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ABSTRACT

We introduce the Error Broadcast and Decorrelation (EBD) algorithm, a novel
learning framework that addresses the credit assignment problem in neural
networks by directly broadcasting output error to individual layers. The EBD
algorithm leverages the orthogonality property of the optimal minimum mean
square error (MMSE) estimator, which states that estimation errors are orthogonal
to any nonlinear function of the input, specifically the activations of each layer. By
defining layerwise loss functions that penalize correlations between these activa-
tions and output errors, the EBD method offers a principled and efficient approach
to error broadcasting. This direct error transmission eliminates the need for weight
transport inherent in backpropagation. Additionally, the optimization framework
of the EBD algorithm naturally leads to the emergence of the experimentally
observed three-factor learning rule. We further demonstrate how EBD can be
integrated with other biologically plausible learning frameworks, transforming
time-contrastive approaches into single-phase, non-contrastive forms, thereby en-
hancing biological plausibility and performance. Numerical experiments demon-
strate that EBD achieves performance comparable to or better than known error-
broadcast methods on benchmark datasets. The scalability of algorithmic exten-
sions of EBD to very large or complex datasets remains to be explored. However,
our findings suggest that EBD offers a promising, principled direction for both
artificial and natural learning paradigms, providing a biologically plausible and
flexible alternative for neural network training with inherent simplicity and adapt-
ability that could benefit future developments in neural network technologies.

1 INTRODUCTION

Neural networks have been central to both biological and artificial intelligence research, providing
key models for understanding cognitive functions. One major challenge in these networks is deter-
mining how to adjust individual synaptic weights to optimize a global objective, a problem referred
to as the credit assignment problem. In Artificial Neural Networks (ANNs), the most common so-
lution to this problem is the backpropagation (BP) algorithm (Rumelhart et al., 1986). This method
involves propagating errors—calculated at the network’s output—back through the network using a
distinct layered pathway, employing the same synaptic values used during forward processing.

In contrast to ANNs, the global mechanisms for credit assignment within biological neural net-
works remain less understood. Although there are dynamical models for local synaptic changes
(Magee & Grienberger, 2020), a comprehensive and biologically feasible theory of credit assign-
ment that integrates these dynamics remains unresolved. The backpropagation algorithm, despite
its effectiveness in training ANNs, is not directly implementable in biological systems. This is due
to biologically implausible requirements, such as weight symmetry between forward and backward
pathways (Crick, 1989), meaning that the same weights must be used in both signal transmission
and error feedback—a condition not observed in biological neurons, as illustrated by Figure 1a.

To address the credit assignment problem in biological networks, researchers have proposed a set
of methods collectively known as error broadcasting (Williams, 1992; Werfel et al., 2003; Nok-
land, 2016; Baldi et al., 2018; Whittington & Bogacz, 2019; Clark et al., 2021). These approaches
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distribute error information throughout the network without relying on precise backward pathways
or symmetric weights, thereby eliminating the weight symmetry issue inherent in backpropagation.
This elimination of weight symmetry not only makes error broadcasting potentially useful for mod-
eling biological neural networks but also offers practical advantages for hardware implementations.
As recently demonstrated by Wang et al. (2024), the straightforward mechanism of error broadcast-
ing enables efficient hardware implementations of neural networks, raising hopes for future neu-
romorphic systems. Despite promising developments in both theory and applications (Bordelon &
Pehlevan, 2022; Launay et al., 2019), error broadcasting schemes still require further theoretical
support to confirm and enhance their effectiveness in training networks.

In this context, we introduce a novel learning paradigm termed the Error Broadcast and Decor-
relation (EBD) algorithm. The fundamental principle of EBD is to adjust the network weights to
minimize the correlation between the broadcast errors and the activations of each layer. This method
is grounded on two key observations: first, that the output error of an optimal minimum mean square
error (MMSE) estimator is orthogonal to any nonlinear function of the input; and second, that each
network layer represents a specific nonlinear function of the input. By viewing the network as a
nonlinear MMSE estimator and leveraging the orthogonality property of optimal estimators, we de-
fine layer-specific training losses that adjust individual layer parameters to make their activations
orthogonal to the broadcast errors. The EBD algorithm directly connects the output errors to the

(a) BP (b) EBD
(c) Correlation between layer activa-
tions and output error.

Figure 1: Comparison of backpropagation and error broadcast and decorrelation mechanisms
in multilayer perceptron networks, along with the correlation dynamics during BP training. (a)
Depicts the traditional backpropagation approach, where errors are transmitted sequentially through
symmetric backward pathways. (b) Represents the Error Broadcast and Decorrelation (EBD)
approach, where output errors are broadcast to each layer via cross-correlation matrices between
the errors and layer activations. (c) Shows the evolution of the average absolute correlation between
layer activations and the error signal during backpropagation training of an MLP with three hidden
layers (with MSE criterion) on CIFAR-10 dataset, illustrating how this correlation decreases over
epochs (see Appendix F for details).

network layers, simplifying the mechanism for credit assignment and enabling parallel synaptic up-
dates that may accelerate training. In providing a framework for biologically realistic networks, the
EBD algorithm has two key advantages. First, optimizing the loss function of EBD naturally leads
to the experimentally observed three-factor learning rule (Gerstner et al., 2018; Kuśmierz et al.,
2017). Second, by broadcasting errors directly to the layers as shown in Figure 1b, it overcomes the
weight transport problem inherent in backpropagation and some more biologically plausible credit
assignment approaches (Whittington & Bogacz, 2017; Qin et al., 2021).
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We demonstrate the utility of the EBD algorithm by applying it to both artificial and biologically
realistic neural networks. While our experiments show that EBD performs comparably to state-of-
the-art error-broadcast approaches on benchmark datasets, offering a promising direction for theo-
retical and practical advancements in neural network training, its scalability to more complex tasks
and larger networks remains to be investigated.

1.1 RELATED WORK AND CONTRIBUTIONS

Several frameworks have been proposed as alternatives to the backpropagation algorithm for mod-
eling credit assignment in biological networks (Whittington & Bogacz, 2019). These include pre-
dictive coding (Rao & Ballard, 1999; Whittington & Bogacz, 2017; Golkar et al., 2022), similarity
matching (Qin et al., 2021; Bahroun et al., 2023), time-contrastive approaches (Ackley et al., 1985;
O’Reilly, 1996; Scellier & Bengio, 2017), forward-only methods (Hinton, 2022; Farinha et al., 2023;
Dellaferrera & Kreiman, 2022), target propagation (Le Cun, 1986; Bengio, 2014; Lee et al., 2015),
random feedback alignment (Lillicrap et al., 2016), and learned feedback weights (Kolen & Pollack,
1994; Ji-An & Benna, 2024).

Another significant alternative is error-broadcast methods, where output errors are directly trans-
mitted to network layers without relying on precise backward pathways or symmetric weights. Two
important examples of this approach are weight and node perturbation algorithms Williams (1992);
Dembo & Kailath (1990); Cauwenberghs (1992); Fiete & Seung (2006), in which global error
signals are broadcast to all network units. These signals reflect the change in overall error caused by
individual perturbations in the network’s weights or units. A more recent and prominent example
of error-broadcast is Direct Feedback Alignment (DFA) (Nokland, 2016). In DFA, the output
errors are projected onto the hidden layers through fixed random weights, effectively replacing the
symmetric backward weights required in traditional backpropagation. This approach first emerged
as a modification to the feedback alignment approach (which replaced the symmetric weights of
the backpropagation algorithm with random ones). DFA has been extended and analyzed in several
studies (Bartunov et al., 2018; Han & Yoo, 2019; Launay et al., 2019; 2020; Bordelon & Pehlevan,
2022), demonstrating its potential in training neural networks with less biologically implausible
mechanisms. Clark et al. (2021) introduced another broadcast approach for a network with vector
units and nonnegative weights for which three factor learning based update rule is applied.

Our proposed framework for error broadcasting differentiates itself through

• a principled method based on the orthogonality property of nonlinear MMSE estimators,
• error projection weights determined by the cross-correlation between the output errors

and the layer activations as opposed to random weights of DFA,
• dynamic Hebbian updating of projection weights as opposed to fixed weights of DFA,
• updates involving arbitrary nonlinear functions of layer activities, encompassing a

family of three-factor learning rules,
• the option to project layer activities forward to the output layer.

In summary, our approach provides a theoretical grounding for the error broadcasting mechanism
and suggests ways to its effectiveness in training networks.

2 ERROR BROADCAST AND DECORRELATION METHOD

2.1 PROBLEM STATEMENT

To illustrate our approach, we first assume a multi layer perceptron (MLP) network with L layers,
including the output layer. Later on, we will demonstrate generalizations to other architectures. We
label the input and layer activations of the network with h(k) ∈ RN(k)

, for k = 0, . . . , L. Here, k
is the layer index, N (k) is the size of the layer k, h(0) = x is the input of the network, and h(L)

represents the output of the network.

The layer activations can be written as

h(k) = f (k)(u(k)), u(k) = W(k)h(k−1) + b(k), (1)
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for k = 1, . . . , L, where f (k) are activation functions, W(k) are synaptic weights and b(k) are biases.

We assume that the performance criterion is the mean square of the output error (ϵ = h(L) − y)
between the final layer activations h(L) and the desired output y:

E(∥ϵ∥2) = E(∥h(L) − y∥22). (2)

2.2 ERROR BROADCAST AND DECORRELATION LOSS FUNCTIONS

At the core of our approach lies the well-known orthogonality property of minimum mean square
error (MMSE) estimators (Papoulis & Pillai, 2002) (see Appendix A for a brief summary):

Let ŷ∗ be the optimal nonlinear MMSE estimator of the desired vector y given the input x, and let
ϵ∗ = y− ŷ∗ denote the corresponding estimation error. Then, for any properly measurable function
g of the input x, we have

E(g(x)ϵT∗ ) = 0. (3)
In other words, the estimation error of the optimal nonlinear MMSE estimator is orthogonal to

any arbitrary nonlinear transformation of the input. In linear MMSE estimation, the orthogonality
principle states that the estimation error is orthogonal to the observations and their linear functions.
Mathematically, this is expressed equivalent to restricting g(·) to be a linear function. Using this
orthogonality condition in reverse to derive linear estimators is a standard practice in the field (see,
for example,Kailath et al. (2000)). Techniques such asKalman Filtering are based on this principle,
which is firmly grounded in the Hilbert space projection theorem.

For nonlinear MMSE estimation, the orthogonality condition in (3) is even stronger: the estimation
error is orthogonal to any nonlinear function of the input. Exploiting this stronger condition to
construct nonlinear MMSE estimators is an open problem, primarily because it raises questions
about which nonlinear functions to choose and how many are needed.

In the proposed framework, we model the neural network as a parameterized nonlinear MMSE
estimator and seek as many equations from the orthogonality principle as possible to determine these
parameters. This is exactly the same principle as how the orthogonality condition is used in reverse
to find parameters for linear estimators. To address the challenge of selecting nonlinear functions
that yield informative equations for determining network parameters, we choose the activations of
the hidden layers in the neural network as these functions. This choice is natural because these
activations are directly related to the network’s parameters through differentiation. Therefore, if the
network converges to the optimal nonlinear MMSE estimator, the hidden layer activations should be
orthogonal to the output errors. We formalize this observation with the following equations:

Rg(k)(h(k))ϵ = E(g(k)(h(k))ϵT∗ ) = 0, for k = 0, . . . , L, (4)

where g(k) is an arbitrary function of layer activations.

Figure 1c illustrates this phenomenon by showing the evolution of the average absolute correlation
between layer activations and the error signal during backpropagation training of an MLP with three
hidden layers on the CIFAR-10 dataset, based on the MSE criterion. The observed decrease in
correlation between layer activations and output errors during MSE training is consistent with the
orthogonality property stated in Equations (3) and (4).

Building upon this orthogonality property, we propose to define layer-specific surrogate loss func-
tions. As shown in Section 2.3, these losses can be used to derive an alternative to backpropagation,
where the output errors are broadcast directly to the network nodes, as depicted in Figure 1b. Specif-
ically, based on the orthogonality condition in Equation (4), we propose minimizing the Frobenius
norm of the cross-correlation matrices Rg(k)(h(k)),ϵ as a replacement for the standard MSE loss. To
this end, we define the estimated cross-correlation matrix between a function g(k) of layer activations
and the output error for batch m and layer k as

R̂g(k)(h(k))ϵ[m] = λR̂g(k)(h(k))ϵ[m− 1] +
1− λ
B

G(k)[m]E[m]T ,

where λ ∈ [0, 1] is the forgetting factor used in the autoregressive estimation, B is the batch size,
R̂g(k)(h(k))ϵ[0] is the initial value for the correlation matrix, which is a hyperparameter, and

G(k)[m] =
[
g(k)(h(k)[mB + 1]) g(k)(h(k)[mB + 2]) . . . g(k)(h(k)[(m+ 1)B])

]
, (5)
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is the matrix of nonlinearly transformed activations of layer k for batch m, while

E[m] = [ ϵ[mB + 1] ϵ[mB + 2] . . . ϵ[(m+ 1)B] ] , (6)

is the error matrix for batch m.

We then define the layer-specific loss function based on the orthogonality condition for layer k as

J (k)(h(k), ϵ)[m] =
1

2

∥∥∥R̂g(k)(h(k))ϵ[m]
∥∥∥2
F
, (7)

where ∥ · ∥F denotes the Frobenius norm. This loss function captures the sum of the squared mag-
nitudes of all cross-correlations between the components of the output error and the activations of
layer k. Therefore, we refer to the minimization of this loss function as decorrelation.

2.3 ERROR BROADCAST AND DECORRELATION ALGORITHM

The set of functions in (7) defines individual loss functions for each hidden layer of the network,
which are used to adjust the layer parameters. These loss functions can be minimized using a
gradient descent-based algorithm.

To minimize the loss for layer k, we compute the gradient of the loss function J (k)(h(k), ϵ) with
respect to the weight W (k)

ij . The derivative can be decomposed into two terms:

∂J (k)(h(k), ϵ)

∂W
(k)
ij

[m] =
1− λ
B

Tr

(
R̂g(k)(h(k))ϵ[m]E[m]

∂G(k)[m]T

∂W
(k)
ij

)
︸ ︷︷ ︸

[∆W
(k)
1 [m]]ij

+
1− λ
B

Tr

(
R̂g(k)(h(k))ϵ[m]

∂E[m]

∂W
(k)
ij

G(k)[m]T

)
︸ ︷︷ ︸

[∆W
(k)
2 [m]]ij

.

