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Abstract

Computational inverse problems entail fitting a mathematical model to data. These
problems are often solved numerically, by minimizing the mismatch between
the model and the data using an appropriate metric. We focus on the case when
this metric is the Wasserstein-p (Wp) distance between probability measures as
well as its generalizations by Piccoli et al., for unbalanced measures, including
the Kantorovich-Rubinstein norm. The recent work of Niles-Weed and Berthet
established that Wp is bounded from below and above by weighted `p norms of
the wavelet coefficients of the mismatch, among other things, relying on the fluid
dynamics formulation of Wp. Building on this research, we establish lower and
upper bounds on Wp on the hypercube and flat torus in terms of weighted `q norms
of the Fourier coefficients of the mismatch. In this setting, for measures uniformly
bounded above, the lower bound increases as p increases. Based on that fact, in our
setting, the lower bound resolves the open problem posed by Steinerberger to prove
the existence of a Fourier-based lower bound on Wp that grows with p. When Wp

is used as the mismatch metric in computational inversion, these bounds allow
us to analyze the effects of stopping early the computational minimization of the
mismatch on the resolution of frequencies, and the dependence of the resolution on
p. Since the Wp distance is used in a broad range of other problems in mathematics
and computational sciences, we expect that our bounds will also be of interest
beyond inverse problems.

1 Introduction

Optimal transport (OT) is a fundamental problem in mathematics with growing and promising
applications to computational inverse problems. While extensive connections have been established
between OT and many areas of analysis, connections between OT and Fourier analysis specifically are
still relatively unexplored. We consider the Wasserstein-p distance, or Wp(µ, ν), which represents the
minimum transportation cost between a pair of probability measures µ and ν using the p-th moment of
a distance function (focusing specifically on the Euclidean distance) as the underlying transportation
cost between points in Rd. We assume that the measures µ and ν are absolutely continuous with
respect to the Lebesgue measure and, therefore, are associated with a pair of probability densities f
and g. Accordingly, we will denote Wp(µ, ν) as Wp(f, g) by reference to the corresponding densities.
We also assume that these densities have a Fourier basis expansion on [0, 1)d. Building on the recent
work applying wavelet analysis of Wp in nonparametric statistics [48], as well as the recent work
applying Fourier analysis to Wp on the circle in the context of measure-theoretic discrepancy theory
[57], we establish upper and lower bounds on Wp(f, g) on the hypercube Hd and flat torus Td in
terms of the weighted `q norm ‖f̂ − ĝ‖q,wr of the Fourier coefficients of the mismatch between f
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and g. This norm ‖ · ‖q,wr is given by

‖λ‖q,wr =


(∑

k |wrkλk|q
) 1
q

if q <∞
supk |wrkλk| if q =∞

(1)

where for k ∈ Zd \ 0, the weights wr are4

wrk = 1/(2π‖k‖r). (2)

p ∈ [1,∞), s = 1 p ∈ (1, 2], s ∈ (1,∞] p ∈ (2,∞), s ∈ (1, 2p−2
p−2 ]

‖f‖Ls , ‖g‖Ls ≤M d−
1
2 ‖f̂ − ĝ‖∞,w1 d

1
q−

1
2M
− 1
p′ ‖f̂ − ĝ‖q,wq′

Table 1: The lower bounds on WT
d

p (f, g) and WH
d

p (f, g) given by Theorem 2.2 in terms of the
weighted `q norms of the Fourier coefficients of f − g where q = p′s/(s− 1) and p′ and q′ are the
Hölder conjugates of p and q.

Table 1 summarizes our lower bounds for WT
d

p and WH
d

p and Table 2 summarizes our upper
bounds for WT

d

p . (OnHd, the corresponding upper bounds contain an additional term, specified in
Lemma D.1, due to the absence of transport across the boundary.) We also establish similar bounds
for the metrics developed in [50, 51] that generalize Wp to unbalanced measures; for p = 1 this
metric is the classic Kantorovich-Rubinstein norm.

p = 1, ξ = 0 p ∈ (1, 2], ξ > 0 p ∈ (2,∞), ξ > 0

f ∧ g ≥ ξ ‖f̂ − ĝ‖2,w2 O
(
ξ
− 1
p′ ‖f̂ − ĝ‖2,w2

)
f ∧ g ≥ ξ

O
(√

z‖f̂ − ĝ‖
1
2

∞,w2

)
O
(
ξ
− 1
p′
√
z‖f̂ − ĝ‖

1
2

p′,w2

)O (d 1
2−

1
p p ξ

− 1
p′ ‖f̂ − ĝ‖p′,wp′

)
‖f − g‖Ḣβ ≤ z

Table 2: The upper bounds on WT
d

p (f, g) given by Theorem 2.4 and Proposition 2.5 in terms of the
weighted `q norms of the Fourier coefficients of f − g where β > d/p− d/2− 1, and p′ is again the
Hölder conjugate of p. (The homogeneous Sobolev norm Ḣβ also has a Fourier-based representation
given by (34).)

Reference [57] posed proving the existence of a Fourier-based lower bound on Wp that grows with p,
as an open problem. Our lower bound resolves this open problem onHd and Td for measures that
are absolutely continuous with respect to the Lebesque measure and are uniformly bounded above a.e.
Moreover, in the context of computational inversion using Wp as the mismatch metric, these bounds
allow us to analyze the resolution of frequencies and the effects of stopping the minimization process
early. As discussed in Section C, recent work [48] established upper and lower bounds on Wp(µ, ν)
in terms of weighted `p norms of the wavelet coefficients of the mismatch of the corresponding
densities. To establish our Fourier-based lower and upper bounds, in this work we generalize the
proof techniques from reference [48]. Furthermore, we apply these wavelet-based bounds to analyze
the resolution in computational inversion in the wavelet domain.

We consider the classic inverse problem setting: let the function f :M× Ω→ R represent a model
of a given phenomenon (the forward model) whereM is the space of the model parameters, and Ω is
the spatial domain,Td orHd in our case. Accordingly, if we fix a model m ∈M, f(m) is a function
from Ω to R. The inverse problem entails reconstructing m from the observed data g : Ω→ R, i.e.,
in the appropriate sense solving

f(m) = g (3)

4The amplitude of the zero frequency f̂0 − ĝ0 is zero because the probability densities have the same mass.
Therefore, in the case of balanced transport, we do not need to specify wr0 . However, we will specify this weight
in the unbalanced transport setting.

2



for m. Even if f is invertible with respect to m, an analytic expression for its inverse typically does
exist. Therefore, this problem is usually solved computationally by minimizing the mismatch between
the model and the data using an appropriate mismatch functional Φ:

m∗ ∈ arg min
m∈M

Φ(f(m), g). (4)

If g is not corrupted with noise and is in the range of f(m), then all metrics will lead to the same
optimal value in (4). However, the metric will make a difference when the data g is noisy and/or the
minimization problem can not be solved accurately [6].

Historically, the L2 norm has been used to minimize the mismatch in computational inversion. As
further discussed in Appendix B.1 below, using the Wp distance with p 6= 2, most notably p = 1, and
its generalizations to unbalanced measures, empirically revealed a number of attractive features in
the context of computational inversion and other applications. However, there exists limited analysis
of computational inversion using Wp for p 6= 2 cf. [25], and there do not appear to be any other
previously known Fourier-based bounds for Wp, except for general bounds on W2 and bounds on W1

for measures supported on a finite grid of points when p = 1 in [5] and measures supported on a
circle T in [57]. These bounds are discussed in Appendix B.2.

2 Fourier-based bounds for Wp

In this section, we establish our main results: lower and upper bounds on Wp(f, g) onHd and Td,
expressed in terms of the weighted `q norms for the Fourier coefficients of f −g. As noted previously,
we assume that µ and ν are absolutely continuous with respect to the Lebesgue measure and the
associated densities f and g have a Fourier series expansion in L2(Ω)

f =
∑
k

f̂kψk and g =
∑
k

ĝkψk (5)

where the Fourier basis functions are

ψk(x) := e2πi〈k,x〉 =

d∏
i=1

ψki(xi) (6)

and ψki(xi) := e2πikixi for k ∈ Zd. We will refer by Ψ to the set of the Fourier basis functions ψk
for k ∈ Zd.

2.1 Lower bounds

We use the following lemma from reference [40] (Remark following Lemma 3.5). This lemma is
based on the divergence formulation of W1 in (42) when p = 1 and fluid dynamic formulation (43)
of Wp for p > 1, which as discussed in Remark A.2, extends to WT

d

p . Therefore, the lemma holds
for Wp on Td as wellHd.

Lemma 2.1. For all h ∈W 1,q(Ω),5 if µ and ν ∈ P(Ω) ∩ Ls(Ω) and ‖ν‖Ls , ‖ν‖Ls ≤M and

1

q
+

1

p
+

1

s
= 1 +

1

ps
, (7)

then ∫
Ω

h d(µ− ν) ≤M1/p′‖∇h‖Lq(Ω)Wp(µ, ν). (8)

To prove our lower bound, we construct a function h from the Fourier coefficients of f − g. We
will control ‖∇h‖Lq(Ω) using the Hausdorff-Young inequality, which requires that q ∈ [2,∞].
Accordingly, if p = 1, by (42), q = ∞. If p > 1, by (7), q = ps

(p−1)(s−1) = p′s
(s−1) . If 1 < p ≤ 2,

then for all s ≥ 1, we have q ≥ 2. On the other hand, if p > 2, then q ≥ 2 for all s ∈ [1, 2p−2
p−2 ].

5W 1,q(Ω) denotes the Sobolev space of Lq functions whose gradient is also in Lq(Ω).
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Theorem 2.2. If f and g ∈ P(Ω) have a Fourier expansion (5), then for p ∈ [1,∞),

Wp(f, g) ≥ d− 1
2 ‖f̂ − ĝ‖∞,w1 .

Furthermore, if 1 < p ≤ 2 and ‖f‖Ls , ‖g‖Ls ≤ M for any s ∈ (1,∞], or if 2 < p and
‖f‖Ls , ‖g‖Ls ≤M for s ∈ (1, 2p−2

p−2 ], then

Wp(f, g) ≥ d
1
q−

1
2M
− 1
p′ ‖f̂ − ĝ‖q,wq′ (9)

where q = p′s
s−1 . In each case, the bounds hold onHd and Td, p′ and q′ are the conjugate exponents

of p and q respectively given by (35) and the weights wq
′

are given by (2).

