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Abstract

As our primary contribution, we present a convergence theorem for stochastic iterations,
and in particular, Q-learning iterates, under a general, possibly non-Markovian, stochastic
environment. Our conditions for convergence involve an ergodicity and a positivity crite-
rion. We provide a precise characterization on the limit of the iterates and conditions on
the environment and initializations for convergence. As our second contribution, we dis-
cuss the implications and applications of this theorem to a variety of stochastic control
problems with non-Markovian environments involving (i) quantized approximations of fully
observed Markov Decision Processes (MDPs) with continuous spaces (where quantization
breaks down the Markovian structure), (ii) quantized approximations of belief-MDP reduced
partially observable MDPS (POMDPs) with weak Feller continuity and a mild version of
filter stability (which requires the knowledge of the model by the controller), (iii) finite win-
dow approximations of POMDPs under a uniform controlled filter stability (which does not
require the knowledge of the model), and (iv) for multi-agent models where convergence of
learning dynamics to a new class of equilibria, subjective Q-learning equilibria, will be stud-
ied. In addition to the convergence theorem, some implications of the theorem above are
new to the literature and others are interpreted as applications of the convergence theorem.
Some open problems are noted.

1 Introduction

In some stochastic control problems, one does not know the true dynamics or the cost structure, and may
wish to use past data to obtain an asymptotically optimal solution (that is, via learning from past data). In
some problems, this may be used as a numerical method to obtain approximately optimal solutions.

Yet, in many problems including most of those in health, applied and social sciences, and financial mathe-
matics, one may not even know whether the problem studied can be formulated as a fully observed Markov
Decision Process (MDP), or a partially observable Markov Decision Process (POMDP) or a multi-agent
system where other agents are present or not. There are many practical settings where one indeed works
with data and does not know the possibly very complex structure under which the data is generated and
tries to respond to the environment.

A common practical and reasonable response is to view the system as an MDP, with a perceived state and
action (which may or may not define a genuine controlled Markov chain and therefore, the MDP assumption
may not hold in actuality), and arrive at corresponding solutions via some learning algorithm.
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The question then becomes two-fold: (i) Does such an algorithm converge? (ii) If it does, what does the
limit mean for each of the following models: MDPs, POMDPs, and multi-agent models?

We answer the two questions noted above in the paper:

The answer to the first question will follow from a general convergence result, stated in Theorem 2.1 below.
The result will require an ergodicity condition and a positivity condition, which will be specified and will
need to be ensured depending on the specifics of the problem in various forms and initialization conditions.
While our approach builds on Kara & Yüksel (2023a), the generality considered in this paper requires us to
precisely present conditions on ergodicity and positivity, which will be important in applications.

The second question will entail further regularity and assumptions depending on the particular (hidden)
information structure considered, whose implications under several practical and common settings will be
presented.

Some of these have not been reported elsewhere and some will build on prior work though with a unified lens.
We will first study fully observed MDPs with continuous spaces, then POMDPs with continuous spaces, and
finally decentralized stochastic (or multi-agent) control problems.

We first show that under weak continuity conditions and a technical ergodicity condition, Q-learning can be
applied to fully observable MDPs for near optimal performance under discounted cost criteria.

For POMDPs, we show that under a uniform controlled filter stability, finite memory policies can be used
to arrive at near optimality, and with only asymptotic filter stability quantization can be used to arrive at
near optimality, under a mild unique ergodicity condition (which entails the mild asymptotic filter stability
condition) and weak Feller continuity of the non-linear filter dynamics. We note that the quantized ap-
proximations, for both MDPs and belief-MDPs, raise mathematical questions on unique ergodicity and the
initialization, which are also addressed in the paper.

For decentralized stochastic control problems and multi-agent systems, under a variety of information struc-
tures with strictly local information or partial global information, we show that Q-learning can be used to
arrive at equilibria, even though this may be a subjective one (i.e., one which may depend on subjective
modeling or probabilistic assumptions of each agent).

We thus study reinforcement learning in stochastic control under a variety of models and information struc-
tures. The general theme is that reinforcement learning can be applied to a large class of models under a
variety of performance criteria, provided that certain regularity conditions apply for the associated kernels.

We note that these questions and related ones have been studied in the literature starting with Singh et al.
(1994), and Szepesvàri & Smart (2004); Melo et al. (2008), and including the recent studies Chandak et al.
(2024) and Dong et al. (2022), to be discussed further below.

Contributions.

• The main contribution of the paper is Theorem 2.1, where we prove a general convergence result for
a class of, possibly non-Markovian, stochastic iterations applicable to a large class of scenarios.

• In Section 3, we provide several applications and implications of Theorem 2.1. In particular, we
show that Theorem 2.1 can be used to explain the convergence behavior observed in Q learning of
several non-Markovian environments.

(i) We note that the proof of Theorem 2.1, when applied to the standard finite model MDP setup,
also offers an alternative to the standard martingale approach used to prove the convergence
of Q learning (Jaakkola et al. (1994); Tsitsiklis (1994); see also Szepesvári (2010); Bertsekas &
Tsitsiklis (1996a); Meyn (2022) for a general review). In particular, we do not require a separate
proof for the boundedness of the iterates to establish the convergence result.

(ii) Different versions Q learning under space discretization, and Q learning for POMDPs with finite
memory information variables, as well as for multi agent systems have been shown to converge
under various ergodicity assumptions. We show that Theorem 2.1 collectively explains these
convergence results and also allows for further generalizations and relaxations: For example,
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in the context of Theorem 3.2 and Corollary 3.3, Theorem 2.1 allows us to relax the positive
Harris recurrence assumption in (Kara & Yüksel, 2023a, Assumption 3) to only unique ergodicity
which is a much more general condition especially for applications where the state process is
uncountable.

(iii) In Section 3.4, we show that the application of Q learning for POMDPs with quantized (prob-
ability measure valued) belief states will converge under suitable assumptions. Note that this
result is different from the use of finite memory history variables (utilized in Theorem 3.2 and
Corollary 3.3) and is a new result. The complementary convergence conditions, building on the
verification of Theorem 2.1, are stated in the paper with a detailed comparison noted in Remark
3.5.

(iv) The convergence result and its broad applicability raises an open question on the existence of
equilibria where multiple agents learn their best response policies through subjectively updating
their local approximate Q functions (i.e., responding via reinforcement learning under their
subjective MDP models).

1.1 Convergence Notions for Probability Measures

For the analysis of the technical results, we will use different convergence and distance notions for probability
measures.

Two important notions of convergences for sequences of probability measures are weak convergence, and
convergence under total variation. For some N ∈ N, a sequence {µn, n ∈ N} in P(X) is said to converge
to µ ∈ P(X) weakly if

∫
X c(x)µn(dx) →

∫
X c(x)µ(dx) for every continuous and bounded c : X → R. One

important property of weak convergence is that the space of probability measures on a complete, separable,
and metric (Polish) space endowed with the topology of weak convergence is itself complete, separable, and
metric (Parthasarathy, 1967). One such metric is the bounded Lipschitz metric (Villani, 2008, p.109), which
is defined for µ, ν ∈ P(X) as

ρBL(µ, ν) := sup
∥f∥BL≤1

|
∫

fdµ −
∫

fdν| (1)

where
∥f∥BL := ∥f∥∞ + sup

x ̸=y

|f(x) − f(y)|
d(x, y) , and ∥f∥∞ = sup

x∈X
|f(x)|.

