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Abstract 
With the increasing application of deep learning methods to the 
modelling of regulatory DNA sequences has come an interest in 
exploring what types of architecture are best suited to the domain. 
Networks designed to predict many functional characteristics of 
noncoding DNA in a multitask framework have to recognise a large 
number of motifs and as a result benefit from large numbers of 
convolutional filters in the first layer. The use of large first layers in 
turn motivates an exploration of strategies for addressing the sparsity 
of output and possibility for overfitting that result. To this end we 
propose the use of a dimensionality-reducing linear projection layer 
after the initial motif-recognising convolutions. In experiments with a 
reduced version of the DeepSEA dataset we find that inserting this 
layer in combination with dropout into convolutional and 
convolutional-recurrent architectures can improve predictive 
performance across a range of first layer sizes. We further validate our 
approach by incorporating the projection layer into a new 
convolutional-recurrent architecture which achieves state of the art 
performance on the full DeepSEA dataset. Analysis of the learned 
projection weights shows that the inclusion of this layer simplifies the 
network’s internal representation of the occurrence of motifs, notably 
by projecting features representing forward and reverse-complement 
motifs to similar positions in the lower dimensional feature space 
output by the layer.
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Introduction
The abundance of data characterising the function of noncoding 
DNA at high resolution facilitates the use of complex data-driven 
methods to learn the sequence features known as ‘motifs’ that 
encode this function1. A number of works have used neural  
networks to model human regulatory DNA, taking as input fixed- 
length regions of DNA sequence and predicting properties such as 
transcription factor binding, chromatin accessibility and histone 
marks using data collected by ENCODE and other consortia2–7. 
Several of these networks are intended to simultaneously model a 
wide variety of the functional characteristics of the input region, 
by predicting hundreds or even thousands of such measurements 
across multiple cell types in a multi-task learning framework. 
With hundreds of known regulatory motifs recorded in databases 
such as JASPAR8, machine learning models capable of fully 
characterising a significant variety of the measurable functional 
properties of human noncoding DNA must be able to recognise 
a large number of distinct patterns in the input sequence. Indeed 
while existing approaches have varied in the details of their  
neural network architectures, they have tended to share the use of 
relatively large numbers of convolutions as motif scanners in the 
first layer, and differed mainly in the subsequent layers where 
standard convolutions, dilated convolutions and recurrent layers  
have all been used to model interactions between features2–6. 
The best reported performance on the DeepSEA benchmark was 
achieved by a network having 1024 convolutional kernels in its 
first layer4; indeed even when experimenting with single-output 
networks designed to predict binding for a single transcription 
factor,9 observed that the performance of convolutional networks 
continued increasing with the number of filters in the first layer 
up to over 100 filters1.

The use of a sufficient number of first layer filters to capture the 
variety of motifs relevant to the task at hand thus appears to be 
an important consideration in the design of neural networks for 
processing noncoding DNA sequences. At the same time, it raises 
questions. For one thing, the use of a large number of parameters 
in the first layer raises the possibility of overfitting. Moreover, 
first layers designed to recognise large numbers of specific motifs  
are bound to produce outputs which are relatively sparse and  
high-dimensional, which may hamper learning in subsequent  
layers10. Finally, these layers are computationally expensive,  
particularly when applied to long sequences, both due to the cost  
of computing the activations by convolving the input at each 
point in the sequence, and the cost in the next layer of processing  
sequences of high-dimensional activation vectors.

Standard regularisation techniques such as dropout11 may be 
expected to help alleviate the problem of overfitting, and have 
been applied to the first convolutional layer in previous works. 
But there is room for further work both in terms of characterising 

the extent of the problem and investigating alternative solutions. 
Projection layers, which can be used to reduce the dimensionality  
of a representation without reducing its resolution, are a popular  
component of deep networks in computer vision where they 
are often referred to as 1 × 1 convolutions12,14,15. Reducing the  
dimensionality of a layer’s activations reduces the number of 
parameters required in the subsequent layer, as well as the cost of 
computing that layer’s activations. At the same time, depending  
on the nature of the features learned in the first layer, the denser 
representation resulting from the projection may well preserve  
much of the information contained therein. Even random 
projections are well known to preserve distances in dense 
representations16,17.

