we use the following informal DP definition for offline RL, which we refer
to as trajectory-level differential privacy (TDP): adding or removing a single trajectory from the input
dataset of an offline RL algorithm must not impact significantly the distribution of the output policy.

While reinforcement learning encounters the same privacy challenges as other areas of machine
learning, no existing work has proposed a private RL method that matches the versatility, scalability,
and empirical effectiveness of DP-SGD (Abadi et al., 2016) for supervised learning. Indeed, existing
research largely remains theoretical and demonstrates limited practical applicability. In the online
setting, numerous private algorithms have been developed (e.g., Vietri et al. (2020), Garcelon et al.
(2021), Qiao & Wang (2023b)) but their scope remains restricted to tabular and linear Markov
Decision Processes (MDPs) with finite horizon. Qiao & Wang (2023a) have proposed the first private
algorithms for offline RL, building on value iteration methods, but they present similar limitations.
These approaches cannot intrinsically scale to the problems typically encountered in deep RL, leaving
a huge gap between the current private RL literature and real-world applications. This work addresses
this gap by introducing the first deep RL method with provable privacy guarantees. In contrast to
previous work, our method is applicable to general MDPs with continuous state and action spaces
and deals with the classic γ-discounted setting, paving the way for enhanced applications of private
RL in complex, risk-sensitive scenarios.

Contributions. While the current differentially private RL literature is mainly theoretical and has
limited practical relevance, this work is the first attempt to tackle deep RL problems with differential
privacy guarantees. Specifically, we address the offline setting under the well-founded concept
of trajectory-level privacy, and introduce a model-based approach named PRIMORL. Protecting
entire trajectories, rather than individual examples, precludes the use of vanilla optimizers such
as DP-SGD. Additionally, the standard approach of using bootstrap ensembles to handle model
uncertainty presents an extra challenge in the private setting, as the ensemble size directly impacts
the privacy budget. A key contribution of this work is therefore the introduction of a training method
for model ensembles that ensures differential privacy at the trajectory level and effectively controls
the privacy budget. We also provide a theoretical analysis of how private training influences model
reliability. We then perform policy optimization under the resulting pessimistic private model and
prove the formal privacy guarantees of the resulting policy. We show empirically that PRIMORL can
train private policies with competitive privacy-performance trade-offs on standard continuous control
benchmarks, demonstrating the potential of our approach.

2 RELATED WORK

Offline RL (Levine et al., 2020; Prudencio et al., 2022) focuses on training agents without further
interactions with the system, making it essential in scenarios where data collection is impractical
(Singh et al., 2022; Liu et al., 2020; Kiran et al., 2022). Model-based RL (Moerland et al., 2023)
can further reduce costs or safety risks by using a learned environment model to simulate beyond
the collected data and improve sample efficiency (Chua et al., 2018). Argenson & Dulac-Arnold
(2021) demonstrate that model-based offline planning, where the model is trained on a static dataset,
performs well in robotic tasks. However, offline RL faces challenges like distribution shift (Fujimoto
et al., 2019), where the limited coverage of the dataset can lead to inaccuracies in unexplored state-
action regions, affecting performance. Methods like MOPO (Yu et al., 2020), MOREL (Kidambi
et al., 2020), and COUNT-MORL (Kim & Oh, 2023) address this by penalizing rewards based on
model uncertainty, achieving strong results on offline benchmarks. Still, key design choices in offline
MBRL require further exploration, as highlighted by Lu et al. (2022).

On the other hand, Differential Privacy (DP), established by Dwork (2006), has become the standard
for privacy protection. Recent research has focused on improving the privacy-utility trade-off, with
relaxations of DP and advanced composition tools enabling tighter privacy analyses (Dwork et al.,
2010; Dwork & Rothblum, 2016; Bun & Steinke, 2016; Mironov, 2017a). Notably, DP-SGD (Abadi
et al., 2016) has facilitated the development of private deep learning algorithms, despite ongoing
practical challenges (Ponomareva et al., 2023). Concurrently, sophisticated attack strategies have
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underscored the necessity for robust DP algorithms (Rigaki & Garcia, 2020). Recent studies have
shown that reinforcement learning (RL) is also vulnerable to privacy threats (Pan et al., 2019; Prakash
et al., 2022; Gomrokchi et al., 2023). As RL is increasingly applied in personalized services (den
Hengst et al., 2020), the need for privacy-preserving training techniques is critical. Although DP
has been successfully extended to multi-armed bandits (Tossou & Dimitrakakis, 2016; Basu et al.,
2019), existing RL algorithms (e.g., Vietri et al. (2020), Zhou (2022), Qiao & Wang (2023b)) with
formal DP guarantees mainly apply to episodic tabular or linear MDPs and lack empirical validation
beyond basic simulations. Moreover, private offline RL remains underexplored. Only Qiao & Wang
(2023a) have proposed DP offline algorithms, which, while theoretically strong, are also restricted to
finite-horizon tabular and linear MDPs. Consequently, no existing work has introduced DP methods
that can handle deep RL environments in the infinite-horizon discounted setting, a critical step toward
deploying private RL algorithms in real-world applications. With this work, we aim to fill this gap by
proposing a differentially private, deep model-based RL method for the offline setting.

3 PRELIMINARIES

3.1 OFFLINE MODEL-BASED REINFORCEMENT LEARNING

We consider an infinite-horizon discounted MDP, that is a tupleM = (S,A, P, r, γ, ρ0) where S and
A are respectively the state and action spaces, P : S ×A −→ ∆(S) the transition dynamics (where
∆(X ) denotes the space of probability distributions overX ), r : S×A −→ [0, 1] the reward function,
γ ∈ [0, 1) a discount factor and ρ0 ∈ ∆(S) the initial state distribution. The dynamics satisfy the
Markov property, i.e., the next state s′ only depends on current state and action. The goal is to learn
a policy π : S −→ ∆(A) maximizing the expected discounted return ηM(π) := Eτ∼π,M [R(τ)],
where R(τ) =

∑∞
t=0 γ

trt. The expectation is taken w.r.t. the trajectories τ = ((st, at, rt))t≥0

generated by π in the MDPM, i.e., s0 ∼ ρ0, st+1 ∼ P (·|st, at) and at ∼ π(·|st).

In offline RL, we assume access to a dataset of K trajectories DK = (τk)
K
k=1, where each τk =

(s
(k)
t , a

(k)
t , r

(k)
t )t≥0 has been collected with an unknown behavioral policy πB . τk can be seen as the

result of the interaction of a user uk with the environment. The objective is then to learn a policy π̂
from DK (without any further interaction with the environment) which performs as best as possible
inM. To achieve this goal, we consider a model-based approach. In this context, we learn estimates
of both the transition dynamics and the reward function, denoted P̂ and r̂ respectively, from the
offline datasetDK . This results in an estimate of the MDP M̂ = (S,A, P̂ , r̂, γ, ρ0). We can then use
the model M̂ as a simulator of the environment to learn a policy π̂M̂, without further access to the
dataset or interactions with the real environment modeled byM. Note that if the policy π̂M̂ is trained
to maximize the expected discounted return in the MDP model M̂, i.e., π̂M̂ ∈ argmax ηM̂(π), we
eventually want to evaluate the policy in the true environmentM, that is using ηM.

3.2 DIFFERENTIAL PRIVACY

When learning patterns from a dataset, differential privacy (Dwork, 2006) protects against the leakage
of sensitive information in the data by ensuring that the output of the algorithm does not change
significantly when adding or removing a data point, as formally stated in Definition 3.1.

Definition 3.1. (ϵ, δ)-differential privacy. Given ϵ > 0, δ ∈ [0, 1), a mechanism h (i.e., a randomized
function of the data) is (ϵ, δ)-DP if for any pair of datasets D, D′ that differ in at most one element
(referred to as neighboring datasets, and denoted d(D,D′) = 1), and any subset E in h’s range:

P (h(D) ∈ E) ≤ eϵ · P (h(D′) ∈ E) + δ .

In particular, ϵ controls the strength of the privacy guarantees, decreasing as ϵ grows. To achieve
(ϵ, δ)-DP, the standard approach is to add a zero-mean random noise to the output of the (non-private)
function f , whose magnitude σ scales with ∆ℓ(f)/ϵ, where ∆ℓ(f) := max

d(D,D′)=1
∥f(D)− f(D′)∥ℓ

is the sensitivity of f . One of the most used DP mechanisms is the Gaussian mechanism, which
provably guarantees (ϵ, δ)-DP for ϵ, δ ∈ (0, 1) by adding random noise from a Gaussian distribution
with magnitude σ = ϵ−1

√
2 log (1.25/δ) ·∆2(f). From such simple mechanisms, we can derive
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Data
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1 2

Figure 1: PRIMORL with its two main components: 1 private model training; 2 MBPO.

complex DP algorithms using the sequential and parallel composition properties of DP, as well as its
immunity to post-processing (i.e., if h is (ϵ, δ)-DP and g is data-independent, g ◦h remains (ϵ, δ)-DP).

The Gaussian mechanism is central to DP-SGD (Abadi et al., 2016), a learning algorithm that
modifies classic SGD to ensure (approximate) differential privacy. By adding Gaussian noise to the
gradients and bounding their norm by a constant C, DP-SGD enables private neural network training
(Ponomareva et al., 2023). To track the total privacy budget ϵtot spent by DP-SGD, Abadi et al. (2016)
developed the moments accounting method that provides a

(
O(qϵ

√
T ), δ

)
-DP guarantee, where q

is the sampling ratio, T is the number of iterations, and ϵ is the privacy parameter. DP-SGD relies
strongly on privacy amplification by sub-sampling (Balle et al., 2018). Studies have also analyzed
error bounds for DP-SGD under various loss assumptions (Bassily et al., 2014; Kang et al., 2023).