We next introduce the first order Wasserstein metric. The Wasserstein metric of order 1 for two distributions
µ, ν ∈ P(X) is defined as

W1(µ, ν) = inf
η∈H(µ,ν)

∫
X×X

η(dx, dy)|x − y|,

where H(µ, ν) denotes the set of probability measures on X × X with the first marginal µ and the second
marginal ν. Furthermore, using the dual representation of the first order Wasserstein metric, we equivalently
have

W1(µ, ν) = sup
Lip(f)≤1

∣∣∣∣∫ f(x)µ(dx) −
∫

f(x)ν(dx)
∣∣∣∣

where Lip(f) is the minimal Lipschitz constant of f .

A sequence {µn} is said to converge in W1 to µ ∈ P(X) if W1(µn, µ) → 0. For compact X, the Wasserstein
distance of order 1 metrizes the weak topology on the set of probability measures on X (see (Villani, 2008,
Theorem 6.9)). For non-compact X convergence in the W1 metric implies weak convergence (in particular
this metric bounds from above the bounded-Lipschitz metric (Villani, 2008, p.109), which metrizes the weak
convergence).

For probability measures µ, ν ∈ P(X), the total variation metric is given by

∥µ − ν∥T V = 2 sup
B∈B(X)

|µ(B) − ν(B)| = sup
f :∥f∥∞≤1

∣∣∣∣∫ f(x)µ(dx) −
∫

f(x)ν(dx)
∣∣∣∣ ,
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where the supremum is taken over all measurable real f such that ∥f∥∞ = supx∈X |f(x)| ≤ 1. A sequence
µn is said to converge in total variation to µ ∈ P(X) if ∥µn − µ∥T V → 0. We refer the reader to (Saldi et al.,
2020, Sections 3 and 5) for further discussions on spaces of probability measures.

2 A Q-Learning Convergence Theorem under Non-Markovian Environments

Q-learning under non-Markovian settings have been studied recently in a few publications, e.g. Dong et al.
(2022); Chandak et al. (2024); Kara & Yüksel (2023a). Prior to such recent studies, we note that Singh et al.
(1994) showed the convergence of Q-learning for POMDPs with measurements viewed as state variables under
certain conditions involving unique ergodicity of the hidden state process under the exploration. However,
what the limit means for the original POMDP was not studied.

Recently, Kara & Yüksel (2023a) showed the convergence of Q-learning with finite window measurements
and showed near optimality of the resulting limit under filter stability conditions. In the following, we will
adapt the proof method in Kara & Yüksel (2023a) to the setup where the environment is an ergodic process
but also generalize the class of problems for which the limit of the iterates can be shown to imply near
optimality (for POMDPs) or near-equilibrium (for stochastic games).

The convergence result will serve complement to two highly related recent studies: Dong et al. (2022) and
Chandak et al. (2024), but with both different contexts and interpretations as well as mathematical analysis.

Dong et al. (2022) presents a general paradigm of reinforcement learning under complex environments where
an agent responds with the environment. A regret framework is considered, where the regret comparison is
with regard to policies from a possibly suboptimal collection of policies. The variables are assumed to be
finite, even though an infinite past dependence is allowed. The distortion measure for approximation is a
uniform error among all past histories which are compatible with the presumed state. A uniform convergence
result for the convergence of time averages is implicitly imposed in the paper. Chandak et al. (2024) considers
the convergence of Q-learning under non-Markovian environments where the cost function structure is aligned
with the paradigm in Dong et al. (2022). The setup in Chandak et al. (2024) assumes that the realized cost
is a measurable function of the assumed finite state, a finite-space valued observable realization and the finite
action; furthermore a continuity and measurability condition for the infinite dimensional observable process
history is imposed which may be restrictive given the infinite dimensional history process and subtleties
involved for such conditioning operations, e.g. in the theory of non-linear filtering processes Chigansky &
Handel (2010). Chandak et al. (2024) pursues an ODE method for the convergence analysis (which was
pioneered in Borkar & Meyn (2000)).

Regarding the comment on the infinite past dependence, the approximations in both Dong et al. (2022) and
Chandak et al. (2024) require a worst case error in a sample-path sense, which, for example, is too restrictive
for POMDPs, as it has been studied in Kara & Yüksel (2023a) and Kara & Yüksel (2022). Notably the term
Lt defined below in (10) is more natural and relaxed under filter stability conditions.

In our setup, there is an underlying model, the true incurred costs admit exogenous uncertainty which
impacts the realized costs, and the considered hidden or observable random variables may be uncountable
space valued. We adopt the general and concise proof method presented in Kara & Yüksel (2023a) (and
Kara et al. (2023)), tailored to ergodic non-Markovian dynamics, to allow for convergence to a limit. The
generality of our setup requires us to precisely present conditions for convergence.

Let {Ct}t be R-valued, {St}t be S-valued and {Ut}t be U-valued three stochastic processes. Consider the
following iteration defined for each (s, u) ∈ S × U pair

Qt+1(s, u) = (1 − αt(s, u)) Qt(s, u) + αt(s, u) (Ct + βVt(St+1)) (2)

where Vt(s) = minu∈U Qt(s, u), and αt(s, u) is a sequence of constants also called the learning rates. We
assume that the process Ut is selected so that the following conditions hold. An umbrella sufficient condition
is the following:
Assumption 2.1. S,U are finite sets, and the joint process (St+1, St, Ut, Ct)t≥0 is asymptotically ergodic
in the sense that for the given initialization random variable S0, for any measurable bounded function f , we
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have that with probability one,

1
N

N−1∑
t=0

f(St+1, St, Ut, Ct) →
∫

f(s1, s, u, c)π(ds1, ds, du, dc)

for some measure π such that π(S × s × u × R) > 0 for any (s, u) ∈ S × U.
Remark 2.1. Although we assume that S,U are finite, we will sometimes use the integral sign instead of
the summation sign for notational convenience and consistency, where we simply use the counting measure
for finite spaces.
Remark 2.2. The assumption that π(S × s × u × R) > 0 for any (s, u) ∈ S × U is in the same spirit
as the standard condition for reinforcement algorithms that every state-action pair is visited infinitely often
during training. We note that it is possible to relax this condition as we will see in Assumption 3.4, if one is
only interested in the convergence of the algorithm. In particular, we might consider a measure π such that
π(S × s × u × R) > 0 for all (s, u) ∈ B ⊂ S × U, for some subset B, where the set B represents so called
trained state-action pairs. For the learned policies to be optimal, however, one needs to make sure that the
controlled process stays within the trained part of the system during the execution of an optimal policy.

The above implies Assumption 2.2(ii)-(iii) below:
Assumption 2.2. i. αt(s, u) = 0 unless (St, Ut) = (s, u). Furthermore,

αt(s, u) = 1
1 +

∑t
k=0 1{Sk=s,Uk=u}

and with probability 1,
∑

t αt(s, u) = ∞

ii. For Ct, we have, as t → ∞, ∑t
k=0 Ck1{Sk=s,Uk=u}∑t

k=0 1{Sk=s,Uk=u}
→ C∗(s, u),

almost surely for some function C∗.

iii. For the St process, we have, for any function f , as t → ∞,∑t
k=0 f(Sk+1)1{Sk=s,Uk=u}∑t

k=0 1{Sk=s,Uk=u}
→

∫
f(s1)P ∗(ds1|s, u)

almost surely for some P ∗.

Note that a stationarity assumption is not required. Under Assumption 2.1, we have that with
f(St+1, St, Ut, Ct) = Ct1{St=s,Ut=u}, as N → ∞,

1
N

N−1∑
t=0

Ct1{St=s,Ut=u} →
∫

C∈R
Cπ(S = s, U = u, dC).

We also have that with f(St+1, S1, Ut, Ct) = 1{St=s,Ut=u}, as N → ∞,

1
N

N−1∑
t=0

1{St=s,Ut=u} → π(S = s, U = u)

almost surely. Hence, we can write

1
t+1

∑t
k=0 Ck1{Sk=s,Uk=u}

1
t+1

∑t
k=0 1{Sk=s,Uk=u}

→
∫

Cπ(dC|S = s, U = u) =: C∗(s, u)
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which implies Assumption 2.2 (ii). Similarly, one can also establish Assumption 2.2 (iii) under Assumption
2.1.

