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ABSTRACT

Existing methods for experience-driven agent evolution often generate revision
principles that lack actionable guidance, as they overlook the inherent limitations
of Large Language Models (LLMs) in abstracting knowledge and self-correcting.
To address this gap, we introduce MetaEvo, a novel framework that reframes agent
evolution as a meta-optimization task. Instead of learning directly from experi-
ence, our core idea is to first enhance the agent’s intrinsic meta-ability—its capac-
ity to learn how to effectively revise and improve itself. MetaEvo operationalizes
this concept through a three-stage pipeline powered by a modular agent system.
First, a meta-optimization stage explicitly trains the model on abstracting high-
quality principles. These principles are then accumulated in a curated memory
and subsequently retrieved by an execution module to guide generation on new
tasks. Extensive experiments across a diverse suite of mathematical reasoning and
multi-task benchmarks demonstrate that MetaEvo consistently and significantly
improves model performance, enabling more robust and generalizable reasoning
behaviors.

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of
tasks (Brown et al., 2020; Touvron et al., 2023). A growing body of research indicates that LLMs can
further self-improve by learning from their own outputs and interactions (Madaan et al., 2023; Shinn
et al., 2023; Li et al., 2023; Azov et al., 2024; Gou et al., 2024). This self-improvement process is
often structured within agent systems, which augment LLMs with persistent memory and explicit
workflows to enhance their problem-solving in complex domains (Madaan et al., 2023; Shinn et al.,
2023). A key frontier in this domain is achieving continuous evolution, where an agent not only
completes tasks but also progressively refines its underlying strategies. However, designing a robust
and scalable framework for such evolution remains a significant challenge.

To enable continuous evolution, many current approaches are experience-driven, leveraging past
interactions to guide future behavior. These methods typically involve injecting guidance during
inference, such as curated principle rules (Sun et al., 2023), procedural exemplars (Zhao et al.,
2024; Li & Qiu, 2023), or textual feedback, often supported by memory modules for reuse (Gao
et al., 2024; Chen et al., 2024). While promising, these methods face several critical limitations.

First, a trade-off exists between the quality and scalability of the guiding principles. Manually
authored principles ensure high quality but are labor-intensive and difficult to scale (Chen et al.,
2023; Sun et al., 2023), while automatically extracted principles offer scalability but are often too
generic to be actionable (Yang et al., 2023; Chen et al., 2024). Second, and more fundamentally,
most approaches focus on the content of an experience, such as specific rules or answers. In doing
so, they largely overlook the agent’s latent abstraction capability, which is the ability to derive and
internalize correction strategies from examples (Li & Qiu, 2023; Gao et al., 2024). This neglects
the crucial opportunity to treat the process of learning from experience not as mere knowledge
accumulation, but as a meta-learning problem aimed at improving the model’s underlying reasoning
and self-correction abilities.

To address these challenges, we propose MetaEvo, a novel framework that synergizes Meta-
optimization with agent Evolution to create more robust and continually improving agents. The
core of our framework is a meta optimization stage that fundamentally enhances the agent’s ability
to learn how to self-correct, rather than merely what to answer. The agent’s performance is fur-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ther bolstered by our proposed contrastive driven abstraction method for generating high-quality
principles and a principle accumulation mechanism for creating a reusable knowledge base.

Specifically, the MetaEvo framework is structured around the following three-stage pipeline: The
first stage is (1) Meta Optimization, where the agent learns how to generate effective revision prin-
ciples, rather than just what to answer. This is followed by (2) Principle Accumulation, where the
high-quality principles generated by the enhanced agent are systematically curated and stored. Fi-
nally, in the (3) Principle-Guided Generation stage, these stored principles are retrieved to guide the
agent’s actions during inference. This entire pipeline is powered by a modular agent system com-
prising three specialized components: a plan module for principle abstraction, a memory module for
storage and retrieval, and an execution module for principle-informed generation.

