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ABSTRACT

Single image super-resolution aims to recover high-quality images from low-
resolution inputs and is a key topic in computer vision. While Convolutional
Neural Networks (CNNs) and Transformer models have shown great success in
SISR, they have notable limitations: CNNs struggle with non-local information,
and Transformers face quadratic complexity in global attention. To address these
issues, Mamba models introduce a State Space Model (SSM) with linear com-
plexity. However, recent research shows that Mamba models underperform in
capturing local dependencies in 2D images. In this paper, we propose a novel ap-
proach that integrates Mamba SSM blocks with Transformer self-attention layers,
combining their strengths. We also introduce register tokens and a new SE-Scaling
attention mechanism to improve performance while reducing computational costs.
The resulting super-resolution network, SST (State Space Transformer), achieves
state-of-the-art results on both classical and lightweight tasks.

1 INTRODUCTION
Single image super-resolution (SISR) aims to recover high-resolution images from their degraded
low-resolution counterparts. Due to its wide range of applications, exploring efficient and effective
SR algorithms has long been a prominent research topic in the field of computer vision (Jo et al.,
2018; Wang et al., 2019; Anwar et al., 2020). Since the pioneering works (Dong et al., 2014; Kim
et al., 2016; Zhang et al., 2018a; Ledig et al., 2017; Shi et al., 2016; Lim et al., 2017), deep neural
network-based methods have become the mainstream approach for SISR. These neural networks are
constructed using different building blocks, leading to various characteristics.

Convolutional Neural Networks (CNNs) use convolutional layers as their main component, process-
ing neighboring pixels through convolutions and expanding the network’s receptive field by stacking
multiple convolutional layers. This practice has led to many successful SR network designs (Tai
et al., 2017; Ledig et al., 2017; Lim et al., 2017; Kim et al., 2016; Zhang et al., 2021; Li et al.,
2018; Wang et al., 2018; Zhang et al., 2018c; Tong et al., 2017; Zhang et al., 2018b; Yang & Qi,
2021). However, the inherent locality inductive bias in CNNs makes it difficult for these networks
to effectively exploit non-local information (Shi et al., 2022). In contrast, Transformer networks
(Chen et al., 2021; Liang et al., 2021; Zhang et al., 2022a;c;a;c; Chen et al., 2023a), which use self-
attention mechanisms to process spatial information, have achieved success in overcoming these
limitations. The self-attention mechanism of Transformers does not assume a locality inductive bias
and theoretically has the ability to cover a larger receptive field, potentially leading to better SR per-
formance. However, due to the quadratic computational complexity of the self-attention mechanism
with respect to the number of tokens, in practice, we cannot equip Transformers with sufficiently
large windows. Methods like SwinIR (Liang et al., 2021), which are based on shifted windows, still
perform self-attention processing only locally and thus cannot effectively utilize global information.

This limitation of Transformer networks impacts not only image processing network design but
also numerous other fields that rely on self-attention mechanisms and face constraints due to their
quadratic complexity with respect to the number of input tokens. To alleviate this problem, the
Mamba models introduce a novel State Space Model (SSM) (Gu & Dao, 2023; Mehta et al., 2022;
Wang et al., 2023), offering a new method for long-sequence modeling with linear complexity,
initially applied in natural language processing. Mamba models have also been successfully applied
to visual tasks and image processing, including SISR, such as MambaIR (Guo et al., 2024) and
DVMSR (Lei et al., 2024). By organizing pixels into long sequences in a scanning manner and
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processing them using the SSM blocks, an essentially global attention mechanism is achieved. This
has led to high expectations that Mamba models could solve the current problems of Transformers
and convolutional networks.

However, existing works have also revealed some issues with the Mamba model; they have not
demonstrated significant performance advantages. Recent works, such as Vision Mamba (Zhu et al.,
2024), VMamba (Liu et al., 2024), and MambaOut (Yu & Wang, 2024), have shown through exper-
iments that vision models based on SSM, despite having larger receptive fields and lower computa-
tional costs, perform poorly on many visual tasks that do not involve long sequences when compared
to state-of-the-art convolutional and attention-based models. This suggests that the scanning method
of vision ssms, which traverses along the row or column axis and flattens spatial tokens into long
sequences, makes it unable to capture local contextual dependencies in 2D images as efficiently as
attention or convolution. As a result, their local region representation capability within their effective
receptive field is inferior to that of Transformers.

In this work, we aim to leverage the stronger representation capability of Transformer models and
introduce the low-complexity global information processing ability of the Mamba model into our ar-
chitecture. We find that integrating the Mamba SSM as an additional module with Transformers can
combine the advantages of both methods, complementing each other. We conduct an in-depth study
on mixing Mamba SSM blocks with Transformer self-attention layers and propose a simple yet gen-
eral model that achieves better results than both Mamba and Transformers without complex designs
or a significant increase in computational complexity and parameters. Furthermore, we investigate
the reasons behind the weak local region representation capabilities of vision Mamba models and
propose solutions. Our results indicate that the internal modeling of Mamba exhibits significant
problems when processing visual inputs. Specifically, Mamba model generates feature maps with
many artifacts; these artifacts correspond to abnormal tokens with unusually high regularization
values, and these tokens tend to discard local information in favor of containing more global infor-
mation. These abnormal artifacts greatly affect the quality of the feature maps. To fundamentally
address this deficiency in vision Mamba networks, we propose adding updatable register tokens in
vision ssms that are independent of the input tokens. Additionally, works like MambaIR have shown
that introducing channel attention mechanisms can improve performance, but this method introduces
a substantial additional computational burden. We propose a new attention mechanism, SE-Scaling,
to replace channel attention, achieving better improvements while significantly reducing the com-
putational cost. By integrating the above methods, we propose a super-resolution network called
SST (State Space Transformer), which achieves state-of-the-art performance on both classical and
lightweight tasks.