As before, let S,U be finite sets. Consider the following equation

Q∗(s, u) = C∗(s, u) + β
∑
s1∈S

V ∗(s1)P ∗(s1|s, u) (3)

for some functions Q∗, C∗, to be defined explicitly, and for some regular conditional probability distribution
P ∗(·|s, u), where V ∗(u) := minu Q∗(s, u).
Theorem 2.1. Under Assumption 2.2, Qt(s, u) → Q∗(s, u) almost surely for each (s, u) ∈ S×U pair where
Q∗ satisfies (3), for any initialization of Q0.

Proof. We adapt the proof method presented in (Kara & Yüksel, 2023a, Theorem 4.1), where instead of
positive Harris recurrence, we build on ergodicity. We first prove that the process Qt, determined by the
algorithm in (2), converges almost surely to Q∗. We define

∆t(s, u) := Qt(s, u) − Q∗(s, u)
Ft(s, u) := Ct + βVt(St+1) − Q∗(s, u)

F̂t(s, u) := C∗(s, u) + β
∑
s1

Vt(s1)P ∗(s1|s, u) − Q∗(s, u),

where Vt(s) = minu Qt(s, u).

Then, we can write the following iteration

∆t+1(s, u) = (1 − αt(s, u))∆t(s, u) + αt(s, u)Ft(s, u).

Now, we write ∆t = δt + wt such that

δt+1(s, u) = (1 − αt(s, u))δt(s, u) + αt(s, u)F̂t(s, u)
wt+1(s, u) = (1 − αt(s, u))wt(s, u) + αt(s, u)rt(s, u)

where rt := Ft − F̂t = βVt(St+1) − β
∑

s1
Vt(s1)P ∗(s1|s, u) + Ct − C∗(s, u). Next, we define

r∗
t (s, u) = βV ∗(St+1) − β

∑
s1

V ∗(s1)P ∗(s1|s, u) + Ct − C∗(s, u)

We further separate wt = ut + vt such that

ut+1(s, u) = (1 − αt(s, u))ut(s, u) + αt(s, u)et(s, u)
vt+1(s, u) = (1 − αt(s, u))vt(s, u) + αt(s, u)r∗

t (s, u)

where et = rt − r∗
t .

We now show that vt(s, u) → 0 almost surely for all (s, u). We have

vt+1(s, u) = (1 − αt(s, u))vt(s, u) + αt(s, u)r∗
t (s, u).

When the learning rates are chosen such that αt(s, u) = 0 unless (St, Ut) = (s, u), and,

αt(s, u) = 1
1 +

∑t
k=0 1{Sk=s,Uk=u}

this term reduces to

vt+1(s, u) =
∑t

k=0 r∗
k(s, u)1{Sk=s,,Uk=u} + v0(s, u)
1 +

∑t
k=0 1{Sk=s,Uk=u}

.
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Recall that

r∗
k(s, u) = βV ∗(Sk+1) − β

∑
s1

V ∗(s1)P ∗(s1|s, u) + Ck − C∗(s, u).

Hence, it is a direct implication of Assumption 2.2 that vt(s, u) → 0 almost surely for all (s, u).

Now, we go back to the iterations:

δt+1(s, u) = (1 − αt(s, u))δt(s, u) + αt(s, u)F̂t(s, u)
ut+1(s, u) = (1 − αt(s, u))ut(s, u) + αt(s, u)et(s, u)
vt+1(s, u) = (1 − αt(s, u))vt(s, u) + αt(s, u)r∗

t (s, u).

Note that, we want to show ∆t = δt + ut + vt → 0 almost surely and we have that vt(s, u) → 0 almost surely
for all (s, u). The following analysis holds for any path that belongs to the probability one event in which
vt(s, u) → 0. For any such path and for any given ϵ > 0, we can find an N < ∞ such that ∥vt∥∞ < ϵ for all
t > N as (s, u) takes values from a finite set.

We now consider the term δt + ut for t > N :

(δt+1 + ut+1)(s, u) = (1 − αt(s, u))(δt + ut)(s, u) + αt(s, u)(F̂t + et)(s, u). (4)

Observe that for t > N ,

(F̂t + et)(s, u) = (Ft − r∗
t )(s, u) = βVt(St+1) − βV ∗(St+1) ≤ β max

s,u
|Qt(s, u) − Q∗(s, u)| = β∥∆t∥∞

≤ β∥δt + ut∥∞ + βϵ

where the last step follows from the fact that vt → 0 almost surely. By choosing C < ∞ such that
β̂ := β(C + 1)/C < 1, for ∥δt + ut∥∞ > Cϵ, we can write that

β∥δt + ut + ϵ∥∞ ≤ β̂∥δt + ut∥∞.

Now we rewrite (4)

(δt+1 + ut+1)(s, u) = (1 − αt(s, u))(δt + ut)(s, u) + αt(s, u)(F̂t + et)(s, u)
≤ (1 − αt(s, u))(δt + ut)(s, u) + αt(s, u)β̂∥δt + ut∥∞ (5)
< ∥δt + ut∥∞

Hence maxs,u((δt+1 + ut+1)(s, u)) monotonically decreases for ∥δt + ut∥∞ > Cϵ and hence there are two
possibilities: it either gets below Cϵ or it never gets below Cϵ in which case by the monotone non-decreasing
property it will converge to some number, say M1 with M1 ≥ Cϵ.

First, we show that once the process hits below Cϵ, it always stays there. Suppose ∥δt + ut∥∞ < Cϵ,

(δt+1 + ut+1)(s, u) ≤ (1 − αt(s, u))(δt + ut)(s, u) + αt(s, u)β (∥δt + ut∥∞ + ϵ)
≤ (1 − αt(s, u))Cϵ + αt(s, u)β(Cϵ + ϵ)
= (1 − αt(s, u))Cϵ + αt(s, u)β(C + 1)ϵ
≤ (1 − αt(s, u))Cϵ + αt(s, u)Cϵ, (β(C + 1) ≤ C)
= Cϵ.

To show that M1 ≥ Cϵ is not possible, we start by (5), we have that for all (s, u)

|(δk+1 + uk+1)(s, u)| ≤ (1 − αk(s, u)) |(δk + uk)(s, u)| + αk(s, u)β̂∥δk + uk∥∞
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Assume ∥δk + uk∥∞ is bounded by some K0 < ∞ for all k, which we can always do since it is a decreasing
sequence. One can then iteratively show that these iterations are bounded from above by the sequence
solving the following dynamics

|ζk+1(s, u)| = (1 − αk(s, u)) |ζk(s, u)| + αk(s, u)β̂K0.

Thus, ζk(s, u) will converge to the value β̂K0 for any initial point and starting from any time instance k.
This follows since under the assumed learning rates, the iterates will converge to the averages of the constant
β̂K0. Hence, the sequence ∥δk + uk∥∞ will eventually become smaller than β̂K0 + κ0 for any arbitrarily
small κ0 > 0. Similarly, once the sequence is bounded by some K1 := β̂K0 + κ1 (where κ1 > 0 is arbitrarily
small), they will eventually get smaller than β̂K1 +κ for any κ > 0. Repeating the same argument, it follows
that ∥δk + uk∥∞ will hit below Cϵ eventually, in finite time.