We conduct extensive experiments across five challenging benchmarks spanning both reasoning and
multi-task settings. The results demonstrate that MetaEvo consistently improves the base LLM’s
performance across all tasks. This improvement holds across different model scales, demonstrating
MetaEvo’s generality. Notably, MetaEvo is especially effective on tasks requiring multi-step rea-
soning, suggesting its advantage in handling complex failure patterns. Our main contributions are
threefold:

• We propose METAEVO, a novel framework that operationalizes agent evolution as a meta-
optimization task. The framework features a three-stage pipeline implemented by a modu-
lar agent system with specialized plan, memory, and execution components.

• We introduce a powerful principle learning mechanism featuring two key technical con-
tributions: a meta-optimization stage that employs preference-based learning to teach
the agent how to abstract effective principles, and a Contrast-Driven Abstraction (CDA)
method that ensures the high quality and actionability of these principles.

• We demonstrate through extensive experiments that MetaEvo achieves state-of-the-art per-
formance on five demanding benchmarks: GSM8K (Cobbe et al., 2021), SVAMP (Pa-
tel et al., 2021), MATH (Hendrycks et al., 2021), MMLU (Hendrycks et al., 2020), and
BBH (Suzgun et al., 2023). Further analysis validates the effectiveness of each component
within our framework.

1 RELATED WORK

1.1 EXPERIENCE-DRIVEN EVOLUTION.

Recent work has shifted toward building self-evolving agents. A recent survey (ang Gao et al.,
2025) highlights core dimensions of this paradigm and stresses the importance of continual learning
from experience. Within this broader context, several studies focus on identifying model failures
and generating revision principles that serve as auxiliary training signals or external memory (Sun
et al., 2023; Yang et al., 2023; Madaan et al., 2023). Others enhance LLM adaptability through
retrieval-augmented architectures and memory-based prompting, allowing models to reference his-
torical corrections during inference (Gao et al., 2024; Zhao et al., 2024; Gong et al., 2024). These
approaches enable long-term learning via structured feedback loops and continual exposure to prior
mistakes.

However, these experience-driven methods often rely on complex multi-stage pipelines to extract or
apply revision signals, while overlooking the model’s inherent limitations in abstraction and error
correction. As a result, the generated principles may lack actionable guidance or fail to generalize
across tasks. Our framework addresses this gap by introducing a meta-optimization mechanism that
strengthens the model’s ability to abstract, internalize, and reuse correction principles.

1.2 MEMORY-BASED AGENT SYSTEM

A key direction in advancing LLM agents lies in equipping them with external memory systems that
support continual learning, behavioral adaptation, and long-horizon planning (Li & Qiu, 2023; Yang
et al., 2023). Such memory can take multiple forms, which we broadly categorize into experience
replay, structural memory organization, and memory management strategies. Experience replay
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methods store intermediate reasoning trajectories or error-feedback pairs to guide subsequent deci-
sions without modifying model parameters (Li & Qiu, 2023; Gao et al., 2024). These approaches
improve accuracy but often depend on principle strategies and lack principled abstraction, limiting
their ability to generalize across tasks. Structural memory methods organize stored information into
functional segments such as episodic and semantic memory, enhancing interpretability and transfer-
ability (Zeng et al., 2024; Zhao et al., 2024). Finally, memory management research investigates
mechanisms for memory retention, forgetting, and retrieval policies that influence agents’ long-term
behavior (Xiong et al., 2025; Zeng et al., 2024).

① Meta Optimization
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the value of the house after repairs. … So, Josh

made a profit of $70,000
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Execution Module
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Principle
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Strong LLM

Strong principlesWeak principles

Training with DPO

Figure 1: Illustration of the three-stage evolutionary process of the METAEVO framework. 1. Meta
Optimization: We first train a model to enhance its core meta-ability through preference-based
learning on principles. 2. Principle Accumulation: The enhanced model then abstracts and ac-
cumulates a refined set of principles into a structured memory module, which can be iteratively
expanded. 3. Principle-Guided Generation: At inference time, the agent retrieves the most rele-
vant principles from memory to steer its final response, ensuring strategically sound outputs.

2 METHODOLOGY

This section presents MetaEvo, a meta-optimization framework implemented as a modular agent
system, that enables experience-driven and principle-guided evolution through its three core mod-
ules: plan, memory, and execution. Accordingly, we first present the overall workflow of the frame-
work, and then delve into the specifics of each constituent module.