Similarly, the derivative with respect to the bias b(k)i is given by:

∂J (k)(h(k), ϵ)

∂b
(k)
i

[m] =
1− λ
B

Tr

(
R̂g(h(k))ϵ[m]E[m]

∂G(k)[m]T

∂b
(k)
i

)
︸ ︷︷ ︸

[∆b
(k)
1 [m]]i

+
1− λ
B

Tr

(
R̂g(k)(h(k))ϵ[m]

∂E[m]

∂b
(k)
i

G(k)[m]T

)
︸ ︷︷ ︸

[∆b
(k)
2 [m]]i

.

Here ∆W
(k)
1 ,∆b

(k)
1 [m] (∆W

(k)
2 ,∆b

(k)
2 [m]) represent the components of the gradients contain-

ing derivatives of activations (output errors) with respect to the layer parameters. As derived in
Appendix B.1, we obtain the closed-form expressions for ∆W

(k)
1 [m] and ∆b

(k)
1 [m]:

[∆W
(k)
1 [m]]ij =

1− λ
B

(m+1)B∑
n=mB+1

g′
(k)
i (h

(k)
i [n])f ′

(k)
(u

(k)
i [n])q

(k)
i [n]h

(k−1)
j [n], (8)

[∆b
(k)
1 [m]]i =

1− λ
B

(m+1)B∑
n=mB+1

g′
(k)
i (h

(k)
i [n])f ′

(k)
(u

(k)
i [n])q

(k)
i [n], (9)

where g′(k)i and f ′(k) denote the derivatives of the nonlinearity g(k) and the activation function f (k),
respectively. The term q(k)[m] is defined as:

q(k)[m] = R̂g(k)(h(k)), ϵ[m] ϵ[m],
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representing the projection of the output error onto the layer activations, with the cross-correlation
matrix R̂g(k)(h(k)), ϵ[m] as the transformation matrix. These projections are shown in Figure 1b.

The update terms ∆W
(k)
1 [m] and ∆b

(k)
1 [m] aim to adjust the activations so they gradually become

orthogonal to ϵ as they are based on the derivatives of the layer activations with respect to the layer
parameters. Simultaneously, ∆W

(k)
2 [m] and ∆b

(k)
2 [m], derived from the derivatives of the output

error with respect to the layer parameters, work to adjust the output errors, pushing them into a
configuration more orthogonal to the activations. While both types of updates strive to decorrelate
activations and output errors, there is a critical distinction: ∆W

(k)
1 [m] and ∆b

(k)
1 [m] depend only

on the layer activations and the broadcast output error signals, whereas ∆W
(k)
2 [m] and ∆b

(k)
2 [m]

rely on signals that propagate backward from the output layer to the current layer, resembling back-
propagation (as shown in Appendix B.1).

By focusing solely on ∆W
(k)
1 [m] and ∆b

(k)
1 [m], we can eliminate the need for propagation terms,

resulting in a completely localized update mechanism for training the neural network. Therefore,
we prescribe the Error Broadcast and Decorrelation (EBD) update mechanism as:

W(k)[m+ 1] = W(k)[m]− µ(k)[m]∆W
(k)
1 [m],

b(k)[m+ 1] = b(k)[m]− µ(k)[m]∆b
(k)
1 [m],

for k = 1, . . . , L − 1, where µ(k)[m] is the learning rate for layer k at batch m. For the final layer
(k = L), we utilize the standard MMSE gradient update:

W(L)[m+ 1] = W(L)[m]− µ(L)[m]
1

B

(m+1)B∑
n=mB+1

(
f ′

(k)
(u(L)[n])⊙ ϵ[n]

)
h(L−1)[n]T ,

b(L)[m+ 1] = b(L)[m]− µ(L)[m]
1

B

(m+1)B∑
n=mB+1

f ′
(k)

(u(L)[n])⊙ ϵ[n],

where f ′(L) is the derivative of the activation function of the output layer.

2.4 FURTHER EBD ALGORITHM EXTENSIONS

We propose further extensions to the EBD framework to address potential activation collapse,
which can arise when minimizing correlations is the sole objective. To prevent unit-level collapse,
we introduce power regularization, while entropy regularization is employed to prevent dimensional
collapse. Both regularizations can be implemented in ANNs as well as biologically plausible
networks. Although CorInfoMax-EBD inherently includes entropy regularization, it can also
benefit from the addition of power regularization for enhanced stability. Additionally, we introduce
forward layer activation projections to improve the algorithm’s versatility. We also extend the EBD
formulations to more complex architectures, including Convolutional Neural Networks (CNNs) and
Locally Connected (LC) networks. Detailed implementations and evaluations of these extensions
are provided in Appendix C.

2.4.1 AVOIDING COLLAPSE

A critical challenge when applying the EBD algorithm to MLPs is the potential for activation col-
lapse, where layer decorrelation losses defined in (7) are minimized by driving all layer activations
to zero, even in the presence of non-zero output errors. This unintended minimization undermines
the network’s ability to learn meaningful representations, as all activations become inactive.

To counteract activation collapse, we introduce two complementary algorithmic remedies:

Power normalization A straightforward safeguard against total activation collapse is to regulate the
power of layer activations through a power normalization loss function:

J
(k)
P (h(k)) =

N(k)∑
l=1

 1

B

(m+1)B∑
n=mB+1

h
(k)
l [n]2 − P (k)

2

, (10)
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where P (k) is a hyperparameter representing the desired power level for activations in layer k. This
loss ensures activations maintain a consistent power level, preventing collapse.

Layer entropy While power normalization prevents total collapse, it does not address the issue of
activations collapsing into low-dimensional subspaces, which can restrict the network’s expressive-
ness. To mitigate this dimensional degeneracy, we propose the incorporation of the layer-entropy
objective, which has been utilized in self-supervised learning (Ozsoy et al., 2022) and principled
biologically more realistic neural network formulations (Bozkurt et al., 2023):

J
(k)
E (h(k))[m] =

1

2
log det(Rh(k) [m] + ε(k)I). (11)

In this expression, Rh(k) [m] represents the layer auto-correlation matrix for layer k at batch m,
which is obtained through an auto-regressive update (as proposed in Ozsoy et al. (2022))

Rh(k) [m] = λERh(k) [m− 1] + (1− λE)
1

B
H(k)[m]H(k)[m]T , where,

H(k)[m] =
[
h(k)[mB + 1] h(k)[mB + 2] . . . h(k)[(m+ 1)B]

]
, (12)

is the activation matrix, and λE is the forgetting factor for the autoregressive averaging.

We note that, while the use of entropy and power regularizers may not be entirely novel, they play a
significant role in preventing the collapse problem.

2.4.2 FORWARD BROADCAST

In the EBD algorithm (Section 2.3), output errors are broadcast to layers to adjust weights and reduce
correlations with activations. To complement this, we introduce forward broadcasting, projecting
hidden layer activations onto the output layer to optimize the decorrelation loss by adjusting the
final layer’s parameters. Details are provided in Appendix B.3.

2.4.3 EXTENSIONS TO OTHER NETWORK ARCHITECTURES

The EBD approach relies on the orthogonality of output errors to node activations , independent of
network topology. We extend EBD to convolutional neural networks (CNNs) in Appendix C.1 and
to locally connected (LC) networks in Appendix C.2.

3 EBD FOR BIOLOGICALLY MORE REALISTIC NETWORKS

In the previous section, we introduced the EBD algorithm within the context of MLP networks.
While MLPs can resemble biologically plausible networks depending on the credit assignment
mechanism, in this section, we extend the application of the EBD approach to neural networks
that exhibit more biologically realistic dynamics and architectures. This extension is motivated by
two key properties of the EBD framework: first, the error is broadcast directly to the layers, naturally
eliminating the weight symmetry issue observed in the BP algorithm; second, the EBD update rules
mimic the form of extended Hebbian updates with modulatory components. In the following subsec-
tions, we explore how EBD relates to the biologically plausible three-factor learning rule and demon-
strate its integration with the biologically more realistic CorInfoMax networks (Bozkurt et al., 2023).

3.1 THREE FACTOR LEARNING RULE AND EBD

The three-factor learning rule proposed for biological neural networks extends the traditional two-
factor Hebbian rule by incorporating a modulatory signal into synaptic updates based on presynaptic
and postsynaptic activity (Frémaux & Gerstner, 2016; Gerstner et al., 2018). Upon closer examina-
tion of the EBD update expression in (8), we observe that it conforms to the three-factor update form:

∆W
(k)
ij ∝ g

′(k)
i (h

(k)
i )f ′

(k)
(u

(k)
i )︸ ︷︷ ︸

Postsynaptic

q
(k)
i︸︷︷︸

Modulatory

h
(k−1)
j︸ ︷︷ ︸

Presynaptic

,

where the modulatory component q(k)i is the linearly projected version of the error. This observation
indicates that the EBD formulation inherently supports a variety of three-factor update rules,
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depending on the choice of the nonlinearity g(k). For instance, selecting g(k)i (h
(k)
i ) = h

(k)
i

2
leads

to the error-modulated Hebbian update (Loewenstein & Seung, 2006; Bordelon & Pehlevan, 2022):

∆W
(k)
ij ∝ h

(k)
i f ′

(k)
(u

(k)
i )︸ ︷︷ ︸

Postsynaptic

q
(k)
i︸︷︷︸

Modulatory

h
(k−1)
j︸ ︷︷ ︸

Presynaptic

.

By supporting a variety of three-factor update rules through different nonlinear functions, EBD
offers potential for modeling neural learning processes consistent with biological observations

3.2 CORINFOMAX-EBD: CORINFOMAX WITH THREE FACTOR LEARNING RULE

One of the significant advantages of the EBD framework is its flexibility to broadcast output errors
into network nodes, which can be leveraged to transform time-contrastive, biologically plausible
approaches into non-contrastive forms. To illustrate this property, we propose a modification of the
recently introduced CorInfoMax framework (Bozkurt et al., 2023) (see Appendix D for a summary).
The CorInfoMax approach uses correlative information flow between layers as its objective function:

JCI [m] =

L−1∑
k=1

( →
Î(εk)(h(k−1),h(k))[m] +

←
Î(εk)(h(k),h(k+1))[m]

)
, where,

→
Î(εk)(h(k),h(k+1))[m] =

1

2
log det(R̂h(k+1) [m] + εkI)−

1

2
log det(R̂→

e
(k+1) [m] + εkI),

←
Î(εk)(h(k),h(k+1))[m] =

1

2
log det(R̂h(k) [m] + εkI)−

1

2
log det(R̂←

e
(k) [m] + εkI),

are alternative forms of correlative mutual information between nodes, defined in terms of the corre-
lation matrices of layer activations, i.e., R̂h(k) and the correlation matrices of forward and backward
prediction errors (R̂→

e
(k+1) and R̂←

e
(k) ). Here, forward/backward prediction errors are defined by

→
e
(k+1)

[n] = h(k+1)[n]−W(f,k)[m]h(k)[n],
←
e
(k)

[n] = h(k)[n]−W(b,k)[m]h(k+1)[n],

respectively. Here, W(f,k)[m] (W(b,k)[m]) is the forward (backward) prediction matrix for layer k.

This objective leads to network dynamics corresponding to a structure with feedforward and feed-
back prediction weights, and lateral connections B(k) that maximize layer entropy. In the original
work (Bozkurt et al., 2023), the two-phase EP approach (Scellier & Bengio, 2017) is proposed to
train the network weights. As an alternative, we propose employing the EBD update rule to re-
place the two-phase EP adaptation. The proposed CorInfoMax-EBD algorithm is described by the
following update equations defined in Algorithm 1:

Algorithm 1 CorInfoMax-EBD Algorithm for Updating Weights in Layer k
Input: Batch size B, layer index k, iteration step m, learning rates µ(f,k), µ(b,k), µ(df ,k), µ(db,k), µ(dl,k),
factors λd, λE , γE , activations H(k) in (12), the nonlinear function of layer activations G(k) in (5), the deriva-
tive of the nonlinear function of layer activations G(k)

d in (13), the derivative of activations F(k)
d in (14), output

error E in (6), prediction errors
←
E and

→
E

(k)

in (33-34), lateral weight outputs Z(k) in (35).
Output: Updated weights W(f,k), W(b,k), B(k).
Step 1: Update error projection weights: Rg(k)(h(k))ϵ[m] = λdRg(k)(h(k))ϵ[m−1]+ 1−λd

B
G(k)[m]E[m]T

Step 2: Project errors to layer k: Q(k)[m] = R
(k)

g(k)(h(k))ϵ
[m]E[m]

Step 3: Find the gradient of the nonlinear function of activations for layer k:

Φ(k)[m] = F
(k)
d [m]⊙Q(k)[m]⊙G

(k)
d [m]

Step 4: Update forward, backward and lateral weights for layer k:

W(f,k)[m] = W(f,k)[m− 1] +

(
B−1µ(f,k)[m]

→
E

(k)

[m]−B−1µ(df ,k)[m]Φ(k)[m]

)
H(k−1)[m]T

W(b,k)[m] = W(b,k)[m− 1] +

(
B−1µ(b,k)[m]

←
E

(k)

[m]−B−1µ(db,k)[m]Φ(k)[m]

)
H(k+1)[m]T

B(k)[m] = λ−1
E B(k−1)[m]−B−1γEZ

(k)[m]Z(k)[m]T −B−1µ(dl,k)[m]Φ(k)[m]H(k)[m]T
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Here, we assume layer activations H(k), output error E(k), forward (backward) prediction errors
→
E

(k)

(
←
E

(k)

) and lateral weight outputs Z(k) are computed by the CorInfoMax network dynamics
specified in Bozkurt et al. (2023) (see also Appendix D). By integrating EBD, we enable a single-
phase update per input, eliminating the less biologically plausible two-phase learning mechanism
required by CorInfoMax-EP. The two-phase approach of EP—comprising separate label-free and
label-connected phases—is considered less plausible because biological neurons are considered un-
likely to alternate between distinct global phases for learning. Our method not only simplifies the
learning process but also aligns more closely with biological learning processes. Additionally, we
achieve comparable or even superior performance compared to the CorInfoMax-EP (see Section 4).