2 RELATED WORK

Vision Transformer. Transformers have recently shown great potential in various visual tasks,
including image restoration tasks (Zamir et al., 2022; Liang et al., 2021; Chen et al., 2021). Among
them, the most typical work should be Vision Transformer (ViT) (Dosovitskiy, 2020) , which proves
that Transformers outperform convolutional neural networks in feature encoding. Image super-
resolution is an important task in image restoration, and Transformer-based models also dominate.
IPT (Chen et al., 2021) is a large pre-trained model based on the Transformer encoder and decoder
structure, which has been applied to tasks such as super-resolution, denoising, and rain removal.
Based on the Swin Transformer encoder (Liu et al., 2021), SwinIR (Liang et al., 2021) performs
self-attention calculations on N×N local windows during feature extraction, achieving outstanding
performance. However, existing works have not been able to solve the problem that Transformers
are limited by computational complexity, which results in only utilizing limited spatial information.
Existing methods, such as ELAN (Zhang et al., 2022c), simplify the architecture of SwinIR and
use self-attention with different window sizes to capture correlations between distant pixels, but this
also sacrifices some of the original model’s representation capability in local regions. Our work
retains the advantages of window self-attention in local areas while efficiently utilizing more global
information for image super-resolution.

State-Space Model. State-space models (SSMs) (Gu et al., 2021a;b); (Smith et al., 2022) orig-
inated from classical control theory (Kalman, 1960) and have recently been introduced into deep
learning as a competitive backbone for state-space transformation. In modeling long-range depen-
dencies, the good property of linear scaling with sequence length has attracted great interest from
researchers. Recently, Mamba (Gu & Dao, 2023) is a data-dependent SSM with a selection mecha-
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Figure 1: A diagram illustrating convolution, self-attention in Transformer networks, and the 2D-
Selective-Scan mechanism in Mamba networks. It can be observed that Mamba’s scanning covers
more pixels but weakens the correlation between neighboring pixels.

MambaIR OursHATSwinIRRCANEDSR

(a) CNN-based Methods (b) Transformer-based Methods (c) Mamba-based Method (d) Hybird Method

Figure 2: Visualization of the effective receptive fields of different networks. It can be seen that
both convolutional and window-based Transformers can only cover a limited area, while Mamba’s
coverage extends across the entire image. The visualization also shows that Mamba’s scanning
mechanism results in a higher focus on pixels in the horizontal and vertical directions.

nism and efficient hardware design. It outperforms Transformers in natural language processing and
has the property of linear scaling with input length. In addition, there are some pioneering works
that apply Mamba to vision tasks such as image classification (Zhu et al., 2024), video understand-
ing (Wang et al., 2023), and image restoration (Guo et al., 2024). However, some recent works such
as Mambaout (Yu & Wang, 2024) have shown that Mamba is not suitable as a backbone for non-
long sequence vision tasks, which naturally includes image super-resolution tasks, where Mamba
performs poorly. In our work, Transformer and Mamba are effectively integrated, and the disadvan-
tage of the Mamba model of losing local information when processing two-dimensional images is
also compensated.

3 METHOD

3.1 MOTIVATION
In recent years, methods based on CNNs and Transformers have become mainstream in SISR tasks,
especially those utilizing the Swin Transformer. However, due to the substantial computational
overhead caused by the quadratic complexity of self-attention, all methods based on the Swin Trans-
former cannot freely expand their receptive fields and are limited to using spatial information within
restricted window regions. In contrast, the Mamba model (Gu & Dao, 2023) is not constrained by
quadratic complexity and can effectively utilize global information. Mamba arranges pixels in a
scanning manner to form sequences and then processes them using a linear-complexity State Space
Model (SSM). A comparison among Mamba, CNN, and Transformer is demonstrated in Figure 1.
The visualization of the effective receptive field in Figure 2 shows that methods based on Mamba,
with SSM at their core, have a wider receptive field than CNN-based and Transformer-based meth-
ods.