2.1 FRAMEWORK WORKFLOW

2.1.1 META OPTIMIZATION

In this stage, we fine-tune the base model to enhance its “meta-ability” to learn how to revise and
improve its own outputs. This is achieved by framing the learning process as a meta-optimization
task: instead of learning to solve the task directly, the model learns a preference for generating more
effective revision principles. The outcome of this stage is a meta-ability-enhanced model trained on
a specially constructed preference dataset of these principles.

For each input x, we first have the base model generate an initial answer. A plan module then uses
this input, the generated answer, and a reference answer to abstract a revision principle. We perform
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this abstraction process twice: once using the base model itself to yield a ”weaker” principle p−,
and once using a more powerful ”strong model” to yield a ”stronger” principle p+. This creates a
preference pair (p+, p−) for the input x. Repeating this yields the full dataset:

Dmeta =
{(

xi, p
+
i , p

−
i

)}N

i=1
(1)

We then train the base model on this dataset using Direct Preference Optimization (DPO) Rafailov
et al. (2023). The objective is to minimize the expected loss, guiding the model to prefer the stronger
revision principles:

min
θ

E(x,p+,p−)∼Dmeta

[
Lmeta(fθ;x, p

+, p−)
]

(2)

where fθ is the model parameterized by θ. The loss is to minimize a pairwise preference loss,
encouraging the model to assign higher probability to the preferred principle p+ relative to the
dispreferred p−::

Lmeta =− E(x,p+,p−)

[
log σ

(
β
(
log πθ(p

+ | x)− log πθ(p
− | x)

))]
Here, πθ(p | x) is the model’s probability of generating principle p given input x, σ(·) is the sigmoid
function, and β is a temperature parameter.

Through this process, we obtain a meta-ability-enhanced model that demonstrates an improved
capacity for abstracting revision principles and correcting failure cases, laying the foundation for
subsequent evolution stages.

2.1.2 PRINCIPLE ACCUMULATION

The goal of this stage is to leverage this enhanced model to build a rich, structured repository of
high-quality principles. We achieve this by using the enhanced model to power the plan module,
processing the same training data as in the previous stage. This generates a new corpus of principles
that exhibit greater generalizability and instructional value.

These refined principles are then systematically organized and stored in the memory module. They
are typically indexed by the semantic representations of their corresponding tasks, creating a task-
oriented knowledge base. This memory forms the foundation for the final generation stage.

Crucially, this entire process is designed to be iterative. The model, now augmented with an external
memory of principles, can be used as the new base model for another full cycle of meta-optimization
and principle accumulation. Through such iterations, the memory continuously expands and the
model’s capabilities progressively strengthen, facilitating a cycle of continual evolution.

2.1.3 PRINCIPLE-GUIDED GENERATION

This stage describes the inference process, where the structured knowledge accumulated in the mem-
ory module is actively utilized to guide the generation of responses.

When a new input is presented to the system, the execution module is activated. Its first step is to
generate a task-level semantic descriptor of the input. This descriptor is then used as a query to
retrieve the most relevant principles from the memory module based on semantic similarity.

The retrieved principle serves as direct, actionable guidance for the final response generation. It is
incorporated into the model’s context, for instance, as part of the prompt or as a specific instruction,
to steer the output. This ensures that the model’s final answer is not only relevant to the input but is
also informed by the most effective, high-quality strategies learned throughout the evolution process.
This mechanism is the essence of principle-guided generation.

2.1.4 PLAN MODULE

The plan module constitutes the central reasoning engine of our agent system. Its primary function is
to diagnose deficiencies in a given response and abstract a generalizable principle for improvement.
To achieve this in a structured manner, we introduce a method named Contrast-Driven Abstraction
(CDA).
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The CDA method operates via a two-step, LLM-driven process: (1) Discrepancy Analysis and (2)
Principle Abstraction, as illustrated in Figure 2.

In the first step, Discrepancy Analysis, we prompt the LLM for analysis, with the user’s question
q, the base model’s answer x, and an expert reference y. This step aims to perform a fine-grained
comparison and output a structured analysis, ∆:

∆ = fanalyze(q, x, y) (3)

The resulting structure ∆ details each identified discrepancy as a list containing four fields: the
aspect of comparison (e.g., factual accuracy), the highquality excerpt from the reference, the
corresponding lowquality flaw, and a summary of the differences.