This shows that the condition ∥δt+ut∥∞ > Cϵ cannot be sustained indefinitely for some fixed C (independent
of ϵ). Hence, (δt + ut) process converges to some value below Cϵ for any path that belongs to the probability
one set. Then, we can write ∥δt + ut∥∞ < Cϵ for large enough t. Since ϵ > 0 is arbitrary, taking ϵ → 0, we
can conclude that ∆t = δt + ut + vt → 0 almost surely.

Therefore, the process Qt, determined by the algorithm in (2), converges almost surely to Q∗.

2.1 An Example: Machine Replacement with non i.i.d. Noise

In this section we study the implications of the previous result on a machine replacement problem where the
state process is not controlled Markov.

In this model, we have X,U,W = {0, 1} with

xt =
{

1 machine is working at time t
0 machine is not working at time t .

ut =
{

1 machine is being repaired at time t
0 machine is not being repaired at time t .

We assume that the noise variable wt is not i.i.d. but is a Markov process with transition kernel

Pr(wt+1 = 0|wt = 0) = 0.9, P r(wt+1 = 0|wt = 1) = 0.4

Give the noise, we have the dynamics xk+1 = f(xk, uk, wk) for the controlled state process

x1 = 0 if x = 0, u = 0, w = 0, x1 = 0 if x = 0, u = 0, w = 1
x1 = 1 if x = 0, u = 1, w = 0, x1 = 0 if x = 0, u = 1, w = 1
x1 = 1 if x = 1, u = 0, w = 0, x1 = 0 if x = 1, u = 0, w = 1
x1 = 1 if x = 1, u = 1, w = 0, x1 = 0 if x = 1, u = 1, w = 1

In words, if the noise w = 1 then the machine breaks down at the next time step independent of the repair
or the state of the machine. If the noise is not present, i.e. w = 0 then the machine is fixed if we decide to
repair it, but stays broken if it was broken at the last step and we did not repair it.

The one stage cost function is given by

c(x, u) =


R + E x = 0, u = 1
E x = 0, u = 0
0 x = 1, u = 0
R x = 1, u = 1

where R is the cost of repair and E is the cost incurred by a broken machine.

We study the example with discount factor β = 0.7, and R = 1, E = 1.5. For the exploration policy, we use
a random policy such that Pr(ut = 0) = 1

2 and Pr(ut = 1) = 1
2 for all t.
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Note that the state process xt is no longer a controlled Markov chain. However, we can check that Assumption
2.2 holds and that we can apply Theorem 2.1 to show that Q learning algorithm will converge. In particular,
one can show that the joint process (xt, wt) forms a Markov chain under the exploration policy, and admits
a stationary distribution, say π such that

π(x = 0, w = 0) = 0.145, π(x = 0, w = 1) = 0.127, π(x = 1, w = 0) = 0.654, π(x = 1, w = 1) = 0.0728.

Hence, the Q learning algorithm constructed using st = xt will converge to the Q values of an MDP with
the following transition probabilities:

P ∗(s1|s, u) =
∑

w 1{s1=f(s,u,w)}π(s, u, w)∑
w π(s, u, w) (6)

where π(s, u, w) = 1
2 π(s, w) for the exploration policy we use.

In Figure 1, on the left we plot the learned value functions for the non-Markov state process when we take
st = xt. The plot on the right represents the learned value function when we simulate the environment as
an MDP with the transition kernel P ∗ given in (6). One can see that they converge to the same values as
expected from the theoretical arguments.

Figure 1: Q value convergence for non Markov and Markov state.

A further note is that since the state process is not Markov, the learned policies are not optimal. In particular,
the Q leaning algorithm with st = xt learns the policy

γ1(1) = 0, γ1(0) = 1.

Via simulation, the value of this policy can be found to be around 2.41 when the initial state, and the initial
noise are uniformly distributed.

However, one can also construct the Q learning with st = (xt, xt−1) (which is still not a Markovian state,
however). The learned policy in this case is

γ2(s) =
{

1 if s = (0, 0)
0 otherwise

The value of this policy can be simulated to be around 2.35, again when the initial state, and the initial
noise are uniformly distributed. Thus, it performs better than the policy for the state variable st = xt.

In the following, we will discuss a number of applications, together with conditions under which the limit of
the iterates are near-optimal.

9
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3 Implications and Applications under Various Information Structures

In this section, we study the implications and applications of the convergence result in Theorem 2.1; some
of the applications and refinements are new and some are from recent results viewed in a unified lens.

We first start with a brief review involving Markov Decision Processes. Consider the model xt+1 =
f(xt, ut, wt), where xt is an X-valued state variable, ut a U-valued control action variable, wt a W-valued
i.i.d noise process, and f a function, where X,U,W are appropriate spaces, defined on some probability space
(Ω, F , P ). By, e.g. (Gihman & Skorohod, 2012, Lemma 1.2), the model above contains processes satisfying
the following for all Borel B and t ≥ 0

P (xt+1 ∈ B|x[0,t] = a[0,t], u[0,t] = b[0,t]) = P (xt+1 ∈ B|xt = at, ut = bt) =: T (B|at, bt) (7)

where T (·|x, u) is a stochastic kernel from X × U to X. Here, x[0,t] := {x0, x1, · · · , xt}. A stochastic process
which satisfies (7) is called a controlled Markov chain. Let the control actions ut be generated via a control
policy γ = {γt, t ≥ 0} with ut = γt(It), where It is the information available to the Decision Maker (DM) or
controller at time t. If It = {x0, · · · , xt; u0, · · · , ut−1}, we have a fully observed system and an optimization
problem is referred to as a Markov Decision Process (MDP). As an optimization criterion, given a cost
function c : X×U → R+, one may consider Jβ(x, γ) = Eγ

x [
∑∞

t=0 βtc(xt, ut)], for some β ∈ (0, 1) and x0 = x.
This is called a discounted infinite-horizon optimal control problem Bertsekas (1976).

If the DM has only access to noisy measurements yt = g(xt, vt), with vt being another i.i.d. noise, and
It = {y0, · · · , yt; u0, · · · , ut−1}, we then have a Partially Observable Markov Decision Process (POMDP).
We let O(yt ∈ ·|xt = x) denote the transition kernel for the measurement variables. We will assume that c
is continuous and bounded, though the boundedness can be relaxed.

We assume in the following that X is a compact subset of a Polish space and that Y is finite. We assume
that U is a compact set. However, without any loss, but building on (Saldi et al., 2018, Chapter 3), under
weak Feller continuity conditions (i.e., E[f(x1)|x0 = x, u0 = u] is continuous in (x, u) ∈ X × U for every
bounded continuous f), we can approximate U with a finite set with an arbitrarily small performance loss.
Accordingly, we will assume that this set is finite.

The same applies when a POMDP is reduced to a belief-MDP and the belief-MDP is weak Feller: POMDPs
can be reduced to a completely observable Markov process Yushkevich (1976); Rhenius (1974), whose states
are the posterior state distributions or beliefs:

πt( · ) := P{Xt ∈ · |Y0, . . . , Yt, U0, . . . , Ut−1} ∈ P(X),

where P(X) is the set of probability measures on X. We call πt the filter process, whose transition probability
can be constructed via a Bayesian update. With

F (π, u, y) := P{Xt+1 ∈ · |πt = π, ut = u, yt+1 = y},

and the stochastic kernel
K( · |π, u) = P{yt+1 ∈ · |πt = π, ut = u},

we can write a transition kernel, η, for the belief process:

η( · |π, u) =
∫
Y

1{F (π,u,y)∈ · }K(dy|π, u). (8)

The equivalent cost function is
c̃(πt, ut) :=

∫
X

c(x, ut)πt(dx).