Despite this advantage, current SR networks based on Mamba (Guo et al., 2024) have not outper-
formed Transformer-based methods like SwinIR (Liang et al., 2021). The scanning approach of
Mamba over pixels makes it challenging for the network to efficiently model the relationships be-
tween local pixels. Although SSM (Gu & Dao, 2023) provides a larger receptive field, it does not
fully exploit the rich pixel information in practical SR tasks. Many contemporary works have con-
firmed this observation, such as Vision Mamba (Zhu et al., 2024), VMamba (Liu et al., 2024), and
MambaOut (Yu & Wang, 2024). This naturally leads to two questions:

• Given that self-attention and SSM both have inherent shortcomings, and their advantages
and disadvantages complement each other, is combining the two the optimal solution?
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Methods Params MACs (Flops) Set5 Set14 B100 Urban100 Manga109

SwinIR (Liang et al., 2021) (all MSA blocks) 930K 64G 32.44 28.77 27.69 26.47 30.92
MambaIR (Guo et al., 2024) (all VSSM blocks) 979K 57G 32.47 28.80 27.71 26.55 31.12
Combine in series, starting with MSA 984K 58G 32.51 28.83 27.73 26.66 31.20
Combine in parallel 984K 58G 32.49 28.81 27.71 26.61 31.16
Combine in series, starting with VSSM 984K 58G 32.53 28.86 27.74 26.68 31.23

Table 1: Performance comparison of three VSSB and MSA combination methods: parallel, sequen-
tial with VSSB followed by MSA, and sequential with MSA followed by VSSB. All combinations
outperform models using only MSA or VSSB, with the sequential approach of VSSB followed by
MSA yielding the best results.

All MSA VSSM 1:4 MSA VSSM 1:2 MSA VSSM 1:1 MSA VSSM 2:1 MSA VSSM 4:1 MSA All VSSM

Params 930K 869K 981K 984K 923K 877K 979K
Set5 32.44 32.44 32.57 32.53 32.49 32.43 32.47
Set14 28.77 28.78 28.89 28.86 28.81 28.77 28.80

Table 2: The table presents the performance outcomes for various hybrid architecture designs with
different ratios of VSSB to MSA blocks.

• If so, how can we maximize the benefits of their combination?
In this work, our goal is to integrate self-attention-based Transformers with SSM-based Mamba,
finding the optimal way to combine them to maximize their respective strengths. We also further
modify the Mamba module to enhance its effectiveness in addressing the representation capability
issues in Mamba networks.

3.2 INTEGRATION

Basic Structure. Combining SSMs with self-attention is an intuitive idea, but determining the
best way to integrate them requires exploratory experiment. For the SSM component, we selected
the Vision State-Space Block (VSSB) used in MambaIR as the building block for the Mamba model.
For the self-attention component, we chose the (Shifted) Window Multi-head Self-Attention (MSA)
building block from SwinIR. This choice avoids introducing special designs, ensuring that our con-
clusions are generalizable. We combined VSSB and MSA in a one-to-one ratio. The methods of
combining VSSB and MSA can be divided into two types: serial and parallel, with the serial com-
bination requiring attention to the order of execution.

In Table1, we present the performance of three different combination methods on benchmark
datasets. Surprisingly, all three combinations show performance improvements over models us-
ing only MSA or VSSB. This indicates that integrating Mamba and Transformer components is a
promising direction. Among these, the improvement from the parallel combination is smaller com-
pared to the serial combinations. Notably, the sequential connection where VSSB is followed by
MSA achieves the best results. This suggests that we should first model the global pixel information
of the input data using the state-space approach before computing self-attention in local window
regions. This finding establishes the main direction of our method: combining VSSB and MSA in
series and ensuring that VSSB is executed first to maximize their respective advantages.

Finding the Optimal Integration Ratio. Furthermore, the different structural designs combining
VSSB and MSA exhibit varying performances, which indicates that they play different roles in SR
networks. Designing architectures where both components are equal in quantity and connected in
pairs may prevent each from fully leveraging their respective advantages. Adjusting the quantities of
the two components to an optimal ratio could further enhance the capabilities of this hybrid structure.

To explore the individual influences of SSM and Self-Attention and determine the optimal quantity
ratio between them, we designed five different hybrid architectures. The specific structural designs
are illustrated in Figure 3(a). The experimental results, shown in Figure 3(b) and Table 2, demon-
strate that combining VSSB and MSA improves performance across different ratios, with the model
achieving peak performance when the ratio between the two is 1:2. This finding aligns with our
earlier inference that vision Mamba cannot serve as the backbone model for SR tasks on its own.
Only by integrating it with Transformers and controlling the ratio between them can vision Mamba
fully maximize its advantages. The 1:2 ratio is also related to the shift-window mechanism of MSA;
due to this mechanism, MSA blocks are typically grouped in pairs to achieve optimal results.
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Figure 3: Exploration of the optimal VSSB-to-MSA ratio in hybrid architectures. (a) illustrates
different structural designs and (b) shows the experimental results indicating performance improve-
ments across different ratios, with the optimal ratio identified as 1:2.
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Figure 4: Visualization of feature artifacts. (a) Feature map from the hybrid model with VSSB,
showing artifacts in low-frequency regions. (b) Norm distribution of feature map tokens, revealing
numerous high-norm outliers in vision Mamba.

3.3 FURTHER IMPROVEMENT OF VISION STATE-SPACE BLOCK

Feature Artifacts of Vision State Space Model. In ViT (Alexey, 2020), feature maps often con-
tain a considerable number of outliers that correspond to low-information background regions but
exhibit abnormally high attention scores. A recent study by Darcet et al. (2023) refers to these out-
liers as feature artifacts. Specifically, they point out that these artifact tokens always have high norm
values and, during inference, tend to discard local information in favor of retaining global features,
thereby compromising the quality of the feature map. These characteristics of artifact tokens align
with the shortcomings we previously identified in Mamba. In the SR task, Mamba also demonstrates
a loss of pixel information and weak representation of local regions in 2D images. This similarity
raises the question: Could Mamba’s issues be related to feature artifact tokens?