We also note that the CorInfoMax-EBD scheme proposed in this section is more biologically realistic
than the MLP-based EBD approach in Section 2 due to several factors:

• The MLP-based EBD approach employs an entropy regularizer in (11), whose gradient involves

the inverse of the layer-correlation matrix B(k) = R
(k)
h

−1
, which in its direct form appears non-

biologically plausible. The same entropy term is an integral part of the CorInfoMax objective.
As described in Appendix D, in the online optimization of the CorInfoMax objective, the entropy
gradient can be implemented via lateral connections in the CorInfoMax network. Specifically, the
learning gradients for this entropy function can be implemented as rank-1 (anti-Hebbian) updates
on the B matrix when a batch size of B = 1 is used. Note that the same lateral weights B(k) are
also updated by a three-factor rule due to the EBD update, as described in Algorithm 1.

• Similarly, for CorInfoMax with B = 1, the power normalization regularizer in (10) reduces to
the form (h

(k)
l [n]2 − P (k))2 for each neuron. The gradient of this expression corresponds to

local updates, enhancing biological plausibility. Even when a single sample is used for power
calculation, the power regularizer remains effective due to the averaging effect across samples
over time.

• In addition to the biologically plausible implementations of power and entropy regularizations in
the online CorInfoMax setting, the neuron models used in CorInfoMax networks involve more
realistic neuron models with apical and basal dendrite alongside the soma compartment.

• Another aspect contributing to the biological plausibility is the existence of feedback connections
(corresponding to the backward predictors) in the CorInfoMax network structure.

4 NUMERICAL EXPERIMENTS AND DISCUSSION OF RESULTS

In this section, we evaluate the performance of the proposed Error Broadcast and Decorrelation
(EBD) approach on two benchmark datasets: MNIST (Deng, 2012) and CIFAR-10 (Krizhevsky
et al., 2009). For experiments involving MLP, CNN and LC, we consider the same network archi-
tectures used in Clark et al. (2021). We also tested the proposed CorInfoMax-EBD model in com-
parison to the CorInfoMax-EP model of Bozkurt et al. (2023). More details about architectures, im-
plementations, hyperparameter selections, and experimental outputs are provided in the Appendix E.

The test accuracy results of our EBD algorithm compared to BP and three error-broadcast methods:
DFA without and with entropy regularization (DFA-E) (Nokland, 2016), nonnegative global error
vector broadcasting (NN-GEVB) (Clark et al., 2021), and mixed-sign global error vector broad-
casting (MS-GEVB) (Clark et al., 2021) —are summarized in Table 1 for MNIST and Table 2 for
CIFAR-10. In addition, the test accuracy results for biologically more realistic CorInfoMax net-
works trained with EP and EBD learning methods are shown in Table 3. These results confirm that

Table 1: Accuracy (%) results for MLP, CNN, and LC networks on the MNIST dataset; best and
second-best are bold and underlined. Columns marked with [*] are from Clark et al. (2021).

DFA DFA+E (ours) NN-GEVB [*] MS-GEVB [*] BP EBD (ours)

MLP 98.09 98.21 98.13 97.68 98.72 98.24
CNN 99.06 99.07 97.67 98.17 99.46 99.08
LC 98.92 98.90 98.22 98.16 99.13 98.92

9
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Table 2: Accuracy (%) results for MLP, CNN, and LC networks on the CIFAR-10 dataset; best and
second-best are bold and underlined. Columns marked with [*] are from Clark et al. (2021).

DFA DFA+E (ours) NN-GEVB [*] MS-GEVB [*] BP EBD (ours)

MLP 52.09 52.22 52.38 51.14 56.37 55.47
CNN 58.39 58.56 66.26 61.57 75.24 66.42
LC 62.19 62.12 58.92 59.89 67.81 64.23

Table 3: Accuracy (%) results for EP and EBD CorInfoMax algorithms; best and second-best are
bold and underlined. Column marked with [*] is from Bozkurt et al. (2023).

CorInfoMax-EP [*] CorInfoMax-EBD (Ours) CorInfoMax-EBD (Ours)
(batch size : 20) (batch size : 20) (batch size : 1)

MNIST 97.58 97.53 94.7
CIFAR-10 50.97 55.79 53.4

the networks trained with EBD approach achieves equivalent performance on the MNIST dataset
and significantly better performance on the CIFAR-10 dataset. The improvements of EBD in Ta-
ble 2 over DFA can be attributed to the fact that error projection weights are adaptable in EBD,
and the improvement of CorInfoMax-EBD over CorInfoMax-EP in Table 3 can be attributed to the
fact that CorInfoMax-EBD incorporates error decorrelation in updating lateral weights, whereas
CorInfoMax-EP relies only on anti-Hebbian updates.

5 CONCLUSIONS, EXTENSIONS AND LIMITATIONS

Conclusions and Extensions. In this article, we introduced the Error Broadcast and Decorrela-
tion (EBD) framework as a biologically plausible alternative to traditional backpropagation. EBD
addresses the credit assignment problem by minimizing correlations between layer activations and
output errors, offering fresh insights into biologically realistic learning. This approach provides a
theoretical foundation for existing error broadcast mechanisms in biological neural networks and
facilitates flexible implementations in neuromorphic and artificial neural systems. EBD’s error-
broadcasting mechanism aligns with biological processes where global error signals modulate local
synaptic updates, potentially bridging the gap between artificial learning algorithms and natural neu-
ral computations. Moreover, EBD’s simplicity and parallelism make it suitable for efficient hardware
implementations, such as neuromorphic computing systems that emulate the brain’s architecture.

We believe that the MMSE orthogonality property underpinning the proposed EBD framework has
great potential for developing new algorithms, deepening theoretical understanding, and analyzing
neural networks in both artificial and biological contexts. We are currently unaware of similar the-
oretical properties for alternative loss functions. Notably, our numerical experiments in Appendix
F.2 reveal that similar decorrelation behavior occurs for networks trained with backpropagation and
categorical cross entropy loss, suggesting that decorrelation may be a general feature of the learning
process and an intriguing avenue for further investigation.

Limitations. The current implementation of EBD involves several hyperparameters, including
multiple learning rates for decorrelation and regularization functions, as well as forgetting factors for
correlation matrices. Although these parameters offer flexibility, they add complexity to the tuning
process. Additionally, the use of dynamically updated error projection matrices and the potential in-
tegration of entropy regularization may increase memory and computational demands. Future work
could explore more efficient methods for managing these components, potentially automating or
simplifying the tuning process to enhance usability. Furthermore, while the scalability of EBD is
left out of the focus of the article, we acknowledge its importance. Launay et al. (2020) demonstrated
that DFA scales to high-dimensional tasks like transformer-based language modeling. Since DFA is
equivalent to EBD with frozen projection weights and without entropy regularization, we anticipate
that EBD could scale similarly. However, this remains unvalidated empirically. Examining EBD’s
scalability and streamlining its components to improve usability are important tasks for future work.
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6 REPRODUCIBILITY

To facilitate the reproducibility of our results, we have included the following:

i. Detailed information on the derivation of the weight and bias updates of the Error Broadcast
and Decorrelation (EBD) Algorithm for various networks in Appendix B for MLPs, C.1 for
CNNs, C.2 for LCs,

ii. Full list of hyperparameters used in the experiments in Appendix E.3.5, E.4.4, E.5.4, E.6.4,
iii. Algorithm descriptions for CorInfoMax Error Broadcast and Decorrelation (CorInfoMax-

EBD) Algorithm in pseudo-code format in Appendix E.3.2,
iv. Python scripts, Jupyter notebooks, and bash scripts for replicating the individual experi-

ments and reported results are included in the supplementary zip file.

7 ETHICS STATEMENT

We do not identify any immediate ethical concerns regarding the algorithmic framework proposed
in this article. Furthermore, to the best of our knowledge, the datasets used in this work do not have
any known or reported ethical issues.
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APPENDIX

A PRELIMINARIES ON NONLINEAR MINIMUM MEAN SQUARE ERROR
ESTIMATION

Let y ∈ Rp and x ∈ Rn represent two non-degenerate random vectors with a joint probability
density function fyx(y,x) and conditional density fy|x(y|x). The goal of nonlinear minimum
mean square error (MMSE) estimation is to find an estimator function b : Rn → Rp that minimizes
the mean squared error (MSE), which is defined as:

MSE(b) = E(∥y − b(x)∥22).

Lemma A.1. The best linear MMSE estimate of y given x is:

bMMSE(x) = Ey|x(y|x).

The proof of Lemma A.1 relies on the following fundamental result (see, for example, the textbook
by Papoulis & Pillai (2002)), which is central to the development of the entire EBD framework in
the current article:
Lemma A.2. The estimation error for bMMSE(x) = Ey|x[y|x], denoted as eMMSE = y −
bMMSE(x), is orthogonal to any vector-valued function g : Rn → Rk of x. Formally, we have:

E(eMMSEg(x)
T ) = 0.

Proof. (Lemma A.2) The proof follows simple steps:

E(eMMSEg(x)
T ) = Ex

(
Ey|x

(
(y − Ey|x(y|x))g(x)T |x

))
= Ex(

(
Ey|x(y|x)− Ey|x(y|x))g(x)T

)
= 0.

Using Lemma A.2, we can now prove Lemma Lemma A.1:

Proof. (Lemma A.1) Let b : Rn → Rp be any arbitrary function. The corresponding MSE can be
written as:

MSE(b) = E(∥y − b(x)∥22).

By adding and subtracting Ey|x[y|x], we can decompose the error as:

MSE(b) = E(∥y − Ey|x(y|x) + Ey|x(y|x)− b(x)∥22)
= E(∥y − Ey|x∥22) + E(∥Ey|x(y|x)− b(x)∥22)
+ 2E((y − Ey|x)

T (Ey|x(y|x)− b(x)))

= E(∥y − Ey|x∥22) + E(∥Ey|x(y|x)(y|x)− b(x)∥22)
+ 2E(Tr((y − Ey|x(y|x))(Ey|x(y|x)− b(x))T ))

= E(∥y − Ey|x∥22) + E(∥Ey|x(y|x)(y|x)− b(x)∥22)
+ 2Tr(E(eMMSE(Ey|x(y|x)− b(x))T )).

The third term, representing the cross product, vanishes by Lemma A.2, leaving us with:

MSE(b) = E(∥y − bMMSE(x)∥22) + E(∥bMMSE(x)− b(x)∥22).

Since the second term is always non-negative, the MSE is minimized when b(x) = bMMSE(x).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B THE DERIVATION OF UPDATE TERMS

In this section, we present the detailed derivations for the EBD algorithm and its variations, as
introduced in Section 2.3.

B.1 ∆W1 AND ∆b1 CALCULATION

In Section 2.3, we defined the weight update elemet [∆W1]ij as follows:

1− λ
B

Tr

(
R̂g(k)(h(k))ϵ[m]E[m]

∂G(k)[m]T

∂W
(k)
ij

)
.

The derivative term in this expression can be expanded as

∂G(k)[m]

∂W
(k)
ij

= ei


g′

(k)
i (h

(k)
i [mB + 1])f ′

(k)
(u

(k)
i [mB + 1])h

(k−1)
j [mB + 1]

g′
(k)
i (h

(k)
i [mB + 2])f ′

(k)
(u

(k)
i [mB + 2])h

(k−1)
j [mB + 2]

...
g′

(k)
i (h

(k)
i [(m+ 1)B])f ′

(k)
(u

(k)
i [(m+ 1)B])h

(k−1)
j [(m+ 1)B]


T

,

where ei represents the standard basis vector with all elements set to zero, except for the element at
index i, which is equal to 1.

By defining the matrix

Q(k)[m] = R̂g(k)(h(k))ϵ[m]E[m] =
[
q(k)[mB + 1] . . . q(k)[(m+ 1)B]

]
,

which represents the projection of the output error onto layer k, we can express the weight update
as:

[∆W
(k)
1 [m]]ij =

1− λ
B

(m+1)B∑
n=mB+1

g′
(k)
i (h

(k)
i [n])f ′

(k)
(u

(k)
i [n])q

(k)
i [n]h

(k−1)
j [n].

To further simplify this expression, we introduce the matrices:

G
(k)
d [m] =

[
g(k)′(h(k)[mB + 1]) g(k)′(h(k)[mB + 2]) . . . g(k)′(h(k)[(m+ 1)B])

]
, (13)

F
(k)
d [m] =

[
f (k)
′
(u(k)[mB + 1]) f (k)

′
(u(k)[mB + 2]) . . . f (k)

′
(u(k)[(m+ 1)B])

]
, (14)

and Z(k)[m] = G
(k)
d [m] ⊙ F

(k)
d [m] ⊙Q(k)[m], which allows us to express the weight update in a

more compact form:

∆W
(k)
1 [m] =

1− λ
B

Z(k)[m]H(k−1)[m]T .

Following a similar procedure, the bias update is given by:

∆b
(k)
1 [m] =

1− λ
B

Z(k)[m]1L×Nk−1
.

B.2 ∆W2 AND ∆b2 CALCULATION

In Section 2.3, we defined the weight update element [∆W2]ij involving the derivative of the output
error as

1− λ
B

Tr

(
R̂g(k)(h(k))ϵ[m]

∂E[m]

∂W
(k)
ij

G(k)[m]T

)
.

To begin, we consider the derivative term:

∂ϵ

∂W
(k)
ij

,
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which can be expanded as

∂ϵ

∂W
(k)
ij

=
∂ϵ

∂h(L)︸ ︷︷ ︸
I

∂h(L)

∂u(L)︸ ︷︷ ︸
diag(f ′(k)(u(L)))

∂u(L)

∂h(L−1)︸ ︷︷ ︸
W(L)

∂h(L−1)

∂u(L−1)︸ ︷︷ ︸
diag(f ′(k)(u(L−1)))

. . .

. . .
∂h(k+1)

∂u(k+1)︸ ︷︷ ︸
diag(f ′(k)(u(k+1)))

∂u(k+1)

∂h(k)︸ ︷︷ ︸
W(k+1)

∂h(k)

∂u(k)︸ ︷︷ ︸
diag(f ′(k)(u(k)))

∂u(k)

∂W
(k)
ij︸ ︷︷ ︸

eih
(k−1)
j

This expression reflects propagation terms, from the output back to the layer k. Defining Φ(L)[n] =

diag(f (L)′(u(L)[n])), and

Φ(k)[n] = Φ(k+1)[n]W(k+1)[m]diag(f ′(k)(u(k)[n])),

we obtain

∂ϵ[n]

∂W
(k)
ij

= Φ(k)[n]h
(k−1)
j [n]ei.