In the second step, Principle Abstraction, this structured analysis ∆ is fed to the LLM for abstraction.
This model’s role is to synthesize the detailed findings and distill a single, high-quality revision
principle, p:

p = fabstract(∆) (4)
The principle is a concise, actionable directive expressed in natural language, encapsulating the
core lesson from the contrastive analysis. These extracted principles form the fundamental building
blocks for the subsequent stages of agent evolution.

2.2 AGENT SYSTEM MODULES

 ... Initial population + Total
population increase due to

birth - Net change in
population= 695,000.The final

answer is:
$\\boxed{695000}$\

Difference List Principle
When a problem states

that a quantity
increases by a

percentage over a total
period, apply the

percentage to the initial
value once, rather than
distributing it across ....

    

Extract 
Principles

...So the total population is
100,000+60,000+5,000=
<<100000+60000+5000=

165000>> 165,000\n####
165,000\n

Model Answer Reference

Contrast
Answers

Aspect

HighQuality

Population growth due to birth

.increased by 100000 * 0.6 = 60,000..

LowQuality

Differences

 ..increase due to birth = 60,000 * 10...

...misinterprets the 60% increase..

The population of an area starts at 100,000 people.  It
increases by 60% over 10 years due to birth.  I... How
many people are in the area at the end of 10 years?

Question

Figure 2: Illustration of the plan module:Abstract principles via Contrastive Driven Abstraction.

2.2.1 MEMORY MODULE

The memory module functions as the agent’s long-term knowledge repository, designed to systemat-
ically store and manage the principles generated by the plan module. We define the memoryM as a
key-value structure, where each key represents a task descriptor t and the value is a set of principles
Pt relevant to that task:

M = {t 7→ Pt | t ∈ T } (5)
Here, T is the set of all task descriptors. Each descriptor t is itself a concise, natural-language
summary of an input query q, produced by an LLM to capture the query’s core intent.

To ensure the quality and efficiency of the repository, the memory is not merely appended but is
actively curated. When a new principle pnew is generated for a task t, it undergoes a validation
process against the existing principles Pt for that task. This process, mediated by an LLM-based
evaluator, checks for semantic redundancy and logical conflicts. For each existing principle p ∈ Pt,
the evaluator assesses the pair (pnew, p) and follows a set of update rules:

• Semantic Equivalence: If pnew is judged to be a rephrase or a minor variant of an existing
principle, pnew replaces the old one. This ensures the memory reflects the agent’s most
up-to-date reasoning.

• Logical Conflict: If pnew contradicts an existing principle, an LLM-based arbiter is invoked
to select the one with superior generalizability or correctness. The winner is retained, and
the other is discarded.

• No Significant Overlap: If pnew is determined to be novel and non-conflicting, it is directly
added to the memory set for task t. This update can be expressed as:

Pt ← Pt ∪ {pnew} (6)

5
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This curation mechanism prevents the accumulation of redundant or flawed information. It allows
the memory to evolve into a compact, coherent, and non-redundant knowledge base, providing the
agent with a refined set of high-quality principles to draw upon during the generation stage.

2.2.2 EXECUTION MODULE

The execution module is the agent’s action-taking component, responsible for generating the final,
principle-guided response during inference. It leverages the curated knowledge within the mem-
ory module to inform its generation process, which unfolds in two phases: Principle Retrieval and
Guided Generation.

The retrieval phase begins with a new query q. The module first generates a corresponding task
descriptor, tq , which serves as a semantic key for searching the memory. This is typically done by
prompting an LLM: tq = fdescribe(q). This key is then compared against all task descriptors T stored
in the memoryM to find the best match, t∗, based on semantic similarity:

t∗ = argmax
t∈T

sim(tq, t) (7)

where sim(·, ·) is a semantic similarity function, such as cosine similarity over text embeddings. If
the similarity score of the best match exceeds a predefined threshold τr, the entire set of principles
associated with t∗ is retrieved. The retrieved set, Pretrieved, is therefore defined as:

Pretrieved =

{
Pt∗ if sim(tq, t

∗) > τr
∅ otherwise

(8)

In the Guided Generation phase, the retrieved principles Pretrieved (if any) are incorporated into the
context for a generation LLM, fgen. These principles act as explicit, context-aware instructions or
constraints, steering the model’s output. The final response is thus generated with the benefit of
proven, task-relevant strategies:

response = fgen(q,Pretrieved) (9)

By dynamically retrieving and applying relevant knowledge, the execution module allows the agent
to generalize from past experiences to new, unseen problems, ensuring its responses are not only
accurate but also strategically sound.