The common practice of including amongst the training inputs 
both forward and reverse-complement versions of each target  
sequence in particular motivates the exploration of a more  
compressed representation. Models are forced by this form of data 
augmentation to recognise distinct instances (forward and reverse-
complement) of functionally equivalent motifs. Methods capable 
of identifying these two instantiations therefore offer the same 
capacity at potentially lower representational cost. Recognition of 
this issue has motivated the development of layers specially adapted 
to ensure the identity of forward and reverse-complementary  
sequences18. The use of projections offers an alternative approach 
to this problem. Here we focus on the design choices related to 
the capacity of multi-task networks to recognise a sufficient  
variety of motifs in input sequences, by jointly exploring 
both the effect of the number of first layer filters and the use of 
projection and dropout as approaches designed to mitigate the 
disadvantages of a large first layer. We choose to address these 
questions using the DeepSEA dataset2, since this has previously  
been used to benchmark different network architectures4,6.  
Initially using a reduced version of the dataset with shortened 
input regions, we vary the number of first layer filters for 
standard convolutional and convolutional-recurrent architectures  
with and without a projection layer and dropout, with our 
results indicating the importance of regularisation and the per-
formance benefits of projection. We incorporate the projection 
layer into a convolutional recurrent neural network architec-
ture with a number of modifications from the DanQ architecture 
proposed by 4. This new architecture achieves state of the art  
performance on the full DeepSEA dataset.

Methods
Baseline architectures
We experiment with modifications to two classes of architecture  
which have been successfully applied for multitask prediction  
in regulatory genomics. Details of the hyperparameters we 
used when training versions of these models are provided in the 
sections describing the relevant experiments.

1For comparison, top performing networks on ImageNet12,13 make do with 
only 64 filters in the first layer despite the output dimension being comparable 
to that of DeepSEA. This discrepancy may perhaps be explained by the fact 
that while the features learned by the first layers of image processing networks 

are small, generic and only gradually composed into more specific features 
by subsequent layers, the features learned by the first layers of networks in 
regulatory genomics are by design highly specific motifs, typically 10–20bp in 
length.
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1.    �Convolutional neural network (CNN): Both DeepSEA2 
and Basset3 use 3 layer CNNs, consisting of a stack of 
3 convolution and max-pooling operations followed 
by one or more fully connected layers. DeepSEA’s 
convolutional layers are regularized using dropout 
and a global L2 penalty, whereas Basset applies batch 
normalization after each convolutional layer.

2.   �DanQ: The DanQ convolutional-recurrent architecture 
consists of a single convolutional layer followed by a 
pooling layer and a bidirectional long short-term memory 
(LSTM)19. The full sequence of LSTM outputs are passed 
through two fully connected layers in order to gener-
ate predictions4. reported results for two versions of this 
architecture, DanQ and DanQ-JASPAR, differing in the 
sizes of the layers and in the initialization used for the 
first layer, with half of the better-performing DanQ- 
JASPAR’s 1024 first-layer filters being initialized using 
known motifs from the JASPAR database. Like DeepSEA, 
both DanQ architectures use dropout after their single 
convolutional layer.

Linear projection layer
We investigate the use of a linear projection applied to the pooled 
activations of the first layer of architectures of both types. In 
detail, suppose that the first layer has m 1D convolutional filters 
and that after pooling the length of the sequence representa-
tion is l. Then the pooled activations form a sequence (a

1
, a

2
 … 

a
l
) of m-dimensional vectors. The output of the projection layer 

is a sequence (v
1
, v

2
 … v

l
 ) of k-dimensional vectors (k < m):

i iv Pa= (1)

where P is a weight matrix of size k × m. The projection layer’s  
output is a sequence of the same length as the sequence of the 
first layer’s pooled filter activations, but whose members are  
vectors of a lower dimension, with the same projection matrix  
P being used to reduce the dimension at each point in the sequence. 
All the results reported below were obtained using a value of 
k = 64, which seemed to represent a good trade-off between 
dimensionality reduction and preservation of information.

Improved convolutional-recurrent architecture
The best previously reported performance on the DeepSEA 
dataset was achieved by the DanQ-JASPAR architecture which 
uses a single large convolutional layer followed by a max-pooling 
layer with stride and pool size of 15. This layer summarises the 
presence of the motifs identified by the convolutional layer 
across relatively large 15bp stretches of input. Pooling so aggres-
sively has the advantage of controlling the length of sequence to 
be fed into the LSTM, preventing computation in the recurrent 
layer from becoming prohibitively time consuming.

We hypothesise that this pooling involves throwing out useful 
positional information, which could be better preserved by  
splitting the downsampling across two sets of convolution and  
pooling layers rather than a single one. Therefore we propose an 

alternative convolutional recurrent (CRNN) architecture, which 
adds a projection layer, a second convolutional layer and a sec-
ond pooling operation between the pooled outputs of the first 
convolutional layer and the bidirectional LSTM. To ensure fair 
comparison, the overall level of downsampling in the convolu-
tion and pooling layers is the same as in the DanQ-JASPAR 
networks, such that the length of the sequence of inputs to the 
bidirectional LSTM is the same (64) in both cases. In common 
with the DanQ networks we use a single fully-connected hidden 
layer before the output layer, but in order to control overfitting we 
use as input to this layer not the full sequence of LSTM outputs 
but their global mean. The proposed network, full details of which 
are given below, has far fewer parameters than DanQ-JASPAR 
and trains faster.