Thus, the filter process defines a belief-MDP with kernel η. The kernel η is a weak Feller kernel if (a) If T
is weakly continuous and the measurement kernel O(yt ∈ ·|xt = x) is total variation continuous Feinberg
et al. (2016) (see also Crisan & Doucet (2002)), or (b) if the kernel T is total variation continuous (with no
assumptions on O) Kara et al. (2019).
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Wasserstein regularity of η is studied in Demirci et al. (2023). We will also consider multi-agent models, to
be discussed further below.

Recall (3) which is the limit of the Q iterates if they converge:

Q∗(s, u) = C∗(s, u) + β
∑
s1∈S

V ∗(s1)P ∗(s1|s, u).

We note that these Q values correspond to an MDP model with state space S, the action space U, the
stage-wise cost function is C∗(s, u) and the transition model is P ∗(s1|s, u). Hence, the policies constructed
using these Q values are optimal for the corresponding MDP. In the following, we will present some bounds
in terms of how ‘close’ the original control model, and the approximate MDP model the limit Q values
correspond to are.

3.1 Finite MDPs

Consider a finite MDP where the state process xt takes values in some finite set X, the control action process
ut takes values in some finite set U. The dynamics for the state process is governed by the following

xt+1 ∼ P ∗(·|xt, ut)

and at each time t, the controller receives a stage-wise cost

c(xt, ut).

Corollary 3.1 (Corollary to Theorem 2.1). The iterations in (2) converges a.s. with St = xt and Ct =
c(xt, ut), if the learning rates αt satisfy Assumption 2.2(i). Furthermore, the limit Q∗ is the optimal Q values
of the system.
Remark 3.1. This, of course, is a standard result Watkins & Dayan (1992); Tsitsiklis (1994); Baker (1997);
Szepesvári & Littman (1999); Szepesvári (2010); Bertsekas & Tsitsiklis (1996b). However, we emphasize that
different from the standard martingale proof (e.g. Jaakkola et al. (1994); Tsitsiklis (1994)), we do not need
to separately establish the boundedness of the iterates due to the convergence property. Accordingly, the
above can also be seen as an alternative proof of the standard Q-learning algorithm, though we restrict the
exploration policy (unlike the standard proof where such a restriction is not needed as long as each state action
pair is visited infinitely often with no ergodicity condition, together with standard summability conditions).
We also note that avoiding the boundedness of the iterates is essential to extend the result to non-Markovian
environments.

3.2 Quantized Q-Learning for Weakly Continuous MDPs with General Spaces

In this section, we assume that X is a compact subset of a Polish space and that Y and U are finite sets. We
use d(x, x′) to metrize the space X for any x, x′ ∈ X.

Consider a controlled Markov chain Xt whose dynamics are determined by

Xt+1 ∼ T (·|xt, ut).

Furthermore, let Ct := c(Xt, Ut) take values from a bounded set. The controller observes the cost realizations
and some noisy version of the hidden state variable. In particular, we assume that the controller observes
the measurement process Yt as

Yt = g(Xt, Vt) (9)

for some measurable function g and for some i.i.d. noise process Vt.

In the following, we let the measurement structure be so that it corresponds to a quantization of the state
variable Xt: We discretize continuous MDPs, where the state space X is quantized such that for disjoint
{Bi}M

i=1 with ∪M
i=1Bi = X, we define a finite set S = {y1, . . . , ym} and write

yi = g(x), if x ∈ Bi.
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We take Sk = g(Xk) = Yk. Therefore, the problem can be seen as a POMDP and thus an adaptation of
Assumption 2.1 will guarantee the convergence of the iterations in (2). In particular, we present the following
assumption that implies Assumption 2.1 in the context of quantized MDPs.
Assumption 3.1. Under the exploration policy γ and initialization, the controlled state and control action
joint process {Xt, Ut} is asymptotically ergodic in the sense that for any measurable bounded function f we
have that

lim
N→∞

1
N

N−1∑
t=0

f(Xt, Ut) =
∫

f(x, u)πγ(dx, du)

for some πγ ∈ P(X × U) such that πγ(Bi × u) > 0 for any quantization bin Bi and for any u ∈ U.

We note that a sufficient condition for the ergodicity assumption, for every initialization of X0, would be
positive Harris recurrence under the exploration policy.
Corollary 3.2 (Corollary to Theorem 2.1). The iterations given in (2) converges almost surely under
Assumption 3.1 and Under Assumption 2.2 (i) with Sk = g(Xk) = Yk and Ck = c(Xk, Uk).

The limit Q values correspond to an approximate control model (see Kara et al. (2023)). For near optimality
of the learned polices (Kara et al., 2023, Corollary 12) notes the following:
Assumption 3.2. (a) X is compact.

(b) There exists a constant αc > 0 such that |c(x, u) − c(x′, u)| ≤ αcd(x, x′) for all x, x′ ∈ X and for all
u ∈ U.

(c) There exists a constant αT > 0 such that W1(T (·|x, u), T (·|x′, u)) ≤ αT d(x, x′) for all x, x′ ∈ X and
for all u ∈ U.

Theorem 3.1. (Kara et al., 2023, Corollary 12)

(a) Let Assumption 3.2 hold . Then, for the policy constructed from the limit Q values, say γ̂, we have

sup
x0∈X

∣∣Jβ(x0, γ̂) − J∗
β(x0)

∣∣ ≤ 2αc

(1 − β)2(1 − βαT ) L̄.

where

L̄ := max
i=1,...,M

sup
x,x′∈Bi

d(x, x′).

(b) Saldi et al. (2017) For asymptotic convergence (without a rate of convergence) to optimality as the
quantization rate goes to ∞, only weak Feller property of T is sufficient for the the algorithm to be
near optimal.

Remark 3.2. Further error bounds under different set of assumptions, such as for systems with non-compact
state space X and non-uniform quantization and models with total variation continuous transition kernels
can be found in Kara et al. (2023). Q-learning for average cost problems involving continuous space models
has recently been studied in Kara & Yüksel (2023b).

3.3 Finite Window Memory POMDP with Uniform Geometric Controlled Filter Stability

We now assume that X is a compact subset of a Polish space and that Y and U are finite sets.

Suppose that the controller keeps a finite window of the most recent N observation and control action
variables, and perceives this as the state variable, which is in general non-Markovian. That is we take

St = {Y[t−N,t], U[t−N,t−1]},

and Ct := c(Xt, Ut).

In this case, the pair (St, Xt, Ut) forms a controlled Markov chain, even if (St, Ut) does not. We state the
ergodicity assumption formally next.
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Assumption 3.3. (i) Under the exploration policy γ and initialization, and the controlled state and
control action joint process {Xt, Ut} is asymptotically ergodic in the sense that for any measurable
bounded function f we have that

lim
N→∞

1
N

N−1∑
t=0

f(Xt, Ut) =
∫

f(x, u)πγ(dx, du)

for some πγ ∈ P(X × U). Furthermore, we have that P (Yt = y|x) > 0 for every x ∈ X.

(ii) Assumption 2.1(i) holds with St = {Y[t−N,t], U[t−N,t−1]}.

We note that a sufficient condition for the ergodicity assumption, for every initialization of X0, would be
positive Harris recurrence under the exploration policy.
Corollary 3.3. [Corollary to Theorem 2.1] Under Assumption 3.3 and Assumption 2.2(i), the iterations in
(2) converges a.s. with St = {Y[t−N,t], U[t−N,t−1]} and Ct := c(Xt, Ut).