Thus, the derivative of the error at time step n with respect to W (k)
ij can be written as:

1− λ
B

Tr

(
Rg(k)(h(k))ϵ[m]

∂E[m]

∂W
(k)
ij

G(k)[m]T

)
=

1− λ
B

Tr

Rg(k)(h(k))ϵ[m]

(m+1)B∑
n=mB+1

∂ϵ[n]

∂W
(k)
ij

g(k)(h(k)[n])T

 .

Substituting the definition g̃(k)[n] = Rg(k)(h(k))ϵ[m]Tg(k)(h(k)[n]), we obtain:

1− λ
B

Tr

(
Rg(h(k))ϵ[m]

∂E[m]

∂W
(k)
ij

G(k)[m]T

)
,

=
1− λ
B

Tr

 (m+1)B∑
n=mB+1

h
(k−1)
j [n]Φ(k)[n]eig̃

(k)[n]T

 ,

=
1− λ
B

(m+1)B∑
n=mB+1

eTj h
(k−1)[n]g̃(k)[n]TΦ(k)[n]ei,

= eTi

1− λ
B

(m+1)B∑
n=mB+1

Φ(k)[n]T g̃(k)[n]h(k−1)T

 ej .

Now, defining:

ψ(k)[n] = Φ(k)[n]T g̃(k)[n],

and assembling these into the matrix:

Ψ(k)[m] =
[
ψ(k)[mB + 1] ψ(k)[mB + 2] . . . ψ(k)[(m+ 1)B]

]
,

we can compactly express the weight and bias updates as:

∆W
(k)
2 [m] =

1− λ
B

Ψ(k)[m]H(k−1)[m]T ,

∆b
(k)
2 [m] =

1− λ
B

Ψ(k)[m]1L×Nk−1
.
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B.3 ON EBD WITH FORWARD PROJECTIONS

In the EBD algorithm introduced in Section 2.3 , output errors are broadcast to individual layers
to modify their weights, thereby reducing the correlation between hidden layer activations and out-
put errors. To enhance this mechanism, we introduce forward broadcasting, where hidden layer
activations are projected onto the output layer. This projection facilitates the optimization of the
decorrelation loss by adjusting the parameters of the final layer more effectively.

The purpose of forward broadcasting is to enhance the network’s ability to minimize the decor-
relation loss by directly influencing the final layer’s weights using the activations from the hidden
layers. By projecting the hidden layer activations forward onto the output layer, we establish a direct
pathway for these activations to impact the adjustments of the final layer’s weights. This mechanism
allows the final layer to update its parameters in a way that reduces the correlation between the out-
put errors and the hidden layer activations. Consequently, the errors at the output layer are steered
toward being orthogonal to the hidden layer activations.

This mechanism could potentially be effective because the final layer is responsible for mapping the
network’s internal representations to the output space. By incorporating information from earlier
layers, we enable the final layer to align its parameters more closely with the features that are most
relevant for reducing the overall error.

While the proposed forward broadcasting mechanism is primarily motivated by performance op-
timization, it can conceptually be related to the long-range (Leong et al., 2016) and bottom-up
(Ibrahim et al., 2021) synaptic connections in the brain, which allow certain neurons to influence
distant targets. These long-range bottom-up connections are actively being researched, and incorpo-
rating similar mechanisms into computational models could enhance their alignment with biological
neural processes. By integrating mechanisms that mirror these neural pathways, forward broadcast-
ing may be useful for modeling how information is transmitted across different neural circuits.

B.3.1 GRADIENT DERIVATION FOR THE EBD WITH FORWARD PROJECTIONS

We derive the gradients of the layer decorrelation losses with respect to the parameters of the final
layer. The partial derivative of the objective function J (k)(h(k), ϵ) with respect to the final layer
weights can be written as:

∂J (k)(h(k), ϵ)

∂W
(L)
ij

[m] =
1− λ
B

Tr

(
R̂g(h(k))ϵ[m]

∂(E[m]G(k)[m]T )

∂W
(L)
ij

)

=
1− λ
B

Tr

(
R̂g(h(k))ϵ[m]

∂E[m]

∂W
(L)
ij

G(k)[m]T

)
︸ ︷︷ ︸

[∆W(L,k),f [m]]ij

,

=
1− λ
B

Tr

Rg(h(k))ϵ[m]

(m+1)B∑
n=mB+1

∂ϵ[n]

∂W
(L)
ij

g(h(k)[n])T

 .
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Substituting the definition g̃(k)[n] = Rg(h(k))ϵ[m]Tg(h(k)[n]), we can further express the partial
derivative as:

∂J (k)(h(k), ϵ)

∂W
(L)
ij

[m] =
1− λ
B

Tr

 (m+1)B∑
n=mB+1

h
(L−1)
j [n]Φ(L)[n]eig̃

(k)[n]T

 ,

=
1− λ
B

(m+1)B∑
n=mB+1

eTj h
(L−1)[n]g̃(k)[n]TΦ(L)[n]ei,

= eTi

1− λ
B

(m+1)B∑
n=mB+1

Φ(L)[n]T g̃(k)[n]h(L−1)T

 ej ,

= eTi

1− λ
B

(m+1)B∑
n=mB+1

(f ′(u(L)[n])⊙ g̃(k)[n])h(L−1)T

 ej .

Next, defining the following terms:

ψ(k,L)[n] = f ′(u(L)[n])⊙ g̃(k)[n],

and assembling them into the matrix:

Ψ(k,L)[m] =
[
ψ(k,L)[mB + 1] ψ(k,L)[mB + 2] . . . ψ[(m+ 1)B]

]
,

we can write the weight update as:

∆W(L,k),f [m] =
1− λ
B

Ψ(k,L)[m]H(k−1)[m]T .

Following a similar procedure, the bias update can be written as:

∆b(L,k),f [m] =
1− λ
B

Ψ(k,L)[m]1L×Nk−1
.

Based on these expressions, we can write

[∆W(L,k),f [m]]ij =
1− λ
B

(m+1)B∑
n=mB+1

f (L)′(u
(L)
i [n])g̃

(k)
i [n]h

(L−1)
j

[∆b(L,k),f [m]]i =
1− λ
B

(m+1)B∑
n=mB+1

f (L)′(u
(L)
i [n])g̃

(k)
i [n].
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C ADDITIONAL EXTENSIONS OF EBD APPROACH

C.1 EXTENSIONS TO CONVOLUTIONAL NEURAL NETWORKS (CNNS)

Let H(k) ∈ RP (k)×M(k)×N(k)

represent the output of the kth layer of a Convolutional Neural Net-
work (CNN), where P (k) is the number of channels and the layer’s output is M (k) × N (k) dimen-
sional. Furthermore, we use W(k,p) ∈ RP (k−1)×Ω(k)×Ω(k)

and b(k,p) ∈ R to represent the filter
tensor weights and bias coefficient respectively for the channel-p of the kth layer, and Ω(k) is the
symmetric convolution kernel size. Then a convolutional layer can be defined as

H(k,p) = f(U (k,p)), (15)

U (k,p) = (H(k−1) ∗W(k,p)) + b(k,p), (16)

where the symbol ”∗” represents the convolution 1 operation that acts upon both the spatial and
channel dimensions to generate the pth channel of kth layer output H(k,p), and f is the nonlinearity
acted on the convolution output.

C.1.1 ERROR BROADCAST AND DECORRELATION FORMULATION

Similar to equation 4, we have the cross-correlation between output errors ϵ and the arbitrary func-
tion of the kth layer activation of the pth channel denoted as g(k)(H(k,p)), for each layer and spatial
indexes r ∈ Z : 1 ≤ r ≤M (k) and s ∈ Z : 1 ≤ s ≤ N (k) as

Rg(k)(H(k,p))ϵ[q, r, s] = E(g(k)(H(k,p)[r, s])ϵq) = 0. (17)

Then this cross-correlation must ideally be zero due to the orthogonality condition. We can then
write the loss for layer-k at batch-m as:

J (k)(H(k,p), ϵ)[m] =
1

2

nc∑
q=1

∥∥∥R̂g(k)(H(k,p))ϵ[m, q, :, :]
∥∥∥2
F
, (18)

where R̂g(H(k),p)ϵ is the recurrently estimated cross-correlation using the training batches. Then
we can optimize the network by taking the derivative of the loss function with respect to the weight
W

(k,p)
hij corresponding to input channel h and weight spatial indexes i, j ∈ Z : 1 ≤ i, j ≤ Ω(k) as

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p)
hij

=
1− λ
B

nc∑
q=1

(m+1)B∑
n=mB+1

ϵq[n] · Tr

(
(R̂g(k)(H(k,p))ϵ[m, q, :, :]

T ∂g
(k)(H(k,p)[n, :, :])

∂W
(k,p)
hij

)

=
1− λ
B

nc∑
q=1

(m+1)B∑
n=mB+1

∑
r,s

ϵq[n]

[
(R̂g(k)(H(k,p))ϵ[m, q, :, :]⊙

∂g(k)(H(k,p)[n, :, :])

∂W
(k,p)
hij

]
[r,s]

,

(19)

in which nc is the error dimension, N (k) and M (k) are the width and height of the kth layer, and the
derivative with respect to the ϵ term is neglected. The inner partial derivative term can be written as

∂g(k)(H(k,p)[n, :, :])

∂W
(k,p)
hij

= g′
(k)

(H(k,p)[n, :, :])⊙ ∂H(k,p)[n, :, :]

∂W
(k,p)
hij

, (20)

and using the Equations (15) and (16),

∂H(k,p)[n, :, :]

∂W
(k,p)
hij

= f ′(U (k,p)[n, :, :])⊙ (E(k)hij ∗H
(k−1)[n, :, :]). (21)

1Although we call it as convolution, in CNNs, the actual operation used is the correlation operation where
the kernel is unflipped.
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where E(k)hij ∈ RP (k−1)×Ω(k)×Ω(k)

is a Kronecker delta tensor that occurs as the gradient of W(k,p)

with respect to W
(k,p)
hij . Combining the expressions, we have

ϕ[n, p, :, :] =

nc∑
q=1

ϵq[n] ·
(
R̂g(k)(H(k,p))ϵ[n, q, :, :]⊙ g(k)(H(k,p)[n, :, :])⊙ f ′(U (k,p)[n, :, :])

)
.

(22)
Then, combining the Equations (19), (20), (21), and then writing the convolution explicitly, we have

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p)
hij

=
1− λ
B

(m+1)B∑
n=mB+1

∑
r,s

[
ϕ[n, p, :, :]⊙ (E(k)hij ∗H

(k−1)[n, :, :])
]
[r,s]

=
1− λ
B

(m+1)B∑
n=mB+1

∑
r,s

ϕ[n, p, r, s] ·

 ∑
h′,i′,j′

E(k)hij [h
′, i′, j′] ·H(k−1,h′)[n, r + i′, s+ j′]

 .

By the definition of the delta function E(k)hij and writing the resulting expression as a 2D convolution
between H(k−1) and ϕ respectively, we have

=
1− λ
B

(m+1)B∑
n=mB+1

∑
r,s

ϕ[n, p, r, s] ·H(k−1,h)[n, r + i, s+ j]

=
1− λ
B

(m+1)B∑
n=mB+1

[
ϕ[n, p, :, :] ∗H(k−1,h)[n, :, :]

]
[i,j]

.

The resulting expression for the weight update is:

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p)
h

=
1− λ
B

(m+1)B∑
n=mB+1

(ϕ[n, p, :, :] ∗H(k−1,h)[n, :, :]). (23)

Similarly, it can be shown that the bias update:

∂J (k)(H(k,p), ϵ)[m]

∂b(k,p)
=

1− λ
B

(m+1)B∑
n=mB+1

N(k)∑
r=1

M(k)∑
s=1

ϕ[n, p, r, s].

The convolutional layer parameters can be trained using these gradient formulas for each layer sep-
arately, and can be calculated by utilizing the batched convolution operation.

C.1.2 WEIGHT ENTROPY OBJECTIVE

The layer entropy objective is computationally cumbersome for a convolutional layer that has mul-
tiple dimensions. Therefore, we propose the weight-entropy objective to avoid dimensional collapse

J
(k)
E (W(k)) =

1

2
log det(R

W
(k) + ε(k)I),

where we define W
(k) ∈ RP (k)×P (k−1).Ω(k).Ω(k)

as the unraveled version of the full size weight
tensor W(k), and the covariance matrix R

W
(k) is conditionally defined as:

R
W

(k) =

{
W

(k)T
W

(k)
, if P (k) ≥ P (k−1).Ω(k).Ω(k),

W
(k)

W
(k)T

, otherwise,
to decrease its dimensions and reduce the computational costs for further steps. Then, the derivative
of this objective can be written as:

∆J
(k)
E (W(k)) =

W
(k)

R−1
W

(k) , if P (k) ≥ P (k−1).Ω(k).Ω(k),

R−1
W

(k)W
(k)
, otherwise.

Therefore, ∂JE(W(k))

∂W
(k,p)
hij

can be obtained by reshaping ∆J
(k)
E (W(k)) as the weight tensor W(k).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C.1.3 ACTIVATION SPARSITY REGULARIZATION

To further regularize the model, we enforce the layer activation sparsity loss that is given as

J
(k)
ℓ1

(H(k,p)) =
∥H(k,p)∥1
|H(k,p)∥2

. (24)

The gradient of the sparsity loss with respect to the hidden layer can be written as:

∆J
(k)
ℓ1

(H(k,p)) =
1

∥H(k,p)∥2
sign(H(k,p))− ∥H

(k,p)∥
∥H(k,p)∥32

H(k,p). (25)

Then, the gradient of the loss with respect to the model weights can be calculated in a similar manner
as the Equation (23):

∂J
(k)
ℓ1

(H(k,p))[m]

∂W
(k,p)
h

=
1

B

(m+1)B∑
n=mB+1

(
∆J

(k)
ℓ1

(H(k,p))[n, p, :, :] ∗H(k−1,h)[n, :, :]

)
.