4 DIFFERENTIALLY PRIVATE MODEL-BASED OFFLINE REINFORCEMENT
LEARNING

We now describe our model-based approach for learning differentially private RL agents from offline
data, which we call PRIMORL (for Private Model-Based Offline RL). After defining trajectory-level
differential privacy (TDP) in offline RL (Section 4.1), we address the learning of a private model from
offline data (Section 4.2). Finally, we demonstrate how we optimize a policy under the private model
(Section 4.3). Exploiting the post-processing property of DP, we show that ensuring model privacy
alone is enough to achieve a private policy. Figure 1 provides a high-level description of PRIMORL.

4.1 TRAJECTORY-LEVEL PRIVACY IN OFFLINE REINFORCEMENT LEARNING

In supervised learning, differential privacy is typically applied at the example-level, under the
assumption that the examples in the dataset are independent. If this assumption is already questionable
in the supervised setting, it certainly does not hold in RL where the transitions (st, at, rt) are obviously
correlated. Several works, for instance Liu et al. (2016), have demonstrated that data correlation
degrades privacy guarantees in the traditional per-example setting. It thus appears that protecting
individual transitions is insufficient in RL, calling instead for data protection at the trajectory level.

We introduce the following formal definition for trajectory-level differential privacy (TDP) in offline
RL which protects whole trajectories. It states that the learned policy is roughly the same for two
offline datasets D,D′ where D′ is obtained by adding or removing one full trajectory from D. It can
be seen as a reformulation of the definition used in Qiao & Wang (2023a), which is the first work to
tackle differential privacy in this setting.

Definition 4.1. (ϵ, δ)-TDP. Let h be an offline RL algorithm, that takes as input an offline dataset
and outputs a policy. Given ϵ > 0 and δ ∈ (0, 1), h is (ϵ, δ)-TDP if for any trajectory-neighboring
datasets DK , DK\{k}, and any subset of policies Π:

P (h(DK) ∈ Π) ≤ eϵ · P
(
h(DK\{k}) ∈ Π

)
+ δ .
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4.2 MODEL LEARNING WITH DIFFERENTIAL PRIVACY

Following previous work (Yu et al., 2020; Kidambi et al., 2020), we jointly model the transition
dynamics P̂ and reward r̂ with a Gaussian distribution M̂ conditioned on the current state and action.
Its mean and covariance are parameterized with neural networks θ = (ϕ, ψ):

M̂θ

(
∆t+1
t (s), rt|st, at

)
= N (µϕ(st, at),Σψ(st, at)) .

To carry out uncertainty estimation (see Section 4.3), we train an ensemble of N models M̂θi ,
i ∈ [[1, N ]], all sharing the same architecture. The core aspect of PRIMORL, as illustrated in Figure
1, is therefore to learn a trajectory-level DP dynamics model ensemble.

This poses two major challenges. First, the traditional approach to privatize neural networks, DP-
SGD, is designed for example-level privacy and is unsuitable for guaranteeing TDP. Moreover, since
the training of all the models in the ensemble consumes the same dataset DK , we must deal with the
dependence of the privacy budget on the ensemble size N . A key contribution of our work, developed
in Section 4.2.1, is thus to introduce a training method that 1) guarantees privacy at the trajectory
level and 2) efficiently manages the privacy budget across an ensemble of models.

4.2.1 TRAJECTORY-LEVEL DP TRAINING FOR MODEL ENSEMBLES

As DP-SGD ensures per-example privacy by clipping each per-example gradient, limiting the
contribution of each data point to the final model, the key to achieving trajectory-level privacy is to
compute and clip per-trajectory updates. Therefore, our training method partitions the dataset by
trajectories, i.e., DK =

⋃K
k=1{τk}, computes independent updates from each trajectory’s data, and

bounds the L2-norm of each update before aggregation. This idea has been developed in McMahan
et al. (2017) to achieve user-level privacy when training recurrent language models. Building on
prior training algorithms from federated learning, they introduce DP-FEDAVG, which leverages
privacy amplification by sub-sampling to achieve competitive privacy-utility trade-offs in language
modeling. To address the unique privacy challenges of our task, we build on this approach and adapt
it to ensembles of dynamics models. We present the resulting training procedure in Algorithm 1.

The core idea behind TDP MODEL ENSEMBLE TRAINING is to draw, at each iteration t, a random
subset Ut of the K trajectories (line 2) using Poisson sampling. Each trajectory is drawn with
probability q, resulting in an expected qK trajectories being selected per step. The sampling ratio q
plays a critical role in determining the strength of privacy guarantees. Specifically, a smaller q reduces
the likelihood of any given trajectory being included in an update, thereby limiting its influence on the
final model — this forms the basis of privacy amplification by sub-sampling. However, in the offline
RL setting, where trajectory data is highly correlated, q must remain large enough to ensure that the
model update incorporates a sufficiently diverse set of trajectories. Interestingly, while the theoretical
analysis of common private deep learning methods like DP-SGD relies on Poisson sampling, most
implementations actually use fixed-size batches with shuffling in practice, in order to overcome the
computational challenges due to batches of varying size. This can lead to significant underestimation
of the actual privacy leakage, as pointed out in Chua et al. (2018). Our implementation, however,
does indeed use Poisson sampling, allowing us to compute correct theoretical privacy guarantees.

For each trajectory τk ∈ Ut, the clipped gradients {∆clipped
i,k (t)} are then computed from τk’s data

only (line 3 to 7). During this step, we perform multiple local updates on the same trajectory’s data,
leveraging larger global updates without incurring more privacy leakage. This is made possible
because the global model is updated with clipped gradients only. We later introduce ensemble-adapted
clipping strategies to control the privacy budget over model ensembles, ensuring that the sensitivity of

the ensemble gradient ∆clipped
k (t) =

(
∆clipped
i,k (t)

)N
i=1

is bounded by C. We then compute an unbiased

estimator of the subset gradient average whose sensitivity is bounded by C/qK (line 8). We can then
apply the Gaussian mechanism with magnitude σ = zC/qK, where z controls the strength of the
privacy guarantee ϵ, and update the ensemble model θ(t) = (θi(t))

N
i=1 with noisy gradient (line 9):

θ(t+ 1)←− θ(t) + ∆avg(t) +N
(
0Nd, σ

2INd
)
.
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Algorithm 1 TDP MODEL ENSEMBLE TRAINING

1: for each iteration t ∈ [[0, T − 1]] do
2: Ut ← (sample with replacement trajectories from DK with prob. q)
3: for each trajectory τk ∈ Ut do
4: Clone current models {θstart

i }
N
i=1 ← {θi(t)}

N
i=1

5: {θi,k}Ni=1 ← ENSCLIPGD
(
τk, {θstart

i }
N
i=1 ;C, local epochs E, batch size B

)
6: ∆clipped

i,k (t)← θi,k − θstart
i , i = 1, ..., N

7: end for
8: ∆avg

i (t) =
∑

k∈Ut
∆clipped

i,k (t)

qK , i = 1, ..., N

9: θ(t+ 1)← θ(t) + ∆avg(t) +N
(
0Nd,

(
zC
qK

)2
INd

)
10: end for

4.2.2 PRIVACY GUARANTEES FOR THE MODEL

We can now derive formal privacy guarantees for a model trained using Algorithm 1. A key challenge
in our setting arises from training an ensemble of N models for uncertainty estimation, all using the
same dataset DK . Treating each model independently, with separate clipping and noise addition,
would be inefficient and significantly increase the privacy budget by composition. This could be
mitigated by limiting the ensemble size, but at the cost of performance, as shown in Lu et al. (2022).

To address this challenge, we process all the gradients of the model ensemble simultaneously and
distribute the global clipping normC across all models, on the same principle as the per-layer clipping
used in McMahan et al. (2017). Denoting ∆i,ℓ the gradient of layer ℓ for model i, we propose and
experiment with two ensemble clipping strategies: Flat Ensemble Clipping, which clips the whole
model gradient ∆i = (∆i,ℓ)

L
ℓ=1 with Ci = C/

√
N ; and Per Layer Ensemble Clipping, which clips

per-layer gradients ∆i,ℓ with Ci,ℓ = C/
√
N × L, so that C =

√∑N
i=1 C

2
i =

√∑N
i=1

∑L
ℓ=1 C

2
i,ℓ.

For both strategies, we verify that that ∆clipped
k =

(
∆clipped
i,k

)K
i=1

has sensitivity bounded by C (see
Theorem 4.2’s proof in appendix), and that the contribution of a given trajectory to the model ensemble
is appropriately limited. Ensemble clipping eliminates the linear dependence of the privacy budget
on the number of models. However, it does not entirely remove the negative impact of increasing N .
Indeed, for a given noise level, a larger N requires a smaller clipping threshold Ci or Ci,ℓ, which can
degrade model convergence by losing too much information from the original gradient. Nevertheless,
the clipping threshold scales with the square root of N , mitigating the impact to some extent.

We now formally derive the privacy guarantees for an ensemble of models trained with Algorithm 1.
Mapping users in federating learning to trajectories in offline RL, we can directly adapt Theorem 1
from McMahan et al. (2018) to state that, with the sensitivity of clipped gradients ∆clipped

i,k effectively
bounded by C, the moments accounting method from Abadi et al. (2016) computes correctly the
privacy loss of Algorithm 1 at trajectory-level for the noise multiplier z = σ/C with C = C/qK.
We can therefore use the moments accountant to compute, given δ ∈ (0, 1), z > 0, q ∈ (0, 1) and
T ∈ N, the total privacy budget ϵ spent by Algorithm 1, and obtain (ϵ, δ)-TDP guarantees for our
dynamics model, as stated in Theorem 4.2 (full proof in appendix).

Theorem 4.2. (ϵ, δ)-TDP guarantees for dynamics model. Given δ ∈ (0, 1), noise multiplier z,
sampling ratio q and number of training iterations T , let ϵ := ϵMA (z, q, T, δ) be the privacy budget
computed by the moments accounting method from (Abadi et al. (2016), more details in Section H.6).
The dynamics model output by Algorithm 1 is (ϵ, δ)-TDP.