3 EXPERIMENTS

3.1 SETTINGS

Benchmarks We evaluate the performance of MetaEvo on five benchmarks. GSM8K (Cobbe
et al., 2021), SVAMP (Patel et al., 2021), and MATH (Hendrycks et al., 2021) are employed to assess
arithmetic and advanced mathematical reasoning. To evaluate factual knowledge, logical deduction,
and generalization ability, we select representative subsets from MMLU (Hendrycks et al., 2020) and
BBH (Suzgun et al., 2023). For MMLU, we include 10 subject areas such as High School Mathe-
matics, Physics, Philosophy, and Computer Science. For BBH, we focus on 8 reasoning-intensive
tasks, including Dyck language recognition, logical deduction, and causal judgment, covering sym-
bolic, analogical, and commonsense reasoning types. This subset was chosen to better reflect our
goal of evaluating principle abstraction and transfer, while keeping experiments computationally
feasible and consistent with prior work for fair comparison.

Models We conduct experiments using two backbone language models: LLaMA 3.1-8B-
Instruct (Dubey et al., 2024) and Qwen 2.5-14B-Instruct (Yang et al., 2024). These models are used
as the initial agent foundation for generation, principle abstraction, and memory interaction. We
use DeepSeek-R1 (DeepSeek-AI et al., 2025) as the strong language model to generate high-quality
reference answers and better principles. It serves as an external oracle for constructing preference
pairs used in meta optimization.
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Experimental Setup We conduct all experiments using low-rank adaptation (LoRA) with a rank
of 8 and a scaling factor of 32, applied to all linear modules in the transformer architecture. The
model is trained for one epoch with a maximum of 400 steps. We adopt a learning rate of 1×10−4, a
per-device batch size of 1 for both training and evaluation, and apply gradient accumulation with one
step. The warmup ratio is set to 0.05. All training is performed using bfloat16 precision. Training
and inference are run on NVIDIA A6000 GPUs with 48GB memory.

3.2 BASELINE

We employ the following baseline methods. (1) Base Model: The original model without additional
optimization; (2) Self-Refine: A self-evolution method based on feedback and self-correction; (3)
Self-Evolving GPT: A self-evolution framework that induces and reuses task-specific experience
to improve reasoning performance. (4) MetaEvo w/o MO: Our framework without applying meta-
optimization; (5) MetaEvo w/o CDA: Our framework without applying Contrast Driven abstrac-
tion(CDA); (6) MetaEvo: The full framework combining meta optimization with CDA to enable
principle-guided self-evolution.

Method LLaMA3.1-8B-Instrcut Qwen2.5-14B-Instrcut

GSM8K SVAMP MATH MMLU BBH Avg. GSM8K SVAMP MATH MMLU BBH Avg.

Base Model 84.5 88.2 60.2 66.7 61.1 72.1 92.2 91.5 71.1 76.5 76.1 81.5
Self-Refine 77.9 79.8 57.5 50.3 59.7 65.0 89.5 87.8 67.5 67.1 70.9 76.6
Self-Evolving 84.7 86.1 61.2 68.5 63.9 72.9 93.7 93.3 72.8 80.2 78.3 83.7
MetaEvo w/o CDA 88.7 81.3 59.3 67.9 61.6 71.8 91.9 87.8 70.2 76.2 75.3 80.3
MetaEvo w/o MO 88.3 90.5 63.4 67.3 62.4 74.4 95.1 93.7 72.2 78.1 76.4 83.1
MetaEvo 94.1 93.8 66.3 69.1 64.7 77.6 97.1 95.2 73.2 78.7 77.9 84.4

Table 1: Performance (%) of reasoning and self-improvement methods across benchmarks.Bold
numbers represent the best performance on each dataset, while underlined numbers denote the
second-best results.