As a shorthand, the preceding bounds can be combined into a single expression (9) where

q :=


∞ if p ∈ [1,∞)
p′s
s−1 if p ∈ (1, 2] and s ∈ (1,∞]
p′s
s−1 if p ∈ (2,∞) and s ∈ (1, 2p−2

p−2 ].

(10)

2.2 Upper bounds

We construct a vector field V : Ω→ Rd given by V :=
∑
k(f̂k − ĝk)Vk satisfying∇ · V = f − g.

This field is used to construct a feasible point for the divergence formulation (40) of W1, as well as,
together with ρ defined in the proof of Theorem 2.4 in Appendix H, for the fluid dynamics formulation
(43) of Wp when p > 1. On the torus Td, we take

(Vk)j :=

{
cj,k
i2πkj

ψk if kj 6= 0

0 if kj = 0
(11)

for the standard Fourier basis functions ψk in (6). For each Fourier frequency k ∈ Zd \ 0, taking
c1,k, . . . , cd,k such that

∑
j:kj 6=0 cj,k = 1, ensures that

∇ · Vk = ψk on Ω (12)

Specifically, for cj,k =
k2
j

‖k‖22
, the Fourier coefficients V̂k match those of the inverse (41) of the

divergence operator acting on f − g with the projection on the operator’s kernel equal to zero.
Lemma 2.3. For p ∈ [1,∞) and the weights wζ given by (2):

‖V ‖Lp ≤ Cd,p‖f̂ − ĝ‖ζ,wζ (13)

where the Hölder conjugate p′ is given by (35),

ζ =

{
2 if p ∈ [1, 2]

p′ if p ∈ (2,∞)
and Cd,p =

{
2
− 1
p′ if p ∈ [1, 2]

2
− 1
p′ d

1
2−

1
p if p ∈ (2,∞)

(14)

Based on this bound, we establish a Fourier-based upper bound on Wp (that parallels Proposition 1 in
[48] establishing a similar wavelet-based bound).

Theorem 2.4. For p = 1, we have WT
d

1 (f, g) ≤ ‖f̂ − ĝ‖2,w2 and for p > 1, if for almost every
x ∈ Td,

f(x) ∧ g(x) ≥ ξ > 0 (15)

then

WT
d

p (f, g) ≤ Cd,p p ξ−1/p′‖f̂ − ĝ‖ζ,wζ (16)

where ζ and Cd,p are given by (14).

Again, as a shorthand, the preceding bounds can be combined into a single expression (16). If f − g
belongs to the Sobolev space Ḣβ for sufficiently large β, then (13) can be bounded as follows.

4



Proposition 2.5. If f − g ∈ Ḣβ and

β >
d

p
− d

2
− 1, (17)

for p ∈ [1, 2), then

‖f̂ − ĝ‖2,w2 . ‖f − g‖
1
2

Ḣβ
‖f̂ − ĝ‖

1
2

p′,w2 (18)

where the weights w2 are given by (2).

If ‖f(m) − g‖Ḣβ is bounded uniformly in m over the feasible set of parameters of the forward
model, this proposition leads to an upper bound on Wp in terms of the weighted `p′ norm instead of
the weighted `2 norm upper bound. The latter norm matches the norm in a lower bound given by
Theorem 2.2 when p = 1 or p ∈ (1, 2]. In Appendix D, we extend the foregoing upper bounds to the
hypercubeHd by incorporating the boundary condition.

3 Resolution in computational inversion

In this section, we study the implication of the Fourier-based bounds for the resolution analysis of
computational inversion methods based on the Wp metrics. (In Appendix C, we review the existing
wavelet-based bounds on Wp as well as the existing wavelet-based bounds established in [48] analyze
the resolution of solutions to computational inverse problems in the wavelet domain.) We focus on the
case when the forward operator is linear (when f is nonlinear, our case can represent the linearization
of f around some estimated solution m0). Our analysis mirrors the resolution analysis in [6] and [25]
with respect to the L2 andHs norms, respectively.

LetM be a function space and A : M 7→ P(Ω) a linear map from it to the space of probability
measures. We are interested in solving the linear problem of the form

Am = g. (19)

We assume that A is invertible and solve this problem by finding mδ such that Wp(Amδ, g) ≤ δ. We
denote the noisy signal by gδ := Am and the noise by the function n : Ω→ R

n := gδ − g. (20)

We assume that n is in the range of A and∫
Ω

n(x)dx = 0. (21)

Since A is invertible, we denote the solution recovered from the noisy data by mδ = A−1gδ .

3.1 Resolution of frequencies

Let the function n defined by (20) be represented by a Fourier series n̂, and denote its weighted `q
norm by

δq := ‖n̂‖q,w2 (22)

where q will be specified later. (Equation (21) guarantees that n̂0 = 0.) Let B represent a bandwidth-
limited approximation of A−1 given in the Fourier domain by

(̂Bg)k �

{
̂(A−1)gk if ‖k‖2 ≤ kc

0 if ‖k‖2 > kc

and let mc
δ represent the bandwidth-limited approximation of mδ given by mc

δ := Bgδ .

Theorem 3.1. For m, mc
δ and n, as defined above, if m ∈ Ḣr,

‖m−mc
δ‖L2 ≤ (2πkc)

−r‖m‖Ḣr + ‖Bn‖L2 (23)

5



De-smoothing inversion: We assume that ‖B‖`q,w2→L2 . kαc for some α > 0 where ‖·‖`q,w2→L2

is the operator norm of a map from the weighted `q space of Fourier coefficients to L2. We shall refer
to the corresponding B as a de-smoothing inverse operator. Then, if r > 0, the upper bound (23) is
minimized by

kα+r
c .

(2π)−rr

α
·
‖m‖Ḣr
δq

.

On the other hand, if r ≤ 0, then the optimal cut-off frequency kc = 0, i.e., no recovery is possible.
Also, if ‖B‖`q,w2→L2 is bounded from above uniformly in kc, then, if r ≥ 0 these upper bounds are
minimized by setting kc →∞ and reconstructing all the frequencies, while if r < 0, then the optimal
cut-off frequency is again kc = 0.

If ‖n‖Ḣβ ≤ z, then one can consider the operator norm of B as a map to L2 from the weighted `q
space of Fourier coefficients, restricted to coefficients of functions whose Ḣβ norm is bounded by z.
In this case let us assume that that ‖Bn‖L2 � kα′c h(z)δεq for some constants α′, ε > 0 and function
h. Then, if r > 0, the upper bound (23) is minimized by

kα
′+r

c .
(2π)−rr

α′
·
‖m‖Ḣr
h(z)δεq

.

Early stopping of Wp minimization: The present model allows us to specifically analyze compu-
tational inversion when the minimization

min
m

Wp(Am, g) (24)

s.t. Am ∈ Ki

is subject to the early stopping condition Wp(Am, g) ≤ δ. In such case, let mδ denote the approxi-
mate solution. We define the noisy data by reference to the early stopping solution gδ := Amδ . Then,
the “noise" attributable to the early stopping is n = gδ − g = Amδ − g.

p [1,∞) (1, 2] (2,∞)

s 1 (1,∞]
(
1, 2p−2

p−2

]
Ks : ‖Am‖Ls , ‖g‖Ls ≤M kα+r

c . d
1
2

(2π)−rr
α · ‖m‖Ḣrδ kα+r

c .M d
1
2−

1
q

(2π)−rr
α · ‖m‖Ḣrδ

Table 3: The upper bounds on the resolution of frequencies kc when the minimization in (24) is
subject to the early stopping threshold δ, α is given by (27), q is given by (10) (The constraint is Ks

holds automatically for s = 1 since we assume that Am and g are probability densities.)

For purposes of the upper bound on kc, we can consider transport on the flat torus or hypercube
(where that the Fourier-based Wp lower bounds are the same). For purposes of the lower bound on
kc, to simplify the calculations, we consider the torus only. If g belongs to Ls for s ∈ (1,∞] when
p ∈ [1,∞) or s ∈ (1, (2p− 2)/(p− 2)] when p ∈ (2,∞), then we can include a constraint requiring
that Am shall belong to

Ks := {f ∈ P(Ω) | ‖f‖Ls ≤M}
where M := ‖g‖Ls . (K1 = P(Ω) holds trivially.) For purposes of the lower bound we include the
constraint requiring that Am shall belong to:

Kξ := {f ∈ P(Td) | f ≥ ξ a.e. on Td}
where ξ satisfies

g ≥ ξ a.e. in Td. (25)

Moreover, if p ∈ [1, 2] and g ∈ Ḣβ where β satisfies the hypothesis of Proposition 2.5, then we can
take

Kξ,z := {f ∈ P(Td) | f ≥ ξ a.e. on Td, ‖f − g‖Ḣs ≤ z}
where z > 0 is some constant and ξ is given by (25). Using the lower and upper bounds in
Theorem 2.2 and Theorem 2.4, we obtain upper and lower bounds on the resolution kc corresponding
to each function class. These upper and lower bounds are set forth in Table 3 and Table 4, respectively.
In the remainder of this discussion, we assume that α > 0 and α′ > 0 and r ≥ 0. We will refer to
‖m‖Ḣr/δq and ‖m‖Ḣr/

√
zδq as the signal-to-noise ratios.
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p = 1, ξ = 0 p ∈ (1, 2], ξ > 0 p ∈ (2,∞), ξ > 0

Kξ : Am ∧ g ≥ ξ kα+r
c & (2π)−rr

α · ‖m‖Ḣrδ kα+r
c &ξ

(2π)−rr
α · ‖m‖Ḣrδ kα+r

c

Kξ,z : Am ∧ g ≥ ξ kα′+rc kα
′+r

c &ξ 1
pd

1
p′−

1
2 (2π)−rr

α · ‖m‖Ḣrδ

‖Am− g‖Ḣβ ≤ z & (2π)−rr
α′ · ‖m‖Ḣrh(z)δε &ξ

(2π)−rr
α′ · ‖m‖Ḣrh(z)δε

Table 4: The lower bounds on the resolution of frequencies kc when the minimization in (24) is
subject to the early stopping threshold δ. (We can always take ξ = 0 since Am, g ∈ P(Td).)