4.3 POLICY OPTIMIZATION UNDER A PRIVATE MODEL

Now that we learned a private model M̂ from offline data, we use it as a simulator of the environment
to learn a private policy π̂ with a model-based policy optimization approach. The use of a private
model and the privacy constraints on the end policy introduce additional challenges compared to the
non-private case, as demonstrated in Section 4.3.1. We study solutions to mitigate the detrimental
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effects of private training on policy performance in Section 4.3.2, before deriving formal privacy
guarantees for a policy learned under a private model in Section 4.3.3.

4.3.1 IMPACT OF PRIVACY ON POLICY OPTIMIZATION

It is first essential to examine the complexities of policy optimization in model-based offline RL and
assess whether they are amplified in the private setting. A major challenge in model-based offline RL
is to handle the discrepancy between the true and the learned dynamics when optimizing the policy.
Indeed, model inaccuracies cause errors in policy evaluation that may be exploited, resulting in poor
performance in the real environment. According to the Simulation Lemma (Kearns & Singh, 2002;
Xu et al., 2020), the value evaluation error of a policy π in model-based RL can be decomposed
into a model error term and a policy distribution shift term. Formally, denoting ρπ

B

P the state-action
discounted occupancy measure of the data-collection policy πB under the true MDP, if the model error
is bounded as E

(s,a)∼ρπB
P

[
DKL

(
P (·|s, a)∥P̂ (·|s, a)

)]
≤ εm and the distribution shift is bounded

as maxsDKL

(
π(·|s)∥πB(·|s))

)
≤ επ , then the value evaluation error of π is bounded as:

|V̂ π − V π| ≤
√
2γ

(1− γ)2
√
ϵm +

2
√
2

(1− γ)2
√
επ , (1)

where V̂ π and V π denote the value of π under the learned and the true dynamics, respectively.
Controlling this quantity for an arbitrary π is crucial in our setting, as it ensures that the learned
MDP is a reasonable simulator of the true environment. Moreover, (1) directly implies a bound on
the sub-optimality gap, since |V ⋆ − V π̂| ≤ 2 supπ |V̂ π − V π|. Under some assumptions regarding
the model loss function, Proposition 4.3 states the model error term in terms of the size ND of the
dataset.
Proposition 4.3. Value evaluation error in non-private offline MBRL. Let the model loss function
be L-Lipschitz and ∆-strongly convex, and assumptions from the simulation lemma hold. There is a
stochastic convex optimization algorithm for learning the model and a constant M such that, with
probability at least 1− α, and for sufficiently large ND, the value evaluation error of π is bounded
as:

|V̂ π − V π| ≤
√
2γ

(1− γ)2
·M · L log1/2(ND/α)√

∆ND
+

2
√
2γ

(1− γ)2
√
επ .

When we learn the model with differential privacy, we disrupt model convergence because of gradient
clipping and noise. This likely results in a less accurate dynamics model (although it may help prevent
overfitting in some cases) and increased value evaluation error. Intuitively, DP training impacts model
error in (1) as a direct result of gradient perturbations: Bassily et al. (2014), in particular, shows that
noisy gradient descent (GD) has increased excess risk compared to non-private GD. In the simpler
case where the model is trained with a vanilla DP noisy GD algorithm, Proposition 4.4 states the
value evaluation error under the private model.
Proposition 4.4. Value evaluation error in private offline MBRL. Let assumptions from Proposi-
tion 4.3 hold. If the model is learned with (ϵ, δ)-DP gradient descent, then, with probability at least
1− α, there is a constant M ′ such that for large enough ND, the value evaluation error of π:

|V̂ πDP − V π| ≤
√
2γ

(1− γ)2
·M ′ · Ld

1/4 log(ND/δ) · poly log(1/α)√
∆NDϵα

+
2
√
2γ

(1− γ)2
√
επ ,

where V̂ πDP is the value of π under the privately learned dynamics. Comparing the value evaluation
errors in Propositions 4.3 and 4.4 (both proven in appendix), we observe how DP training may degrade
performance in MBRL. The private bound has an explicit dependence on the problem dimension d
which is not present in the non-private bound, and the

√
ϵ factor in the denominator shows that the

error will degrade with strong privacy guarantees. On the other hand, the distribution shift term does
not depend on the learned dynamics and is therefore not affected by private training.

4.3.2 MITIGATING PRIVATE MODEL UNCERTAINTY

In Section 4.3.1, we showed that private model training impacts the reliability of our model for
evaluating policies due to an increased dynamics error, which can lead to misjudging the quality of a
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policy in the true environment. In the non-private case, this is typically handled by penalizing the
reward with a measure of the uncertainty of the model, denoted u : S ×A → R+. Therefore, if the
model is believed to be unreliable at a given state-action pair (s, a) (i.e., large u(s, a)), the possibly
over-estimated reward will be corrected as:

r̃(s, a) = r̂(s, a)− λ · u(s, a) , (2)

where λ is an hyperparameter. The policy is then optimized under the resulting pessimistic MDP
M̃ = (S,A, P̂ , r̃, γ, ρ0). MOPO (Yu et al., 2020), MOREL (Kidambi et al., 2020) and more
recently COUNT-MORL (Kim & Oh, 2023) achieve impressive results on traditional offline RL
benchmarks with this approach, using different heuristics to estimate model uncertainty.

As suggested by the simulation lemma, the valuation error can depend on both model error and
distribution shift. However, we demonstrated that private training affects only model error. Interest-
ingly, Lu et al. (2022), which studies design choices in offline model-based RL and the properties
of various uncertainty estimators, finds that the uncertainty measures proposed in the literature are
more strongly correlated with model error than with distribution shift. Based on this, we believe
that existing uncertainty measures are well-suited to mitigate the diminished reliability of the model
under private training, as they will effectively capture the increased error. In particular, we consider
the maximum aleatoric uncertainty uMA(s, a) = maxi∈[[1,N ]] ∥Σψi(s, a)∥F (Yu et al., 2020) and the
maximum pairwise difference uMPD(s, a) = maxi,j∈[[1,N ]∥µϕi

(s, a)− µϕj
(s, a)∥2 (Kidambi et al.,

2020). We compare both estimators (see Table 10 in the appendix) and find that neither is consistently
superior. However, we observe that the choice of estimator can affect performance on a specific
task. In addition, it seems reasonable to moderately increase the reward penalty λ compared to the
non-private case to take into account the greater uncertainty.

4.3.3 PRIVATE POLICY OPTIMIZATION

Given a choice of uncertainty estimator u ∈ {uMA, uMPD}, we now consider optimizing the policy
within the pessimistic private MDP M̃ = (S,A, P̂ , r̃u, γ, ρ0), with r̃u = r̂(s, a)− λ · u(s, a). We
use Soft Actor-Critic (SAC, Haarnoja et al. (2018))1, a classic off-policy algorithm with entropy
regularization, to learn the policy from M̃, in line with existing approaches in the offline MBRL
literature. Offline model-based methods typically mix real offline data from DK with model data
during policy learning (in MOPO, for instance, each batch contains 5% of real data). Here, however,
we learn the policy exclusively from model data to avoid incurring privacy loss beyond what is needed
to train the model, and thus control the privacy guarantees. Algorithm 4 in appendix provides a
pseudo-code for SAC policy optimization in the pessimistic private MDP. Using the post-processing
property of DP, we can now state in Theorem 4.5 that, given the (ϵ, δ)-TDP model M̂ = (P̂ , r̂)

learned as described in Section 4.2, the policy learned with Algorithm 4 under M̃ is also (ϵ, δ)-TDP.
The full proof of this theorem is provided in appendix.

Theorem 4.5. (ϵ, δ)-TDP guarantees for PRIMORL. Given an (ϵ, δ)-TDP model
(
P̂ , r̂

)
learned

with Algorithm 1, the policy obtained with private policy optimization (Algorithm 4) within the
pessimistic model

(
P̂ , r̂ − λu

)
is (ϵ, δ)-TDP.

5 EXPERIMENTS

We empirically assess PRIMORL in three continuous control tasks: CARTPOLE-BALANCE and
CARTPOLE-SWINGUP from the DeepMind Control Suite (Tassa et al., 2018) as well as PENDULUM
from OpenAI’s Gym (Brockman et al., 2016). We also conduct experiments on HALFCHEETAH
(Wawrzynski, 2009), which we present in appendix (Section J). For simplicity, we refer to CARTPOLE-
BALANCE and CARTPOLE-SWINGUP as BALANCE and SWINGUP.

5.1 EXPERIMENTAL SETTING

Following common practice, we evaluate the offline policies by running them in the real environment
We aim to assess the policy’s performance degradation when varying the privacy level, as DP training

1This could be any model-based policy optimization or planning algorithm that does not use offline data.
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Figure 2: Learning curves on PENDULUM (left), BALANCE (middle) and SWINGUP (right).

may negatively affect it. We consider MOPO as our non-private baseline. For PRIMORL, we
consider different configurations outlined in Table 3. The NO PRIVACY variant, without noise
(z = 0), isolates the impact of trajectory-level model training on performance. The two private
variants (ϵ <∞) PRIMORL LOW and PRIMORL HIGH correspond to different noise multipliers.
We discuss the choice of privacy parameters, as well as training hyperparameters and implementation
details in appendix (Section H).

As the existing SWINGUP offline benchmark from Gülçehre et al. (2020) is very small (K = 40), and
DP training of ML models typically requires significantly more data compared to non-private training
(see, for instance, Ponomareva et al. (2023), and our discussion in appendix, Section L), we build our
own dataset with 30k trajectories (i.e., 30M steps). We follow the same approach for BALANCE and
PENDULUM for which we are not aware of any existing offline benchmark. Data collection, detailed
in appendix (Section D), follows the philosophy of standard benchmarks like D4RL (Fu et al., 2020).