C.2 EXTENSIONS TO LOCALLY CONNECTED (LC) NETWORKS

Let H(k) ∈ RP (k)×M(k)×N(k)

represent the output of the kth layer of a Locally Connected Network
(LC), where P (k) is the number of channels and the layer’s output is M (k)×N (k) dimensional. We
use W(k,p,r,s) ∈ RP (k−1)×Ω(k)×Ω(k)

and b(k,p,r,s) ∈ R to represent the filter tensor weights and
bias coefficient at spatial locations r ∈ Z : 1 ≤ r ≤M (k) and s ∈ Z : 1 ≤ s ≤ N (k), for channel-p
of the kth layer, where Ω(k) is the local receptive field size. Then a locally connected layer can be
defined as

H(k,p) = f(U (k,p)), (26)

U (k,p) = (H(k−1) ⊛W(k,p)) + b(k,p), (27)
where the symbol ”⊛” represents the locally connected operation which acts upon both the spatial
and channel dimensions, but without weight sharing across spatial locations, generating the pth

channel of the kth layer output H(k,p), and f is the nonlinearity applied to the result.

C.2.1 ERROR BROADCAST AND DECORRELATION FORMULATION

For the LC network, the orthogonality condition and the corresponding loss J (k)(H(k,p), ϵ)[m] for
layer-k at batch-m can be written equivalently as Equations (17) and (18) respectively. Then the
optimization can be performed by taking the derivative of the loss function with respect to W

(k,p,r,s)
hij

corresponding to input channel h, weight spatial indexes i, j ∈ Z : 1 ≤ i, j ≤ Ω(k) as

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p,r,s)
hij

=
1− λ
B

nc∑
q=1

(m+1)B∑
n=mB+1

ϵq[n] · Tr

(
(R̂g(k)(H(k,p))ϵ[m, q, :, :]

T ∂g
(k)(H(k,p)[n, :, :])

∂W
(k,p,r,s)
hij

)

=
1− λ
B

nc∑
q=1

(m+1)B∑
n=mB+1

∑
r,s

ϵq[n]

[
(R̂g(k)(H(k,p))ϵ[m, q, :, :]⊙

∂g(k)(H(k,p)[n, :, :])

∂W
(k,p,r,s)
hij

]
[r,s]

.

(28)

The inner partial derivative term can be written as

∂g(k)(H(k,p)[n, :, :])

∂W
(k,p,r,s)
hij

= g′
(k)

(H(k,p)[n, :, :])⊙ ∂H(k,p)[n, :, :]

∂W
(k,p,r,s)
hij

, (29)

and using Equations (26) and (27), we obtain:

∂H(k,p)[n, :, :]

∂W
(k,p,r,s)
hij

= f ′(U (k,p)[n, :, :])⊙ (E(k)hij ⊛H(k−1)[n, :, :]). (30)
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Here, E(k,r,s)hij ∈ RP (k−1)×Ω(k)×Ω(k) ×M (k) × N (k) is a Kronecker delta tensor that occurs as the

gradient of W(k,p) with respect to W
(k,p,r,s)
hij . Combining the expressions in (28), (29), (30), and

the expression for ϕ as in (22) which is equivalent for both CNNs and LCs, and then writing the
locally connected operation explicitly, we have

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p,r,s)
hij

=
1− λ
B

(m+1)B∑
n=mB+1

∑
r,s

[
ϕ[n, p, :, :]⊙ (E(k,r,s)hij ⊛H(k−1)[n, :, :])

]
[r,s]

=
1− λ
B

(m+1)B∑
n=mB+1

ϕ[n, p, r, s] ·

 ∑
h′,i′,j′

r′,s′

E(k,r,s)hij [h′, i′, j′, r′, s′] ·H(k−1,h′)[n, r′ + i′, s′ + j′]

 .

Then, by the definition of the Kronecker delta, the resulting expression for the weight update is:

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p,r,s)
hij

=
1− λ
B

(m+1)B∑
n=mB+1

(
ϕ[n, p, r, s] ·H(k−1,h)[n, r + i, s+ j]

)
. (31)

Similarly, it can be shown that the bias update is:

∂J (k)(H(k,p), ϵ)[m]

∂b(k,p,r,s)
=

1− λ
B

(m+1)B∑
n=mB+1

ϕ[n, p, r, s].

C.2.2 WEIGHT ENTROPY OBJECTIVE

Similar to CNNs, we propose the weight-entropy objective to avoid dimensional collapse in LCs

J
(k)
E (W(k)) =

1

2
log det(R

W
(k) + ε(k)I),

where we define W
(k) ∈ RP (k)×P (k−1).M(k).N(k).Ω(k).Ω(k)

as the unraveled version of the full size
weight tensor W(k), then the covariance matrix R

W
(k) is defined as:

R
W

(k) = W
(k)T

W
(k)
.

Then, the derivative of this objective can be written as:

∆J
(k)
E (W(k)) = W

(k)
R−1

W
(k)

∂JE(W(k))

∂W
(k,p,r,s)
hij

can be obtained by reshaping ∆J
(k)
E (W(k)) as the weight tensor W(k).

C.2.3 ACTIVATION SPARSITY REGULARIZATION

The layer activation sparsity loss for the LC is the same as the one given for the CNN in (24), with
its gradient with respect to the activations as in (25). Then, the gradient of the loss with respect to
the model weights can be calculated in a similar manner as the expression (31):

∂J
(k)
ℓ1

(H(k))[m]

∂W
(k,p,r,s)
hij

=
1

B

(m+1)B∑
n=mB+1

(
∆J

(k)
ℓ1

(H(k))[n, p, r, s]⊛H(k−1,h)[n, r + i, s+ j]

)
.
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D BACKGROUND ON ONLINE CORRELATIVE INFORMATION MAXIMIZATION
BASED BIOLOGICALLY PLAUSIBLE NEURAL NETWORKS

Bozkurt et al. (2023) recently proposed a framework, which we refer as CorInfoMax-EP, to address
weight symmetry problem corresponding to backpropagation algorithm. In this section, we provide
a brief summary of this framework.

The CorInfoMax-EP framework utilizes an online optimization setting to maximize correlative in-
formation between two consequitive layers:

L−1∑
k=0

Î(ϵ)(h(k),h(k+1))[m]− β

2
∥y[m]− h(L)[m]∥22,

where Î(ϵ)(h(k),h(k+1))[m] is the correlative mutual information between layers k and k + 1, and
the term on the left corresponds to the mean square error between the network output h(L)[m]
and the training label y[m]. This framework utilizes two alternative but equivalent forms for the
correlative mutual information

→
Î(εk)(h(k),h(k+1))[m] =

1

2
log det(R̂h(k+1) [m] + εkI)−

1

2
log det(R̂→

e
(k+1)

∗
[m] + εkI),

←
Î(εk)(h(k),h(k+1))[m] =

1

2
log det(R̂h(k) [m] + εkI)−

1

2
log det(R̂←

e
(k)

∗
[m] + εkI),

defined in terms of the correlation matrices of layer activations, i.e., R̂h(k) and the correlation
matrices of forward and backward prediction errors (R̂→

e
(k+1)

∗
and R̂←

e
(k)

∗
) between two consequitive

layers. Here, forward/backward prediction errors are defined by
→
e
(k+1)

∗ [n] = h(k+1)[n]−W(f,k)[m]h(k)[n],
←
e
(k)

∗ [n] = h(k)[n]−W(b,k)[m]h(k+1)[n],

respectively. Here, W(f,k)[m] (W(b,k)[m]) is the forward (backward) prediction matrix for layer k.

In order to enable online implementation, the exponentially weighted correlation matrices for hidden
layer activations and prediction errors are defined as follows:

R̂h(k) [m] =
1− λ
1− λm

m∑
i=1

λm−ih(k)[m]h(k)[m]
T
,

R̂→
e

(k) [m] =
1− λ
1− λm

m∑
i=1

λm−i
→
e
(k)

[m]
→
e
(k)

[m]
T

,

R̂←
e

(k) [m] =
1− λ
1− λm

m∑
i=1

λm−i
←
e
(k)

[m]
←
e
(k)

[m]
T

.

Through the trace approximation of log det(·) function, we obtain:

log det
(
R̂→

e
(k+1) [m] + εI

)
≈ 1

εk

t∑
i=1

λt−i∥h(k+1)[i]−W
(k)
ff,∗[m]h(k)[i]∥22 + εk∥W (k)

ff,∗[m]∥2F +Nk+1 log(εk)

log det
(
R̂←

e
(k) [m] + εkI

)
≈ 1

εk

t∑
i=1

λt−i∥h(k)[i]−W
(k)
fb,∗[m]h(k+1)[i]∥22 + εk∥W (k)

fb,∗[m]∥2F +Nk log(εk),

D.1 THE DERIVATION OF THE CORINFOMAX NETWORK

Based on the definitions above, the following layerwise objectives can be defined:

Ĵk(h
(k))[m] =

→
Î(ϵk−1)(h(k−1),h(k))[m] +

←
Î(εk)(h(k),h(k+1))[m], for k = 1, . . . , L− 1,
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i.e., correlative information maximization objectives for the hidden layers, and the mixture of corre-
lation maximization and MSE objectives for the final layer

ĴL(h
(L))[m] =

→
Î(ϵL−1)(h(L−1),h(L))[m]− β

2
∥h(L)[m]− y[m]∥22.

The gradient of the hidden layer objective functions with respect to the corresponding layer activa-
tions can be written as:

∇h(k) Ĵk(h
(k))[m] = 2γBh(k) [m]h(k)[m]− 1

ϵk−1

→
e
(k)

[m]− 1

εk

←
e
(k)

[m], (32)

where γ = 1−λ
λ , and Bh(k) [m] = (R̂h(k) [m] + ϵk−1I)

−1, i.e., the inverse of the layer correlation
matrix.

For the output layer, we can write the gradient as

∇h(L) ĴL(h
(L))[m] = γBh(L) [m]h(L)[m]− 1

ϵL−1

→
e
(L)

[m]− β(h(L)[m]− y[m]).

The gradient ascent updates corresponding to these expressions can be organized to obtain CorInfo-
Max network dynamics:

τu
du(k)[m; s]

ds
= −glku(k)[m; s] +

1

εk
M (k)[m]h(k)[m; s]− 1

ϵk−1

→
e
(k)

u [m; s]− 1

ϵk

←
e
(k)

u [m; s],

→
e
(k)

u [m; s] = u(k)[m; s]−W
(k−1)
ff [t]h(k−1)[m; s],

←
e
(k)

u [m; s] = u(k)[m; s]−W
(k)
fb [m]h(k+1)[m; s],

h(k)[m; s] = σ+(u
(k)[m; s]),

wherem is the sample index, s is the time index for the network dynamics, τu is the update time con-
stant, M (k)[t] = εk(2γBh(k) [t] + glkI), and σ+ = min(1,max(u, 0)) represents the elementwise
clipped-ReLU function, which is the projection operation corresponding to the combination of the
nonnegativity constraint h(k) ≥ 0 and the boundedness constraint ∥h(k)∥∞ ≤ 1 on the activations
of the network.

Note that Bozkurt et al. (2023) takes one more step to organize the network dynamics into a form that
fits into the form of a network with three compartment (soma, basal dendrite and appical dendrite
compartments) neuron model.

D.2 CORINFOMAX-EP LEARNING DYNAMICS

The CorInfoMax-EP framework in Bozkurt et al. (2023) employs equilibrium propagation(EP) to
update feedforward and feedback weights of the CorInfoMax network.

D.2.1 FEEDFORWARD AND FEEDBACK WEIGHTS

In the CorInfoMax objective, feedforward and feedback weights correspond to forward and back-
ward predictors corresponding to the regularized least squares objectives

Cff (W
(k)
ff [m]) = εk∥W (k)

ff [m]∥2F + ∥→e
(k+1)

[m]∥22,

and

Cfb(W
(k)
fb [m]) = εk∥W (k)

ff [m]∥2F + ∥←e
(k)

[m]∥22,

respectively. The derivatives of these functions with respect to forward and backward synaptic
weights can be written as

∂Cff (W
(k)
ff [m])

∂W
(k)
ff [m]

= 2εkW
(k)
ff [m]− 2

→
e
(k+1)

[m]h(k)[m]T ,
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and

∂Cfb(W
(k)
fb [m])

∂W
(k)
fb [m]

= 2εkW
(k)
fb [m]− 2

←
e
(k)

[m]h(k+1)[m]T .

The EP based updates of the feedforward and feedback weights are obtained by evaluating these
gradients in two different phases: the nudge phase (β = β′ > 0), and the free phase (β = 0):

δW
(k)
ff [m] ∝ 1

β′

(
(
→
e
(k+1)

[m]h(k)[m]T )
∣∣∣
β=β′

− (
→
e
(k+1)

[m]h(k)[m]T )
∣∣∣
β=0

)
,

δW
(k)
fb [m] ∝ 1

β′

(
(
←
e
(k)

[m]h(k+1)[m]T )
∣∣∣
β=β′

− (
←
e
(k)

[m]h(k+1)[m]T )
∣∣∣
β=0

)
.

D.2.2 LATERAL WEIGHTS

The lateral weight updates derived from the weight correlation matrices of the layer activations,
using the matrix inversion lemma (Kailath et al., 2000):

B(k)[m+ 1] = λ−1r (B(k)[m]− γz(k)[m]z(k)[m]T ), where z(k)[m] = B(k)[m]r(k)[m]
∣∣
β=β′

.

D.3 CORINFOMAX-EP

Although the CorInfoMax-EP algorithm derivation above is based on single input sample based
updates, it can be extendable to batch updates. Assuming a batch size of B, and we define the
following matrices:

H(k)[m] =
[
h(k)[mB + 1] h(k)[mB + 2] . . . h(k)[(m+ 1)B]

]
,

as the activation matrix for the layer-k,

←
E

(k)

[m] =
[
←
e
(k)

[mB + 1]
←
e
(k)

[mB + 2] . . .
←
e
(k)

[(m+ 1)B]

]
, (33)

as the backward prediction matrix for the layer-k,

→
E

(k)

[m] =
[
→
e
(k)

[mB + 1]
→
e
(k)

[mB + 2] . . .
→
e
(k)

[(m+ 1)B]

]
, (34)

as the forward prediction matrix for the layer-k,

Z(k)[m] =
[
z(k)[mB + 1] z(k)[mB + 2] . . . z(k)[(m+ 1)B]

]
, (35)

as the lateral weights’ output matrix for the layer-k, and

E = [ ϵ[mB + 1] ϵ[mB + 2] . . . ϵ[(m+ 1)B] ] ,

as the output error matrix.