4 ANALYSIS

4.1 VALIDATING METAEVO EVOLUTION FRAMEWORK

Table 1 presents the evaluation results of our method on five benchmark datasets. Compared to the
base models, our approach consistently yields performance improvements across all datasets.

On GSM8K and SVAMP, which focus on numerical reasoning, our method yields substantial accu-
racy gains, reflecting enhanced capabilities in error correction and generalization. On MATH, the
framework demonstrates robustness in handling complex multi-step reasoning. Further improve-
ments on MMLU and BBH confirm the generalizability of MetaEvo across diverse knowledge-
intensive tasks.

These results underscore the effectiveness of MetaEvo in enhancing both task-specific accuracy and
cross-task generalization.

4.2 META ABILITY ENHANCES THE MODEL’S CAPACITY FOR SELF-IMPROVEMENT

Meta optimization plays a pivotal role in enabling effective principle abstraction and guided
generation. To assess its impact, we compare the full MetaEvo framework with a variant without
meta optimization (denoted as w/o MO in Table 1). While the w/o MO variant achieves competitive
results on GSM8K and SVAMP, it consistently underperforms the full framework across all tasks.
The performance gap underscores the importance of meta-level optimization in refining correction
principles and enhancing generalization across reasoning scenarios.

Further analysis reveals that such principles are often overly generic, lacking task-specific utility
and causing redundant or inconsistent outputs. In contrast, our method consistently surpasses base-
lines. The optimized principles are more targeted and actionable, enabling precise, failure-aligned
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revisions. These findings underscore the necessity of meta optimization in transforming abstract
principles into actionable tools for self-correction and improvement.

Figure 3 illustrates the sample efficiency advantage of meta-optimization. We compare two training
paradigms. In result-based training, the model is optimized to predict the correct answer directly
from the input, with no intermediate supervision. In contrast, principle-based training (MetaEvo)
first learns to generate and refine intermediate principles, which are stored and later retrieved to
guide answer generation. This additional layer of structured supervision allows MetaEvo to achieve
stronger performance with fewer labeled examples.
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Figure 3: The figure compares two training
methods on GSM8K. Our method achieves
higher performance with fewer training sam-
ples.
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Figure 4: Accuracy comparison across itera-
tions for MetaEvo, Self-Evolving, and Self-
Refine. MetaEvo on GSM8K achieves consis-
tent improvements and outperforms baselines at
all iterations.

Method LLaMA3-8B-Instruct Qwen2.5-14B-Instruct

GSM8K SVAMP GSM8K SVAMP

Base Model 84.5 88.2 92.2 91.5
Iteration 1 92.4 91.9 96.8 94.8
Iteration 2 93.7 92.6 97.1 94.6
Iteration 3 94.1 93.8 96.7 95.2

Table 2: Performance (%) on GSM8K and SVAMP for LLaMA3-8B-Instruct and Qwen2.5-14B-
Instruct across iterative optimization rounds.

Enhanced meta-ability of principle abstraction Raises the performance ceiling in iterative im-
provement.

We further investigate the impact of iterative evolution within our framework. Specifically,
we conduct up to three full iterations of the MetaEvo pipeline on GSM8K and SVAMP, using
LLaMA3.1-8B-Instruct and Qwen2.5-14B-Instruct as base models. In each iteration,
we execute principle accumulation followed by principle-guided generation, where the model’s out-
put from the previous round serves as the input for the next. After three rounds, both the principle
memory and the quality of model responses demonstrate progressive enhancement.

As shown in Figure 4, MetaEvo exhibits consistent performance improvements across iterations
and consistently outperforms other self-evolving baselines, demonstrating its enhanced capacity to
support continual self-improvement through effective principle accumulation. Table 2 provides de-
tailed results. The model’s performance increases consistently over three iterations, indicating that
the progressive refinement of principles directly contributes to improved reasoning quality. After
three rounds, the model achieves an absolute improvement of 9.6% in GSM8K and 5.6% in SVAMP
relative to the baseline, with notable gains even in the final iteration (0.4% and 1.2%, respectively).