5.2 MAIN RESULTS

We present results on BALANCE, SWINGUP and PENDULUM for PRIMORL and baselines in Table 1
and Figure 2. Both report policy performance in the real MDP as the mean episodic return over 10
episodes per SAC training epoch. Average performance and 95% confidence intervals are computed
by re-training the model and the policy from scratch on at least 5 random seeds to assess the stability
of the full training process. We also report the corresponding theoretical upper bound on ϵ, as
computed from the hyperparameters z, q, T and δ using the moments accountant ϵMA(z, q, T, δ) (see
Table 2 and discussion in Section H.6 for further explanations regarding the moments accountant).

These results show a well-expected trade-off: performance tends to degrade with stronger privacy
guarantees (i.e., smaller ϵ’s), as the model training gets perturbed with higher levels of noise.
Moreover, private model training makes the policy performance less stable over several runs, which
is also expected since differential privacy adds another source of randomness during training. We
notice that noise is not the sole factor that negatively impacts performance, as suggested by the gap
between MOPO and PRIMORL NO PRIVACY: gradient clipping and trajectory-level training also
contribute to performance degradation. In some cases, a small amount of DP noise might actually be
beneficial, acting as a kind of regularization, as in SWINGUP and PENDULUM. Moreover, experiments
on HALFCHEETAH (Section J) show that PRIMORL performs worse in higher-dimensional tasks.
This could be expected based on the theoretical analysis led in Section 4.3.1, as DP training adds
a dependence on the dimension d of the task in the valuation gap. Despite this trade-off, private
agents trained with PRIMORL remain competitive with MOPO for ϵ in the 101 to 102 range. For
PENDULUM, we plot policy performance against ϵ in Figure 3, and observe even no performance
degradation until ϵ reaches the 1 to 10 range. Although algorithms from Qiao & Wang (2023a) are not
suited for direct comparison on the same tasks, we argue that our empirical results are significantly
stronger. Indeed, converting ρ-zero-concentrated DP guarantees into standard (ϵ, δ)-DP guarantees
for clarity and fair comparison, we observe that PRIMORL achieves comparable privacy-performance
trade-offs, but on much more complex environments (more details in appendix, Section F).

While the privacy budgets ϵ from Table 1 do not correspond to strong theoretical privacy guarantees,
we must consider the worst-case nature of the differential privacy definition, along with its very
strong assumptions on the adversary side. In offline RL especially, the definition of DP assumes the
adversary only has to discriminate between two precise neighboring datasets D and D′ = D ∪ {τ}
as well as the release of all gradients, whereas in practice the adversary faces the much harder task of
reconstructing a high-dimensional trajectory based on the output policy and limited side information

9
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Table 1: Results for PENDULUM, BALANCE and SWINGUP.

PENDULUM CARTPOLE-BALANCE CARTPOLE-SWINGUP

METHOD ϵ RETURN ϵ RETURN ϵ RETURN

MOPO ∞ 795.9 ± 6.5 ∞ 976.3 ± 26.8 ∞ 804.9 ± 89.6
PRIMORL NO PRIV. ∞ 810.4 ± 27.5 (101.8%) ∞ 947.5 ± 68.3 (97.1%) ∞ 774.1 ± 81.7 (96.17%)

PRIMORL LOW 22.3 817.4 ± 21.7 (102.7%) 85.0 815.8 ± 97.2 (83.6%) 94.2 772.4 ± 73.9 (95.96%)
PRIMORL HIGH 5.1 778.9 ± 53.5 (97.9%) 8.2 758.2 ± 187.2 (77.7%) 17.0 698.3 ± 57.5 (86.75%)

z T q δ ϵ

PENDULUM LOW 0.35 7.103 10−3 10−5 22.3

HIGH 0.52 7.103 10−3 10−5 5.1
BALANCE LOW 0.25 7.103 10−3 10−5 85.0

HIGH 0.45 7.103 10−3 10−5 8.2
SWINGUP LOW 0.25 10.103 10−3 10−5 94.2

HIGH 0.38 10.103 10−3 10−5 17.0

Table 2: Hyperparameters and computation of the theo-
retical privacy budget ϵ := ϵMA(z, q, T, δ)
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Figure 3: Policy performance on PEN-
DULUM as a function of ϵ

only. Therefore, backed by recent work on empirical privacy auditing (e.g., Carlini et al. (2019);
Ponomareva et al. (2022)), we argue that such ϵ’s can provide adequate privacy protection in practical
offline RL applications. According to Ponomareva et al. (2023), ϵ ⪅ 10 is actually a realistic and
widely used goal in private deep learning applications. We discuss this matter more in depth in
appendix (Section G). We also point out that achieving a strong privacy-utility trade-off in offline RL
requires access to datasets with a very large number of trajectories and that current benchmarks, with
datasets of only dozens to thousands of trajectories, are insufficient for studying privacy effectively.
In contrast, other fields often use datasets containing millions of users (between 106 to 109 users in
McMahan et al. (2018)) to ensure robust privacy guarantees, which would be very costly to study in
offline RL. In appendix (Section L), we provide evidence that increasing dataset size improves the
privacy-performance trade-off, demonstrating even greater potential for PRIMORL.

6 DISCUSSION

While existing DP RL methods are limited to tabular and linear finite-horizon MDPs, we are the
first to address deep offline RL with privacy guarantees in the infinite-horizon discounted setting,
and propose a model-based approach named PRIMORL. We empirically show that PRIMORL
is capable of learning trajectory-level private, neural-based policies in standard control tasks with
only limited performance cost, achieving a new standard in differentially private RL. Although the
reported privacy budgets are typically considered too large to stand as formal DP guarantees, we
argue based on recent studies on practical DP that they can offer satisfying privacy protection in
practice, especially considering the worst-case nature of DP which can yield too pessimistic privacy
budgets. Empirical evaluation of the robustness of our algorithm against privacy attacks, for which
a rigorous and standardized benchmark has to be developed, will thus be an important research
direction for future work. We further point out that our approach has the potential for achieving
greater privacy-utility trade-offs given access to large enough offline datasets, hence calling for new
benchmarks in the increasingly important field of private offline RL.

With the aim of shifting the paradigm in how private RL is approached — from predominantly
theoretical research to practical algorithms — this work sets the stage for future efforts to scale
to higher-dimensional problems. We identify several promising research avenues. First, we may
consider limiting the number of real trajectories used during training to leverage privacy amplification
through sub-sampling, for example, by using data augmentation techniques. As our theoretical
analysis highlights the impact of dimensionality on private model error, another promising direction
is learning compact representations of high-dimensional inputs and performing planning directly in
the latent space, as explored by Jiang et al. (2023). We leave these avenues for future work. Overall,
we believe our work represents a significant step toward the much-needed deployment of private RL
methods in practical applications.
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A PROOFS

Theorem 4.2. (ϵ, δ)-TDP guarantees for dynamics model. Given δ ∈ (0, 1), noise multiplier z,
sampling ratio q and number of training iterations T , let ϵ := ϵMA (z, q, T, δ) be the privacy budget
computed by the moments accounting method from (Abadi et al. (2016), more details in Section H.6).
The dynamics model output by Algorithm 1 is (ϵ, δ)-TDP.

Proof. Theorem 1 from McMahan et al. (2018) shows that the moments accounting method from
Abadi et al. (2016) computes correctly the privacy loss of DP-FEDAVG at user-level for the noise
multiplier z = σ/C with C = C/qK if, for each user uk, the clipped gradient ∆clipped

k computed
from uk’s data has sensitivity bounded by C (referred to as Condition 1). With TDP MODEL
ENSEMBLE TRAINING, we train the model ensemble as a single big model: at each training iteration,
the same input batch is processed forward by all models in a single pass, a single loss is computed
for the ensemble, and the parameters are then updated in a single backward pass. The ensemble
of models can therefore be seen as a concatenation of all individual models, equivalent to a larger
model θ = (θi)

N
i=1. We can therefore extend this theorem by mapping users in federating learning to

trajectories in offline RL, as long as Condition 1 holds for every trajectory τk.

Since we use ensemble clipping, we verify that, for trajectory τk, the ensemble gradient ∆CLIPPED
k =(

∆CLIPPED
i,k

)
has sensitivity bounded by C. With flat ensemble clipping, the gradient of each model

i ∈ [[1, N ]] is clipped by a factor Ci = C√
N

(see Algorithm 3). By construction, ∆CLIPPED
i,k has

sensitivity bounded by Ci, i.e., maxd(D,D′)=1 ∥∆CLIPPED
i,k (D)−∆CLIPPED

i,k (D′)∥2 ≤ Ci. Therefore, for
two neighboring datasets D and D′:

∥∆CLIPPED
k (D)−∆CLIPPED

k (D′)∥2 = ∥ (∆CLIPPED
k (D)−∆CLIPPED

k (D′))
N
i=1 ∥2

=

√√√√ N∑
i=1

∥∆CLIPPED
i,k (D)−∆CLIPPED

i,k (D′)∥22

≤

√√√√ N∑
i=1

C2
i

=

√√√√ N∑
i=1

C2

N

= C .

This implies maxd(D,D′)=1 ∥∆CLIPPED
k (D)−∆CLIPPED

k (D′)∥2 ≤ C: ∆CLIPPED
k has sensitivity bounded

by C. We can derive the same proof for per-layer ensemble clipping. Therefore, Theorem 1 from
McMahan et al. (2018) holds for TDP MODEL ENSEMBLE TRAINING.

We can therefore use the moments accountant ϵMA to compute, given z > 0, δ ∈ (0, 1), q ∈ (0, 1)
and T ∈ N, the total privacy budget ϵ spent by Algorithm 1, i.e., ϵ = ϵMA(z, q, T, δ).

The dyanmics model output by Algorithm 1 is therefore (ϵ, δ)-TDP.

Theorem 4.5. (ϵ, δ)-TDP guarantees for PRIMORL. Given an (ϵ, δ)-TDP model
(
P̂ , r̂

)
learned

with Algorithm 1, the policy obtained with private policy optimization (Algorithm 4) within the
pessimistic model

(
P̂ , r̂ − λu

)
is (ϵ, δ)-TDP.