To investigate this, we conducted a quantitative analysis of the mamba building block in our hybrid
architecture model and plotted the norm distribution of the feature map tokens (see Figure 4(b)).
This distribution sums the norm values of feature map tokens across all channels and clearly shows
numerous high-norm outliers. These results indicate that vision Mamba is also afflicted by feature
artifacts. Such high-norm artifacts can adversely affect feature extraction. Additionally, by directly
observing the feature map visualization in Figure 4(a), we observe that our hybrid model combined
with VSSB exhibits a large number of artifacts in low-frequency areas with less information, which
seriously affects the quality of the feature map. Mamba’s method of scanning and flattening all
spatial domain tokens inherently loses the local spatial correlations of two-dimensional images,
and the presence of numerous feature artifacts that tend to abandon local information exacerbates
this issue. Therefore, addressing the artifact problem is of great significance in overcoming vision
Mamba’s weak representation ability in two-dimensional areas.

Introducing Register Tokens for Artifact Removal. Building on the work by Darcet et al. (2023)
that proposed a solution to remove artifacts in ViT, we address this problem by introducing register
tokens into the SSM.

Our approach adds register tokens before the data is input to each SSM layer and discards them after
the data is output from the SSM layer. This means the registers are updated at different SSM layers
within the model. Figure 5 shows the enhanced SSM layer. This register setting strategy not only
avoids additional complex tensor operations when the input data passes through VSSB and MSA
but also better captures and retains important semantic information at different depths of the model.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

𝑦𝑥

Embedding

Linear

Linear

𝒉𝒕 = ⅇ𝚫𝑨𝒉𝒕−𝟏 + 𝚫𝑩𝝌𝒕

𝒚𝒕 = 𝑪𝒉𝒕 +𝑫𝝌𝒕

𝒚 = [𝒚𝟏, 𝒚𝟐, … , 𝒚𝑳]

A,D

B, C

Output Register Tokens S6 Blocks 

1 2 3 8 9
Reg

1
Reg

N

1 4 67 9
Reg

1
Reg

N

Reg
1

Reg
N

Reg
1

Reg
N

12789

13 469

1 2 3 8 9

1 4 67 9

12789

13 469

Reg
1

Reg
N

Reg
1

Reg
N

Reg
1

Reg
N

Reg
1

Reg
N

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

State-Space Model with Registers (SSM-R)

Figure 5: Illustration of vision state-space model with updateable registers. Input-independent reg-
ister tokens are appended to the input data to mitigate feature artifacts. These register tokens are
created before the data enters the SSM layer and are discarded upon exiting, ensuring effective arti-
fact handling throughout the model.

Methods Params Macs Set5 Set14 B100 Urban100 Manga109

VSSB (w/o SE-Scaling) 1091K 65G 32.59 28.90 27.80 26.78 31.34
VSSB (w/ Channel Attention) 1109K 64G 32.58 28.89 27.80 26.77 31.34
VSSB (w/ MLP) 1063K 64G 32.57 28.88 27.78 26.73 31.28
VSSB (w/ SE-Scaling) 1097K 65G 32.63 28.94 27.81 26.82 31.41

Table 3: Comparison of our SE-Scaling with MLP and different attention modules. The results show
that our SE-Scaling has stronger representation capabilities among models of the same size.
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Figure 6: Performance differences due
to different number of register tokens.

In our experiments, we compared the performance using
different numbers of register tokens under this strategy.
The results show that Figure 6 when the number of reg-
isters exceeds four, the model’s performance remains al-
most unchanged. Since increasing the number of register
tokens also increases the computational complexity, we
opt to add four register tokens after the input token se-
quence.

SE-Scaling. Our SE-Scaling, as shown in Figure 7(c),
specifically includes two parts: a variant of channel at-
tention (Channel Scaling) and spatial attention (Spatial
Squeeze and Excitation). In Channel-Scaling, we first
perform global average pooling to compress the spatial dimension of the input feature map to
1×1 and generate a global feature representation for each channel. This operation can be ex-
pressed as: zc = 1

H×W

∑H
i=1

∑W
j=1 xb,c,i,j . Then use a 1×1 convolutional layer to map the

compressed features to a single channel to obtain the excitation output y, and perform ReLU
activation: yc = ReLU(Wczc + bc), then use nearest neighbor interpolation to adjust y back
to the original spatial dimension, scale the original input x according to the stimulus output y:
x̂b,c,i,j = xb,c,i,j · yb,c,i,j .