Diagonal operators in the Fourier domain: The exponent α may depend on the dimension d and
the exponent q, in addition to the intrinsic properties of the forward map A. To illustrate this, consider
A that is diagonal in the Fourier domain and decays algebraically:

Âk = ‖k‖−γ2 . (26)

While it might be too simplistic to assume that the operator is diagonal in the Fourier domain, i.e,
that there is no mixing of frequencies, the decay behavior is universal in many inverse problems
for physical models, such as inverse coefficients problems for partial differential equations [31]. In
such problems, the forward operators are often smoothing operators with the degree of smoothing
parameterized by γ. Moreover, unless the forward model has a truly significant mixing across a
wide band of frequencies, the asymptotic resolution analysis we perform here (in the high-frequency
regime, as the noise is mainly assumed to be of high frequency) should still provide useful insight in
the context of more complicated forward operators.

Our bandwidth-limited approximation B of A−1 is given in the Fourier domain by

B̂k =

{
‖k‖γ2 if ‖k‖2 ≤ kc
0 if ‖k‖2 > kc

Remark 3.2. When A is as described above, q ∈ [1,∞], and α given by

α =

{
1 + γ + d

2 −
d
q if γ > −1

d
2 −

d
q if γ ≤ −1

. (27)

is strictly positive, we have ‖B‖`q,w2→L2 . kαc . Furthermore if ‖n‖Ḣβ ≤ z, then ‖Bn‖`1,w2→L2 .

kα
′

c

√
zδq where

α′ =

{
1 + 2γ − β + d

2 −
d
q if γ > β/2− 1/2

d
2 −

d
q if γ ≤ β/2− 1/2

. (28)

We assume that γ, d and q and if applicable β are such that α > 0 or α′ > 0. Plugging these
expressions of α and α′ in Table 3 and Table 4, respectively, we observe that, holding the early
stopping threshold δ constant, for the sufficiently large signal-to-noise ratio:

• For all p inWp, the bounds on the resolution kc ofmc
δ will either remain constant or increase

if we increase p (depending on regularity of g);

• For p ∈ [1, 2], the bounds on the resolution kc will either remain constant or decrease if we
increase the dimension d; and

• For p ∈ (2,∞), the bounds on the resolution kc will increase if we increase d.

Optimal resolution with fixed noise: In contrast to the previous discussion where we held the
early stopping threshold δ constant as we changed p, if we hold the noise n constant as we decrease
p, by the monotonicity of the `q norm, δq and δp′ given by (33) will decrease. In this setting, we
show that the resolution may increase when we decrease p by constructing a specific example of
high-frequency noise. We focus on the case when ‖g‖∞ = M <∞, and g ≥ 2ξ > 0 a.e. on Td. In
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this setting, the observed data gδ = g + ñ is corrupted with high-frequency bandwidth-limited noise
ñ constructed as follows. We start with the noise n given by

n̂k =


0 if ‖k‖2 < kn
‖k‖−η2 if kn ≤ ‖k‖2 ≤ bkn
0 if ‖k‖2 > bkn

(29)

for some constant b > 1. As shown in Appendix L taking η > 0 satisfying
d < η (30)

guarantees ‖n‖L∞ ≤ Cη,d uniformly in kn for a fixed b. Then, we rescale the noise

ñ :=
ξ

Cη,d
n (31)

which ensures that ‖ñ‖L∞ ≤ ξ and therefore gδ = g + ñ ≥ ξ a.e. on Td. By the monotonicity
of Lp(Td), ‖ñ‖Ls ≤ ξ for all s ∈ [1,∞). When p ∈ [1, 2), for β > d

p −
d
2 − 1, we also bound

‖ñ‖Ḣβ ≤ Cβ,d,η uniformly in kn. As shown in Appendix L, this result is guaranteed by (30) as long
as d

p −
d
2 ≤ β. For simplicity, we assume that the exponent γ in the forward operator equals to the

exponent β in theHβ of the norm of the noise, and therefore 1 + 2γ−β = 1 + γ. Let us also assume
that γ > −1, and therefore the bracketed terms will be present according to (27) and (28).
Proposition 3.3. In the setting described above, if p ∈ [1, 2],

δp′ = ‖n̂‖p′,w2 � k−η−1+d− dp
n (32)

and the resolution kc corresponding to (24) with the hypothesis classes Ks for s =∞ and Kξ,z is
bounded as follows

k

1+η+ d
p
−d

2(1+γ+ d
p
− d

2
+r)

n .ξ,z kc .M,d k

1+η+ d
p
−d

1+γ+ d
p
− d

2
+r

n .

If, on the other hand, p ∈ (2,∞), then, for q = p′s/(s− 1) and s = 2p−2
p−2 , we have q = 2 for all p.

This leads to the following bounds

δ2 := ‖n̂‖2,w2 � k−η−1+ d
2

n (33)
and the resolution kc corresponding to (24), with the hypothesis classesKs for the value of s specified
above and Kξ, is bounded as follows:

k

1+η− d
2

1+γ+ d
p
− d

2
+r

n .ξ kc .M,d k
1+η− d

2
1+γ+r
n .

To determine the relationship between p and the bounds on kc when p ∈ [1, 2] we need to compare η
with t := r + γ + d

2 . For sufficiently large kn, as p increases, if p ∈ [1, 2], and t < η, then the upper
and lower bounds on kc will increase, and if t > η, these bounds will decrease. If p ∈ (2,∞), then
the lower bound on kc will increase and the upper bound on kc will remain bounded from above.
For these purposes, when p ∈ [1, 2], we set the early stopping threshold to be δp′ in (32). When
p ∈ (2,∞), for purposes of the lower bound, the same threshold applies, while for purposes of the
upper bound, this threshold is δ2 in (33).

4 Conclusion

The present work develops Fourier-based bounds on the Wp distance and makes progress towards
understanding the effects of using the Wp metric and its generalizations in the context of computa-
tional inverse problems by applying these bounds to determine the optimal resolution of frequencies
in the context of solving such problems using this metric. Previous work [21, 25] also analyzed the
convexity of the objective function, as well as the regularity of iterative solutions, in computational
inversion using the W2 mismatch functional. Accordingly, a potential future direction would be to
generalize this convexity and regularity analysis to other values of p. As the Fourier-based bounds
do not entail mixing between different frequencies, our results may also lead to provable frequency
matching algorithms for Wp minimization in the context of computational inverse problems and other
settings; we leave this intriguing research directions to future work. Moreover, since the Wp distance
is used for a broad range of problems in mathematics and computational sciences, we expect that our
Fourier-based norm bounds will be of interest beyond inverse problems.
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A Notation and standard optimal transport definitions and results

We will refer toHd and Td collectively as Ω := {Hd,Td}. We will denote the Wasserstein distance
overHd and Td by WH

d

p and WT
d

p respectively, and when certain results holds for both WH
d

p and
WT

d

p , we will write WΩ
p . We will omit these superscripts whenever the relevant metric space or

spaces are clear from the context.

We will use ‖ · ‖p to denote the `p norm when applied to vectors or sequences (which we may also
denote by ‖ · ‖`p for further clarity), the induced 2-norm when applied to a matrix, or the Lp norm
when applied to a function (which we may also denote by ‖ · ‖Lp). When p = 2, we may denote
the relevant norm by ‖ · ‖ and omit the subscript. To match the integrand of the Benamou-Brenier
formulation of Wp (Theorem A.1) we also define the Lp norm of a vector field F : Rd → Rd as
follows:6

‖F‖Lp =
(∫

Ω

‖F (x)‖p2dx
) 1
p

.

The symbol ~ represents a convolution, and f̂ represents the Fourier series or Fourier transform of f ,
whichever is appropriate. For functions on Ω, we will denote the inhomogeneous and homogeneous
Sobolev normsHβ and Ḣβ by, respectively:

‖f‖Hβ =
(∑

k

(
1 + (2π‖k‖2)2

)β
f̂2
k

) 1
2

and ‖f‖Ḣβ =
(∑

k

(2π‖k‖2)2β f̂2
k

) 1
2

. (34)

P(Ω) represents the set of probability measures over Ω, and P2(Ω) shall refer to such probability
measures with finite second moments. Cm(Ω) refers to the set of continuous functions with m
continuous derivatives on Ω, Cmc (Ω) shall refer to such functions with compact support. We will
also use C := C0 to denote the set of continuous functions. The notation a . b indicates that there
exists a positive constant M for which a ≤Mb holds, and a � b indicates that a . b and a & b. .p
indicates that the constant M may depend on p. In the wavelet discussion, this constant may also
depend on the specific choice of wavelets and dimension, which we will not indicate by a subscript.
In all other cases, if there is no subscript in ., � or &, this will indicate that the constant is uniform
in all parameters. If the region of integration over a d-dimensional domain is omitted, then we will
assume that it is [0, 1)d. R+ refers to the half-line [0,∞) and I refers to the interval [0, 1]. a ∧ b
and a ∨ b refers to, respectively, the minimum and maximum of a and b. We will use the conjugate
exponent p′ of p given by

1

p
+

1

p′
= 1. (35)

We will now review the standard optimal transport definitions and other results used in this work.
For a given cost function c : Ω× Ω→ R+, the optimal transport cost represents the minimal cost of
transporting one probability measure µ ∈ P(Ω) to another ν ∈ P(Ω).7 This cost is formulated as the

6Since all norms are equivalent in a finite-dimensional vector space, this norm is equivalent up to a constant
pre-factor to the more standard definition:

‖F‖Lp =
(∫

Ω

∑
i

|Fi(x)|pdx
) 1
p
.

7It is possible to formulate transport over when µ and ν are defined over different domains, but we will not
require this generalization in the present paper.
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Kantorovich problem

KP (µ, ν) := inf
π∈Π(µ,ν)

∫
Ω×Ω

c(x, y)dπ(x, y) (36)

where Π(µ, ν) is the space of all joint distributions π ∈ P(Ω×Ω) (transport plans) with the marginals
matching µ and ν: ∫

Ω

π(x, ·) = µ(x), and
∫

Ω

π(·, y) = ν(y).