In terms of these definitions, Algorithm 2 lays out the details of the CorInfoMax-EP algorithm:
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Algorithm 2 CorInfoMax Equilibrium Propagation (CorInfoMax-EP) Update for Layer k

Require: Learning rate parameters λE , µ(f,k)[m], µ(b,k)[m]
Require: Previous synaptic weights W(f,k)[m − 1] (forward), W(b,k)[m − 1] (backward), B(k)

(lateral)
Require: Batch size B
Require: Layer activations H(k)[m], preactivations U(k)[m], output errors E(k)[m], lateral weight

outputs Z(k)[m], forward prediction errors
→
E

(k)

[m] and backward prediction errors
←
E

(k)

[m]
computed by CorInfoMax network dynamics described in Bozkurt et al. (2023)

Ensure: Updated weights W(f,k)[m], W(b,k)[m] ,B(k)[m]

1 γE ← 1−λE

λE

Update forward weights for layer k:

2 ∆W
(f,k)
EP [m]← −µ

(df ,k)[m]

Bβ′

(
(
→
E

(k+1)

[m]H(k)[m]T )
∣∣∣
β=β′

− (
→
E

(k+1)

[m]H(k)[m]T )
∣∣∣
β=0

)
3 W(f,k)[m]←W(f,k)[m− 1] + ∆W

(f,k)
EP [m]

Update backward weights for layer k:

4 ∆W
(b,k)
EP [m]← −µ

(db,k)[m]

Bβ′

(
(
←
E

(k)

[m]H(k)[m]T )
∣∣∣
β=β′

− (
←
E

(k)

[m]H(k)[m]T )
∣∣∣
β=0

)
5 W(b,k)[m]←W(b,k)[m− 1] + ∆W

(b,k)
EP [m]

Update Lateral weights for layer k:
6 ∆B

(k)
E [m]← −γE

B
Z(k)[m]Z(k)[m]T

7 B(k)[m]← 1
λE

B(k)[m] + ∆B
(k)
E [m]
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E SUPPLEMENTARY ON NUMERICAL EXPERIMENTS

The models were trained on an NVIDIA Tesla V100 GPU, using the hyperparameters detailed in the
sections below. Each experiment was conducted five times under identical settings, and the reported
results reflect the average performance. We used the standard train/test splits for the datasets, with
MNIST comprising 60,000 training examples and CIFAR-10 comprising 50,000, while both datasets
included 10,000 test examples. Rather than utilizing automatic differentiation tools, we manually
implemented the gradient calculations for the EBD algorithm, utilizing batched operations to ensure
computational efficiency. As a side note, the (1−λ) factors present in the derived update expressions
are absorbed into the learning rate constants and thus eliminated. In our experiments, we trained the
MLP models for 120 epochs and the CNN and LC models for 100 epochs on MNIST and 200 epochs
on CIFAR-10. Also, we trained the CorInfoMax-EBD model for 60 epochs.

E.1 ARCHITECTURES

The architectural details of MLP, CNN and LC networks for the MNIST and CIFAR-10 datasets are
shown in Tables 4 and 5, respectively. The structure of the models are the same as in the reference
Clark et al. (2021). In all architectures, we used ReLU as the nonlinear functions except the last
layer.

Table 4: MNIST architectures. FC: fully connected layer. Conv: convolutional layer. LC: lo-
cally connected layer. For fully connected layers, layer size is shown which corresponds to
the size of the hidden layer. For convolutional and locally connected layers, (num channels,
kernel size, stride, padding) are shown.

MLP
FC1 1024
FC2 512

Convolutional
Conv1 64, 3× 3, 1, 1

AvgPool 2× 2
Conv2 32, 3× 3, 1, 1

AvgPool 2× 2
FC1 1024

Locally connected
LC1 32, 3× 3, 1, 1

AvgPool 2× 2
LC2 32, 3× 3, 1, 1

AvgPool 2× 2
FC1 1024

Table 5: CIFAR-10 architectures. Conventions are the same as in Table 4.

MLP
FC1 1024
FC2 512
FC3 512

Convolutional
Conv1 128, 5× 5, 1, 2

AvgPool 2× 2
Conv2 64, 5× 5, 1, 2

AvgPool 2× 2
Conv3 64, 2× 2, 2, 0
FC1 1024

Locally connected
LC1 64, 5× 5, 1, 2

AvgPool 2× 2
LC2 32, 5× 5, 1, 2

AvgPool 2× 2
LC3 32, 2× 2, 2, 0
FC1 512

The architectural details of the biologically more realistic CorInfoMax network for the MNIST
and CIFAR-10 datasets are shown in Table 6. These techniques are the same as the examples in
Appendix J.5 of Bozkurt et al. (2023).

Table 6: CorInfoMax architectures. Conventions are the same as in Table 4.

MNIST
FC1 500
FC2 500

CIFAR-10
FC1 1000
FC2 500
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E.2 ACCURACY AND LOSS CURVES

Figures 2 and 3 present the training/test accuracy and MSE loss curves over epochs for the CIFAR-
10 and MNIST datasets. Solid lines represent test curves; dashed lines denote training curves.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Train and test accuracies plotted as a function of algorithm epochs for training with various
update rules (averaged over n = 5 runs associated with the corresponding ± std envelopes) for the
(a) MLP on MNIST dataset (b) MLP on CIFAR-10 dataset (c) CNN on MNIST dataset (d) CNN on
CIFAR-10 dataset (e) LC on MNIST dataset (f) LC on CIFAR-10 dataset (g) CorInfoMax-EBD on
MNIST dataset (h) CorInfoMax-EBD on CIFAR-10 dataset
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Train and test mean squared errors (MSE) plotted as a function of algorithm epochs for
training with various update rules (averaged over n = 5 runs associated with the corresponding
± std envelopes) for the (a) MLP on MNIST dataset (b) MLP on CIFAR-10 dataset (c) CNN on
MNIST dataset (d) CNN on CIFAR-10 dataset (e) LC on MNIST dataset (f) LC on CIFAR-10
dataset (g) CorInfoMax-EBD on MNIST dataset (h) CorInfoMax-EBD on CIFAR-10 dataset
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E.3 CORINFOMAX-EBD

In this section, we offer additional details regarding the numerical experiments conducted with the
CorInfoMax Error Broadcast and Decorrelation (CorInfoMax-EBD) algorithm. Appendix E.3.1
elaborates on the general implementation details. Appendix E.3.2 presents the fundamental learning
steps of the algorithm, which are based on the EBD method. Appendices E.3.3 and E.3.4 discuss the
initialization of the algorithm’s variables and describe the hyperparameters. Finally, Appendix E.3.5
(batch size=20) and E.3.6 (batch size=1) details the specific hyperparameter configurations used in
our numerical experiments for the MNIST and CIFAR-10 datasets. In Appendix E.2 we present the
accuracy and loss learning curves for the CorInfoMaxEBD, shown in Figures 2.(g)-(h) and Figures
3.(g)-(h), respectively.

E.3.1 IMPLEMENTATION DETAILS

We implemented the CorInfoMax-EBD algorithm based on the repository available at:

https://github.com/BariscanBozkurt/Supervised-CorInfoMax

This repository was referenced in Bozkurt et al. (2023). The following modifications were made to
the original code:

• Reduction to a Single Phase: We simplified the algorithm by reducing it to a single phase.
Specifically, we removed the nudge phase, during which the label is coupled to the network
dynamics. In this modified version, the network operates solely in the free phase, where
the label is decoupled from the network. This change aligns with the removal of time-
contrastive updates from the CorInfoMax-EP algorithm.

• Algorithmic Updates: We incorporated the updates outlined in Algorithm 3.
• Hyperparameters: We maintained the same hyperparameters for the neural dynamics as

in the original code. Additionally, new hyperparameters specific to the learning dynamics
were introduced, which are detailed in Appendix E.3.4.

In the CorInfoMax-EBD implementation the following loss and regularization functions are used

• EBD loss: J (k),

• Power normalization loss: J (k)
P ,

• ℓ2 weight regularization (weight decay): J (k)
ℓ2

,

• Activation sparsity regularization: J (k)
ℓ1

= ∥H(k)∥1.
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E.3.2 ALGORITHM

The CorInfoMax-EBD algorithm follows the same neural dynamics framework detailed in Bozkurt
et al. (2023) for computing neuron activations. Consequently, we only outline the steps specific to
the learning process, which distinguishes it from the original CorInfoMax-EP algorithm described
in Bozkurt et al. (2023). The full iterative process for updating weights in the CorInfoMax-EBD
algorithm is provided in Algorithm 3.

Algorithm 3 CorInfoMax Error Broadcast and Decorrelation (CorInfoMax-EBD) Update for Layer k

Require: Learning rate parameters λd,λE , µ(d,k)[m], µ(f,k)[m], µ(b,k)[m]
Require: Previous synaptic weights W(f,k)[m−1] (forward), W(b,k)[m−1] (backward), B(k)[m−

1] (lateral)
Require: Previous error projection weights Rg(h(k))ϵ[m− 1]
Require: Batch size B
Require: Layer activations H(k)[m] in (12), the derivative of activations F(k)

d in (14), in (6), predic-

tion errors
←
E and

→
E

(k)

in (33-34), lateral weight outputs Z(k) in (35) computed by CorInfoMax
network dynamics described in Bozkurt et al. (2023) (and Appendix D)

Require: The nonlinear function of layer activations G(k) in (5) and the derivative of the nonlinear
function of layer activations G(k)

d in (13)
Ensure: Updated weights W(f,k)[m], W(b,k)[m], B(k)[m]

Error projection weight update for layer k:

1 R̂g(k)(h(k))ϵ[m]← λd R̂g(k)(h(k))ϵ[m− 1] +
1− λd
B

G(k)[m]E(k)[m]T

Project errors to layer k:
2 Q(k)[m]← R̂g(k)(h(k))ϵ[m]E(k)[m]

Find the gradient of the nonlinear function of activations for layer k:
3 Φ(k)[m] = F

(k)
d [m]⊙Q(k)[m]⊙G

(k)
d [m]

Update forward weights for layer k:

4 ∆W
(f,k)
EBD [m]← −µ

(df ,k)[m]

B
Φ(k)[m]H(k−1)[m]

⊤

5 ∆W
(f,k)
Pred [m]← µ(f,k)[m]

B

→
E

(k)

[m]
(
H(k−1)[m]

)⊤
6 W(f,k)[m]←W(f,k)[m− 1] + ∆W

(f,k)
EBD [m] + ∆W

(f,k)
Pred [m]

Update backward weights for layer k:

7 ∆W
(b,k)
EBD [m]← −µ

(db,k)[m]

B
Φ(k)[m]H(k+1)[m]

⊤

8 ∆W
(b,k)
Pred [m]← µ(b,k)[m]

B

←
E

(k)

[m]H(k+1)[m]⊤

9 W(b,k)[m]←W(b,k)[m− 1] + ∆W
(b,k)
EBD [m] + ∆W

(b,k)
Pred [m]

Update Lateral weights for layer k:

10 ∆B
(k)
EBD[m]← −µ

(dl,k)[m]

B
Φ(k)[m]H(k)[m]⊤

11 ∆B
(k)
E [m]← −γE

B
Z(k)[m]Z(k)[m]T

12 B(k)[m]← 1
λE

B(k)[m] + ∆B
(k)
E [m] + ∆B

(k)
EBD[m]
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E.3.3 INITIALIZATION OF ALGORITHM VARIABLES

We initialize the variables W(f,k), W(b,k), and Rh(k)ϵ using PyTorch’s Xavier uniform initialization
with its default parameters for the MNIST dataset. For the CIFAR-10 dataset is initialized with gain
0.25. For the lateral weights B(k), we first generate a random matrix J(k) of the same dimensions,
also using the Xavier uniform distribution, with gain= 1 for the MNIST dataset and with gain= 0.5

for the CIFAR-10 dataset. We then compute B(k)[0] = J(k)J(k)T , ensuring that B(k)[0] is a positive
definite symmetric matrix.

E.3.4 DESCRIPTION OF HYPERPARAMETERS

Table 7 presents a description of the hyperparameters used in the CorInfoMax-EBD implementation.

Table 7: Detailed explanation of hyperparameter notations for the CorInfoMax-EBD algorithm

Hyperparameter Description

α[m] Learning rate dynamic scaling factor
α2[m] Learning rate dynamic scaling factor 2
µ(df ,k) Learning rate for decorrelation loss (forward weights)
µ(db,k) Learning rate for decorrelation loss (backward weights)
µ(dl,k) Learning rate for decorrelation loss (lateral weights)
µ(f,k) Learning rate for forward prediction
µ(b,k) Learning rate for backward prediction
µ(p,k) Learning rate for power normalization loss
p(k) Target power level
µ
(k)
f,ℓ1

Learning rate for activation sparsity (forward weights)
µ
(k)
b,ℓ1

Learning rate for activation sparsity (backward weights)
µ
(k)
f,w−ℓ2 Forward weight ℓ2-regularization coefficent
µ
(k)
b,w−ℓ2 Backward weight ℓ2-regularization coefficent
λE Layer correlation matrix update forgetting factor
λd Error-layer activation cross-correlation forgetting factor
m(d) Momentum factor for decorrelation forward weight gradient
B Batch size

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

E.3.5 HYPERPARAMETERS FOR MNIST AND CIFAR-10 DATASETS FOR 20 BATCH SIZE

Table 8 and 9 list the hyperparameters used in the CorInfoMax-EBD numerical experiments for the
MNIST and CIFAR-10 datasets with a batch size of 20, where m denotes the iteration index in both.

Table 8: CorInfoMax-EBD hyperparameters: MNIST dataset, 20-batch size.

Hyperparameter Value

α[m] 1
3×10−3×⌊m

10 ⌋+1

α2[m] 1
3×⌊m

10 ⌋+1

µ(df ,k)[m] [ 96 60 1e5 ]α[m]
µ(db,k)[m] [ 96 60 1e5 ]α[m]
µ(dl,k)[m] [ 0.25 0.25 0.25 ]α[m] for epoch= 0

[ 0.5 0.5 0.5 ]α[m] for epoch> 0
µ(f,k)[m] [ 0.11e− 18 0.06e− 18 0.035e− 18 ]α[m]
µ(b,k)[m] [ 1.125e− 18 0.375e− 18 ]α[m]
µ(p,k)[m] [ 4.4e− 3 6e− 3 3.5e− 12 ]α2[m]
p(k) [ 2.5 2.5 0.1 ]

µ
(k)
f,ℓ1

[m] [ 0.008 0.135 0 ]α2[m]

µ
(k)
b,ℓ1

[m] [ 0 0.35 0.05 ]α2[m]

µ
(k)
f,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

µ
(k)
b,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

λE 0.999999
λd 0.99999
m(d)[m] 0.99 1

⌊m
10 ⌋+1 + 0.999(1− 1

⌊m
10 ⌋+1 )

B 20

Table 9: CorInfoMax-EBD hyperparameters: CIFAR-10 dataset, 20-batch size.