While sSE focuses on enhancing the important spatial regions in the feature map. It first applies
a 1x1 convolutional layer to the input feature map to convert the input channel into a single chan-
nel: yb,1,i,j =

∑C
c=1 Wc,1xb,c,i,j + b, This convolution operation captures the spatial information

of all input channels. The output of the convolution is then processed through a Sigmoid activa-
tion function to normalize the spatial attention map to the range of [0, 1]: yb,1,i,j = σ(yb,1,i,j).
Finally, the original input feature map x is scaled according to the spatial attention map y:
x̂b,c,i,j = xb,c,i,j · yb,1,i,j . Finally, Channel-Scaling and sSE are fused to take their maximum
value: x̂b,c,i,j = max(x̂cSE

b,c,i,j , x̂
sSE
b,c,i,j). Our SE-Scaling can focus on spatial and channel features

very efficiently, further improving the performance of the model. The results in Table 3 shows that
VSSB, which replaces channel attention with SE-Scaling, achieves optimal performance under the
condition of similar model size.
3.4 OVERALL ARCHITECTURE

The overall architecture of our State-Space Transformer SR network (SST) is depicted in Fig-
ure 7(a). The network begins with a 3×3 convolutional layer, which extracts initial feature maps
from the input image. These features are then processed through multiple stages of our hybrid mod-
ule, which consists of Vision State-Space Blocks with Registers (VSSB-R) and Swin Transformer
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Figure 7: (a) The architecture of our proposed SST for image resolution. (b) The inner structure
of Vision State-Space Block with updateable Registers (VSSB-R). (c) The inner structure of SE-
Scaling. (d) The inner structure of Swin Transformer Block with (shifted) window

Blocks (STB). The hybrid module is repeated N times to allow for deeper feature extraction and
better learning of intricate patterns in the image. Within each hybrid module, the VSSB-R blocks
and STBs are combined in a serial arrangement, repeated M times. This design enables the model to
first leverage the global pixel information processing capabilities of VSSB-R, followed by the local
spatial representation power of the STBs. The inclusion of register tokens in VSSB-R ensures the
preservation of important semantic information, improving the model’s handling of feature artifacts.
Following the hybrid modules, another 3x3 convolutional layer is applied to refine the extracted
features. A global residual connection is employed, adding the input feature map to the final fea-
ture map to aid in the recovery of fine details. Finally, a reconstruction module is used to generate
the high-resolution output image. This combination of VSSB-R and STB allows the model to effi-
ciently capture both global and local contextual information, resulting in enhanced super-resolution
performance.

4 EXPERIMENTS

We have verified some core conclusions supporting our network structure design through some
experiments. Next, we conduct experiments on both classical and lightweight image SR tasks,
compare our SST with existing state-of-the-art methods.

4.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation. The selection of training datasets is consistent with the comparison mod-
els. In classical image SR, we use DIV2K (Lim et al., 2017) and DF2K (DIV2K (Lim et al., 2017)
+ Flickr2K (Timofte et al., 2017)) to train our SST. In lightweight image SR, we use DIV2K (Lim
et al., 2017) to train our SST-light. For testing, we mainly evaluate our method on five benchmark
datasets, including Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2012), BSD100 (Martin et al.,
2001), Urban100 (Huang et al., 2015), and Manga109 (Matsui et al., 2017). The experimental re-
sults are evaluated in terms of PSNR and SSIM values, which are calculated based on the Y channel
of the YCbCr space.

Implementation Details. In the classical image SR task, we set the Residual group number, VSSB-
R number, STB number, channel number, windows size, and attention head number to 6, 2, 4, 180,
16, and 6, respectively. For the lightweight image SR task, we set the Residual group number,
VSSB-R number, STB number, channel number, windows size, and attention head number to 4, 2,
4, 60, 8, and 6, respectively. The training patch size we use is 64× 64. We randomly rotate images
by 90◦, 180◦, or 270◦ and randomly flip images horizontally for data augmentation. We adopt the
Adam Kingma (2014) optimizer with β1 = 0.9 and β2 = 0.99 to train the model for 500k iterations.
The initial learning rate is set as 2× 10−4 and is reduced by half at the {250k, 400k, 450k, 475k}-th
iterations.

4.2 CLASSICAL IMAGE SUPER-RESOLUTION

For the classical image SR task, we compare our Method with a series of state-of-the-art CNN-based,
Transformer-based and Mamba-based SR methods: EDSR (Lim et al., 2017), RCAN (Zhang et al.,
2018b), SAN (Dai et al., 2019), HAN (Niu et al., 2020), IPT (Chen et al., 2021), SwinIR (Liang
et al., 2021), EDT (Li et al., 2021), CAT-R (Chen et al., 2022), ART-S (Zhang et al., 2022b), SR-
Former (Zhou et al., 2023), DAT-S (Chen et al., 2023b), MambaIR (Guo et al., 2024).
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Method Scale Params Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR ×2 42.6M 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
RCAN ×2 15.4M 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
SAN ×2 15.7M 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
HAN ×2 63.6M 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
IPT ×2 115M 38.37 - 34.43 - 32.48 - 33.76 - - -
SwinIR ×2 11.8M 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9433 39.92 0.9797
EDT ×2 11.5M 38.45 0.9624 34.57 0.9258 32.52 0.9041 33.80 0.9425 39.93 0.9800
CAT-R ×2 16.6M 38.48 0.9625 34.53 0.9251 32.56 0.9045 34.08 0.9443 40.09 0.9804
ART-S ×2 11.9M 38.48 0.9625 34.50 0.9258 32.53 0.9043 34.02 0.9437 40.11 0.9804
SRFormer ×2 10.9M 38.51 0.9627 34.44 0.9253 32.57 0.9046 34.09 0.9449 40.07 0.9802
DAT-S ×2 11.2M 38.54 0.9627 34.60 0.9258 32.57 0.9047 34.12 0.9444 40.17 0.9804
MambaIR ×2 12.8M 38.48 0.9624 34.55 0.9256 32.54 0.9045 33.96 0.9436 39.99 0.9801
SST (ours) ×2 11.4M 38.57 0.9628 34.72 0.9265 32.58 0.9047 34.29 0.9452 40.12 0.9802