Proof. First, we establish that the pessimistic MDP M̃ is private for u ∈ {uMA, uMPD}. By Theo-
rem 4.2, both the mean estimators {µϕi

}Ni=1 the covariance estimators {Σψi
}Ni=1 are private. There-

fore, both uncertainty estimators uMA(s, a) = ∥Σψi(s, a)∥F and uMPD(s, a) = maxi,j ∥fϕi − fϕj∥2,
as data-independent transformations of the above quantities, are also private thanks to the post-
processing property of DP. Therefore, the pessimistic model M̃ remains (ϵ, δ)-TDP.
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Now, we can think of SAC model-based policy optimization (Algorithm 4) as an abstract, randomized
function hΠ, that takes as input M̂ and outputs as policy π̂. Furthermore, let hM denote the
mechanism that takes as input the private offline datasetDK and outputs the private pessimistic model
M̂ , and which is (ϵ, δ)-TDP following 4.2. We observe that h = hΠ ◦ hM , where h is the global
offline RL algorithm which is the object of Definition 4.1. Since SAC only uses data from the model,
as stated in Section 4.3.3, hΠ is independent of the private offline data DK . In other words, hΠ is a
data-independent transformation of the private mechanism hM . Thanks again to the post-processing
property of differential privacy, h is also (ϵ, δ)-TDP.

We now prove the following two propositions:
Proposition 4.3. Value evaluation error in non-private offline MBRL. Let the model loss function
be L-Lipschitz and ∆-strongly convex, and assumptions from the simulation lemma hold. There is a
stochastic convex optimization algorithm for learning the model and a constant M such that, with
probability at least 1− α, and for sufficiently large ND, the value evaluation error of π is bounded
as:

|V̂ π − V π| ≤
√
2γ

(1− γ)2
·M · L log1/2(ND/α)√

∆ND
+

2
√
2γ

(1− γ)2
√
επ .

Proposition 4.4. Value evaluation error in private offline MBRL. Let assumptions from Proposi-
tion 4.3 hold. If the model is learned with (ϵ, δ)-DP gradient descent, then, with probability at least
1− α, there is a constant M ′ such that for large enough ND, the value evaluation error of π:

|V̂ πDP − V π| ≤
√
2γ

(1− γ)2
·M ′ · Ld

1/4 log(ND/δ) · poly log(1/α)√
∆NDϵα

+
2
√
2γ

(1− γ)2
√
επ ,

Proof. Let F denote the function class of the model. The model is estimated by maximizing the
likelihood of the data DK = (si, ai, s

′
i)
N
i=1, which is collected by an unknown behavioral policy πB .

This is equivalent to minimizing the negative log-likelihood. The population risk of the estimated
model P̂ obtained with DP-SGD, is therefore:

L(P̂ ) = E
(s,a)∼ρπB

P ,s′∼P (·|s,a)

[
− log P̂ (s′|s, a)

]
,

where ρπ
B

P is the (normalized) state-action occupancy measure under policy πB and dynamics P .

Let us further assume that the true model P belongs to the function class F , and that P ∈
argminP ′∈FL(P ′). We can therefore write the excess population risk of the model estimator P̂
as:

L(P̂ )− L(P ) = E
(s,a)∼ρπB

P ,s′∼P (·|s,a)

[
logP (s′|s, a)
log P̂ (s′|s, a)

]
.

But, denoting DKL(A,B) the Kullback-Leibler divergence between distributions A,B:

DKL

(
P (s, a), P̂ (s, a)

)
= Es′∼P (·|s,a)

[
logP (s′|s, a)
log P̂ (s′|s, a)

]
.

We can therefore rewrite the above excess population risk as:

L(P̂ )− L(P ) = E
(s,a)∼ρπB

P

[
DKL

(
P (s, a), P̂ (s, a)

)]
. (3)

If the objective function L is L-Lipschitz and ∆-strongly convex, Bassily et al. (2014) shows (Theo-
rem F.2) that, given ND data points, a noisy gradient descent algorithm with (ϵ, δ)-DP guarantees
satisfies, with probability at least 1− α:

L(P̂ )− L(P ) = O

(
L2
√
d log2(ND/δ) · poly log(1/α)

∆NDϵα

)
. (4)

In the non-private case, Shalev-Shwartz et al. (2009) provides the following bound under the same
assumptions:

L(P̂ )− L(P ) = O
(
L2 log(ND/α)

∆ND

)
. (5)
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On the other hand, we have from the Simulation Lemma (Kearns & Singh, 2002; Xu et al., 2020) that
for a MDPM with reward upper bounded by rmax = 1 and dynamics P , a behavioral policy πB and
a learned transition model P̂ with:

E
(s,a)∼ρπB

P

[
DKL

(
P (s, a), P̂ (s, a)

)]
≤ εM , (6)

which by 3 is equivalent to:
L(P̂ )− L(P ) ≤ εM , (7)

Let π be an arbitrary policy. If the divergence between π and the behavioral policy is bounded:

max
s
DKL

(
π(·|s), πB(·|s)

)
≤ επ , (8)

then the value evaluation error of π is bounded as:

|V̂ π − V π| ≤
√
2γ

(1− γ)2
√
εM +

2
√
2γ

(1− γ)2
√
επ . (9)

Since f(x) = O(g(x)) implies
√
f(x) = O(

√
g(x)) 2, we note that we can replace

√
εM in the

model term of the right-hand side of 9 by the (square root of) the bounds from 4 and 5 in the private
case and in the non-private case, respectively.

This result holds for any policy π verifying 8. In particular, if:

max
s
DKL

(
π̂(·|s), πB(·|s)

)
≤ επ̂ , (10)

then:

|V̂ π̂ − V π̂| ≤
√
2γ

(1− γ)2
√
εM +

2
√
2γ

(1− γ)2
√
επ̂ . (11)

2Indeed, for f(x) positive, for any x ≥ x0, |f(x)| = f(x) ≤ M ′ × g(x), then, for any x ≥ x0,√
f(x) = |

√
f(x)| ≤

√
M ′ ×

√
g(x) = M ×

√
g(x)
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B RELATED WORK (EXTENDED)

B.1 MODEL-BASED OFFLINE REINFORCEMENT LEARNING

Unlike classical RL (Sutton & Barto, 1998) which is online in nature, offline RL (Levine et al.,
2020; Prudencio et al., 2022) aims at learning and controlling autonomous agents without further
interactions with the system. This approach is preferred or even unavoidable in situations where data
collection is impractical (see for instance Singh et al. (2022); Liu et al. (2020); Kiran et al. (2022)).
Model-based RL (Moerland et al., 2023) can also help when data collection is expensive or unsafe
as a good model of the environment can generalize beyond in-distribution trajectories and allow
simulations. Moreover, model-based RL has been shown to be generally more sample efficient than
model-free RL (Chua et al., 2018). Argenson & Dulac-Arnold (2021) also show that model-based
offline planning, where the model is learned offline on a static dataset and subsequently used for
control without further accessing the system, is a viable approach to control agents on robotic-like
tasks with good performance. Unfortunately, the offline setting comes with its own major challenges.
In particular, when the data is entirely collected beforehand, we are confronted to the problem of
distribution shift (Fujimoto et al., 2019): as the logging policy used to collect the training dataset only
covers a limited (and potentially small) region of the state-action space, the model can only be trusted
in this region, and may be highly inaccurate in other parts of the space. This can lead to a severe
decrease in the performance of classic RL methods, particularly in the model-based setting where the
acting agent may exploit these inaccuracies in the model , causing large gap between performances
in the true and the learned environment. MOPO (Yu et al., 2020) and MOREL (Kidambi et al.,
2020), and more recently COUNT-MORL (Kim & Oh, 2023) have effectively tackled this issue
by penalizing the reward proportionally to the model’s uncertainty, achieving impressive results on
popular offline benchmarks. Nonetheless, there remain many areas for improvement, as highlighted
by Lu et al. (2022), which extensively study and challenge key design choices in offline MBRL
algorithms.

B.2 PRIVACY IN REINFORCEMENT LEARNING

Differential Privacy (DP), first formalized in Dwork (2006), has become the gold standard in terms
of privacy protection. Over the recent years, the design of algorithms with better privacy-utility
trade-offs has been a major line of research. In particular, relaxations of differential privacy and more
advanced composition tools have allowed tighter analysis of privacy bounds (Dwork et al., 2010;
Dwork & Rothblum, 2016; Bun & Steinke, 2016; Mironov, 2017a). Leveraging these advances, the
introduction of DP-SGD (Abadi et al., 2016) has allowed to design private deep learning algorithms,
paving the way towards a wider adoption of DP in real-world settings, although the practicalities
of differential privacy remain challenging (Ponomareva et al., 2023). In parallel to the theoretical
analysis of privacy, many works have focused on designing more and more sophisticated attacks,
justifying further the need to design DP algorithms ((Rigaki & Garcia, 2020)).