When Ω is a Polish space, i.e., complete and separable metric space, and c is a lower semicontinuous
function, KP admits a solution [53]. The corresponding dual problem is

DP (µ, ν) := max
φ,ψ∈C(Ω)
φ⊕ψ≤c

∫
Ω

φdµ+

∫
Ω

ψdν = max
φ∈c−conc

∫
Ω

φdµ+

∫
Ω

φcdν (37)

where c − conc refers to the set of c-concave functions and φc refers to a c-transform of φ. If c is
uniformly continuous and bounded on Ω, strong duality KP = DP holds and DP admits a solution
(φ, φc) referred to as potentials or Kantorovich potentials.8

When the cost function c is the p-th moment of a distance function d, the optimal transportation cost
is also a distance, referred to as the Wasserstein-p (Wp) distance:9

W p
p (µ, ν) := inf

π∈Π(µ,ν)

∫
Ω×Ω

dp(x, y)dπ(x, y). (38)

We consider two metric spaces: the first is the hypercube inRd:

H
d := [0, 1]d (39)

with dHd(x, y) := ‖x− y‖ where ‖ · ‖ is the standard Euclidean norm. The second space is the flat
d-dimensional torus:

T
d := R

d/Zd.

The elements of Td are equivalence classes [x] = {x + k | k ∈ Zd} where x ∈ [0, 1)d. For
for simplicity, we will denote [x] by x. The metric space over Td is equipped with the distance
dTd(x, y) = mink∈Zd |x − y + k|, which makes Td a Polish space (see, e.g., [27]). Accordingly,
the domain of integration over Td is [0, 1)d, and the set of probability measures P(Td) is given by
Zd periodic measures µ onRd such that each µ is a probability measure when restricted to [0, 1)d.
Similarly each f : Td → R is identified with Zd periodic function f : Rd → R (see, e.g., [39]).

For p = 1, to obtain the upper bound we will use the classic divergence formulation of W1 due to
Beckmann [10], [53, Theorem 4.6]:

W1(µ, ν) = inf
V ∈Md

div

{∫
Ω

‖V (x)‖dx | ∇ · V = F
}
, (40)

where F := µ− ν andMd
div denotes the space of vector measures on Ω with divergence which is

a scalar measure. In the case of transport on Hd, we additionally impose the boundary condition
V · n|∂Ω = 0, which reduces to V (0) = V (1) = 0 on the interval [0, 1].

The divergence constraint in (40) implies that 2πi〈k, V̂k〉 = F̂k. Therefore, the divergence operator
has a nontrivial kernel, and the projection of V onto the kernel is determined as a result of the
optimization in (40). Specifically,

V̂k =

{
k

2πi‖k‖2 F̂k + Q̂k if k 6= 0

Q̂0 if k = 0
(41)

where Q̂k ∈ Cd, and, for k 6= 0, Q̂k ∈ k⊥; these vectors Q̂k parametrize the kernel of the divergence
operator in the Fourier domain (subject to V being a real-valued vector field, and in the case of

8A solution to KP may also exist, and strong duality may also hold under weaker assumptions than the ones
set forth in the text accompanying this footnote. See, e.g., [53] for details.

9We use the terms “metric" and “distance" interchangeably, referring to the same mathematical object.
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transport onHd also subject to the boundary condition). We are not aware of an explicit representation
of the optimal Q̂k’s solving (40) in dimension higher than 1.

We will use the dual formulation of W1 (42)

W1 = sup
‖∇h‖∞≤1

∫
Ω

hd(µ− ν) (42)

to obtain the lower bound. Similarly to [48] for p > 1, we will use the following fluid-dynamics
characterization of W p due to [11],[16] to obtain lower and upper bounds. We denote by KΩ the set
of pairs of measures (ρ,E) on Ω× [0, 1] where ρ is scalar-valued and E is vector-valued. In the case
of transport onHd, E must also satisfy the boundary condition E · n = 0 on ∂Hd × [0, 1].

Theorem A.1 (Benamou-Brenier). For any measures µ and ν onHd and p ∈ (1,∞)

W p
p (µ, ν) = inf

(ρ,E)∈KΩ

{Bp(ρ,E) : ρ(·, 1) = µ, ρ(·, 0) = ν, ∂tρ+∇x · E = 0} (43)

where

Bp(ρ,E) :=

{∫
Ω×[0,1]

‖dEdρ (x, t)‖pdρ(x, t) if E � ρ

+∞ otherwise.

Remark A.2. The preceding theorem has been generalized to the transport onTd (Theorem 1.6.4 in
[15] and references cited therein).

Lastly, we will use the Hausdorff-Young inequality; see, e.g., Theorem 4.27 in [26].

Theorem A.3 (Hausdorff-Young inequality). If p ∈ [1, 2] and f̂ ∈ `p, then for a function f on [0, 1)d

represented by the Fourier series (5),∥∥∥∑
k

f̂kψk

∥∥∥
Lp′
≤ ‖f̂‖p. (44)

B Related work

In this section, we review related work, including applications of the Wp distance in inverse and
certain other computational problems, as well as existing Fourier and wavelet-based bounds on this
distance.

B.1 Wp in computational problems

The Wp distance metricizes weak convergence of probability measures and has a number of attractive
features for inverse and other computational problems. For example, Wp(f, g) depends continuously
on f − g even when the densities f and g have non-overlapping support. Therefore, the Wp metric
allows us to compare such densities more meaningfully than other popular distances, like the Lp and
total variation norms. Currently, Wp is used extensively in machine learning and computer science,
such as generative modeling [4] and robust estimation [46, 47] (see also overview of applications in
[32, 56, 7]).

In statistics, the process of fitting a parametric model to data using Wp (instead of, for example, the
Kullback-Leibler divergence used in likelihood maximization) is known as minimum Kantorovich
distance estimation [9]. TheWp metric is also used in Bayesian statistics for likelihood-free inference
[13, 12] and parameter estimation [8, 55, 14, 45]. However, in parametric statistics, the underlying
problems tend to be low-dimensional. Such problems are intrinsically different from the high-
dimensional inverse problems where reconstructing high-resolution information of m is a critical
objective of the inversion process. On the other hand, recent work [48] in nonparametric statistics
determined the minmax estimation rates when the error between the target density and its empirical
distribution is measured in Wp using a characterization of Wasserstein distance in terms of weighted
`p norms of the wavelet coefficients. This problem is similar to the high-dimensional inverse problems
studied in this paper, and we use extensively the ideas and methods from that work.

While the L2 norm, as well as other Lp norms, have been historically used in computational inverse
problems, as noted previously, they do not provide a meaningful comparison whenever the support
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of the model and the data do not overlap, which can happen when the data is shifted relative to the
model or when the data lies on a low dimensional manifold. Also, when the signals are wavelike,
using the L2 norm leads to incorrect matching when the model and the data have a significant phase
mismatch (this phenomenon is referred to as cycle skipping).

The W2 distance was applied and/or analyzed in the context of various inverse problems, such as
the earthquake location problem [18], full waveform inversion [24, 23], and tomographic recon-
struction [1]. In another work, a loss function based on the W4 metric (which penalizes the outliers
more heavily than the W2 metric) was used in the context of computerized tomography (CT) [2].
Reference [22] introduced the W2 distance as the mismatch functional in the context of seismic
inverse problems. This reference showed that this distance is convex with respect to translations and
dilations, which addresses the cycle-skipping issue mentioned above; see also [23]. The frequency
content of computational solutions to inverse problems, as well the convexity of the optimization
problems, based on theW2 metric, have been recently analyzed in [21, 25]. The Fourier-based bounds
on W2 in [49] (discussed in Appendix B.2) were used in [25] to analyze the frequency content of
computational solutions to inverse problems using this metric.

The W1 distance was used in image and language processing [30] and Wasserstein GANs [4]. In the
context of inverse problems, the generalization of the W1 distance to general signed measures with
different mass (Kantorovich-Rubinstein norm) was empirically shown to have attractive properties
in the context of inverse problems [34, 41, 42]; see also [44] for a survey of results and numerical
experiments indicating the attractive properties of this norm specifically in the full waveform inversion
setting. A number of fast algorithms were developed to solve optimal transport based on the W1

distance [37] and its variants such as entropy regularizedW1 [35, 36] and unbalancedW1 [33]. Lastly,
[29] developed a data-driven denoiser for inverse problems related to the W1 metric; see also [60].
We refer interested readers to reference [17] for various mathematical properties on the W1 metric
and to references [52, 54] and references therein for the development of fast computational algorithms
to evaluate the metric. However, we are not aware of any existing analysis of computational inversion
using W1 or, more generally, Wp for p 6= 2 as the mismatch functional.

B.2 Existing Fourier-based bounds for Wp

Wp on the circle: In the case of Wp on the circle T for 1 ≤ p <∞, [57] showed that

Wp(f, g) .p
( ∞∑
k=1

|f̂(k)− ĝ(k)|2

k2p−2

) 1
2p

.

When g is a Lebesgue measure λ, [57] proved the following lower bound,

W1(f, λ) &M−1
∞∑
k∈Z
k 6=0

1 + log |k|
k2

|f̂(k)|2

where M = ‖f‖∞.

W2 on Rd: Given a positive measure µ on M and F : M → R, the weighted Sobolev Ḣs(µ)
semi-norm of F is given by

‖F‖2Ḣs(µ)
:=

∫
M

|ξ|2s|F̂ (ξ)|2dµ(ξ). (45)

We will omit the parenthesis in Ḣs(µ) if µ is the Lebesgue measure, which we will denote by λ. If µ
is absolutely continuous with respect to λ, then it can be associated with a density g. If ω = 1/

√
g

has a Fourier expansion, then the preceding norm becomes

‖F‖2Ḣs(µ)
:=

∫
M

|ξ|2s|F̂ ~ ω̂(ξ)|2dξ. (46)

When µ is close to ν, referred to as linearized or asymptotic, in the case of transport onRn, W2 is
equivalent to the weighted homogeneous Sobolev Ḣ−1(µ) norm (e.g., Theorem 7.26 in [58]). Based
on this equivalence, reference [49] established

1

c
‖µ− ν‖Ḣ−1 ≤W2(µ, ν) ≤ 2‖µ− ν‖Ḣ−1(µ) (47)
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where the lower bound holds only if µ ≤ ρ0λ and ν ≤ ρ1λ with

c =
2(ρ

1
2
0 − ρ

1
2
1 )

ln(ρ0/ρ1)

(For ρ0 = ρ1, we take c = ρ
1
2
0 by continuity.) Note that in the lower bound we have an unweighted

Sobolev norm while in the upper bound we have a weighted one. The constant c is bounded from
above by the prefactor max(ρ0, ρ1)

1
2 that appears in a similar lower bound in [38]; the two lower

bounds coalesce when ρ0 = ρ1. If the probability measures µ and ν are absolutely continuous with
respect to the Lebesgue measure and have densities f and g, which have Fourier transforms, then

‖f − g‖2Ḣ−1(ν)
=

∫
Rn

∣∣∣|ξ|−1((f̂ − ĝ) ~ ω̂(ξ))
∣∣∣2 dξ. (48)

where ω = 1/
√
g. Reference [25] used the relationship between Ḣ−1 and W2 to analyze the

frequency content of W2 inverse matching in the Fourier domain in the asymptotic regime. In this
setting, it observed that the weighting leads to mixing between different modes of g in the Fourier
domain, which prevents matching mode by mode.

