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Abstract

Aligning large language models (LLMs) with human preferences typically demands
vast amounts of meticulously curated data, which is both expensive and prone to label-
ing noise. We propose Stackelberg Game Preference Optimization (SGPO), a robust
alignment framework that models alignment as a two-player Stackelberg game be-
tween a policy (leader) and a worst-case preference distribution (follower). The pro-
posed SGPO guaranteesO(ϵ)-bounded regret within an ϵ-Wasserstein ball, offering
formal robustness to (self-)annotation noise. We instantiate SGPO with Stackelberg
Self-Annotated Preference Optimization (SSAPO), which uses minimal human-
labeled “seed” preferences and iteratively self-annotates new prompts. In each iter-
ation, SSAPO applies a distributionally robust reweighting of synthetic annotations,
ensuring that noisy or biased self-labels do not derail training. Remarkably, using
only 2K seed preferences—about 1/30 of standard human labels—SSAPO achieves
strong win rates against GPT-4 across multiple benchmarks within three iterations.
These results highlight that a principled Stackelberg formulation yields data-efficient
alignment for LLMs, significantly reducing reliance on costly human annotations.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities across a broad range
of tasks, but aligning their outputs with human preferences remains a core challenge for safety and
usability [1, 2, 3]. Traditional alignment paradigms, such as Reinforcement Learning from Human
Feedback (RLHF) [3, 4] or Direct Preference Optimization (DPO) [5], typically rely on large amounts
of meticulously curated preference data. Such data collection is costly, time-consuming, and inevitably
prone to labeling noise or bias, which can in turn degrade model performance once integrated at scale
[6]. Consequently, an important question arises:How can we achieve robust alignment of LLMs without
relying on vast, error-prone human-labeled datasets?

One promising direction is to reduce the need for human-annotated samples by having the model itself
generate preference labels on newly sampled prompts—so-called “self-annotation” [7, 8, 9]. However,
most self-annotation approaches overlook the fact that synthetic labels may be systematically biased
or noisy. If these errors go unchecked, they can compound over iterative rounds of training, ultimately
harming rather than helping alignment [10, 11].

In this work, we address this problem by framing preference alignment as a two-player Stackelberg
game between a policy (leader) and a worst-case preference distribution (follower). Our formulation,
which we call Stackelberg Game Preference Optimization (SGPO), explicitly guards against
plausible shifts or adversarial corruption in the preference data by operating within an ϵ-Wasserstein
ball [12] around the empirical distribution. We prove that the resulting policy achievesO(ϵ)-bounded
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regret, a theoretical guarantee of robustness to noise or distribution mismatch [13]. This stands in
contrast to standard DPO, whose regret can grow linearly with such shifts [5]. We delay a more
thorough related work section in the Appendix A.

To instantiate SGPO with a concrete algorithm, we then present Stackelberg Self-Annotated
Preference Optimization (SSAPO). Starting from a small set of human-labeled “seed” preferences,
SSAPO self-annotates new prompts by generating candidate responses and ranking them internally.
Crucially, it couples this self-annotation with a distributionally robust reweighting [13] that prevents
noisy synthetic labels from overwhelming the training updates. Remarkably, we find that using only 2K
seed preference pairs (around 1/30 of the usual scale), SSAPO outperforms or matches methods that
rely on significantly more human labels. On multiple alignment benchmarks—including AlpacaEval
[14] and MT-Bench [15]—SSAPO rapidly achieves competitive or superior performance within just
three rounds of iterative self-annotation.

We summarize our contributions as follows. 1. Stackelberg formulation of preference alignment:
We recast alignment as a two-player game and prove the existence of a robust equilibrium with
O(ϵ)-bounded regret under ϵ-Wasserstein preference shifts. 2. Robust self-annotation algorithm
(SSAPO): We instantiate our framework by combining minimal seed labels with iterative synthetic
annotations. Our distributionally robust reweighting attenuates the impact of potential labeling noise.
3. Data efficiency and empirical results: Experiments show that SSAPO maintains high-level
performance despite using only a fraction of typical human annotations, achieving strong results
against GPT-4 in head-to-head comparisons.

2 Theoretical Foundation: SGPO Framework

This section formalizes Stackelberg Game Preference Optimization (SGPO) and establishes its
guarantees. We begin with DPO preliminaries (Section 2.1), then cast SGPO as a two-player
Stackelberg game over gap distributions (Section 2.2). We prove existence of a Stackelberg equilibrium
and local convergence of a practical alternating scheme (Section 2.3), and finally quantify regret and
contrast SGPO with DPO (Section 2.4). All proofs are deferred to Appendix D.

2.1 Preliminaries: Preference Datasets and DPO

Preference-ranked dataset. We use D= {(xi,yiw,y
i
ℓ)}Ni=1, where xi is a prompt and (yiw,y

i
ℓ) are

the winner/loser responses (from human or partially self-annotated feedback).

RLHF and KL regularization. Classical RLHF [4] optimizes a policy πθ under a KL penalty to πref :

max
θ∈Θ

Ex∼D,y∼πθ(·|x)
[
R(x,y)−βDKL

(
πθ(· |x)∥πref(· |x)

)]
, (1)

where β>0 controls regularization andD is the prompt distribution.

Direct Preference Optimization (DPO). Under the Bradley–Terry model p(yw ≻ yℓ | x) =
σ(R(x,yw)−R(x,yℓ)) with σ(z) = 1/(1+e−z), first-order optimality of a related KL-regularized
objective yields

R(x,y)=βlog
πθ(y |x)
πref(y |x)

+βlogZ(x), (2)

with partition function Z. Plugging this into the BT likelihood gives

LDPO(θ)=E(x,yw,yℓ)∼D

[
logσ

(
R(x,yw)−R(x,yℓ)

)]
. (3)

DPO is simple but provides no explicit protection against shifts away from the empirical preference
distribution. This motivates a robust formulation.