Hyperparameter Value

α[m] 1
3×10−3×⌊m

10 ⌋+1

α2[m] 1
3×⌊m

10 ⌋+1

µ(df ,k)[m] [ 80 50 1e5 ]α[m] for epoch= 0
[ 320 400 1e5 ]α[m] for epoch> 0.

µ(db,k)[m] [ 0 0 0 ]α[m]
µ(dl,k)[m] [ 0.5 0.5 0.5 ]α[m] for epoch= 0

[ 2.0 2.0 2.0 ]α[m] for epoch> 0
µ(f,k)[m] [ 0.11e− 18 0.06e− 18 0.035e− 18 ]α[m]
µ(b,k)[m] [ 1.125e− 18 0.375e− 18 ]α[m]
µ(p,k)[m] [ 4.4e− 3 6e− 3 3.5e− 12 ]α2[m]
p(k) [ 2.5 2.5 0.1 ]

µ
(k)
f,ℓ1

[m] [ 0.008 0.135 0 ]α2[m]

µ
(k)
b,ℓ1

[m] [ 0 0.35 0.05 ]α2[m]

µ
(k)
f,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

µ
(k)
b,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

λE 0.999999
λd 0.99999
m(d)[m] 0.99 1

⌊m
10 ⌋+1 + 0.999(1− 1

⌊m
10 ⌋+1 )

B 20

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

E.3.6 HYPERPARAMETERS FOR MNIST AND CIFAR-10 DATASETS FOR 1 BATCH SIZE

Table 10 and 11 list the hyperparameters used in the CorInfoMax-EBD numerical experiments for
the MNIST and CIFAR-10 datasets with a batch size of 1, where m denotes the iteration index in
both.

Table 10: CorInfoMax-EBD hyperparameters: MNIST dataset, 1-batch size.

Hyperparameter Value

α[m] 1
3×10−3×⌊m

10 ⌋+1

α2[m] 1
3×⌊m

10 ⌋+1

µ(df ,k)[m] [ 4.8 3.0 5e3 ]α[m]
µ(db,k)[m] [ 4.8 3.0 5e3 ]α[m]
µ(dl,k)[m] [ 0.0125 0.0125 0.0125 ]α[m] for epoch= 0

[ 0.025 0.025 0.025 ]α[m] for epoch> 0
µ(f,k)[m] [ 0.11e− 18 0.06e− 18 0.035e− 18 ]α[m]
µ(b,k)[m] [ 1.125e− 18 0.375e− 18 ]α[m]
µ(p,k)[m] [ 2.2e− 4 3e− 4 3.5e− 12 ]α2[m]
p(k) [ 2.5 2.5 0.1 ]

µ
(k)
f,ℓ1

[m] [ 0.0004 0.00675 0 ]α2[m]

µ
(k)
b,ℓ1

[m] [ 0 0.0175 0.0025 ]α2[m]

µ
(k)
f,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

µ
(k)
b,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

λE 0.99999995
λd 0.99999
m(d)[m] 0.99 1

⌊m
10 ⌋+1 + 0.999(1− 1

⌊m
10 ⌋+1 )

B 1

Table 11: CorInfoMax-EBD hyperparameters: CIFAR-10 dataset, 1-batch size.

Hyperparameter Value

α[m] 1
3×10−3×⌊m

10 ⌋+1

α2[m] 1
3×⌊m

10 ⌋+1

µ(df ,k)[m] [ 4 2.5 5e3 ]α[m] for epoch= 0
[ 16 20 5e3 ]α[m] for epoch> 0.

µ(db,k)[m] [ 0 0 0 ]α[m]
µ(dl,k)[m] [ 0.025 0.025 0.025 ]α[m] for epoch= 0

[ 0.1 0.1 0.1 ]α[m] for epoch> 0
µ(f,k)[m] [ 0.11e− 18 0.06e− 18 0.035e− 18 ]α[m]
µ(b,k)[m] [ 1.125e− 18 0.375e− 18 ]α[m]
µ(p,k)[m] [ 2.2e− 4 3e− 4 3.5e− 12 ]α2[m]
p(k) [ 0.125 0.125 0.005 ]

µ
(k)
f,ℓ1

[m] [ 0.0004 0.000675 0 ]α2[m]

µ
(k)
b,ℓ1

[m] [ 0 0.0175 0.0025 ]α2[m]

µ
(k)
f,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

µ
(k)
b,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

λE 0.99999995
λd 0.99999
m(d)[m] 0.99 1

⌊m
10 ⌋+1 + 0.999(1− 1

⌊m
10 ⌋+1 )

B 1
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E.4 MULTI-LAYER PERCEPTRON

In this section, we provide additional details about the numerical experiments conducted to train
Multi-layer Perceptrons (MLPs) using the EBD algorithm (MLP-EBD). Appendix E.4.1 outlines
the implementation details of these experiments, while Appendix E.4.2 discusses the initialization of
algorithm variables. Information about hyperparameters and their values for the MNIST and CIFAR-
10 datasets can be found in Appendices E.4.3-E.4.4. In Appendix E.2 we present the accuracy and
loss learning curves for the MLP architecture, shown in Figures 2.(a)-(b) and Figures 3.(a)-(b),
respectively.

E.4.1 IMPLEMENTATION DETAILS

For the MLP experiments using the proposed EBD approach, we adopted the same network archi-
tecture as described in Clark et al. (2021), detailed in Tables 4 and 5.

In the MLP-EBD implementation, the following loss and regularization functions were employed:

• EBD loss: J (k),

• Power normalization loss: J (k)
P ,

• Entropy objective: J (k)
E ,

• ℓ2 weight regularization (weight decay): J (k)
ℓ2

,

• Activation sparsity regularization: J (k)
ℓ1

= ∥H(k)∥1.

Additionally, we imposed a weight-sparsity constraint by setting WS percent of the weights to zero
during the initialization phase and maintaining these weights at zero throughout training.

E.4.2 INITIALIZATION OF ALGORITHM VARIABLES

We use the Pytorch framework’s Xavier uniform initialization with gain value 10−2 on the Rh(k)ϵ

variables, and Kaiming uniform distribution with gain 0.75 for synaptic weights W(k).

E.4.3 DESCRIPTION OF HYPERPARAMETERS

Table 12 provides the description of the hyperparameters for the MLP-EBD implementation.

Table 12: Description of the hyperparameter notations for MLP-EBD.

Hyperparameter Description

α[m] Learning rate dynamic scaling factor
α2[m] Learning rate dynamic scaling factor 2
µ(d,b,k) Learning rate for (backward projection) decorrelation loss
µ(d,f,k) Learning rate for (forward projection) decorrelation loss
µ(E,k) Learning rate for entropy objective
µ(p,k) Learning rate for power normalization loss
p(k) Target power level
µ
(k)
ℓ1

Learning rate for activation sparsity
µ
(k)
w−ℓ2 Weight ℓ2-regularization coefficent
λE Layer autocorrelation matrix update forgetting factor
λd Error-layer activation cross-correlation forgetting factor
m(d) Momentum factor for decorrelation gradient
B Batch size
WS Weight Sparsity
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E.4.4 HYPERPARAMETERS FOR MNIST AND CIFAR-10 DATASETS

Table 13 and 14 list the hyperparameters used in the MLP-EBD numerical experiments for the
MNIST and CIFAR-10 datasets respectively, where m denotes the iteration index in both.

Table 13: Hyperparameters for MLP-EBD for the MNIST dataset.

Hyperparameter Value

α[m] 1
1.5×⌊m

10 ⌋+1

α2[m] ⌊m10⌋/3e4 + 1
µ(d,b,k)[m] 18000α[m]α2[m] for k = 0, 1

20000α[m]α2[m] for k = 2
µ(d,f,k)[m] 0.005α[m]α2[m] for k = 0, 1
µ(E,k)[m] [ 2.5e− 4 1.5e− 3 0 ]α[m]
µ(p,k)[m] [ 4e− 3 6e− 3 1e− 10 ]α[m]
p(k)[m] [ 2.5e− 1 2.5e− 1 0.1 ]α[m]

µ
(k)
ℓ1

[ 8e− 1 3e− 1 0 ]α[m]

µ
(k)
w−ℓ2 1.6e− 4α[m] for all layers
λE 0.99999
λd 0.999999
m(d) 0.9999 for all layers
B 20
WS 55

Table 14: Hyperparameters for MLP-EBD for the CIFAR-10 dataset.

Hyperparameter Value

α[m] 1
1.5×⌊m

10 ⌋+1

α2[m] ⌊m10⌋/3e4 + 1
µ(d,b,k)[m] [ 4000 2000 2000 3500 ]α[m]α2[m]
µ(d,f,k)[m] 0.005α[m]α2[m] for k = 0, 1
µ(E,k)[m] [ 2.5e− 4 1.5e− 3 1.5e− 3 0 ]α[m]
µ(p,k)[m] [ 4e− 3 6e− 3 6e− 3 1e− 10 ]α[m]
p(k)[m] [ 2.5e− 1 2.5e− 1 2.5e− 1 0.1 ]α[m]

µ
(k)
ℓ1

[ 8e− 1 3e− 1 3e− 1 0 ]α[m]

µ
(k)
w−ℓ2 1.6e− 4α[m] for all layers
λE 0.99999
λd 0.999999
m(d) 0.9999 for all layers
B 20
WS 40

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

E.5 CONVOLUTIONAL NEURAL NETWORK

In this section, we offer additional details regarding the numerical experiments for training Convolu-
tional Neural Neural Networks (CNNs) using EBD algorithm (CNN-EBD). Section E.5.1 provides
information about implemetation details. Appendices E.5.2 and E.5.3 discuss the initialization of the
algorithm’s variables and describe the hyperparameters. Finally, Appendix E.5.4 detail the specific
hyperparameter configurations used in our numerical experiments for the MNIST and CIFAR-10
datasets. In Appendix E.2 we present the accuracy and loss learning curves for the CNN, shown in
Figures 2.(c)-(d) and Figures 3.(c)-(d), respectively.

E.5.1 IMPLEMENTATION DETAILS

The architectures we utilized for the CNN networks can be found in tables 4 and 5 respectively for
the MNIST and CIFAR10 datasets. In the training, we used the Adam optimizer with hyperparam-
eters β1 = 0.9, β2 = 0.999, and ϵ = 10−8 (Kingma & Ba, 2015). Also, the model biases are
not utilized. In the CNN-EBD implementation the following loss and regularization functions as
detailed in section C.1 are used:

• EBD loss: J (k),

• Entropy objective: J (k)
E ,

• Activation sparsity regularization: J (k)
ℓ1

.

E.5.2 INITIALIZATION OF ALGORITHM VARIABLES

We use the Kaiming normal initialization for the weights, with a common standard deviation scal-
ing parameter σW, on both the linear and convolutional layers. Furthermore, the estimated cross-
correlation variable Rh(k)ϵ (linear layers) and Rg(k)(H(k,p))ϵ (convolutional layers) are initialized
with zero mean normal distributions with standard deviations σRlin

and σRconv
respectively.

E.5.3 DESCRIPTION OF HYPERPARAMETERS

Table 15 describes the notation for the hyperparameters used to train CNNs using the Error Broad-
cast and Decorrelation (EBD) approach.

Table 15: Description of the hyperparameter notations for CNN-EBD.

Hyperparameter Description

α[i] Learning rate dynamic scaling factor where i is the epoch index
µ(d,b,k) Learning rate for (backward projection) decorrelation loss
µ(E,k) Learning rate for entropy objective
µ
(k)
ℓ1

Learning rate for activation sparsity
σW Standard deviation of the weight initialization.
σRlin

Std. dev. of Rh(k)ϵ initialization in linear layers
σRconv

Std. dev. of Rg(k)(H(k,p))ϵ initialization in convolutional layers
σRlocal

Gain parameter for Rg(k)(H(k,p))ϵ initialization in locally connected layers
λE Layer autocorrelation matrix update forgetting factor
λd Error-layer activation cross-correlation forgetting factor
λR Convergence parameter for λ as in Equations (36), (37)
ϵL Entropy objective epsilon parameter for linear layers
ϵ Entropy objective epsilon parameter for conv. or locally con. layers
β Adam Optimizer weight decay parameter
B Batch size
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We also introduce a convergence parameter λR which increases the estimation parameter for the
decorrelation loss λd, together with the estimation parameter for the layer entropy objective λE , to
converge to 1 as the training proceeds with the following Equations (36), (362) where i is the epoch
index:

λ
(i+1)
d = λ

(i)
d + λR ·

(
1− λ(i)d

)
, i ≥ 0. (36)

λ
(i+1)
E = λ

(i)
E + λR ·

(
1− λ(i)E

)
, i ≥ 0. (37)

E.5.4 HYPERPARAMETERS FOR MNIST AND CIFAR-10 DATASETS

Table 16, lists the hyperparameters as defined in Table 15, used in the CNN-EBD training experi-
ments.

Table 16: Hyperparameters for CNN-EBD for both the MNIST and CIFAR-10 datasets, where i
denotes the epoch index.