W1 and W2 on a finite grid: Reference [5] analysed the equivalence of a Fourier-based metric
and Wp for p = 1 and 2 for discrete measures supported on a finite grid. Specifically in the case of a
discrete measure µ supported on a regular grid GN (of Nd points) in [0, 1)d given by

GN := {x ∈ Rd : Nx ∈ Zd ∩ [0, N)d}

its discrete Fourier transform
µ̂(k) =

∑
x∈Gn

µxe
−i〈k,x〉

is 2πN -periodic in each coordinate of x, and therefore it suffices to consider k ∈ [0, 2πN ]d. Letting
T = 2πN , this reference showed the equivalence of the metrics f1,2 and F2,2 based on the Fourier
transform µ̂, as defined below, and Wp for p = 1 and 2:

f1,2(µ, ν) ≤W1(µ, ν) ≤ T 2

2π
f1,2(µ, ν) and

1

2
√

2
F2,2(µ, ν) ≤W2(µ, ν) ≤ T 3

π
F2,2(µ, ν)

where

fp,2(µ, ν) =
( 1

|T |d

∫
[0,T ]d

|µ̂(k)− ν̂(k)|2

|k|2p
dk
) 1

2

, F2,2(µ, ν) =
√
fp,2(µ, νmµ−mν ) + |mµ −mν |2

and νmµ−mν is the translation of ν by mµ−mν so that µ and νmµ−mν have the same center of mass
given by

mµ =

∫ 1

0

x f(x)dx.

B.3 Relationship to existing work

When p = 2, the upper bound (23) is minimized when

kc �
(
δ−1
2 ‖m‖Hr

) 1
1+r+γ

.

This resolution matches the optimal resolution in [25] for inverse matching using the H−1 norm.
More generally, this reference showed that in the context of using theHs norm

kc �
(
δ−1
β ‖m‖Hr

) 1
1+r+γ−s

.

where δβ is the early stopping threshold (corresponding to Hβ norm of the “noise" representing
the difference between the Amδ at early stopping and the data g). Taking β = 0, corresponds to
the L2 norm matching, leading to lower resolution (smoother reconstruction) than the Wp metric
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minimization; on the other hand, using theHβ with the negative β = d
p′ −

d
2 = d

2 −
d
p leads to the

same resolution for Hβ matching and Wp minimization for p ∈ [1, 2] (in each case, assuming that
the early stopping thresholds are the same: δβ and δp′ respectively). However, the resolution analysis
of W2 was based on its equivalence with the weighted homogeneous Sobolev normH−1. The latter
norms entail mixing between different frequencies of the signal (45), which somewhat complicates
the resolution analysis. Since our Fourier-based bounds do not entail such mixing, they lead to a
more straightforward analysis.

C Existing wavelet-based bounds for Wp and resolution in the wavelet
domain

A significant body of literature bounding Wp(f, g) by a weighted `p norm of wavelet or similar
multiresolution coefficients of f − g. For example, reference [30] embeds a discrete distribution
supported on a finite number of points in Rd in W 1 into sparse vectors in a higher dimensional
`1(R∆d

) where ∆ is the level of the finest grid. That reference uses this approach to develop a fast
sparse optimization algorithm to match images.

The wavelet-based bounds that are most relevant for our purposes appear in [48] on the Wp distance
given by a weighted `p norm of the wavelet expansion of f − g. They consider the hypercubeHd in
(39) with the Euclidean distance and assume the existence of basis sets Φ and Ψj for j ≥ 0 satisfying
the following standard assumptions of a wavelet basis of functions in L2(Hd):

1. (Basis) Φ ∪ {∪j≥0Ψj} form an orthonormal basis for L2(Hd);

2. (Regularity) The functions in Φ and Ψj for j ≥ 0 all lie in Cr(Hd) and polynomials of
degree at most r lie in span(Φ).

3. (Tensor construction) Each ψ in Ψj can be expressed as ψ(x) =
∏d
i=1 ψi(xi) for some

univariate functions ψi.
4. (Locality) For each ψ in Ψj , there exists a rectangle Iψ ⊆ Hd such that supp(ψ) ⊆ Iψ,

diam(Iψ) . 2−j , and ‖
∑
ψ∈Ψj

1{x ∈ Iψ}‖∞ . 1.

5. (Norm) ‖ψ‖Lp(Hd) � 2dj(
1
2−

1
p ) for all ψ ∈ Ψj .

6. (Bernstein estimate) ‖∇f‖Lp(Hd) . 2j‖f‖Lp(Hd) for any f ∈ span
(

Φ ∪ {∪j≥k≥0Ψj}
)

.

See Appendix E in [48] and also [20] and Chapter 2.12 in [19] for additional details regarding this
classic wavelet construction. Consistently with reference [48], we assume the following wavelet
expansions of the probability densities f, g ∈ Lp(Ω) for p ∈ [1,∞):

f =
∑
φ∈Φ

αφφ+
∑
j≥0

∑
ψ∈Ψj

βψψ and g =
∑
φ∈Φ

α′φφ+
∑
j≥0

∑
ψ∈Ψj

β′ψψ. (49)

where Φ and Ψ are sets of functions satisfying the wavelet assumptions above. The following upper
bound holds if constant functions lie in the span of Φ (Assumption 2 holds with r = 0).
Proposition C.1 (Prop. 1 in [48]). For p ∈ [1,∞), if for almost every x ∈ Ω, we have

f(x) ∧ g(x) ≥ ξ > 0, (50)

then
Wp(f, g) . ξ−1/p′δup (f − g)

where

δup (f) :=
(
‖α‖`p +

∑
j≥0

2−j2dj(
1
2−

1
p )‖βj‖`p

)
(51)

and the Hölder conjugates p and p′ are given by (35) below.

If the wavelets have at least one continuous derivative (Assumption 2 holds with r = 1), then the
following lower bound holds.
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Proposition C.2 (Prop. 3 in [48]). For p ∈ [1,∞), if for almost every x ∈ [0, 1]d, we have

f(x) ∨ g(x) ≤M, (52)

then
Wp(f, g) &M−1/p′δlp(f − g′)

where

δlp(f) :=
(
‖α‖`p + sup

j≥0

{
2−j2dj(

1
2−

1
p )‖βj‖`p

})
(53)

In the remainder of this section, we present a wavelet-based resolution analysis that parallels the
Fourier-based analysis above. We are interested in solving the problem (19) from the noisy data gδ
when the noise n has the wavelet expansion

n =
∑
φ∈Φ

αφφ+
∑
j≥0

∑
ψ∈Ψj

βψψ.

Now B represents a limited-resolution approximation of A−1 given in the wavelet domain by

(Bg)ψ =

{
(A−1g)ψ if ψ ∈ Ψj for j ≤ jc
0 if ψ ∈ Ψj for j > jc.

(Bg)φ = (A−1g)φ for all φ ∈ Φ

We also let mc
δ := Bgcδ . We consider m given by (19) inHr(Hd) and assume that our wavelet basis

has regularity greater than |r|, as specified in Appendix C. According to Theorem 4, Chapter 3 in [43],
given wavelet coefficients αm and βm of m, its Sobolev Hr norm is given by

‖m‖2Hr �
∑
φ∈Φ

|αmφ |2 +
∑
j≥0

∑
ψ∈Ψj

4jr|βmψ |2. (54)

We can decompose
m = mΦ +mΨ

into orthogonal vectors in the span of the father wavelets Φ and mother wavelets Ψ:

mΦ =
∑
φ∈Φ

αmφ φ and mΨ =
∑
j≥0

∑
ψ∈Ψj

βmψ ψ.

The same decomposition will apply to theHr norm of m:

‖m‖2Hr � ‖αm‖22 + ‖mΨ‖2Hr . (55)

The following theorem bounds the reconstruction error from above in terms of the weighted wavelet-
based norm of the noise.

Theorem C.3. Under the assumptions on the wavelet basis in Appendix C, we have

‖m−mc
δ‖L2 . ‖mΦ‖2 + 4−jcr‖mΨ‖Hr + ‖B‖δp→L2δq(n) (56)

where δp(n) represents the weighted `p norm of wavelet coefficients of the noise n given by (51) or
(53), and ‖ · ‖δp→L2 refers to the operator norm of a map from the normed space of such coefficients
to L2.

Proof. By the standard error decomposition:

‖m−mc
δ‖L2 = ‖m−BAm+BAm−Bgδ‖L2 ≤ ‖(I −BA)m‖L2 + ‖Bn‖L2(Ω)

where I denotes the identity operator. Using (54),

‖I −BA‖L2(Ω) ≤ ‖α‖2 + 4jr‖n‖2HrΨ
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De-smoothing inversion (wavelet domain): We assume that ‖B‖δp→L2 �d,p 4jch for some
h > 0, and we shall refer to the corresponding B as a de-smoothing inverse operator.10 Then, if
r > 0, the upper bound (23) is minimized when

4jc(h+r) �d,p
(
‖m‖Hr
δq

)
.

.

On the other hand, if r ≤ 0, then the optimal kc = 0, i.e., no recovery is possible in the de-smoothing
inversion setting. Also, if ‖B‖δp→L2 is upper bounded uniformly in jc, then for r ≥ 0 the upper
bound (56) is minimized by eliminating the cut-off resolution threshold and reconstructing all scales,
while if r < 0, the optimal jc = 0.

Diagonal operators in the wavelet domain: Similarly to the Fourier case, in the present case, h
may also depend on the exponent p and dimension d, as well as the intrinsic properties of the map A.
To illustrate this dependence, we assume the forward operator A is diagonal in the wavelet domain:

{
(Aψm)ψ = 4−γjmψ if ψ ∈ Ψj for all j ≥ 0

(Aφm)φ = mφ for all φ ∈ Φ

for some γ > 0. Therefore, B is given by
(Bψg)ψ = 4γjgψ if ψ ∈ Ψj for allj ≤ jc
(Bψg)ψ = 0 if ψ ∈ Ψj for allj > jc
(Bφg)φ = gφ for all φ ∈ Φ

According to Lemma 1 in [48], the set Φ has finite cardinality cΦ := |Φ| . 1. Also, by that Lemma
the cardinality of Ψj . 2dj . By (74), the operator norm from δup given (51) space to L2 is computed
as follows.