These findings underscore the distinctive advantage of meta-ability optimization: by emphasizing
the acquisition of improvement strategies over direct answer generation, the model can iteratively
refine its behavior through feedback, progressively achieving higher-quality generation.
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Meta-Optimization enhances the intrinsic reasoning ability of the model, even without explicit
reuse of previous experience. Our results demonstrate that directly strengthening the model’s ca-
pacity for principle abstraction via meta-optimization leads to consistent performance gains. As
shown in Table 3, models trained with preference-based supervision outperform their base coun-
terparts across multiple reasoning tasks, confirming that abstract principle alignment can improve
general reasoning behavior independent of memory retrieval or prior instance reuse.

We argue that this abstraction process represents a meta-level capability that operates above spe-
cific instances, enabling the model to generalize from error patterns and revise its own behavior
accordingly. Rather than memorizing task-specific corrections, the model learns to organize and ap-
ply high-level strategies that support more coherent, self-aware reasoning. This improvement feeds
back into downstream performance, as the model internalizes a transferable scaffold for decision-
making. In essence, principle abstraction serves not just as a mechanism for fixing past mistakes,
but as a foundation for building more adaptive and generalizable reasoning behavior.

Method GSM8K SVAMP

LLaMA3.1-8B

Base Model 84.5 88.2
w/ MO 86.7 90.5

Qwen2.5-14B

Base Model 92.2 91.5
w/ MO 95.2 93.7

Table 3: Comparison of base models with and
without Meta Optimization (MO) on GSM8K
and SVAMP.

Method GSM8K SVAMP

Base model 84.5 88.2
Random principles 69.4 77.9
Meta-evo w/o CDA 82.7 81.5
Meta-evo w/ CDA 92.4 91.9

Table 4: Another experimental setting with
Meta Optimization (MO) results.

4.3 CONTRASTIVE ANALYSIS DRIVES PRECISE AND ACTIONABLE PRINCIPLE
ABSTRACTION

Effective evolution relies on high-quality principles, and contrastive analysis is key to extract-
ing effective principles. To assess the impact of different principle generation strategies, we com-
pare three settings: (1) Random principles, which introduce task-irrelevant noise; (2) Direct ab-
straction (MetaEvo w/o CDA), in which principles are generated without contrastive analysis; and
(3) Contrastive analysis (MetaEvo w/ CDA), which employs contrastive-driven abstraction to derive
principles.

As shown in Table 4, random principles significantly degrade performance, confirming that irrel-
evant guidance can mislead the model’s reasoning process. Direct abstraction produces unguided
principles, which may introduce noise or even conflict with the model’s original reasoning trajectory.
In contrast, principles derived through contrastive analysis yield the highest and most consistent per-
formance, achieving 92.4% on GSM8K and 91.9% on SVAMP, demonstrating their effectiveness in
guiding generation. These results validate the crucial role of contrastive analysis in extracting reli-
able, high-quality principles that serve as effective guidance for principle-guided generation

5 CONCLUSION

In this paper, We introduce MetaEvo, a meta-optimization framework that facilitates principle-
guided evolution in large language models. By enhancing the model’s meta-ability, MetaEvo shifts
the objective from direct answer optimization to learning how to revise. The framework integrates
meta optimization with an agent system that extracts, stores, and reuses high-quality revision prin-
ciples. Experimental results across multiple reasoning benchmarks demonstrate that MetaEvo con-
sistently improves performance, supports iterative self-improvement, and enhances generalization.
Notably, contrastive analysis proves essential for generating precise and actionable principles.
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6 APPENDIX

LLM USAGE STATEMENT

In preparing this manuscript, a large language model (LLM) was employed solely to aid in polishing
and improving the clarity, grammar, and readability of the text. No LLM was used to generate
original scientific content, results, or analyses. All research ideas, experiments, data collection, and
interpretations reported in this work were performed solely by the authors.

PROMPT DESIGN

Basic Prompt

<system>
You are an expert in solving problems. Please answer the question below. Let’s think step
by step.
</system>

{question}

Prompt for Guided Generation

<system>
You are an expert in solving problems. Please answer the question below. Let’s think step
by step.
</system>

Please ensure that your input adheres to the specified principles. Carefully follow the rules
provided to complete the task accurately and efficiently.
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<input>
question: {question}

principle: {rules}
</input>

Generate Task Description

<system>
Your task is to identify and extract the main task description from a given question.
</system>

<task description>
First, analyze the domain of the question, categorize it into a relevant subcategory, and then
generate a concise, clear, and abstract task description that reflects the core objective.