Experiments
The DeepSEA dataset. The DeepSEA dataset consists of 
sequences of 1000 bp from the human noncoding genome, 
labelled for the presence of a peak in the central 200 bp in the  
signal for each of 919 chromatin features taken from ENCODE 
and Roadmap20,21. These features represent a range of transcription 
factor binding, chromatin accessibility and histone modification 
measurements across a variety of cell types. Both forward and 
reverse-complement versions of the sequence corresponding 
to each set of targets are included in the dataset, meaning that  
models must be capable of learning both forward and reverse- 
complement motifs. We use the original training, validation and 
test splits and follow4 in using as our primary evaluation metric 
test set area under the precision recall curve (AUPRC), which is 
calculated after averaging predictions across forward and reverse  
complement versions of each sequence.

Design choices related to first layer on reduced DeepSEA data-
set. In our first set of experiments we seek to rigorously explore 
the optimal configuration of the early layers of instantiations 
of both CNN and DanQ network designs. We vary the number 
of first layer filters, the use of dropout immediately after the 
first pooling layer, and the use of a projection layer (we fix the out-
put dimension of this layer at each point in the sequence to 64) 
while keeping other hyperparameters fixed for a version of each 
class of architecture. When dropout and projection are used 
together, the dropout is applied after the projection layer. A 
dropout rate of 0.2 is used in all cases, which is the same as that 
applied to the activations of the first convolutional layer in both 
the DeepSEA and DanQ architectures. Other modifications to 
the original architectures were made in the interests of retaining 
comparable performance while reducing computational cost 
and are described below.

The CNN model that we choose to explore here takes from 
Basset the use of 3 convolutional layers, with kernel sizes of 19, 
11 and 7 respectively, but varying in several other details. We use 
max pooling operations of sizes 6, 2, and 2 after the convolutional 
layers. The number of filters in the second and third convolu-
tional layers is held fixed at 128 and 256 respectively. The outputs 
of the final pooling operation are fed into a single hidden layer 
of 2048 neurons to which dropout with dropout factor of 0.5 is 
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applied. Leaky ReLUs22 are used for all activations. Our DanQ 
architectures follow the original in most details other than those 
under investigation, except for the use of Leaky ReLU rather 
than ReLU activations, and the use of a reduced number of 
LSTM cells (100) in each direction. To mitigate the cost of these  
experiments, we run them on a reduced version of the DeepSEA 
dataset, using only the central 500 bp of each 1000 bp sequence. 
For all networks we use the Adam optimizer23 with an initial 
learning rate of 3 × 10−4 to minimize the multitask binary cross 
entropy loss via mini-batch gradient descent with a batch size 
of 256. The learning rate was reduced by a factor of 5 if the 
validation loss did not decrease for two epochs. Training was 
terminated if the validation loss did not improve for five epochs. 
All models were implemented in Keras24 using the Theano 
backend25.

Evaluation of CRNN architecture on full DeepSEA dataset.  
For the second set of experiments we use the full 1000 bp for 
each sequence and seek to compare the performance of our 
improved CRNN architecture to that of DeepSEA and the two 
DanQ architectures. For comparison with the two variants of 
DanQ, DanQ and DanQ-JASPAR, which have, respectively, 320 
and 1024 filters in the first layer, we explore two variants of our 
CRNN architecture with 320 and 700 filters of length 30 in the 
first layer. To evaluate the contribution of the projection layer, 
for each CRNN variant we train one network with projection 
after the first pooling operation, and one network without projec-
tion but otherwise identical to the first. All networks use a second 
convolutional layer with 128 filters of length 11 whose activa-
tions are pooled and fed into a bidirectional LSTM with 300 units 
in each direction. Max-pooling with stride and pool size of 7 
after the first convolutional layer and 2 after the second con-
volutional layer together with unpadded convolutions ensure 
that the sequence of inputs to the LSTM is of the same length 
as in the DanQ-JASPAR model. Dropout with a rate of 0.15 is 
applied to the projected first layer activations if projection is 
used, and to the pooled first layer activations if not. Recurrent 
dropout26 with a rate of 0.2 is applied to the LSTM. Leaky 
ReLUs are used for all layer activations. Networks are trained 

using the same learning rate schedules as in the previous set of 
experiments. We compare the average test set AUPRCs of our 
models with those of the publicly available trained DeepSEA and 
DanQ networks.