‖Bn‖2L2 =
∑
φ∈Φ

α2
φ +

∑
jc≥j≥0

4j(γ+1)4−j
∑
ψ∈Ψj

β2
ψ

≤ (c
1
2−

1
p

Φ ‖α‖p)2 +
∑

jc≥j≥0

4j(γ+1)
(

2−j2dj(
1
2−

1
p )‖βj‖p

)2

≤ (jc + 1)−1

c 1
2−

1
p

Φ ‖α‖p +
∑

jc≥j≥0

2j(γ+1)2−j2dj(
1
2−

1
p )‖βj‖p

2

= (jc + 1)−1C2
w(δup (n))2

(57)

where

Cw =

max(c
1
2−

1
p

Φ , 2jc(γ+1)) if γ ≥ −1

max(c
1
2−

1
p

Φ , 1) if γ < −1
(58)

On the other hand, the operator norm from δlp given (53) space to L2 is computed as follows.

‖Bn‖2L2 =
∑
φ∈Φ

α2
φ +

∑
jc≥j≥0

4j(γ+1)4−j
∑
ψ∈Ψj

β2
ψ

≤ (c
1
2−

1
p

Φ ‖α‖p)2 + sup
jc≥j≥0

{
4j(γ+1)

(
2−j2dj(

1
2−

1
p )‖βj‖p

)2}
≤ 1

2

(
c

1
2−

1
p

Φ ‖α‖p + sup
jc≥j≥0

{
4j(γ+1)

(
2−j2dj(

1
2−

1
p )
)2}) 1

2

=
1

2
C2
w(δlp(n))2

(59)

10It is possible to perform a similar analysis of ‖B‖δp→L2 � log(2j).
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Accordingly, if γ ≥ −1 for jc enough, the reconstruction error bound is minimized when the cutoff
scale jc is bounded as follows

(jc + 1)
1
2

Cw
·
‖m‖HrΨ
δuq

. 4
jc(1+γ+r)
jc

.
1

Cw
·
‖m‖HrΨ
δq

.

This indicates that, in this example, in contrast to the resolution of frequencies in computational
inversion using the Wp metric, the resolution of wavelets does not exhibit a complicated dependence
on p and the dimension d.

D Upper bound on Wp on the hypercube

In the case of transport on Hd, the vector field V also needs to satisfy the boundary condition
V · n = 0 on ∂Ω. Let Ṽk be given by Vk in (11) except that each (Vk)j is evaluated on the boundary
xj = 0:

(Ṽk)j(x) := (Vk)j(x1, . . . , xj−1, 0, xj−1, . . . , xd) = 0 (60)

We also let V ′k denote Vk modified by subtracting its boundary value:

(V ′k)j(x) := (Vk)j(x)− (Ṽk)j(x)

=

{
cj,k
i2πkj

(ψkj (xj)− 1)
∏
m 6=j ψkm(xm)) if kj 6= 0

0 if kj = 0

Note that Ṽk is in the kernel of the divergence operator, and therefore, (12) holds with respect to
V ′k instead of Vk. If we take cj,k = k2

j/‖k‖22, as we did previously section, enforcing the boundary
condition will lead to a mixing of frequencies that appears difficult to analyze. However, if we take
ck,j = 1 if j is the index of the component of k with the largest absolute value, i.e. |kj | = ‖k‖∞,
and zero otherwise, the analysis becomes more tractable. If there are multiple such cj,k, we can set
any one of them, e.g., the smallest one, to 1 and set the remaining ones to zero. Specifically,

ck,j =

{
1 if j = arg mini s.t. |ki|=‖k‖∞ i

0 otherwise
.

Given (k1, . . . , kj−1, kj+1, . . . , kd), let kj denote a set of all frequencies kj such that |kj | = ‖k‖∞
for each k ∈ kj :

kj =
{

(k1, . . . , kj−1, kj , kj+1, . . . kd) | kj ∈ Z s.t. |kj | ≥ max
m 6=j
|km|

}
.

We let f̂kj denote a sequence of Fourier coefficients corresponding to each kj ∈ kj . Accordingly,
in the present discussion, summation over kj denotes summation over all possible combinations of
k1, . . . , kj−1 and kj+1, . . . , kd while summation over kj entails summation over the elements of kj
given a specific k1, . . . , kj−1 and kj+1, . . . , kd. Based on that, we can obtain an upper bound for
WH

d

p that contains an additional term attributable to the boundary conditions relative to the upper
bound for WT

d

p in (16).

Lemma D.1. For p ∈ [1,∞),

‖V ′‖Lp ≤ Cd,p
(
‖f̂ − ĝ‖ζ,wζ +

(∑
j

∑
kj

‖f̂kj − ĝkj‖ζ1,w∞
) 1
ζ
)

(61)

where ζ and Cd,p are given by (14) and the weights wζ and w∞ are given by (2).

Proof. Let Ṽ denote the vector field V with the j component evaluated on xj = 0

Ṽ :=
∑
k

(f̂k − ĝk)Ṽk.
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where Vk is as defined in (60). Similarly to the proof of Lemma 2.3 in Appendix G, for p ∈ [1, 2],

‖Ṽ ‖pLp =

∫
Td

‖Ṽ (x)‖p2dx

=

∫
Td

(∑
j

(∑
kj

( ∑
kj :kj=|k|∞

1

i2πkj
(f̂k − ĝk)

) ∏
m6=j

ψkm(xm)
)2) p2

dx

≤
(∫

Td

dx
) 2

2−p
(∫

Td

∑
j

(∑
kj

( ∑
kj :kj=|k|∞

1

i2πkj
(f̂kj − ĝkj )

) ∏
m 6=j

ψkm(xm)
)2) p2

=
(∑

j

∑
kj

( ∑
kj :kj=|k|∞

1

i2πkj
(f̂k − ĝk)

)2) p2
=
(∑

j

∑
kj

‖f̂kj − ĝkj‖21,w∞
) p

2

where the sequence of weights w is given by (2). Also for p ∈ (2,∞), by Hausdorff-Young inequality

‖Ṽ ‖pLp =

∫
Td

‖Ṽ (x)‖p2dx

≤ d
p
2−1

∫
Td

‖Ṽ (x)‖ppdx

= d
p
2−1

∫
Td

∑
j

(∑
kj

( ∑
kj :kj=|k|∞

1

i2πkj
(f̂k − ĝk)

) ∏
m 6=j

ψkm(xm)
)p
dx

≤ d
p
2−1

∑
j

∑
kj

( ∑
kj :kj=|k|∞

1

i2πkj
(f̂k − ĝk)

)p′
= d

p
2−1

∑
j

(∑
kj

‖f̂kj − ĝkj‖p
′

1,w∞

)p′

Remark D.2. Theorem 2.4 shall also apply to WH
d

p (f, g) as modified by replacing the right-hand
side of (16) with

Cd,p p ξ
− 1
p′
(
‖f̂ − ĝ‖ζ,wζ +

(∑
j

∑
kj

‖f̂kj − ĝkj‖ζ1,w∞
) 1
ζ
))
.

E Unbalanced transport

In this section, we extend the foregoing bounds to generalized Wp for unbalanced positive measures
and generalized W1 for signed measures.

E.1 Generalized Wp for positive measures

We consider the unbalanced W a,b
p metric introduced in [50]:

W a,b
p (µ, ν) :=

(
T a,bp (µ, ν)

) 1
p

where
T a,bp (µ, ν) := inf

µ̃,ν̃∈M(Ω)
|µ̃|=|ν̃|

ap(|µ− µ̃|+ |ν − ν̃|)p + bp W p
p (µ̃, ν̃),

M(Ω) is the space of positive Borel regular measures on Ω with finite mass, and a, b > 0.11 In this
section, we develop Fourier-based upper and lower bounds for W a,b

p on Td andHd.

11The Wasserstein metric is a well-defined distance for an arbitrary pair of positive measures f and g of equal
mass since it is homogeneous under scalar multiplication: Wp(µ, ν) := cWp

(
1
c
µ, 1

c
ν).
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Proposition 2 in [50] guarantees that there exist optimal µ̃ and ν̃ such that µ̃ ≤ µ and ν̃ ≤ ν.
Therefore, ‖µ̃‖Ls ≤ ‖µ‖Ls and ‖ν̃‖Ls ≤ ‖ν‖Ls . Based on this, we generalize Lemma 2.1 to the
unbalanced metric.

Lemma E.1. For all h ∈ W 1,q(Ω), if µ and ν ∈ M(Ω) ∩ Ls(Ω), ‖µ‖Ls , ‖ν‖Ls ≤ M , q satisfies
(7), and

‖h‖∞ ≤ a and d
1
2−

1
qM1/p′‖∇h‖q ≤ b,

then ∫
Ω

h d(µ− ν) ≤ 2
p−1
p W a,b

p (µ, ν).

Proof. By Lemma F.1 and Hölder’s inequality∫
h(f − g)dx =

∫
h(f − f̃)dx+

∫
h(f̃ − g̃)dx+

∫
h(g − g̃)dx

≤ ‖h‖∞‖f − f̃‖1 +M1/p′‖∇h‖Lq(Ω)Wp(f̃ , g̃) + ‖h‖∞‖g − g̃‖1

=
((
‖h‖∞(‖f − f̃‖1 + ‖g − g̃‖1) +M1/p′‖∇h‖Lq(Ω)Wp(f̃ , g̃)

)p) 1
p

≤
(

2p−1
(
‖h‖p∞(‖f − f̃‖1 + ‖g − g̃‖1)p + (M1/p′‖∇h‖Lq(Ω)Wp(f̃ , g̃))p

)) 1
p

≤ 2
p−1
p W a,b

p (f, g)

where in the next to last inequality, we have used the standard inequality (x+ y)p ≤ 2p−1(xp + yp)
for all x, y > 0.

We again assume that the measures µ and ν are absolutely continuous with respect to the Lebesgue
measure and, therefore, are associated with a pair of positive densities f and g. We will denote
W a,b
p (µ, ν) as W a,b

p (f, g) by reference to the corresponding density. We use this lemma to adjust the
construction of the test function h from the proof of Theorem 2.2 in Appendix F. This generalizes
our previous lower bound to the unbalanced setting.