EDSR ×3 43.0M 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
RCAN ×3 15.6M 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499
SAN ×3 15.9M 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494
HAN ×3 64.2M 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500
IPT ×3 116M 34.81 - 30.85 - 29.38 - 29.49 - - -
SwinIR ×3 11.9M 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537
EDT ×3 11.6M 34.97 0.9316 30.89 0.8527 29.44 0.8142 29.72 0.8814 35.13 0.9534
CAT-R ×3 16.6M 34.99 0.9320 31.00 0.8539 29.49 0.8154 29.91 0.8848 35.29 0.9542
ART-S ×3 11.9M 34.98 0.9318 30.94 0.8530 29.45 0.8146 29.86 0.8830 35.22 0.9539
SRFormer ×3 10.6M 35.02 0.9323 30.94 0.8540 29.48 0.8156 30.04 0.8865 35.26 0.9543
DAT-S ×3 11.3M 35.12 0.9327 31.04 0.8543 29.51 0.8157 29.98 0.8846 35.41 0.9546
MambaIR ×3 12.8M 34.97 0.9318 30.92 0.8534 29.46 0.8144 29.80 0.8828 35.20 0.9541
SST (ours) ×3 11.4M 35.04 0.9325 31.04 0.8545 29.51 0.8159 30.16 0.8869 35.46 0.9548

EDSR ×4 43.0M 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
RCAN ×4 15.6M 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
SAN ×4 15.9M 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
HAN ×4 64.2M 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
IPT ×4 116M 32.64 - 29.01 - 27.82 - 27.26 - - -
SwinIR ×3 11.9M 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
EDT ×4 11.6M 32.82 0.9031 29.09 0.7939 27.91 0.7483 27.46 0.8246 32.05 0.9254
CAT-R ×4 16.6M 32.89 0.9044 29.13 0.7955 27.95 0.7500 27.62 0.8292 32.16 0.9269
ART-S ×4 11.9M 32.86 0.9029 29.09 0.7942 27.91 0.7489 27.54 0.8261 32.13 0.9263
SRFormer ×4 10.3M 32.93 0.9041 29.08 0.7953 27.94 0.7502 27.68 0.8311 32.21 0.9271
DAT-S ×4 11.3M 33.00 0.9047 29.20 0.7962 27.97 0.7502 27.68 0.8300 32.33 0.9278
MambaIR ×4 12.9M 32.93 0.9044 29.10 0.7952 27.92 0.7490 27.50 0.8261 32.08 0.9265
SST (ours) ×4 11.5M 33.00 0.9050 29.20 0.7967 27.98 0.7505 27.84 0.8325 32.37 0.9279

Table 4: PSNR(dB)/SSIM comparison for classical image super-resolution task on five benchmark
datasets. We color best and second best results in red and blue.

Quantitative comparison. The quantitative comparison of the methods for classical image SR is
shown in Table 4. We can see that our method achieves the best performance on all five datasets.
Especially on the Urban100 dataset, our model performs even better, with a minimum of 0.34dB and
a maximum of 0.46dB improvement on three tasks compared to our baseline: SwinIR (Liang et al.,
2021). This shows that our method can capture more global information than previous Transformer-
based models, which is very effective for images in Urban100 with a large number of repeated
texture structures.

Qualitative comparison. We show qualitative comparisons with other methods in Fig. 8. From the
first example in Fig. 8, we can clearly observe that only our model can restore clear and detailed
edges, while other models not only cannot restore clear edges, but also distort the original shape of
the image. For the second example, our model is also the only one that can fully restore the cross
pattern in the image. Qualitative comparison shows that our SST can restore better high-resolution
images from low-resolution images.

Model Size Comparisons. In Table 6, we further compare our method with several image SR meth-
ods in terms of computational complexity (e.g., FLOPs), number of parameters, and performance
at ×4 scale. We set the output size to 3×512×512 to calculate FLOPs, and use PSNR tested on
Urban100 to evaluate the performance. Compared with our baseline: SwinIR (Liang et al., 2021),
our method achieves up to 0.39 dB improvement under the condition of comparable number of
parameters and computation, and at least 0.16 dB improvement compared with the most advanced
Transformer-based methods such as ART, CAT-R, SRFormer, DAT-S. Such results fully demonstrate
that our method of integrating SSM with Transformer is extremely effective. The combination with
SwinIR alone can achieve state-of-the-art performance, and our method still has great potential.