The source code for all models and experiments is available on 
GitHub and Zenodo27.

Results
Effects of first layer design choices on reduced-size 
dataset
In both fully convolutional and convolutional-recurrent architec-
tures consistent benefits were achieved by increasing the number 
of first layer filters, with gradual saturation of performance 
(as measured by test set AUPRC averaged across the tasks) at around 
1000 filters in both cases (Figure 1). In the fully convolutional 
networks the benefit of the projection layer was very clear, with 
all networks which used projection outperforming those that 
didn’t, often by considerable margins. A combination of dropout  
and projection achieved the best performance in every case. 
There is less evidence of benefit in the case of the networks using 
DanQ-style architectures, with networks with regularisation 
sometimes outperforming those without, but a lack of a clear  
pattern in the results, at least under the test set AUPRC metric. This 
is despite models incorporating dropout and the projection layer 
consistently achieving lower cross-entropy loss on the validation 
set. One factor in the difference between the two types of archi-
tectures is the degree of overfitting that the standard, unregular-
ised architecture suffers. We observed that fully convolutional 
architectures showed a much greater tendency to overfit than  
convolutional-recurrent architectures (Figure 2). We note that 
unlike a convolutional layer, an LSTM already learns its own 
projection in the form of the weight matrix which transforms 
the inputs into the internal state space within the input and  
forget gates. These internal projections may help reduce both the 
tendency to overfit and the potential performance improvement  
associated with incorporating an additional projection layer. In 
contrast, inserting a projection layer into a CNN architecture  
substantially reduces the degree of overfitting (Figure 2), which 

Figure 1. Test set AUPRC as function of first layer size for CNNs (left) and DanQ networks (right) with and without projection layer 
(projecting down to 64 dimensions) and dropout (dropout rate of 0.2). Jitter was added to the number of first layer filters for DanQ 
architectures to enable the points to be distinguished.
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Figure 2. Validation set loss curves for CNN (left) and DanQ (right) models with 500 first layer filters, either with or without the two 
regularisation strategies. The CNN network shows much more evidence of overfitting.

allows CNN networks including projection layers continue to  
benefit from adding additional filters in the first layer, whereas 
without projection, CNN performance hardly improves beyond  
500 first layer filters, as the benefit of extra feature detectors is  
offset by the increased likelihood of overfitting.

Projection layer helps improved CRNN architecture 
outperform other models on full DeepSEA data
Table 1 shows the cross entropy losses on the validation and test 
sets for our best-performing convolutional recurrent (CRNN) 
models as well as published baselines. CRNN-700 achieves the 
best average test set AUPRC of the compared models while being 
significantly less costly to train than DanQ-JASPAR, and without  
requiring the use of any known motifs to initialize first layer  
filters, as DanQ-JASPAR does. For both CRNN models we 
also compare the performance of models with and without the  
projection layer. In both cases, the projection layer leads to a clear 
increase in performance and a reduction in the cost per epoch of 
training the network.

Projection layer simplifies learning by unifying 
representations for forward and reverse-complement motifs
To understand the nature of the performance benefits brought 
by the use of the projection layer, we can investigate the 
relationship between the projection weights learned and the motifs 
learned by the first convolutional layer. To associate a motif with 
each filter in the first layer we follow a procedure similar to that 
introduced by 1: several thousand sequences from the training 
set are passed through the trained model, and for each first layer 
convolutional filter we record the identities of the nucleotides at 
each position in the maximally-activating stretch of input in each 
sequence in which that filter is activated. From this we construct 
a PFM which can be converted into a motif representing the  
typical input pattern recognised by the filter. Using TOMTOM28 
to search the JASPAR 2018 database8 we find that 257 of the 

700 learned motifs of the best-performing CRNN-700-projection 
model have at least one significant match (q < 0.01). Each learned 
motif is also associated with one of the columns in the 64 × 700 
weight matrix of the projection layer. Suppose for example that 
at a certain point in an input sequence, the motif recognised by 
the ith convolutional filter occurs. Assuming none of the other 
filters are activated by this motif or its neighbouring region, the  
network’s representation of this region of the input will then 
just be the vector obtained by multiplying each weight in the ith  
column of the projection matrix by the filter’s activation. Thus the 
ith column of the projection matrix can be interpreted as represent-
ing an embedding of the motif learned by the ith convolutional  
filter. To visualise these embeddings, we choose to focus on a  
subset of the learned motifs which have the best matches to known 
motifs, selecting only the 44 learned motifs with q-values less 
than 10−8. The result of performing a PCA on the 44 columns of 
the projection weight matrix associated with these motifs is 
shown in Figure 3. Most strikingly, different versions of the 
same motif tend to cluster together, with the embeddings for fil-
ters which learn to recognise the forward version of a particular 
motif very often close to those for filters which recognise the 
reverse complement of the same motif. This suggests that the  
projection layer allows for a more efficient internal representation  
of motifs, recognising that forward and reverse complement 
patterns are functionally equivalent although completely dif-
ferent and therefore requiring different feature extractors at the 
sequence level. This representation of functional equivalence 
allows networks with a projection layer to harness the benefits of 
reverse-complement data augmentation without paying a price in 
terms of representational complexity.