Recent works on RL-specific attacks (Pan et al., 2019; Prakash et al., 2022; Gomrokchi et al., 2023)
have demonstrated that reinforcement learning (RL) is no more immune to privacy threats. With
RL being increasingly used to provide personalized services (den Hengst et al., 2020), which may
expose sensitive user data, developing privacy-preserving techniques for training policies has become
crucial. Shortly after DP was successfully extended to multi-armed bandits (Tossou & Dimitrakakis,
2016; Basu et al., 2019), a substantial body of work (e.g., Vietri et al. (2020); Garcelon et al. (2021);
Liao et al. (2021); Luyo et al. (2021); Chowdhury & Zhou (2021); Zhou (2022); Ngo et al. (2022);
Qiao & Wang (2023b)) addressed privacy in online RL, extending definitions from bandits. However,
relying on count-based and UCB-like methods, current RL algorithms with formal DP guarantees
are essentially limited to episodic tabular or linear MDPs, and have not been assessed empirically
beyond simple numerical simulations. However, current RL algorithms with formal DP guarantees
are essentially limited to episodic tabular or linear MDPs, and have not been assessed empirically
beyond simple numerical simulations. Few works have proposed private RL methods for more
general problems, however with significant limitations or in different contexts. Wang & Hegde (2019)
tackle continuous state spaces by adding functional noise to Q-Learning, but the approach is restricted
to unidimensional states and focuses on protecting reward information. Recently, Cundy et al. (2024)
addressed high-dimensional control and robotic tasks; however, they consider a specific notion of
privacy that protects sensitive state variables based on a mutual information framework.
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Despite the relevance of the setting for real-world RL deployments, private offline RL has received
comparatively less attention. To date, only Qiao & Wang (2023a) have proposed DP offline algorithms,
building on non-private value iteration methods. While their approach lays the groundwork for private
offline RL and offers strong theoretical guarantees, it remains limited to episodic tabular and linear
MDPs. Consequently, no existing work has introduced DP methods that can handle deep RL
environments in the infinite-horizon discounted setting, a critical step toward deploying private
RL algorithms in real-world applications. With this work, we aim to fill this gap by proposing a
differentially private, deep model-based RL method for the offline setting.
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C PRESENTATION OF THE TASKS

CARTPOLE requires to swing up then balance an unactuated pole by applying forces on a cart at its
base, while CARTPOLE-BALANCE only requires keeping balance. The duration of both tasks is 1,000
steps. PENDULUM involves controlling an inverted pendulum by applying torque to keep it upright
and balanced over 200 steps. For this task, we normalize the episodic return to obtain a normalized
score between 0 and 1000, using the following formula: snormalized = s−(−1500)

0−(−1500)) . HALFCHEETAH is
another, higher-dimensional, continuous control task from OpenAI’s Gym (Brockman et al., 2016)
based on the physics engine MuJoCo (Todorov et al., 2012) where we move forward a 2D cat-like
robot by applying torques on its joints. The duration of an episode is 1,000 steps.

D DATA COLLECTION

To collect our offline dataset for CARTPOLE and PENDULUM, we used DDPG (Lillicrap et al.,
2016), a model-free RL algorithm for continuous action spaces. We ran 600 independent runs
of 50, 000 steps each for CARTPOLE-BALANCE, 150 independent runs of 200, 000 steps each for
CARTPOLE-SWINGUP, and 6 independent runs of 1M steps each for PENDULUM. We collect all
training episodes to ensure a correct mix between random, medium and expert episodes (similar to
replay datasets in Fu et al. (2020)).

E BASELINES

Table 3: PRIMORL configurations.

VARIANT TRAJECTORY-LEVEL ENS. TRAINING CLIP NOISE DP

NO CLIP ✓ ✗ ✗ ϵ = ∞
NO PRIVACY ✓ ✓ ✗ ϵ = ∞
LOW, HIGH ✓ ✓ ✓ ϵ < ∞

The first two baselines, PRIMORL NO CLIP and PRIMORL NO PRIVACY are not private (ϵ <∞)
but allow us to isolate the impact of trajectory-level model ensemble training (without clipping and
noise addition) and clipping on policy performance. We do not report results for PRIMORL NO
CLIP for CARTPOLE and PENDULUM as we found that the model optimized with TDP MODEL
ENSEMBLE TRAINING diverges without clipping.

F COMPARISON TO EXISTING METHODS

The closest and only comparable work in offline DPRL is Qiao & Wang (2023a). In Table 4,
we compare the characteristics of PRIMORL with their algorithm DP-VAPVI (since their other
algorithm is only for tabular MDPs and obviously does not compare). This comparison highlights that
PRIMORL and DP-VAPVI are designed for very distinct settings. We cannot efficiently implement
DP-VAPVI on our benchmark, in particular because of the continuous action spaces and the fact that
it explicitly relies on a finite, relatively small horizon H (not only the number of statistics to maintain
and privatize depends on H but the amount of noise needed to privatize each statistic also grows
linearly with H).

Although their scope is limited to finite, tabular and linear MDPs and their algorithms are not suited
for direct comparison on the same benchmarks, we provide below a side-by-side comparison of our
respective empirical results, with the aim of re-contextualizing our results within the current state of
the literature.

First, we compare the complexity of the benchmark tasks considered here and the evaluation environ-
ment used in Qiao & Wang (2023a). Qiao & Wang (2023a) evaluate their algorithms on an episodic
synthetic linear MDP with 2 states and 100 actions, and horizon H = 20. On the other hand, we
consider standard control tasks with multi-dimensional continuous state and action spaces. Moreover,
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Table 4: Comparison between PRIMORL (Ours) and DP-VAPVI (Qiao & Wang)

PRIMORL (Ours) DP-VAPVI (Qiao & Wang)

MODEL-BASED ✓ ✓

SETTING γ-discounted infinite horizon Finite horizon H

FUNCTION APPROXIMATION General function approximation, including NN Linear function approximation with known features
ϕ(s, a)

SPACES Continuous S and A
Could theoretically handle continuous actions, but
arg maxπh(·|s)⟨Q̂h(s, a), πh(·|s)⟩ is impractical
to compute for large or infinite A

MODEL TYPE
Global model ensemble (step independent), set of weights
θ = {θi}i = 1N with θi ∈ Rd Step-dependent model represented by 5H statistics

PRIVACY BUDGET Scales with training hyperparameters q, T,N (indirectly) Scales with horizon H , a parameter of the problem

our tasks have long horizons and high frequency, which makes them impractical to represent in the
episodic setting, justifying the use of the γ-discounted infinite-horizon setting.

We then compare the privacy-performance trade-offs achieved by Qiao & Wang (2023a) and PRI-
MORL. In Qiao & Wang (2023a), they do not mention explicitly the privacy budgets ϵ, but instead
mention the zero-concentrated differential privacy (z-CDP) parameter ρ. For clarity and fair com-
parison, we convert the z-CDP guarantee into a DP guarantee. For this, we use Proposition 1.3
from Bun & Steinke (2016): if a mechanism is ρ-zero-concentrated DP, then for any δ > 0 it is
(ϵ, δ)-DP, with ϵ = ρ + 2

√
ρ log(1/δ). As they evaluate their algorithms for a dataset size up to

1000, we consider two values of δ ∈ {1/100, 1/1000}. Table 5 shows the results for the various
parameters ρ mentioned in Figure 1 from Qiao & Wang (2023a). We observe Qiao & Wang (2023a)
also considers the low privacy regime with ρ = 25 yielding ϵ close to 50, which is comparable to our
low privacy variant. They indeed consider ϵ close to 1 with ρ = 0.1, but the cost is a 2 to 3 times
worse utility. Other configurations proposed are closed in privacy budgets to what we consider in our
paper. Overall, our work achieves comparable privacy-utility trade-offs than Qiao & Wang (2023a),
but on significantly more complex tasks.

Table 5: Results from Qiao & Wang (2023a), converted from z-CDP

Z-CDP GUARANTEE ρ DP ϵ FOR δ = 10−1 DP ϵ FOR δ = 10−3

25 40.2 51.3
5 11.8 16.8
1 4.0 6.26
0.1 1.1 1.8

G DISCUSSION ON THE ϵ PARAMETER

As the privacy budgets ϵ’s presented in our experimental results do not provide strong theoretical DP
guarantees, we would like to further discuss the implications of such privacy budgets in practice.

First, we point out that such ϵ values are comparable to existing work. In particular, as pointed out in
Section F, Qiao & Wang (2023a) achieves similar privacy-performance trade-offs and also consider
the "low privacy regime" with ϵ’s approaching 50 for their best-performing variant. We argue that
studying different privacy regimes allows us to clearly highlight the trade-offs between privacy and
performance.

Moreover, in light of recent literature on achieving differential privacy in practical deep learning
(Carlini et al., 2019; Ponomareva et al., 2022; 2023), we argue that these ϵ values may offer an
adequate level of privacy in real-world applications. Ponomareva et al. (2023) states ϵ ⪅ 10 as a
realistic and widely used goal in DP deep learning and a "sweet spot" where it is possible to preserve
acceptable utility for complex ML models. Moreover, these studies point out the overly restrictive
assumptions on the adversary side, which may yield unnecessarily pessimistic privacy bounds. In
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Figure 4: Dataset statistics

offline RL especially, the definition of DP assumes the adversary only has to discriminate between
two precise neighboring datasets D and D′ = D ∪ {τ} as well as the release of all gradients and
strong assumptions about the adversary, whereas in practice the adversary faces the much harder
task of reconstructing a high-dimensional trajectory based on the output policy and limited side
information only.

H EXPERIMENT DETAILS

H.1 DATASETS

Table 6 provides additional details on the offline datasets used in experiments. Figure 4 shows episode
return statistics for each dataset.

Table 6: Dataset details

CARTPOLE PENDULUM HALFCHEETAH

ORIGIN CUSTOM CUSTOM D4RL
OBSERVATION SPACE S R5 R3 R17

ACTION SPACE A [−1, 1] [−2, 2] [0, 1]6

NB. OF EPISODES K 30,000 30,000 2,003

H.2 IMPLEMENTATION DETAILS

For all tasks, the model is approximated with a deep neural network with SWISH activation functions
and decaying weights. Models take as input a concatenation of the current state s and the taken action
a and predict the difference between the next state s′ and the current state s along with the reward r.
Table 7 provides further implementation details.

The code repository for PRIMORL is provided as part of the supplementary material and will
be made public upon acceptance. For MOPO, we use the official implementation from https:
//github.com/tianheyu927/mopo, as well as the PyTorch re-implementation from https:
//github.com/junming-yang/mopo. Our implementation of PRIMORL, which mainly
uses PyTorch, is also based on these codebases. To collect the datasets, we use DDPG implementation
from https://github.com/schatty/DDPG-pytorch.