Theorem E.2. If f and g are positive functions that have a Fourier expansion (5), then for p ∈ [1,∞),

W a,b
p (f, g) ≥ d− 1

2 b‖f̂ − ĝ‖∞,w1 ∧ a.

Furthermore, if p ∈ (1, 2] and ‖f‖Ls , ‖g‖Ls ≤M for s ∈ (1,∞], or if p > 2 and ‖f‖Ls , ‖g‖Ls ≤
M for s ∈ (1, 2p−2

p−2 ], then

W a,b
p (f, g) ≥ 2(1−p)/p

((
d

1
q−

1
2M−1/p′b

)
∧

(
a

‖(f̂ − ĝ)
1
p ‖q,wq′

))
‖f̂ − ĝ‖q

q,wq′

and q = p′s
s−1 . In each case, the bounds hold onHd and Td, p′ and q′ are the conjugate exponents of

p and q respectively given by (35) and the weights wp and wq
′

are given by (2) for k ∈ Zd \ 0 while
the weight associated with the zero’s frequency f̂0 − ĝ0 is wq

′

0 = 1.

Proof. We modify the proof of Theorem 2.2 starting after (73). Note that if

‖λ‖1 ≤ a (62)

then ‖h‖∞ ≤ a, and we obtain the following result. We have

‖λ‖1 = α
∥∥∥|f̂ − ĝ| qq′ w q

q′+1
∥∥∥

1
= α

∥∥∥|f̂ − ĝ| qq′ wq′∥∥∥
1

= α
∥∥∥(f̂ − ĝ)

1
q′
∥∥∥q
q,wq′

. (63)

Therefore, setting

α = min
(
M−1/p′d

1
q−

1
2 b
/
‖f̂ − ĝ‖q−1

q,wq′
, a
∥∥(f̂ − ĝ)

1
q′
∥∥q
q,wq′

)
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guarantees (68) and (62). Now evaluating

〈λ, (f̂ − ĝ)〉 = α
∑
k

|f̂k − ĝk|wk
(
|f̂k − ĝk|wk

)q−1

= α‖f̂ − ĝ‖q
q,wq′

=

(M−1/p′d
1
q−

1
2 b
)
∧

 a

‖(f̂ − ĝ)
1
q′ ‖q

q,wq′

 ‖f̂ − ĝ‖q
q,wq′

completes this proof.

As a shorthand, the preceding bounds can be combined into a single expression:

W a,b
p (f, g) ≥ 2(1−p)/p

((
d

1
q−

1
2M−1/p′b

)
∧

(
a

‖(f̂ − ĝ)
1
p ‖q,wq′

))
‖f̂ − ĝ‖q

q,wq′

where q is given by (10).

For purposes of an upper bound, we assume, without loss of generality, that f̂0− ĝ0 =
∫

Ω
(f −g) ≤ 0.

To preserve the positivity of the measures, we take f̃ = f − f̂0 + ĝ0 and g̃ = g. Note that all the
Fourier amplitudes of f̃ and f are the same except for the one corresponding to the frequency k = 0.
Therefore, by a standard result Equation (74)

W a,b
p (f, g) ≤

(
ap|f − f̃ |p + bpW p

p (f̃ , g)
) 1
p

(64)

≤ 2
1
p−

1
ζ

(
aζ |f̂0 − ĝ0|ζ + bζWp(f̃ , g)ζ

) 1
ζ

. (65)

Based on that, we extend our previous upper bounds to the unbalanced case as follows.

Remark E.3. Theorem 2.4 applies to W a,b
p (f, g) on Td provided that the bound (16) shall be

replaced with

W a,b
p (f, g) ≤ 2

1
p−

1
ζCd,pp b ξ

− 1
p′ ‖f̂ − ĝ‖ζ,wζ

where ζ is given by (14) and the weighted `ζ norm shall include the weight wζ0 = a/(bCd,pp ξ
− 1
p′ )

associated with the zero’s frequency f̂0 − ĝ0.

Remark E.4. Proposition 2.5 extends toW a,b
p (f, g) provided that in such case, (18) shall be replaced

with

‖f̂ − ĝ‖2,w2 . 2
1
p−

1
ζ

(
aζ |f̂0 − ĝ0|ζ + bζ‖f − g‖

ζ
2

Ḣβ
‖f̂ − ĝ‖

ζ
2

p′,w2

) 1
ζ

where for purposes of computing the weighted `p′ norm we exclude the zero’s frequency.

In the case of p = 1, on Td, we have

W a,b
1 (f, g) ≤

√
2b‖f̂ − ĝ‖2,w2 (66)

where for purposes of computing the weighted `2 norm, we include the zero’s frequency f̂0− ĝ0 with
the weight a/b. If f − g ∈ Ḣβ for β > d/2− 1, then also

W a,b
1 (f, g) . a|f̂0 − ĝ0|+ b‖f − g‖

1
2

Ḣβ
‖f̂ − ĝ‖

1
2

∞,w2 (67)

where for purposes of computing the weighted `∞ norm we exclude the zero’s frequency.

E.2 Generalized W1 for signed measures

For general (potentially unbalanced) signed measures µ and ν that can be decomposed into positive
measures:

µ = µ+ − µ− and ν = ν+ − ν−,

20



references [3] and [51] generalized the W1 metric as follows:12

Wa,b
1 (µ, ν) := W a,b

1 (µ+ + ν−, µ− + ν+)

Reference [51] also showed that for a = b = 1, this metric is equivalent to the Kantorovich-Rubinstein
norm [28], also called bounded Lipschitz distance or Fortet–Mourier distance [59]:

W 1,1
1 (µ, ν) = sup

{∫
φ d(µ− ν) : φ ∈ C0, ‖φ‖∞ ≤ 1, ‖φ‖Lip ≤ 1

}
where C0 is a set of continuous real-valued functions on Rd; see also [50]. The Kantorovich-
Rubinstein norm was used in seismic inversion in references [34, 41, 42, 44] mentioned previously.
Accordingly, the Fourier-based bounds in the previous section for W a,b

1 (f+ + g−, f− + g+) apply
immediately toWa,b

1 (f, g).

E.3 Reconstruction for generalized W1 (Kantorovich-Rubinstein norm) for unbalanced
signed measures

In this section we consider reconstruction usingWa,b
1 (f, g) = W a,b

1 (f+ + g−, f− + g+), which
generalizes Kantorovich-Rubinstein norm.

min
m
Wa,b
p (Am, g) (68)

s.t. Am ∈ Ki

is subject to the early stopping condition W a,b
p (Am, g) ≤ δ.

First, we observe that our upper and lower bounds on this metric are not conditioned on any lower or
upper bounds on f and g, or their norms. For simplicity, we can assume that the forward operator A
does not change the zero’s frequency, i.e., Â0 = 1. In this setting, Theorem 3.1, and Remark 3.2 still
hold if we define the bandwidth-limited inverse B such that it never cuts off the zero’s frequency.
Accordingly, it will be possible to bound the resolution of frequencies kc from above and below if
α > 0 or α′ > 0 where α and α′ are given by (27) and (28).

If the feasible set is K1 = P(Td) and the early stopping condition δ ≤ a/b
√
d, then kc is upper

bounded as follows

k
[1+γ]+ d

2 +r
c .

√
d

(2π)−rr

([1 + γ] + d
2 )b
·
‖m‖Ḣr
δ

.

On the other hand, if δ > a/b
√
d, then

k
[1+γ]+ d

2 +r
c .

(2π)−rr

[1 + γ] + d
2

·
‖m‖Ḣr
a

.

In this setting, we have the following lower bound:

(2π)−rr

1 + γ
·
‖m‖Ḣr
δ

. k1+γ+r
c

If g ∈ Ḣβ for β > d
2 − 1, we also obtain the following lower bound:

(2π)−rr

[1 + 2γ − β] + d
2

·
‖m‖Ḣr
δ

1
2

.z k
[1+2γ−β]+ d

2
c .

The bracketed terms 1 + γ and 1 + 2γ − β will appear if γ > −1 or γ > β/2− 1/2 respectively, see
Remark 3.2. If 1 + 2γ − δ = 1 + γ, then the upper and lower bounds will match up modulo a square
root.

12Reference [3] showed that this procedure fails to yield a distance for p 6= 1 since the resulting mismatch
functional fails to satisfy the triangular inequality.

21



F Proof of Theorem 2.2

Let h be a function given by
h =

∑
k

λkψk

for some sequence of Fourier coefficients λ that we will determine later. Since Assumption 3
(Locality) is not satisfied with respect to Fourier basis function, Lemma E.2 and consequently Lemma
7 in [48] would not generalize to the present setting. However, the following bound holds instead.
Lemma F.1. If q ∈ (2,∞], q′ is its conjugate exponent given by (35), and

d
1
2−

1
q ‖λ‖q′,wq′ ≤ 1 (69)

where the weights wq
′

are given by (2), then ‖∇h‖Lq ≤ 1.

Proof. We have

‖∇h‖qLq =
∥∥∥∑

k

λk∇ψk
∥∥∥q
Lq

=

∫
Ω

( d∑
j=1

∣∣∣∑
k

2πiλkkjψk(x)
∣∣∣2) q2 dx

≤ d
q
2−1

∫
Ω

d∑
j=1

∣∣∣∑
k

2πiλkkjψk(x)
∣∣∣qdx

≤ d
q
2−1

d∑
j=1

(∑
k

|2πλkkj |q
′
) q
q′

≤ d
q
2−1
( d∑
j=1

∑
k

|2πλkkj |q
′
) q
q′

= d
q
2−1
(∑

k

(2π‖k‖q′)q
′
|λk|q

′
) q
q′

≤ 1

Specifically, the first inequality follows from the fact that ‖ · ‖2 ≤ d
1
2−

1
q ‖ · ‖q . The second inequality

follows from the Hausdorff-Young inequality (44); the third inequality follows from the fact that
1 ≤ q

q′ , and the last inequality follows from the weighted norm bound (68).