4.3 LIGHTWEIGHT IMAGE SUPER-RESOLUTION

Our method not only excels in classical SR task but also demonstrates even stronger performance
in lightweight task. Across all benchmarks, our method outperforms many state-of-the-art methods
by a significant margin while using much less computational power. We also compare our Method
with a series of state-of-the-art CNN-based, Transformer-based and Mamba-based SR methods:
CARN (Ahn et al., 2018), IMDN (Hui et al., 2019), LAPAR-A (Li et al., 2020), LatticeNet (Luo
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Figure 8: Qualitative comparison with recent state-of-the-art classical image SR methods on the ×4
SR task.

Method Scale Params Macs Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CARN ×2 1592K 222.8G 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
IMDN ×2 694K 158.8G 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774
LAPAR-A ×2 548K 171G 38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772
LatticeNet ×2 756K 169.5G 38.15 0.9610 33.78 0.9193 32.25 0.9005 32.43 0.9302 N/A N/A
SwinIR-light ×2 910K 244G 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783
ELAN ×2 621K 203G 38.17 0.9611 33.94 0.9207 32.30 0.9012 32.76 0.9340 39.11 0.9782
SwinIR-NG ×2 1181K 274.1G 38.17 0.9612 33.94 0.9205 32.31 0.9013 32.78 0.9340 39.20 0.9781
SRFormer-light ×2 853K 236G 38.23 0.9613 33.94 0.9209 32.36 0.9019 32.91 0.9353 39.28 0.9785
MambaIR ×2 1357K 302G 38.16 0.9610 34.00 0.9212 32.34 0.9017 32.92 0.9356 39.31 0.9779
SST-light (ours) ×2 967K 229G 38.23 0.9619 34.08 0.9233 32.37 0.9021 33.14 0.9368 39.39 0.9786

CARN ×3 1592K 118.8G 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440
IMDN ×3 703K 71.5G 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445
LAPAR-A ×3 594K 114G 34.36 0.9267 30.34 0.8421 29.11 0.8054 28.15 0.8523 33.51 0.9441
LatticeNet ×3 765K 76.3G 34.53 0.9281 30.39 0.8424 29.15 0.8059 28.33 0.8538 N/A N/A
SwinIR-light ×3 918K 111G 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624 33.98 0.9478
ELAN ×3 629K 90.1G 34.61 0.9288 30.55 0.8463 29.21 0.8081 28.69 0.8624 34.00 0.9478
SwinIR-NG ×3 1190K 114.1G 34.64 0.9293 30.58 0.8471 29.24 0.8090 28.75 0.8639 34.22 0.9488
SRFormer-light ×3 861K 105G 34.67 0.9296 30.57 0.8469 29.26 0.8099 28.81 0.8655 34.19 0.9489
MambaIR ×3 1365K 129G 34.72 0.9296 30.63 0.8475 29.29 0.8099 29.00 0.8689 34.39 0.9495
SST-light (ours) ×3 976K 101G 34.70 0.9298 30.67 0.8483 29.30 0.8103 29.01 0.8682 34.47 0.9503

CARN ×4 1592K 90.9G 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
IMDN ×4 715K 40.9G 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
LAPAR-A ×4 659K 94G 32.15 0.8944 28.61 0.7818 27.61 0.7366 26.14 0.7871 30.42 0.9074
LatticeNet ×4 777K 43.6G 32.30 0.8962 28.68 0.7830 27.62 0.7367 26.25 0.7873 N/A N/A
SwinIR-light ×4 930K 63.6G 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.92 0.9151
ELAN ×4 640K 54.1G 32.43 0.8975 28.78 0.7858 27.69 0.7406 26.54 0.7982 30.92 0.9150
SwinIR-NG ×4 1201K 63.0G 32.44 0.8980 28.83 0.7870 27.73 0.7418 26.61 0.8010 31.09 0.9161
SRFormer-light ×4 873K 62.8G 32.51 0.8988 28.82 0.7872 27.73 0.7422 26.67 0.8032 31.17 0.9165
MambaIR ×4 1374K 85.8G 32.51 0.8993 28.85 0.7876 27.75 0.7423 26.75 0.8051 31.26 0.9175
SST-light (ours) ×4 986K 60.8G 32.62 0.9002 28.93 0.7894 27.79 0.7438 26.80 0.8068 31.41 0.9184

Table 5: PSNR(dB)/SSIM comparison for lightweight image super-resolution task on five bench-
mark datasets. We color best and second best results in red and blue.

et al., 2020), SwinIR-light (Liang et al., 2021), ELAN (Zhang et al., 2022c), SwinIR-NG (Choi
et al., 2023), SRFormer-light (Zhou et al., 2023),MambaIR (Guo et al., 2024).

Quantitative comparison. Table 5 shows the quantitative comparison of lightweight image SR
models. We report the MAC by upscaling low-resolution images to 1280 × 720 resolution at all
scales. We can see that our SST-light achieves the best performance on all scale factors with fewer
MACs on all five benchmark datasets. Compared with SwinIR and recent state-of-the-art lightweight
models such as SRFormer and MambaIR, our SST-light uses less computation and achieves a huge
performance lead. On both x3 and x4 tasks, our method achieves an amazing improvement of up to
0.49dB on Manga109 compared to SwinIR. This shows that our method is extremely versatile and
is not only applicable to classic SR tasks that require a lot of computational resources, but also has
outstanding performance on lightweight SR tasks.