Model training with TDP MODEL ENSEMBLE TRAINING is parallelized over 16 CPUs using JobLib,
while SAC training is conducted over a single Nvidia Tesla P100 GPU.
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Table 7: Implementation details

CARTPOLE PENDULUM HALFCHEETAH

MODEL INPUT DIMENSION 6 4 23
MODEL OUTPUT DIMENSION 6 4 18
MODEL HIDDEN LAYERS 2 2 4
NEURONS PER LAYER 128 64 200
WEIGHT DECAY ✓ ✓ ✓
ACTIVATION FUNCTIONS SWISH SWISH SWISH
ENSEMBLE SIZE N 5 3 7

Table 8: Training and Hyperparameters details

CARTPOLE PENDULUM HALFCHEETAH

TEST SET SIZE 1%×K 1%×K 10%×K
EARLY STOPPING ✓ PATIENCE = 10 ✓ PATIENCE = 10 ✓ PATIENCE = 5

SAMPLING RATIO q 10−3 10−3 10−2

MODEL LOCAL EPOCHS E 1 1 1
MODEL BATCH SIZE B 16 16 16
MODEL LR η 10−3 10−3 10−3

CLIPPING STRATEGY FLAT PER-LAYER PER-LAYER

SAC LR 3.10−4 3.10−4 3.10−4

ROLLOUT LENGTH H 20 30 5
REWARD PENALTY λ 2.0 2.0 1.0
AUTO-α ✓ ✓ ✓
TARGET ENTROPY H -3 -3 -3
UNCERTAINTY ESTIMATE uMPD (BAL.), uMA (SWI.) uMPD uMA

H.3 TRAINING DETAILS

Before model training, we split the offline dataset into two parts: a train set used to train the model, and
a test set used to track model performance. We consider the test set public so that this operation does
not involve additional privacy leakage. The split is made by episode (instead of by transitions), so that
the test set contains 1% of the episodes for CARTPOLE and PENDULUM and 20% for HALFCHEETAH.
To tune the clipping norm, we set z = 0 and progressively decreased C until it started to adversely
affect performance provided the best results. Moreover, we set the sampling ratio so that a few dozen
episodes are randomly selected at each step, which proved to work best in our experiments, which
correspond to q = 10−3 for CARTPOLE and PENDULUM. The model is trained until convergence
using early stopping. Test set prediction error is used to track model improvement. For SAC training,
the real-to-model ratio rreal is zero, meaning that SAC is trained using only simulated data from the
model, and does not access any data from the offline dataset. Training details are provided in Table 8.

H.4 HYPERPARAMETERS

The model is trained using TDP MODEL ENSEMBLE TRAINING with learning rate η = 10−3, batch
size B = 16, and number of local epochs E = 1.

The policy is optimized within the model using Soft Actor-Critic with rollout, with rollout length and
penalty depending on the task. We use a learning rate of 3.10−4 for both the actor and the critic. For
entropy regularization, we use auto-α with target entropy H = −3.

Hyperparameters are summarized in Table 8. We do not report the privacy loss resulting from
hyperparameter tuning, although we recognize its importance in real-world applications.
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H.5 PRIVACY PARAMETERS

In Table 1, we provide the privacy budgets ϵ computed with the moments accountant method from
Abadi et al. (2016). We use the DP accounting tools from Google’s Differential Privacy library,
available on GitHub. Privacy budget are computed for δ = 10−5, i.e. less than K−1 as recommended
in the literature. It also depends on the noise multiplier z, the number of training round T and the
sampling ratio q. Since we use early stopping and the different training runs have different durations,
we use the average number of training rounds in the privacy budget computations.

For PENDULUM, we use z = 0.35 and z = 0.52 for PRIMORL LOW and PRIMORL HIGH,
respectively. For CARTPOLE-BALANCE, we use z = 0.25 and z = 0.45 for PRIMORL LOW
and PRIMORL HIGH, respectively. For CARTPOLE-SWINGUP, we use z = 0.25 and z = 0.38
for PRIMORL LOW and PRIMORL HIGH, respectively. The value for PRIMORL HIGH is
chosen by incrementally increasing z until policy performance drops below acceptable levels. The
corresponding ϵ is therefore roughly the best privacy budget we can obtain while keeping acceptable
policy performance. The value for PRIMORL LOW is chosen arbitrarily to provide a weaker level of
privacy that typically yields higher policy performance, illustrating the trade-off between the strength
of the privacy guarantee and the performance. Table 9 summarizes the parameters used to compute
ϵMA(z, q, T, δ) in our experiments.

Table 9: Training and privacy parameters used to compute ϵMA(z, q, T, δ).

z T q δ ϵ

PENDULUM LOW 0.35 7.103 10−3 10−5 22.3
HIGH 0.52 7.103 10−3 10−5 5.1

BALANCE LOW 0.25 7.103 10−3 10−5 85.0
HIGH 0.45 7.103 10−3 10−5 8.2

SWINGUP LOW 0.25 10.103 10−3 10−5 94.2
HIGH 0.38 10.103 10−3 10−5 17.0

H.6 COMPUTING ϵ: THE MOMENTS ACCOUNTANT

Theorem 1 from McMahan et al. (2018) allows us to compute the privacy guarantees(
ϵMA(z, q, T, δ), δ

)
of Algorithm 1 using the Moments Accountant from Abadi et al. (2016). To com-

pute ϵMA(z, q, T, δ) in our experiments, we use the DP accounting tools from Google’s Differential
Privacy library, which provides an improved version of the moments accountant based on Rényi
Differential Privacy (RDP) Mironov (2017b). Since the computations of the RDP accountant are
quite involved while the underlying principles are the same, we rather present the original moments
accounting method based on Section 3.2 from Abadi et al. (2016).

By taking into account the DP noise distribution, the moments accountant allows to get a tighter
bound on the total privacy leakage compared to the standard strong composition theorem. Using an
(ϵ, δ)-DP mechanism at each gradient step, Algorithm 1 with T training steps and a sampling ratio q
is
(
O(qϵ

√
T ), δ

)
-DP by the moments accountant. For comparison, the strong composition theorem

would yield
(
O(qϵ

√
T log(1/δ)), T qδ

)
.

The moments accountant works by computing the log moments of the privacy loss random variable.
We denote Mσ2 the Gaussian mechanism at each training step t, which is characterized by the
magnitude σ2 := σ2(z, q, T, δ) of the Gaussian noise. The privacy loss for Mσ2 at output o is
defined as follows:

c(o;σ2, D,D′) = log
P(Mσ2(D) = o)

P(Mσ2(D′) = o)
,

where D, D′ are neighboring datasets. It quantifies the privacy leakage for the specific output o
taking into account the randomness of the algorithm. The λ-th moment α(λ;D,D′) is defined as the
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logarithm of the moment generating function:

αMσ2 (λ) = max
D,D′

logEo∼Mσ2 (D) [exp(λc(o;Mσ2 , D,D′))] .

To bound αMσ2 (λ) for a Gaussian mechanism of scale σ2, Abadi et al. (2016) show that, denoting
µx the p.d.f. ofN (x, σ2) and µ = (1− q)µ0 + qµ1, it suffices to estimate α(λ) = logmax(E1, E2)
with:

E1 = Ez∼µ0

[
(µ0(z)/µ(z))

λ
]

E2 = Ez∼µ
[
(µ(z)/µ0(z))

λ
]
.

Implementations of the moments accountant typically use numerical integration to estimate α(λ).

To compute ϵMA(z, q, T, δ), a bound on the total privacy loss of Algorithm 1, it then suffices to
compute a bound on αMσ2 (λ) at each step and sum over all steps. Since we cannot compute a bound
for all λ, we need to specify as input a discrete list Λ = {λ1, ..., λS} of moments to bound, and select
the λ yielding the best privacy budget. Abadi et al. (2016) find that it usually suffices to compute
α(λ) for λ ≤ 32 (see Section 4).

H.7 COMPUTATIONAL RESOURCES

We perform training on a single machine with 64 CPUs and 6 Tesla P100 GPUs with 16GB RAM
each. The full training of a single policy, from model learning to policy optimization, takes several
hours.
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Figure 5: Learning curves for the SAC policy on HALFCHEETAH (right). Policy performance
(episodic return) is evaluated in the true MDP at the end of each training epoch, over 10 evaluation
episodes with different random seeds.

I ADDITIONAL EXPERIMENTS

Table 10: Ablation study investigating the impact of using different clipping methods (flat clipping
(FC) and per-layer clipping (LC)) and different uncertainty estimates (uMA and uMPD). For instance,
MA + LC means the model has been train with per-layer clipping and the policy optimized under
uncertainty estimate uMA. We report policy performance as the mean episodic return over 10
evaluation episodes, averaged over the last 10 epochs of policy optimization. Average performance
and 95% confidence intervals are computed on at least 3 seeds.

Z MA + LC MPD + LC MA + FC MPD + FC

PENDULUM 0.35 734.5 ± 28.9 817.4 ± 21.7 638.9 ± 91.7 757.9 ± 76.5
0.52 750.1 ± 75.97 778.9 ± 53.5 612.4 ± 76.8 723.0 ± 47.0

BALANCE 0.25 785.4 ± 77.9 792 ± 85.8 819.9 ± 66.1 815.8 ± 97.2
0.45 749.0 ± 115.6 738.5 ± 85.7 722.7 ± 105.7 758.2 ± 187.2

SWINGUP 0.25 711.4 ± 90.6 704.2 ± 46.2 772.4 ± 73.9 777.1 ± 35.0
0.38 536.1 ± 112.8 575.4 ± 89.7 698.3 ± 57.5 590.8 ± 34.8

In Table 10, we compare performance depending on the clipping method used to train the model (flat
or per-layer clipping) and the uncertainty estimator used to optimize the policy (uMPD or uMA). We
can see that no clipping method or uncertainty estimator is significantly superior overall, but these
choices may impact privacy performance for a specific task. Preliminary results on this ablation study
led us to choose, for each task, the clipping strategy and the uncertainty estimate stated in Table 8.