The question then is whether the limit Q values correspond to a meaningful control problem, and how
‘close’ this control problem is to the original POMDP. We denote by Jβ(π−

N , T , γN ) the value of the partially
observed control problem when the initial prior measure of the hidden state XN at time N is given by π−

N

and when we use finite window control policy. In particular, the costs are incurred after the N -measurements
are collected. (Kara & Yüksel, 2023a, Theorem 4.1) shows that the limit Q values indeed correspond to an
approximate control problem, and notes the following bound on the optimality gap for the finite window
control policies:
Theorem 3.2. (Kara & Yüksel, 2023a, Theorem 4.1) If we denote the policies constructed using the limit
Q values by γN , and apply γN in the original problem, we obtain the following error bound:

E
[
Jβ(π−

N , T , γN ) − J∗
β(π−

N , T )|IN
0

]
≤ 2∥c∥∞

(1 − β)

∞∑
t=0

βtLt

where IN
0 is the first N observation and control variables, that is

IN
0 = {Y0, . . . , YN , U0, . . . , UN−1}

and the expectation is taken with respect to different realizations of IN
0 under the initial distribution of the

hidden state π0 and the initialization policy used in the first N time steps. Furthermore,

π−
N = P (XN ∈ ·|IN

0 )

and

Lt := sup
γ̂∈Γ̂

Eγ̂

π−
0

[
∥P π−

t (Xt+N ∈ ·|Y[t,t+N ], U[t,t+N−1]) − P π∗
(Xt+N ∈ ·|Y[t,t+N ], U[t,t+N−1])∥T V

]
(10)

and π∗ is the invariant measure on xt under the exploration policy γ.
Remark 3.3. Theorem 2.1 allows us to relax the positive Harris recurrence assumption in (Kara & Yüksel,
2023a, Assumption 3) to only unique ergodicity which is a significantly more relaxed condition for applications
where the state process is uncountable.
Remark 3.4. The term Lt is related to the filter stability problem, and explicit bounds for this can be found
in (Kara & Yüksel, 2023a, Section 5), notably building on McDonald & Yüksel (2020): Recall the following
Definition 3.1. (Dobrushin, 1956, Equation 1.16) For a kernel operator K : S1 → P(S2) (that is a regular
conditional probability from S1 to S2) for standard Borel spaces S1, S2, we define the Dobrushin coefficient
as:

δ(K) = inf
n∑

i=1
min(K(x, Ai), K(y, Ai)) (11)

where the infimum is over all x, y ∈ S1 and all partitions {Ai}n
i=1 of S2.
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This definition holds for both continuous or finite/countable spaces S1 and S2 and 0 ≤ δ(K) ≤ 1 for any
kernel operator. Let

δ̃(T ) := inf
u∈U

δ(T (·|·, u)).

We then have that (Kara & Yüksel, 2023a, Section 5)

Lt ≤ ((1 − δ̃(T ))(2 − δ(O)))N .

3.4 Quantized Approximations for Weak Feller POMDPs with only Asymptotic Filter Stability

We again assume that X is a compact subset of a Polish space and that Y and U are finite sets.

As noted earlier, any POMDP can be reduced to a completely observable Markov process (Yushkevich (1976),
Rhenius (1974)) (see (8)), whose states are the posterior state distributions or beliefs of the observer; that
is, the state at time t is

πt( · ) := P{Xt ∈ · |y0, . . . , yt, u0, . . . , ut−1} ∈ P(X).

We call this conditional probability measure process the filter process.

Recall the kernel η (8) for the filter process. Now, by combining the quantized Q-learning above in Section
3.2 and the weak Feller continuity results for the non-linear filter kernel (Feinberg et al. (2016) Kara et al.
(2019)), we can conclude that the setup in Section 3.2 is applicable though with a significantly more tedious
analysis involving ergodicity requirements. Additionally, one needs to quantize probability measures (that
is, beliefs or filter realizations). Accordingly, we take St = g(πt) for some quantizer

g : P(X) → P(X)M =: {B1, B2, · · · , B|P(X)M |},

with |P(X)M | < ∞, and Ct := c(Xt, Ut).

We state the ergodicity condition formally:
Assumption 3.4. Under the exploration policy γ and initialization, the controlled belief state and control
action joint process {πt, Ut} is asymptotically uniquely ergodic in the sense that for any measurable bounded
function f we have that

lim
N→∞

1
N

N−1∑
t=0

f(πt) =
∫

f(π)ηγ(dπ)

for some ηγ ∈ P(P(X) × U).

We refer to the set
Pη := {π : π ∈ Bi ⊂ P(X) : ηγ(Bi) > 0},

as the trained set of states; since these sets will be visited infinitely often under the exploration policy.

Unique ergodicity of the dynamics follows from results in the literature, such as, (Masi & Stettner, 2005,
Theorem 2) and (van Handel, 2009, Prop 2.1), which hold when the randomized control is memoryless under
mild conditions on the process notably that the hidden variable is a uniquely ergodic Markov chain and
the measurement structure satisfies filter stability in total variation in expectation (one can show that weak
merging in expectation also suffices); we refer the reader to (McDonald & Yüksel, 2024, Figure 1) for mild
conditions leading to filter stability in this sense, which is related to stochastic observability (McDonald &
Yüksel, 2024, Definition II.1). Notably, a uniform and geometric controlled filter stability is not required
even though this would be sufficient. Therefore, due to the weak Feller property of controlled non-linear
filters, we can apply the Q-learning algorithm to also belief-based models to arrive at near optimal control
policies. Nonetheless, since positive Harris recurrence cannot be assumed for the filter process, the initial
state of the filter process may not be arbitrary: If the invariant measure under the exploration policy is the
initial state (of the filter process), (van Handel, 2009, Prop 2.1) implies that the time averages will converge
as imposed in Assumption 2.2. A sufficient condition for unique ergodicity then is the following.
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Assumption 3.5. Under the exploration policy γ the hidden process {Xt} is uniquely ergodic (with measure
ζ) and the measurement dynamics are so that the filter is stable in expectation under weak convergence.

The initialization during the implementation of the algorithm affects both the trained sets, which are those
visited infinitely often, and the computation of policies for the set of states reachable from the initialization:
The condition that ηγ(Bi) > 0 requires an analysis tailored for each problem. For example, if the quantization
is performed as in Kara & Yüksel (2022) by clustering bins based on a finite past window, then the condition
is satisfied by requiring that P (Yt = y|x) > 0 for every x ∈ X. If the clustering is done, e.g. by quantization
of the probability measures via first quantizing X and then quantizing the probability measures on the finite
set (see (Saldi et al., 2020, Section 5)), then the initialization could be done according to the invariant
probability measure corresponding to the hidden Markov source.

For some applications, the quantization does not have to be uniform as the entire probability space P(X)
may not be visited; in this case it suffices to have the conditions be restricted to the subset reachable from the
initial probability measure under any policy (or at least a set of policies which contains an optimal policy).
Accordingly, if during the implementation for a given initialization one can ensure that all the visited states
while applying an optimal policy remain inside Pη, near optimality follows. A sufficient condition is that
π0 ∼ κ ≪ ηγ or that π0 is in the topological support of ηγ ; see (Cregg et al., 2023, Corollary 2).
Assumption 3.6. The controlled transition kernel for the belief process η(·|π, u) is Lipschitz continuous
under the metric W1 such that

W1 (η(·|z, u), η(·|z′, u)) ≤ αT W1(z, z′)

for all u, and z, z′ ∈ P(X) for some αT < ∞.

The following result from (Demirci et al., 2023, Theorem 2.3) provides a set of assumptions on the partially
observed model to guarantee Assumption 3.6 when P(X) is equipped with the W1 metric.
Proposition 3.1. (Demirci et al., 2023, Theorem 2.3)

1. (X, d) is a compact metric space with diameter D (where D = supx,y∈X d(x, y)).

2. There exists α ∈ R+such that

∥T (· | x, u) − T (· | x′, u)∥T V ≤ αd(x, x′)

for every x, x′ ∈ X, u ∈ U.