Qualitative comparison. In Fig. 9, we qualitatively compare our SST-light with the state-of-the-art
lightweight image SR models. Notably, SST-light is the only model that can clearly recover the
line details in the example, and also does not have the large-area artifacts in the examples of the
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Methods EDSR RCAN SwinIR CAT-R ART-S SRFormer DAT-S MambaIR SST (ours)

PSNR (dB) 26.64 26.82 27.45 27.62 27.54 27.68 27.68 27.50 27.84
Flops (G) 823.3 261.0 215.3 292.7 251.2 206.1 203.3 197.8 224.6
Parameters (M) 43.1 15.6 11.9 16.6 11.9 10.4 11.2 12.9 11.5

Table 6: Table 6 shows a comparison of the performance, computational complexity, and number of
parameters for the image SRs. FLOPs are measured with the output size set to 3 × 512 × 512, and
PSNR values are tested on Urban100 (×4).

SRFormer-light MambaIR-light OursSwinIR-NGSwinIR-lightUrban100 (4 x): img 092 

HR LatticeNetCARNBicubic ELAN

HR LatticeNetCARNBicubic ELAN

SRFormer-light MambaIR-light OursSwinIR-NGSwinIR-lightUrban100 (4 x): img 059 

Figure 9: Qualitative comparison with recent state-of-the-art lightweight image SR methods for the
×4 SR task.

remaining models. This strongly proves that the lightweight version of SST also performs very well
in recovering edges and textures compared to other methods.

LAM 
Attribution

Area of 
Contribution

SwinIR
DI: 22.306

MambaIR
DI: 35.13

SST (Ours)
DI: 35.13

(a) HR image (b) Classical SR 

CAT-R
DI: 28.23

EDSR
DI: 10.125

RCAN
DI: 16.835

SAN
DI: 18.243

Figure 10: LAM results of SST. We can see that SST can perform SR reconstruction based on a
particularly wide range of pixels compared to the other methods.

LAM Comparison. In Fig. 10, We can observe the range of pixels used for SR reconstruction, and
we use LAM (Gu & Dong, 2021) to compare our model with many state-of-the-art methods. Based
on the global receptive field brought by Mamba, the pixel range of the SR image inferred by SST
is much wider than that of various Transformer-based models. The experimental results are very
consistent with our motivation and demonstrate the superiority of our method from the perspective
of interpretability.

5 CONCLUSION
In this paper, we conducted an in-depth study on mixing Mamba SSM blocks with Transformer
self-attention layers. After that, we discovered the feature map artifact problem of vision Mamba
and proposed to add an updateable register to solve it. Combined with our new lightweight and
efficient attention mechanism SE-Scaling, we designed a very simple and highly versatile single
image super-resolution model. Due to its global effective receptive field and maximum preservation
of spatial correlation in two-dimensional local areas, our hybrid model SST achieves state-of-the-art
performance on classic and lightweight SR tasks. We hope that our method can become a paradigm
for hybrid models and a useful tool for future research on super-resolution model design.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and lightweight super-
resolution with cascading residual network. In Proceedings of the European conference on com-
puter vision (ECCV), pp. 252–268, 2018.

Dosovitskiy Alexey. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv: 2010.11929, 2020.

Saeed Anwar, Salman Khan, and Nick Barnes. A deep journey into super-resolution: A survey.
ACM Computing Surveys (CSUR), 53(3):1–34, 2020.

Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel. Low-
complexity single-image super-resolution based on nonnegative neighbor embedding. 2012.

Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chun-
jing Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 12299–12310, 2021.

Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, and Chao Dong. Activating more pixels in
image super-resolution transformer. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 22367–22377, 2023a.

Zheng Chen, Yulun Zhang, Jinjin Gu, Linghe Kong, Xin Yuan, et al. Cross aggregation transformer
for image restoration. Advances in Neural Information Processing Systems, 35:25478–25490,
2022.

Zheng Chen, Yulun Zhang, Jinjin Gu, Linghe Kong, Xiaokang Yang, and Fisher Yu. Dual aggre-
gation transformer for image super-resolution. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 12312–12321, 2023b.

Haram Choi, Jeongmin Lee, and Jihoon Yang. N-gram in swin transformers for efficient lightweight
image super-resolution. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 2071–2081, 2023.

Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. Second-order attention network
for single image super-resolution. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 11065–11074, 2019.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. arXiv preprint arXiv:2309.16588, 2023.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional net-
work for image super-resolution. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13, pp. 184–199. Springer,
2014.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.
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A MORE ARTIFACTS OF SST WITHOUT REGISTERS

Urban100_005

Urban100_010

Figure 11: Each set of examples contains two pictures. The first one is the feature map of the SST
model without registers, and the second one is the feature map of the SST model with registers
added.
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Urban100_014

Urban100_016

Figure 12: Each set of examples contains two pictures. The first one is the feature map of the SST
model without registers, and the second one is the feature map of the SST model with registers
added.

Urban100_017

Urban100_020

Figure 13: Each set of examples contains two pictures. The first one is the feature map of the SST
model without registers, and the second one is the feature map of the SST model with registers
added.

Urban100_059

Urban100_092

Figure 14: Each set of examples contains two pictures. The first one is the feature map of the SST
model without registers, and the second one is the feature map of the SST model with registers
added.
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