Discussion
Despite the recent progress in the application of deep learning 
methods to model genomic data there remains work to be done 
in understanding the types of architecture and design choices 
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Table 1. Performance of CRNN models with and without projection layer 
compared to DeepSEA and DanQ networks. CRNN-n is a model with 2 
convolutional layers with n and 128 filters respectively, with kernel sizes of 30 
and 11, followed by a bidirectional LSTM with 300 units in each direction, whose 
outputs are averaged and fed through a hidden layer with 919 units which in turn 
feeds into the output layer. CRNN-n-projection is identical to CRNN-n except 
for the inclusion of a projection layer between the first and second convolution 
layers, which effectively reduces the dimension of the first layer’s activations from 
n to 64. Losses and AUPRCs for DanQ and DeepSEA networks are calculated 
using the publicly available model weights files. AUPRCs for all models are 
calculated after averaging predictions for forward and reverse complement 
versions of each test sequence, whereas forward and reverse complement 
versions of each sequence contribute independently to the reported losses.

Model Parameters Valid Loss Test Loss Test AUPRC

DeepSEA 155,159,839 0.0509 0.0554 0.343

DanQ 46,926,479 0.0491 0.0538 0.371

DanQ-JASPAR 67,892,175 0.0482 0.0533 0.379

CRNN-320-projection 2,477,479 0.0485 0.0532 0.383

CRNN-320 2,727,335 0.0489 0.0540 0.375

CRNN-700-projection 2,547,779 0.0475 0.0526 0.391 

CRNN-700 3,174,595 0.0484 0.0533 0.385

Figure 3. PCA of projection weights corresponding to learned motifs with best matches to known motifs in JASPAR database. Each 
point represents one of the 64 dimensional column vectors of the projection weight matrix. Only columns corresponding to learned motifs with 
a match with q -value less than 10−8 are included in the PCA to aid visualisation. Points are labelled by name of matched motif and whether it 
is the forward (f) or the reverse complement (rc) version of the known motif that is matched. Points are coloured by transcription factor family 
(cyan: C2H2 zinc finger, green: basic leucine zipper, red: homeodomain, purple: basic helix-loop-helix, blue: all other).
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best suited to the domain. We provide further evidence here that 
the performance of networks whose goal is to predict hundreds 
of functional properties from the DNA sequence is strongly  
dependent on the number of convolutional filters in the first layer. 
In networks where the subsequent layer is also convolutional,  
performance can be further improved by inserting a dimensionality- 
reducing projection layer between the two sets of convolutions.  
A similar use of projection layers in networks designed to  
predict enhancers was independently proposed by29 while we were 
finalising this manuscript. Their network takes as input both 
DNA sequences and chromatin accessibility information, and 
intersperses projections and convolutions on each of the two 
data modalities. While their work shows that projections can be 
used in highly performing architectures for regulatory genomics  
problems, they did not explore the role of projections in achieving  
this performance. Here our aim is to draw particular attention 
to the performance benefits and mode of functioning of a single  
projection layer, inserted directly after a first DNA motif- 
recognising convolutional layer, since we believe these point to its 
potential utility beyond any single application. In particular, we 
show that the projection layer is capable of learning the identity 
between forward and reverse-complement versions of functionally  
equivalent motifs and thereby simplifying the representation  
of the functional content of the sequence. It also reduces the 
number of parameters required in the subsequent layer, leading 
to less overfitting (particularly in combination with dropout) and 
reducing the computational cost. Incorporating the projection layer 
into a convolutional-recurrent network architecture similar to the 
DanQ architecture leads to improved performance on the  
DeepSEA dataset with fewer parameters and shorter per-epoch 
training times. Although we have only tested the use of the  
projection layer on the DeepSEA dataset, we believe that its use 
could be of important benefit in other situations in which accurate 

prediction of the targets requires recognition of a large variety of 
motifs in the input sequence.
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