Hyperparameter MNIST CIFAR-10

α[i] 10−4 · 0.97−i 10−4 · 0.97−i
µ(d,b,k)[i] 0.1α[i] for k = 0, 1, 2, 3 0.1α[i] for k = 0, 1, 2, 3

10α[i] for k = 4 10α[i] for k = 4
µ(E,k)[i] [ 1 1 1 10 0 ] 10−7α[i] [ 1 1 1 1 1 ] 10−6α[i]

µ
(k)
ℓ1

[i] [ 1 1 1 10 0 ] 10−11α[i]
[
1 1 1 102 0

]
10−10α[i]

σW

√
1
6

√
1
6

σRlin
1e− 2 1e− 2

σRconv
1e− 2 1e− 2

λd 0.99999 0.99999
λE 0.99999 0.99999
λR 2e− 2 2e− 2
β 1e− 8 1e− 5
ϵL 1e− 8 1e− 8
ϵ 1e− 5 1e− 5
B 16 16
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E.6 LOCALLY CONNECTED NETWORK

In this section, we offer additional details regarding the numerical experiments for the training of
Locally Connected Networks (LCs) using EBD algorithm (LC-EBD). Appendix E.6.1 provides in-
formation about implemetation details. Appendices E.6.2 and E.6.3 discuss the initialization of the
algorithm’s variables and describe the hyperparameters. Finally, Appendix E.6.4 detail the specific
hyperparameter configurations used in our numerical experiments for the MNIST and CIFAR-10
datasets. In Appendix E.2 we present the accuracy and loss learning curves for the LCs, shown in
Figures 2.(e)-(f) and Figures 3.(e)-(f), respectively.

E.6.1 IMPLEMENTATION DETAILS

The training procedure mirrors the CNN approach described in Section E.5.1 for CNNs. In the
LC-EBD implementation, the loss and regularization functions detailed in section C.2 are used:

• EBD loss: J (k),

• Entropy objective: J (k)
E ,

• Activation sparsity regularization: J (k)
ℓ1

.

E.6.2 INITIALIZATION OF ALGORITHM VARIABLES

We use the Kaiming uniform initialization for the weights, with a common standard deviation scaling
parameter σW, on both the linear and locally connected layers. The estimated cross-correlation
variable Rh(k)ϵ (linear layers) is initialized with a normal distribution with zero mean and standard
deviation σRlin

. Also, the parameter Rg(k)(H(k,p))ϵ (locally connected layers) is initialized with
Pytorch framework’s Xavier uniform initialization with the gain parameter equal to σRlocal

.

E.6.3 DESCRIPTION OF HYPERPARAMETERS

Table 15 in the CNN section, again describes the notation for the hyperparameters used to train
LCs using the Error Broadcast and Decorrelation (EBD) approach. The convergence parameter λR
introduced in equations (36) and (36) is used as well.

E.6.4 HYPERPARAMETERS FOR MNIST AND CIFAR-10 DATASETS

Table 17, lists the hyperparameters as defined in Table 15, used in the LC-EBD training experiments.

Table 17: Hyperparameters for LC-EBD for both the MNIST and CIFAR-10 datasets, where i de-
notes the epoch index.

Hyperparameter MNIST CIFAR-10

α[i] 10−4 · 0.96−i 10−4 · 0.98−i
µ(d,b,k)[i] 0.1α[i] for k = 0, 1, 2, 3 0.5α[i] for k = 0, 1, 2, 3

10α[i] for k = 4 5α[i] for k = 4
µ(E,k)[i]

[
1 1 1 102 0

]
10−9α[i]

[
1 1 1 10 103

]
10−11α[i]

µ
(k)
ℓ1

[i] [ 1 1 1 10 0 ] 10−11α[i] [ 1 1 1 10 0 ] 10−13α[i]

σW

√
1
6

√
1
6

σRlin
1 1e− 3

σRlocal
1 1e− 1

λd 0.99999 0.99999
λE 0.99999 0.99999
λR 3e− 2 3e− 2
β 1e− 8 1e− 6
ϵL 1e− 8 1e− 8
ϵ 1e− 5 1e− 5
B 16 16
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E.7 IMPLEMENTATION DETAILS FOR DIRECT FEEDBACK ALIGNMENT AND
BACKPROPAGATION BASED TRAINING

This section presents further details on the numerical experiments comparing Direct Feedback
Alignment (DFA) and Backpropagation (BP) methods, conducted under the same training condi-
tions and number of epochs as those used for our proposed EBD algorithm. The results of these
experiments are provided in Tables 1 and 2. We also include the DFA+E method, which extends
DFA by incorporating correlative entropy regularization similar to the EBD. Note that, when the
update on the Rh(k)ϵ is fixed to its initialization, the EBD algorithm reduces to standard DFA.

For BP-based models trained on MNIST and CIFAR-10, we used the Adam optimizer with hyperpa-
rameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8 (Kingma & Ba, 2015). For DFA and DFA+E models,
we again used the Adam optimizer for CNN and LC models, while MLP models were trained using
SGD with momentum.

In Tables 18 and 19, we detail the hyperparameters for models trained with BP, DFA, and DFA+E
update rules on MNIST and CIFAR-10 respectively. Some of the learning rate and the learning rate
decay values or methodologies are linked to the tables corresponding to the hyperparameter details
of its EBD counterpart, where the same method is also utilized for its DFA or DFA+E counterpart.
Unlinked values denote a constant value applied to each layer, or the step decay multiplier applied
per epoch. Additionally, sparsity inducing losses are not utilized for BP, DFA and DFA+E models.

Model Method Learning Rate (µ(d,b,k)) L2 Reg. Coef. LR Decay Epochs
BP 5e− 5 1e− 5 0.96 120

MLP DFA Table-13 Table-13 Table-13 120
DFA+E Table-13 Table-13 Table-13 120

BP 5e− 5 1e− 8 0.97 100
CNN DFA Table-16 1e− 8 0.97 100

DFA+E Table-16 1e− 8 0.97 100
BP 5e− 5 1e− 8 0.96 100

LC DFA Table-17 1e− 8 0.96 100
DFA+E Table-17 1e− 8 0.96 100

Table 18: Hyperparameter details for models trained on the MNIST dataset, including learning rate,
L2 regularization coefficient, learning rate decay, and number of epochs for MLP, CNN, and LC
models using BP, DFA, and DFA+E methods.

Model Method Learning Rate (µ(d,b,k)) L2 Reg. Coef. LR Decay Epochs
BP 5e− 5 1e− 5 0.85 120

MLP DFA Table-14 0 Table-14 120
DFA+E Table-14 0 Table-14 120

BP 5e− 5 1e− 5 0.92 200
CNN DFA Table-16 1e− 5 0.97 200

DFA+E Table-16 1e− 5 0.97 200
BP 1e− 4 1e− 6 0.90 200

LC DFA Table-17 1e− 6 0.96 200
DFA+E Table-17 1e− 6 0.96 200

Table 19: Hyperparameter details for models trained on the CIFAR-10 dataset, including learning
rate, L2 regularization coefficient, learning rate decay, and number of epochs for MLP, CNN, and
LC models using BP, DFA, and DFA+E methods.
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E.8 RUNTIME COMPARISON FOR THE UPDATE RULES

In this section, we present the relative average runtimes from the simulations, normalized to BP
for the MNIST and CIFAR-10 models in Tables 20 and 21 respectively, for the models that we
implemented and demonstrated their performance in Tables 1 and 2.

The results show that entropy regularization in both EBD and DFA+E more than doubles the average
runtime. However, these runtimes could be significantly improved by optimizing the implementation
of the entropy gradient terms, specifically by avoiding repeated matrix inverse calculations. A more
efficient approach would involve directly updating the inverses of the correlation matrices instead
of recalculating both the matrices and their inverses at each step. This strategy aligns with the
CorInfoMax-(EP/EBD) network structure. Nonetheless, we chose not to pursue this optimization,
as CorInfoMax networks already employ it effectively.

The efficiency of the DFA, DFA+E, and EBD methods can be further enhanced through low-level
optimizations and improved implementations.

Table 20: Average Runtimes in MNIST (relative to BP)

Model DFA DFA+E BP EBD
MLP 3.40 7.68 1.0 8.06
CNN 1.68 2.95 1.0 3.85
LC 1.61 3.57 1.0 3.54

Table 21: Average Runtimes in CIFAR-10 (relative to BP)

Model DFA DFA+E BP EBD
MLP 2.85 6.94 1.0 7.61
CNN 2.10 3.24 1.0 4.11
LC 1.35 2.01 1.0 2.41
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E.9 ON THE SCALING OF THE ORTHOGONALITY CONDITIONS

The orthogonality principle in our method is defined as the uncorrelatedness of a given hidden layer
neuron’s activation with all components of the output error. Specifically, for the ith neuron of layer-k
and the jth component of the output error, ϵj , the orthogonality condition is expressed as,

R
h
(k)
i ϵj

= E(h
(k)
i ϵj) = 0, j = 1, . . .m, i = 1, . . . n (38)

where m is the number of output components, and n is the size of activations for layer k.

Based on Equation 38 above, for each hidden layer, there arem x n orhogonality constraints. There-
fore, even if the hidden layer dimensions and/or the network depth increase, the total number of
constraints also increases, making our system less underdetermined. We use constraints for differ-
ent neurons separately to adjust their corresponding weight/bias parameters. In other words, the
constraints in (Eq. A) are used to update the ith row of the jth column of W(k), i.e. W(k)

i,j and the
bias compoent bi.

Note that, more generality of the orthogonality condition for nonlinear estimators offers potential
to increase the number of constraints per hidden layer neuron: We can increase the number of
the orthogonality conditions per neuron even further by considering the fact that uncorrelatedness
requirement is for any function g of hidden layer neuron activations, i.e.,

R
g(h

(k)
i )ϵj

= E(g(h
(k)
i )ϵj) = 0, j = 1, . . .m i = 1, . . . n

Therefore, the number of uncorrelatedness (orthgonality) constraints per hidden layer/output neuron
can be increased by introducing multiple g functions. However, in our numerical experiments we
haven’t pursued this path.

Although the orthogonality conditions scale with the increasing parameter size, the total number
of parameters in the network is in general larger than the number of decorrelation conditions. This
results in fewer constraints than parameters, leading to an overparameterized system, where a unique
optimal estimator cannot be determined solely based on these conditions. But our results show that
the learning rule converges effectively within practical timeframes. Particularly in the case of using
Locally Connected Networks (LC), which are highly overparameterized, the improved performance
and generalization observed strongly validate the practicality of our approach to successfully train
in the overparametrized regime.

Importantly, this issue of overparameterization also exists in standard backpropagation, where the
number of parameters often exceeds the number of training samples, leading to an overparameter-
ized and underdetermined system. In both cases, this overparameterization does not hinder learning;
rather, it is a fundamental characteristic of deep learning. Research has demonstrated that the im-
plicit bias in gradient descent introduces a regularization effect, steering the optimization process
toward solutions that generalize well to unseen data (Soudry et al., 2018).

Similarly, in our method, while the number of orthogonality constraints is smaller than the total
number of network parameters, the system is guided by the statistical properties of the error and
activations. While we cannot claim to fully characterize the implicit regularization effect in our
method, we suggest that these statistical constraints play a role similar to the implicit regularization
observed in regular backpropagation. This helps ensure that the learned parameters are not arbitrary
but are shaped by the decorrelation principles inherent to our framework, contributing to the model’s
generalization capabilities. We believe that investigating the inherent implicit bias in Error Broadcast
and Decorrelation (EBD) opens the door to further understanding how this framework naturally
regularizes the learning process.

To further adress limited-data problems, our method incorporates several regularization techniques:
entropy regularization (encourages the network to utilize the full feature space by spreading acti-
vations), sparsity regularization (enforces sparse activations to reduce redundancy), weight decay
(prevents overfitting by penalizing large weights). These regularizers supplement the orthogonality-
based learning rule, particularly in the limited-data regime, improving generalization and stability.
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F CALCULATION OF THE CORRELATION BETWEEN LAYER ACTIVATIONS AND
OUTPUT ERROR.

Figure 4: The evolution of the average
absolute correlation between layer acti-
vations and the error signal during back-
propagation training of an MLP with two
hidden layers (using the MSE criterion)
on the MNIST dataset, showing the cor-
relation decrease over epochs, on both the
training and test sets.

Figure 1c illustrates the decrease in the average abso-
lute correlation between hidden activations and output
error during backpropagation, using a Multi-layer Per-
ceptron (MLP) model with the architecture outlined in
Table 5, on the CIFAR-10 dataset. Additionally, the fig-
ure 1c shows the correlation throughout training on the
MNIST dataset, employing the MLP model detailed in
Table 4. Details for the MSE based training and the
Cross-Entropy based training are explained in Appen-
dices F.1 and F.2 respectively.

F.1 CORRELATION IN MEAN SQUARED
ERROR (MSE) CRITERION-BASED TRAINING

The MLP models are trained using the Stochastic Gra-
dient Descent (SGD) optimizer with a small learning
rate of 10−4 and the MSE criterion. In both plots, the
initial value represents the correlation before training
begins. The reduction in correlation observed during
training provides insight into the core principle of the
EBD algorithm.

To compute these correlations, we apply a batched ver-
sion of Welford’s algorithm (Chan et al., 1982), which
efficiently calculates the Pearson correlation coefficient
between hidden activations and errors in a memory-
efficient way by using streaming statistics.

Welford’s algorithm works by accumulating the neces-
sary statistics (e.g., sums and sums of squares) across
batches of data and finalizing the correlation computa-
tion only after all data has been processed, avoiding the
need to store all hidden activations simultaneously.

Given the hidden activations h(k) ∈ Rb×N(k)

, where b
is the batch size andN (k) is the number of hidden units,
and the errors ϵ ∈ Rb×k, where k is the number of
output dimensions (e.g., classes); the goal is to compute the Pearson correlation coefficient between
activations hi for each hidden unit i and the corresponding error values across all samples as:

ρ(k) =
Cov(h(k), ϵ)√
σ2
h(k)

√
σ2
ϵ + ϵ

where ϵ is a small constant for numerical stability. Finally, we compute the average of the absolute
values of the correlation coefficients for each hidden layer k to generate the corresponding plots.
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F.2 CORRELATION IN CROSS-ENTROPY CRITERION-BASED TRAINING

Although the orthogonality property is specifically associated with the MSE loss, we also explored
the dynamics of cross-correlation between layer activations and output errors when cross-entropy is
used as the training criterion.

With the same experimental setup as described in Appendix F.1, but replacing the MSE loss with
cross-entropy, we obtained the correlation evolution curves shown in Figure 5a for CIFAR-10 and in
Figure 5b for MNIST dataset. Notably, the correlation between layer activations and output errors
still decreases over epochs, despite the change in the loss function.

(a) (b)

Figure 5: Evolution of the average absolute correlation between layer activations and output errors
during backpropagation training of an MLP with three hidden layers, trained using cross-entropy
loss. (a) CIFAR-10 dataset and (b) MNIST dataset. Despite the use of cross-entropy, correlation
decreases similarly to the MSE criterion.
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