Under the conditions above we have

W1 (η(· | z0, u), η (· | z′
0, u)) ≤

(
αD(3 − 2δ(O))

2

)
W1 (z0, z′

0) .

for all z0, z′
0 ∈ Z, u ∈ U.

Thus, Assumption 3.6 holds with αT = αD(3−2δ(O))
2 .

Theorem 3.3. (a) Suppose that under the exploration policy and initialization the controlled filter pro-
cess satisfies Assumption 3.4 and 2.2(i) with St = g(πt), and Ct = c(Xt, Ut). Then, the Q iterates
converge almost surely.

(b) Let Assumption 3.6 hold such that αT β < 1 and assume that the cost function c(x, u) is Lipschitz
continuous in x such that

|c(x, u) − c(x′, u)| ≤ αcd(x, x′).

For the policy constructed using the limit Q values, say γ̂ we have the following bound:

J∗
β(π0, γ̂) − J∗

β(π0) ≤ 2αc

(1 − β)2(1 − βαT ) L̄.
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where

L̄ := sup
π

W1(π, g(π)) (12)

(c) The bound in (b) above also holds if (12) is relaxed to

L̄ := sup
π∈supp(ηγ ),π∈Bi:ηγ (Bi)>0

W1 (π, g(π)) ,

provided that π0 is in the support of ηγ (such as π0 being the invariant measure of Xt under the
exploration policy).

(d) For asymptotic convergence (without a rate of convergence) to optimality as the quantization rate
goes to ∞ (i.e., L̄ → 0), only weak Feller property of η is sufficient for the the algorithm to be near
optimal.

Notably, suppose that for exploration π0 ∼ κ ≪ ϕ or π0 = ζ where ζ is the invariant measure for the hidden
state process under exploration. Then, the Qt iterates converge almost surely.

The above approximation result, given the general convergence theorem, Theorem 2.1, follows from Kara
et al. (2023)[Theorem 6,7] under the provided assumptions.
Remark 3.5. We now present a comparison between the two approaches given in Sections 3.3 and 3.4 above:
filter quantization vs. finite window based learning:

(a) (i) For the filter quantization, we only need unique ergodicity of the filter process under the ex-
ploration policy for which asymptotic filter stability in expectation in weak or total variation is
sufficient.

(ii) The running cost can start immediately without waiting for a window of measurements.
(iii) On the other hand, the controller must run the filter and quantize it in each iteration while

running the Q-learning algorithm; accordingly the controller must know the model.
(iv) Additionally, the initialization cannot be arbitrary (e.g. the initialization for the filter may be

the invariant measure of the state under the exploration policy so that the iterations for the finite
approximation given the initialization always remain in the absorbing set compatible with the
invariant measure under exploration policy; this ensures that the infinite occupation conditions
hold for the reachable quantized belief state and action pairs from the initialization).

(b) (i) For the finite window approach, a uniform convergence of filter stability, via Lt, is needed and
it does not appear that only asymptotic filter stability can suffice.

(ii) On the other hand, this is a universal algorithm in that the controller does not need to know the
model.

(iii) Furthermore, the initialization satisfaction holds under explicit conditions; notably if the hidden
process is positive Harris recurrent, the ergodicity condition holds for every initialization; both
the convergence of the algorithm as well as its implementation will always be well-defined.

For each setup, however, we have explicit and testable conditions. We note that it is possible to construct
various discretization and approximation methods for POMDPs, and their corresponding belief counterparts.
Each such approximation requires a different analysis to quantify the error of the approximation. See e.g.
in Kara & Yüksel (2022) where a nearest neighbor approximation scheme is considered for finite memory
information structures and the resulting loss function is in terms of more relaxed distance notions. Another
alternative general direction is via so called ‘approximate information states’ (see Subramanian et al. (2022);
Seyedsalehi et al. (2023)), where a uniform approximation error under various distance notions for the
approximate information states for near optimality is considered.
Remark 3.6 (Further Models: Continuous-Time and Applications). We note that the richness of the con-
vergence theorem manifests itself also in the applications involving continuous-time models Bayraktar & Kara
(2023) where quantized Q-learning finds a natural application area, and applications to optimal zero-delay
coding Cregg et al. (2023) which also studies several subtleties with regard to ergodicity of belief dynamics.

16



Published in Transactions on Machine Learning Research (05/2024)

3.5 Multi-Agent Models and Joint Learning Dynamics: Subjective Q-Learning and an Open Question

As our final application, we consider multi-agent models. Multi-agent reinforcement learning (often referred
to as MARL) is the study of emergent behavior in reinforcement learning under multi-agent and complex
environments, and is one of the important frontiers in artificial intelligence research. Consider an environment
with N -agents, each of which generate actions, and whose rewards impact one another. Notably, for i =
1, · · · , N ,

xi
t+1 = f(xi

t, ui
t, u−i

t , x−i
t , wt)

with cost criteria ∑
t

βtc(xi
t, ui

t, u−i
t , x−i

t )

or mean-field models with
xi

t+1 = f(xi
t, ui

t, µN
t , wt)

and sample path costs ∑
t

βtc(xi
t, ui

t, µN
t ),

where

µN
t =

N∑
k=1

δxi
t
(·)

We assume several information structures, for each m = 1, · · · , N : (i) [Global state with local action] With
x = {x1, · · · , xN }, we have Im

t = {x[0,t], um
[0,t]}, (ii) [Local state with local action and mean-field state]

Im
t = {xm

[0,t], µN
[0,t], um

[0,t]}, (iii) [Local state and local action] Im
t = {xm

t , um
[0,t]}. Accordingly, for each agent

um
t = γm

t (Im
t ) for all t ∈ Z+.

Given these policies, one would like to minimize the expected values of the cost functions defined above, and
given the policies of other agents. Study of such decentralized systems is known to be challenging both for
stochastic teams and stochastic games, where the cost functions above may depend on individual agents.
Learning theory for such systems entails two primary challenges:

The first immediate challenge for learning in such models is due to decentralization of information: some
relevant information will be unavailable to some of the players. The second difficulty inherent to MARL
comes from the non-stationarity of the environment from the point of view of any individual agent. As an
agent learns how to improve its performance, it will alter its behaviour, and this can have a destabilizing effect
on the learning processes of the remaining agents, who may change their policies in response to outdated
strategies. Notably, this issue arises when one tries to apply single-agent RL algorithms—which typically
rely on state-action value estimates or gradient estimates that are made using historical data—in multi-
agent settings. A number of studies have reported non-convergent play when single-agent algorithms using
local information are employed, without modification, in multi-agent settings. Thus, for such models the
main obstacle to convergence of Q-learning is due to the presence of multiple active learners leading to a
non-stationary environment for all learners.

3.5.1 Two-time scales and a Markov chain over play path graphs

To overcome this obstacle, also building on inspiration from prior work Foster & Young (2006); Germano &
Lugosi (2007); Arslan & Yüksel (2017) modifies the Q-learning for stochastic games as follows: In the varia-
tion of Q-learning, DMs are allowed to use constant policies for extended periods of time called exploration
phases. This is also referred to as two-time scales approach1.

As illustrated in Figure 2, the k−th exploration phase runs through times t = tk, . . . , tk+1 − 1, where

tk+1 = tk + Tk (with t0 = 0)
1We note that an alternative two-time scales approach is via different learning rates applied by agents by taking advantage

of slow learning (typically of policies) and fast learning (typically of values); see Borkar (1997; 2002); Leslie & Collins (2003;
2005); Sayin et al. (2021). This approach couples the stochastic learning dynamics with a system of ODEs which characterizes
best-response dynamics, whose stability can be used to establish convergence in a variety of setups.
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for some integer Tk ∈ [1, ∞) denoting the length of the k−th exploration phase. During the k−th exploration
phase, DMs use some constant policies π1

k, . . . , πN
k as their baseline policies with occasional experimentation.