J EXPERIMENTS ON HALFCHEETAH

We conduct experiments on the MEDIUM-EXPERT dataset (K = 2, 003) from the classic D4RL
benchmark (Fu et al., 2020). Experimental results are reported in Figure 5 and Table 11 (in appendix),
using C = 15.0 and q = 10−2.

If PRIMORL can train competitive policies with small enough noise levels — a tiny amount of
noise like z = 10−4 proving even beneficial, possibly acting as a kind of regularization —, we
were not able to obtain reasonable ϵ’s. Indeed, a noise multiplier as small as z = 10−3 is enough
to cause a significant decline in performance. HALFCHEETAH thus appears a significantly harder
tasks than CARTPOLE and PENDULUM. It is not surprising as HALFCHEETAH is higher-dimensional,
and the theoretical analysis led in Section4.3.1 showed that the dimension d of the problem could
negatively impact the performance of the policy. However, we point out that the size of the dataset
for HALFCHEETAH is very limited, and argue that larger datasets with substantially more episodes
would translate into competitive privacy-performance trade-offs, as we develop in Section L.
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Table 11: Results for HALFCHEETAH MEDIUM-EXPERT. RETURN is the return of the SAC policy
evaluated over 10 episodes at the end of each training epoch, averaged over the last 20 epochs.

METHOD z RETURN

MOPO 0.0 10931 ± 1326

PRIMORL NO CLIP 0.0 7062 ± 2230
PRIMORL NO NOISE 0.0 8792 ± 2053

PRIMORL z = 1.10−4 9729 ± 2018
z = 1.10−3 3697 ± 1465

K ALGORITHMS

Algorithm 2 is the fully detailed pseudo-code for PRIMORL. Algorithm 3 details the clipping
method used in TDP MODEL ENSEMBLE TRAINING. Algorithm 4 is the pseudo-code for SAC
policy optimization on the pessimistic private model. This pseudo-code is based on https://
spinningup.openai.com/en/latest/algorithms/sac.html

Algorithm 2 Model Training with TDP MODEL ENSEMBLE TRAINING

1: Input: offline dataset DK , sampling ratio q ∈ (0, 1), noise multiplier z ≥ 0, clipping norm
C > 0, local epochs E, batch size B, learning rate η

2: Output: private model M̂θ

3: Initialize model parameters θ0
4: for each iteration t ∈ [[0, T − 1]] do
5: Ut ← (sample with replacement trajectories from DK with prob. q)
6: for each trajectory τk ∈ Ut do
7: Clone current models {θstart

i }
N
i=1 ← {θi(t)}

N
i=1

8: θ ← θstart := (θstart)
N
i=1

9: for each local epoch i ∈ [[1, E]] do
10: B ← (τk’s data split into size B batches)
11: for each batch b ∈ B do
12: θ ← θ − η∇L(θ; b)
13: θ ← θstart + ENSEMBLECLIP(θ − θstart;C)
14: end for
15: end for
16: ∆clipped

t,k ← θ − θstart

17: end for
18: ∆avg

i (t) =
∑

k∈Ut
∆clipped

i,k (t)

qK

19: θ(t+ 1)← θ(t) + ∆avg(t) +N
(
0Nd

,
(
zC
qK

)2
INd

)
20: end for

ENSCLIPGD
(
τk, {θstart

i }
N
i=1 ;C,E,B

)

Algorithm 3 Ensemble Clipping (ENSEMBLECLIP)

1: Input: ensemble size N , number of model layers L, unclipped gradient ∆ = {∆i,ℓ}N,Li,ℓ=1,
clipping norm C

2: Output: clipped gradient ∆clipped

3: ∆i ← (∆i,ℓ)
L
ℓ=1 , Ci =

C√
N

4:

∆clipped
i ← ∆i

max
(
1, ∥∆i∥2

Ci

) , j = 1, ...,m.
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Algorithm 4 Private Model-Based Optimization with SAC

1: Input: private model M̂ = (P̂ , r̂), empty replay buffer B, uncertainty estimator u ∈
{uMA, uMPD}

2: Output: private policy π̂DP

3: Initialize policy parameters ξ, Q-function parameters ω1, ω2 and target parameters ωtarg,1, ωtarg,2
4: for epoch e ∈ [[1, E]] do
5: while episode is not terminated do
6: Observe state s and select action a ∼ πξ (·|s)
7: Execute a in the pessimistic MDP M̃ and observe next state s′ ∼ P̂ (·|s, a), reward

r ∼ r̂(s, a)− λu(s, a) and done signal d
8: Store (s, a, r, s′, d) in replay buffer B
9: if time to update then

10: Sample a batch of transitions B = {(s, a, r, s′, d)} from buffer B
11: Compute targets for Q-functions:

y(r, s′, d) = r + γ(1− d)
(
min
i=1,2

Qωtarg,i(s
′, ã′)− α log πξ(ã

′|s′)
)
, ã′ ∼ πξ(·|s′) .

12: Update Q-functions by one step of gradient descent using:

∇ωi

1

|B|
∑

(s,a,r,s′,d)∈B

(Qωi
(s, a)− y(r, s′, d))2 , for i = 1, 2.

13: Update policy by one step of gradient ascent using:

∇ξ
1

|B|
∑
s∈B

(
min
i=1,2

Qωi
(s, ãζ(s))− α log πξ (ãζ(s)|s)

)
, ãζ(s) ∼ πξ(·|s).

14: Update target networks with:

ωtarg,i ← ρωtarg,i + (1− ρ)ωi, for i = 1, 2 .

15: end if
16: end while
17: Evaluate πξ is the true environmentM.
18: end for
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L THE PRICE OF PRIVACY IN OFFLINE RL

In this section, we provide theoretical and practical arguments to further justify the need for (much)
larger datasets in order to achieve competitive privacy trade-offs in offline RL, as pointed out in
(Section 5).

Why does privacy benefit so much from large datasets? From a theoretical perspective, it stems
from two facts: 1) ϵ scales with the sampling ratio q (privacy amplification by subsampling), and
2) noise magnitude σ is inversely proportional to E [|Ut|] = qK. Clearly, the privacy-performance
trade-off would benefit from both small q (reducing ϵ) and large qK (reducing noise levels and thus
improving performance), which are conflicting objectives for a fixed K. However, if we consider
using larger datasets of size K ′ ≫ K, it becomes possible to find a K ′ large enough so that we can
use q′ ≪ q and q′K ′ ≫ qK, achieving both much stronger privacy and better performance. We can
even argue that for a given privacy budget ϵ (obtained for a given q) and an unlimited capacity to
increase K, we could virtually tend to zero noise levels and achieve optimal performance. Therefore,
PRIMORL, already capable of producing good policies with significant noise levels and ϵ, has the
potential to achieve stronger privacy guarantees provided access to large enough datasets.

An aspect that deserves further development is the iterative aspect of the used training methods and its
effect on privacy. Differential privacy being a worst-case definition, it assumes that all intermediate
models are released during training. Although the practicality of this hypothesis is debatable, it
definitely impacts privacy: privacy loss is incurred at each training iteration (corresponding to a
gradient step on the global model in DP-SGD and TDP MODEL ENSEMBLE TRAINING) and privacy
budget, therefore, scales with the number of iterations T . Consequently, limiting the number of
iterations is even more crucial with DP training than with non-private training. Training a model on the
kind of tasks we considered nonetheless requires a lot of iterations to reach convergence (empirically,
thousands of iterations for CARTPOLE and tens of thousands of iterations for HALFCHEETAH), and
the privacy budget suffers unavoidably.

However, one way to circumvent this is to leverage privacy amplification by subsampling. Indeed, as
McMahan et al. (2017) observe, the additional privacy loss incurred by additional training iterations
becomes negligible when the sampling ratio q is small enough, which is a direct effect of privacy
amplification by subsampling. We discussed above how increasing dataset sizeK allowed to decrease
both sampling ratio q and noise levels. Therefore, by increasing the size of the dataset, we also greatly
reduce the impact of the number of training iterations, likely promoting model convergence. This
further reinforces the need for large datasets in offline RL in order to study privacy. As an example,
McMahan et al. (2018) consider datasets with 106 to 109 users to train DP recurrent language
models, and this is arguably the main reason why they achieve formal strong privacy guarantees. For
comparison, the classical RL UNPLUGGED and D4RL benchmarks provide datasets with K ≈ 101

to K ≈ 103 datasets. Achieving the privacy-performance trade-offs demonstrated in Section 5
would not have been possible without the collection of large datasets. Moreover, datasets orders
of magnitude larger would be required to attain formal, strong privacy guarantees, such as ϵ < 1.
While conducting experiments in deep offline RL with such extensive datasets demands substantial
computational resources, we argue that scenarios involving access to datasets with a vast number of
trajectories are reflective of real-world situations. For this reason, we consider this case worthy of
thorough investigation.

Figure 6 illustrates this point in another way. Given ϵ ∈ {10−4, 10−3, 10−2}, we plot for a range of
sampling ratio q the maximum number of iterations T that is allowed so that the total privacy loss
does not exceed ϵ, as a function of the noise multiplier z. We can see how decreasing q makes it well
easier to train a private model: dividing q by 10, we "gain" roughly 10 times more iterations across
all noise levels.
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Figure 6: Maximum number of iterations T so that the privacy loss does not exceed ϵ, as function of
the noise multiplier z.

M BROADER IMPACTS

As recent advances in the field have moved reinforcement learning closer to widespread real-world
application, from healthcare to autonomous driving, and as many works have shown that it is no
more immune to privacy attacks than any other area in machine learning, it has become crucial to
design algorithmic techniques that protect user privacy. In this paper, we contribute to this endeavor
by introducing a new approach to privacy in offline RL, tackling more complex control problems
and thus paving the way towards real-world private reinforcement learning. We firmly believe in
the importance of pushing the boundaries of this research field and are hopeful that this work will
contribute to practical advancements in achieving trustworthy machine learning.
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