Assuming (68) holds, by Lemma 2.1 and the preceding lemma,

Wp(f, g) ≥M−1/p′〈λ, f̂ − ĝ〉 (71)

We now optimize λ to maximize this lower bound subject to the constraint (68). Note that the Hölder’s
inequality holds with equality when

|〈a, b〉| = ‖a‖q
′
‖b‖q

which holds when |ak|q
′

= α|bk|q. Accordingly, for the weights wq
′

k = 1/(2π‖k‖q′), the value λ
guaranteeing that

〈λ, (f̂ − ĝ)〉 =
∑
k

λk(f̂k − ĝk) =
∑
k

λk/wk(f̂k − ĝk)wk (72)

is equal to
‖λ‖q′,1/wq′‖λ‖q,wq′ ,

is given by

λk = wq
′

k α
(f̂k − ĝk)∗

|f̂k − ĝk|

(
wq
′

k |f̂k − ĝk|
) q
q′ (73)
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for some α > 0 that we will determine next (the superscript ∗ denotes the complex conjugate). Also
observe that q

q′ = q − 1. Accordingly,

‖λ‖q′,wq′ ≤ α
∥∥∥(|f̂ − ĝ|wq′) q

q′
∥∥∥
q′

= α‖f̂ − ĝ‖
q
q′

q,wq′
= α‖f̂ − ĝ‖q−1

q,wq′
(74)

Now, setting
α = 1

/
(d

1
2−

1
q ‖f̂ − ĝ‖q−1

q,wq′
)

guarantees (68). Now evaluating

〈λ, (f̂ − ĝ)〉 = α
∑
k

|f̂k − ĝk|
wk

( |f̂k − ĝk|
wk

)q−1

= α‖f̂k − ĝk‖qq,v = d
1
q−

1
2 ‖f̂k − ĝk‖q,vq′

completes the proof of Theorem 2.2.

G Proof of Lemma 2.3

When p ∈ [1, 2], we use Hölder’s inequality and Parseval’s identity:

‖V ‖pLp =

∫
Td

‖V (x)‖p2dx

=

∫
Td

(∑
j

(∑
k

(f̂k − ĝk)(Vk)j(x)
)2) p2

dx

=

∫
Td

(∑
j

(∑
k

kj
i2π‖k‖22

(f̂k − ĝk)ψk(x)
)2) p2

dx

≤
(∫

Td

dx
) 2

2−p
(∫

Td

∑
j

(∑
k

kj
i2π‖k‖22

(f̂k − ĝk)ψk(x)
)2

dx
) p

2

=
(∑

j

∑
k

k2
j

i2π‖k‖42
(f̂k − ĝk)2

) p
2

= ‖f̂k − ĝk‖p2,w2

where the sequence of weights w2 is given by (2) and the inequality follows from the application
of Hölder’s inequality with conjugate exponents 2/p and 2/(2 − p); afterwards we use Parseval’s
identity and the fact that the volume of Td is 1.

When p ∈ (2,∞),we use the Hausdorff-Young inequality. Taking cj,k = kp/‖k‖pp in the definition
of Vk, we have

‖V ‖pLp ≤ d
p
2−1

∫
Td

‖V (x)‖ppdx

= d
p
2−1

∑
j

∫
Td

(∑
k

kp−1
j

i2π‖k‖pp
(f̂k − ĝk)ψk(x)

)p
dx

≤ d
p
2−1

∑
j

∑
k

k
(p−1)p′

j

i2π‖k‖pp′2

(f̂k − ĝk)p
′

= d
p
2−1

∑
k

1

i2π‖k‖pp′−p2

(f̂k − ĝk)p
′

= d
p
2−1‖f̂k − ĝk‖pp′,wp′

The first inequality above follows from the standard result for vectors inRd,

‖x‖p ≤ d
1
p−

1
q ‖x‖q. (75)

The second inequality follows from the application of Hausdorff-Young inequality and the sequence
of weights wp

′
is again given by (2).
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H Proof of Proposition 2.4

When p > 1, following [48], we use the fluid-dynamics characterization of W p in (43). If E and ρ
are absolutely continuous with respect to the Lebesgue measure on Ω× [0, 1], we identify them with
their densities as follows. We set

ρ(x, t) = (1− λ(t))f(x) + λ(t)g(x)

where

λ(t) =

{
1
2 (2t)p if t ≤ 1/2

1− 1
2 (2− 2t)p if t > 1/2

Then the lower bound (15) leads to

ρ(x, t) ≥
{

1
2 (2t)pξ if t < 1/2
1
2 (2− 2t)pξ if t > 1/2

a.e. on Ω. Moreover, since

λ′(t) =


p(2t)p−1 if t < 1/2 and p > 1

p(2− 2t)p−1 if t > 1/2 and p > 1

1 if p = 1

we have
λ′(t)p

ρ(x, t)p−1
≤
{

2p−1ppξ1−p if t 6= 1
2 and p > 1

1 if t 6= 1
2 and p = 1

Also similarly to [48], we let

E(x, t) = λ′(t)V (x) for t ∈ [0, 1] \ {1/2}

It can be verified by differentiation that the pair of ρ and E defined above satisfies the PDE in (43).
Therefore, since our choices of E and ρ are feasible for the optimization problem and (43):

Wp(f, g) ≤
(∫

Ω×[0,1]

∥∥∥dE
dρ

(x, t)
∥∥∥pdρ(x, t)

) 1
p ≤

(∫
Ω×[0,1]

‖V (x)‖p λ′(t)p

ρ(x, t)p−1

) 1
p

≤ 21/p−1pξ1/p−1‖V ‖p = 2
− 1
p′ pξ−1/p′‖V ‖p

and the result follows from Lemma 2.3.

When p = 1, the divergence formulation provides

W1(f, g) ≤ ‖V ‖1
since V is a feasible point for (40).

I Proof of Proposition 2.5

We will use the generalized Hölder’s inequality in the `p spaces and∑
i

|aibici| ≤ ‖a‖p‖b‖q‖c‖r

for 1
p + 1

q + 1
r = 1, and the Fourier representation of the homogeneous Sobolev norm (34).

‖f̂ − ĝ‖22,w = (w0(f̂ − ĝ))2 +
∑
k

1

(2π‖k‖2)2
(f̂k − ĝk)2 (76)

= (w0(f̂0 − ĝ0))2 +
∑
k

1

(2π‖k‖2)β+1

(f̂k − ĝk)

2π‖k‖2
(2π‖k‖2)β(f̂k − ĝk) (77)

≤ (w0(f̂0 − ĝ0))2 + C2
p,d,β‖f̂0 − ĝ0‖p′,w2‖f − g‖Ḣs (78)
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where

C2
p,d,β =

(∑
k

1

(2π‖k‖2)(β+1)t

) 1
t

and
1

t
+

1

p′
+

1

2
= 1

leading to t = 2p/(2 − p). Since the summand above is a decreasing function of ‖k‖ (whenever
the sum converges), we can bound Cp,d,β by an integral with a radially symmetric integrand plus
constant discretization error:

1 ≤ Cp,d,β ≤
(
ωd−1

∫ ∞
1

1

r(β+1)t
rd−1dr +O(1)

) 1
2t ≤

(
ωd−1

∫ ∞
1

1

r(β+1)t
rd−1dr +O(1)

) 1
2

where ωd−1 is the surface area of the d− 1 unit sphere. If

β >
d

p
− d

2
− 1,

this integral converges and is equal to 1. Accordingly, 1 ≤ Cp,d,β ≤
(
ωd−1 +O(1)

) 1
2t

= O(1).

J Proof of Theorem 3.1

By a standard decomposition,

‖m−mc
δ‖L2 = ‖m−BAm+BAm−Bgδ‖L2 ≤ ‖(I −BA)m‖L2 + ‖Bn‖L2

where I denotes the identity operator. From the definition of Ḣr, the operator I − BA has the
following norm

‖I −BA‖Ḣr→L2 = (2πkc)
−r.

Therefore,

‖(I −BA)m‖L2 ≤ (2πkc)
−r‖m‖Ḣr . (79)

K Proof of Remark 3.2

We use the standard result for vectors inRd (74). Also the cardinality of {k ∈ Zd : 1 ≤ ‖k‖ ≤ kc}
is proportional to kdc .

‖Bn‖L2 =

 ∑
1≤‖k‖≤kc

|n̂k|2‖k‖2γ
 1

2

=

 ∑
1≤‖k‖≤kc

‖k‖2γ+2 |n̂k|2

‖k‖2

 1
2

.

k
1+γ+ d

2−
d
q

c δq if γ > −1

k
d
2−

d
q

c δq if γ ≤ −1
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When ‖n‖Ḣβ ≤ z,

‖Bn‖L2 =

 ∑
1≤‖k‖≤kc

|n̂k|2‖k‖2γ
 1

2

=

 ∑
1≤‖k‖≤kc

‖k‖2γ+1−β |n̂k|
‖k‖
‖k‖β |n̂k|

 1
2

≤
√
z

 ∑
1≤‖k‖≤kc

‖k‖4γ+2−2β |n̂k|2

‖k‖2

 1
2

.
√
z

k
1+2γ−beta+ d

2−
d
q

c

√
δq if γ > β/2− 1/2

k
d
2−

d
q

c

√
δq if γ ≤ β/2− 1/2

L Proof of Proposition 3.3

If d < η, then

‖n‖2L∞ ≤
∑

kn≤‖k‖2≤ckn

‖k‖−η (80)

≈
∫ ∞

1

r−η+d−1dr (81)

≤ Cη,d (82)

uniformly in kn and b. Therefore, we can rescale n by taking

ñ =
ξ

Cη,n
n

to ensure that ‖ñ‖L∞ ≤ ξ. Also

‖ñ‖2Ḣβ = (2π‖k‖2)2β ˆ̃n2
k (83)

≈
∫ bkn

kn

r2(β−η)+d−1dr (84)

This integral converges of 2(β − η) + d < 0. Accordingly, it suffices to show that equivalently
2β + d < 2η if d < η. Let us rewrite the inequality (17) as β = d

p −
d
2 − 1 + ε for some ε > 0. For

p ∈ [1, 2), we have

2η > 2d ≥ 2d

(
1

p
− 1

2

)
+ d = 2(β + 1− ε) + d ≥ 2β + d

where the last inequality holds if ε ≤ 1 or equivalently d
p −

d
2 ≥ β. We estimate

δqq = ‖n̂‖qq,w2 �
∑
k

n̂qk
(2π‖k‖2)q

by the integral∫ bkn

kn

rq(−η−1)+d−1dr � (bkn)q(−η−1)+d − kq(−η−1)+d
n � (bkn)q(−η−1)+d

Therefore,

δq � (bkn)(−η−1)+ d
q . (85)

and the result follows by application of the upper and lower bounds on kc.
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