Steps to Perform Structured Analysis:
• Analyze the domain of the question: Determine the field or category the question

belongs to.
• Categorize the task: Identify the specific type of problem within that domain.
• Generate the task description: Based on the identified domain and subcategory,

create a task description that is concise, clear, abstract, and focuses on the core
objective. Avoid including unnecessary details or background information, and
aim for a general formulation that reflects the essence of the task.

Output Format:
Show your analysis and provide your final response in the following JSON format:
”Task Description”: ”description”: ”Clear, abstract, and specific description of the task,
focusing on the core action or objective.” </task description>

<input>
Question: {question}
</input>

Memory Maintenance

Your goal is to compare the new principle against each of the
existing principles, and decide one of the following for each:

1. Redundant: if the new and old principle express essentially the same idea. Prefer
the newer one.

2. Conflicting: if the two principles provide contradictory guidance. Keep the one
that is more general or correct.

3. Complementary: if the two principles provide distinct but compatible guidance.
Keep both.

4. Irrelevant: if the existing principle is not applicable to the current task anymore.
Suggest deletion.

Please return your evaluation in the following JSON format:
”comparisons”: [ ”relation”: ”Redundant — Conflicting — Irrelevant” ]
<input>
New principle: {new principle}
Existing principle: {existing principle}
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Contrast Driven Extraction

<system>
You are an expert in analyzing and comparing task responses to identify fine-grained,
task-relevant, and impactful differences between answers that affect quality.

<task description>
Given a high-quality and a low-quality answer to the same task, identify detailed differences
that reflect meaningful changes in correctness, reasoning, completeness, or clarity.
Follow these steps:

• Step 1: Understand the task type
Identify whether the task involves reasoning, generation, factual recall, explanation,
etc. This will guide how you compare the answers.

• Step 2: Perform a targeted comparison
Compare the answers component by component, such as sentence by sentence, step
by step, or idea by idea—depending on the task structure.

• Step 3: Identify key differences
For each meaningful difference:

– Quote or paraphrase the specific content from both answers.

– Indicate the aspect being affected.

– Explain why this difference matters—how it affects the task’s success, clarity,
or correctness.

Important guidelines:
• Avoid vague language like “clearer” or “more logical” unless supported by

concrete details.

• Specify missing steps, incorrect reasoning, unsupported claims, or structural flaws.

• Use task-specific language.

<output format="json">
”differences”: [ ”Aspect”: ”Aspect being evaluated”, ”HighQuality”: ”Quoted or para-
phrased content from the HQ answer that shows good performance”, ”LowQuality”:
”Quoted or paraphrased content from the LQ answer that shows the issue”, ”Differences”:
”Detailed explanation of why this difference affects answer quality, referencing task goals
or logical consequences” ]
</output format>

<input>
Question: {input}
Low-quality Answer: {predict}
High-quality Answer: {reference}

Principle Generation

<system>
You are a prompt engineering expert skilled in deriving precise and generalizable principles
that improve language model outputs. Your task is to formulate principles based on
observed differences between high- and low-quality answers, ensuring each principle
reflects a specific failure pattern and offers guidance for correction.
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<task description>
Your task is to generate reusable and insightful improvement principles based on observed
differences between two answers.
Follow these steps:

• Step 1: Carefully examine each identified difference and explain how it impacts
the answer quality.

• Step 2: For each difference, derive a principle that captures the core insight and
helps guide future answer generation.

• Step 3: Ensure each principle is general enough to be reused across similar tasks,
yet clearly grounded in the specific difference observed.

• Step 4: Respond strictly in the following JSON format, where each principle in-
cludes a concise description and a short explanation of how to apply it.

<input>
Input:
Question: {input}
Difference: {difference}
<output format="json"> “‘json ”output”: [ ”Principle”: ”State a clear and gener-
alizable insight derived from the difference.” ]
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