The essence of the main idea is to create a stationary environment over each exploration phase so that DMs
can almost accurately learn their optimal Q-factors corresponding to the constant policies (which is also
slightly randomized to make room for exploration) used during each exploration phase and update their
policies.

This machinery has been adopted under two types of policy updates: (i) Best response dynamics with inertia
for weakly acyclic games Arslan & Yüksel (2017) considered for the case where each agent has access to the
global state but only local state (requiring typically deterministic policies), and (ii) a variation of it which is
referred to as satisficing paths dynamics Yongacoglu et al. (2022; 2023) which assumes that the agents have
access to a variety of information states and the policies may be randomized.

Theorem 2.1, with the following perceived state updates for each agent, ensures convergence for each explo-
ration phase, under the required conditions (see Yongacoglu et al. (2022)):

i [Global State] Sm
t = Xt, Ut = Um

t , Ct = c(Xi
t , U i

t , U−i
t , X−i

t ) (or c(Xi
t , U i

t , µN
t ) for the mean-field

setup),

ii [Local State] Sm
t = Xm

t , Ut = Um
t , Ct = c(Xi

t , U i
t , U−i

t , X−i
t ) (or c(Xi

t , U i
t , µN

t ) for the mean-field
setup),

iii [Local and Mean-Field State or Compressed Global State] Sm
t = {Xm

t , F (Xt)}, Ut = Um
t , Ct =

c(Xi
t , U i

t , U−i
t , X−i

t ), for some function F (which may include µN
t = F (Xt) as a special case).

Subjective Satisficing Paths and Subjective Q-Learning Equilibrium

Consider the following subjective win-stay/lose-shift algorithm: At the end of each exploration phase, if
agents are ϵ-satisfied, then they do not alter their policies. However, if they are not in an ϵ-equilibrium, they
randomly select a policy mapping their local perceived state to their actions, possibly with some inertia,
where the policy space is quantized. In particular, the selected policies may be randomized (as they are not
best responses or near best responses).
Definition 3.2. Yongacoglu et al. (2022; 2023) Let ϵ ≥ 0 and let π−i ∈ ΓS. A policy πi ∈ Γi

S is called a
(V∗, W∗)-subjective ϵ-best-response to π−i if

V ∗i
πi,π−i(y) ≤ min

ai∈U
W ∗i

πi,π−i(y, ai) + ϵ, ∀y ∈ Y.

Definition 3.3. Yongacoglu et al. (2022; 2023) Let ϵ ≥ 0. A joint policy π∗ ∈ ΓS is called a (V∗, W∗)-
subjective ϵ-equilibrium if, for every i ∈ N, we have

V ∗i
π∗i,π∗−i(y) ≤ min

ai∈U
W ∗i

π∗i,π∗−i(y, ai) + ϵ, ∀y ∈ Y.

Yongacoglu et al. (2023) introduced such a paradigm and presented conditions under which equilibrium or
subjective equilibrium is arrived at. The limit in which each agent is ϵ-satisfied with respect to the computed
value functions, as a result of the Q-learning iterations is referred to as a subjective (Q-learning) equilibrium.

Accordingly, each agent then applies (2) during exploration phases. This is stated explicitly in the following
Yongacoglu et al. (2022):

Figure 2: An illustration of the k−th exploration phase.
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Algorithm 1: Independent Learning via ϵ-Subjective Satisficing: Subjective Q-Learning Yongacoglu
et al. (2022)

1 Set Parameters
2 Πi ⊂ Γi

S : a fine quantization of stationary policies Γi
S : S → P(U), where si ∈ S, ui ∈ U

3 {Tk}k≥0: a sequence in N of learning phase lengths
4 set t0 = 0 and tk+1 = tk + Tk for all k ≥ 0.

5 ei ∈ (0, 1): random policy updating probability
6 di ∈ (0, ∞): tolerance level for sub-optimality

7 Initialize πi
0 ∈ Πi (arbitrary), Q̂i

0 = 0 ∈ RS×U, Ĵ i
0 = 0 ∈ RU

8 for k ≥ 0 (kth exploration phase)
9 for t = tk, tk + 1, . . . , tk+1 − 1

10 Observe si
t

11 Select ui
t ∼ πi

k(·|si
t)

12 Observe ci
t := c(xi

t, ui
t, x−i

t , u−i
t ) and si

t+1
13 Set ni

t =
∑t

τ=tk
1{(si

τ , ui
τ ) = (si

t, ui
t)}

14 Set mi
t =

∑t
τ=tk

1{si
τ = si

t}

15 Q̂i
t+1(si

t, ui
t) =

(
1 − 1

ni
t

)
Q̂i

t(si
t, ui

t) + 1
ni

t

[
ci

t + β minai Q̂i
t(si

t+1, ai)
]

16 Ĵ i
t+1(si

t) =
(

1 − 1
mi

t

)
Ĵ i

t (si
t) + 1

mi
t

[
ci

t + βĴ i
t (si

t+1)
]

17 if Ĵ i
tk+1

(y) ≤ minai Q̂i
tk+1

(y, ai) + ϵ + di ∀y ∈ S, then
18 πi

k+1 = πi
k

19 else
20 πi

k+1 ∼ (1 − ei)δπi
k

+ eiUnif(Πi)

21 Reset Ĵ i
tk+1

= 0 ∈ RS and Q̂i
tk+1

= 0 ∈ RS×U

Theorem 2.1 shows that the exploration phase in Algorithm 1 is such that the two-time scale and satisficing-
paths paradigm is applicable to a much broader class of setups.

Building on the general approach presented in Yongacoglu et al. (2022), it follows that under mild numerical
parameter selection conditions, if (i) a subjective Q-learning ϵ-equilibrium exists (with sufficiently fine quan-
tization of the randomized stationary policy space) and (ii) if there is a finite ϵ-subjective satisficing path
from any initial policy profile to subjective Q-learning ϵ-equilibrium equilibrium, Algorithm 1 will converge
to a subjective equilibrium with arbitrarily high probability by adjusting the Tk terms accordingly.

Beyond the setups in which the limit may be close enough to each agent’s objective equilibrium (case with
global state, or mean-field state information) Yongacoglu et al. (2022), and symmetric games Yongacoglu
et al. (2023) conditions for the existence of subjective Q-learning equilibria is an open problem and requires
further research. In particular, an application of Kakutani-Fan-Glicksberg theorem (Aliprantis & Border,
2006, Corollary 17.55) would entail a detailed study on the continuous dependence of the limit of Q-learning
iterates in Theorem 2.1.

We hope that Theorem 2.1 will provide further motivation for research in this direction.

4 Conclusion

In this paper, motivated by reinforcement learning in complex environments, we presented a convergence
theorem for Q-learning iterates, under a general, possibly non-Markovian, stochastic environment. Our
conditions for convergence were an ergodicity and a positivity condition. We furthermore provided a precise
characterization of the limit of the iterates. We then considered the implications and applications of this
theorem to a variety of non-Markovian setups (i) fully observed MDPs with continuous spaces and their
quantized approximations (leading to near optimality), (ii) POMDPs with a weak Feller continuity together
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with a mild version of filter stability and quantization of filter realizations (which requires the knowledge
of the model but more restrictive conditions on the initialization), (iii) POMDPs and the convergence
to near-optimality under a uniform controlled filter stability plus finite window policies (which does not
require the knowledge of the model and with an arbitrary initialization though under a more restrictive filter
stability condition), and (iv) for multi-agent models where convergence of learning dynamics to a new class
of equilibria, subjective Q-learning equilibria; where open questions on existence are noted. We highlighted
that the satisfaction of ergodicity conditions required an analysis tailored to applications.
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