2.2 SGPO: A Two-Player Stackelberg Game

SGPO imposes robustness over preference gaps. For a policy π, define the gap map

∆Rπ(x,yw,yℓ) :=Rπ(x,yw)−Rπ(x,yℓ)∈R.
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Let P̂ = 1
N

∑N
i=1δ(xi,yi

w,yi
ℓ)

and let (∆Rπ)#P̂ be its push-forward, i.e.,

(∆Rπ)#P̂ = 1
N

N∑
i=1

δ∆Rπ(xi,yi
w,yi

ℓ)
∈P(R).

We measure uncertainty via the 1-Wasserstein ball Uϵ(ν) :={α∈P(R) : W1(α,ν)≤ϵ} centered at a
gap distribution ν. Hereafter, for simplicity, we write π instead of πθ, the dependence on θ is implicitly
assumed throughout the paper.

Leader objective in gap space. Let f(ξ)=logσ(ξ), a concave and 1-Lipschitz function on R. The
SGPO leader solves

max
π∈Π

min
α∈Uϵ

(
(∆Rπ)#P̂

) Eξ∼α

[
f(ξ)

]
. (4)

This objective optimizes the worst-case preference likelihood over perturbations in gap space rather
than in token space. See Section 3 for implementation details.

Follower best response in gap space. For any center ν∈P(R) and radius ϵ>0, define the follower
best-response set

Aϵ(ν) := arg min
α∈P(R)

{
Eξ∼α

[
f(ξ)

]
: W1(α,ν)≤ϵ

}
. (5)

When ν=(∆Rπ)#P̂ , any α⋆∈Aϵ(ν) is a follower best response against π.

This formalization induces the Stackelberg equilibrium:
Definition 2.1 (Stackelberg equilibrium). A pair (π∗,α∗) is a Stackelberg equilibrium if

π∗∈argmax
π∈Π

min
α∈Uϵ

(
(∆Rπ)#P̂

) Eξ∼α[f(ξ)], α∗∈Aϵ

(
(∆Rπ∗)#P̂

)
. (6)

This definition links the leader’s robust optimization (4) with the follower’s DRO problem (5). We
next establish existence and analyze a practical alternating scheme.

2.3 Existence and Convergence of a Stackelberg Equilibrium

We first state mild conditions ensuring existence, then analyze an alternating best-response with a
proximal leader step.

Assumptions. (i) Π is compact. (ii) For each (x,y), π 7→ Rπ(x,y) is continuous; hence π 7→
(∆Rπ)#P̂ is continuous in the weak topology. (iii) f(ξ)=logσ(ξ) is continuous and 1-Lipschitz on R.
Theorem 2.2 (Existence of a Stackelberg equilibrium). Under the assumptions above, problem (4)
admits at least one solution (π∗,α∗).

Proof sketch. For fixed π, the inner problem has a minimizer by compactness of Uϵ((∆Rπ)#P̂ )
and continuity in α. Berge’s maximum theorem [16, 17] yields upper semicontinuity of
V (π) = minα∈Uϵ((∆Rπ)#P̂ )E[f ], and compactness of Π gives a maximizer π∗ and a follower best
response α∗. See Appendix D. □

Alternating best responses with a proximal leader step. Let α̂(π) := (∆Rπ)#P̂ . Given πt,
choose a follower best response

αt+1∈Aϵ

(
α̂(πt)

)
∈ arg min

α∈Uϵ(α̂(πt))
Eξ∼α[f(ξ)]. (7)

Update the leader via a proximal step:

πt+1∈argmax
π∈Π

{
min

α∈Uϵ(α̂(πt))
Eξ∼α[f(ξ)]−

λ

2
∥π−πt∥2

}
. (8)

This scheme makes the leader step stable while allowing the follower to track the changing center
α̂(πt). The regularization term ∥π−πt∥2 in the proximal step can be induced in practice with small
learning rate and weight decay regularization.
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Theorem 2.3 (Well-posedness and local linear convergence). Suppose the proximal leader objective
is µ-strongly concave in a neighborhood of π∗, uniformly over α∈Uϵ(α̂(π)), and π 7→ α̂(π) is locally
Lipschitz in W1. Then the update map (πt,αt) 7→(πt+1,αt+1) is a contraction near (π∗,α∗) and thus
converges locally linearly.

In practice, one may not directly implement (7)–(8), but the Theorem 2.3 shows that any procedure
that approximates these alternating best-response updates can converge to the robust equilibrium. This
provides a theoretical grounding for the SSAPO algorithm (to be introduced in the section 3), which
combines standard gradient-based optimization with distributionally robust optimization.

2.4 Regret Analysis and Comparison with DPO

We quantify worst-case performance under gap-space shifts and compare with DPO. Define the
performance functional

P(π,α)=Eξ∼α[logσ(ξ)].

Let π⋆ solve (4). We prove that π∗ maintains high performance on all distributions α within
ϵ-Wasserstein distance of α̂. In particular, the drop from P̂ to any P is at mostO(ϵ).
Theorem 2.4 (Worst-case performance in gap space). For every α∈Uϵ

(
α̂(π⋆)

)
,

P(π⋆,α) ≥ P
(
π⋆,α̂(π⋆)

)
−ϵ.

Gap-space regret. We define the Gap-space regret of a policy π on a distribution α as
Regret(π,α) :=maxπ̃∈ΠP(π̃,α)−P(π,α).
Theorem 2.5 (SGPO regret bound). For π⋆ solving (4),

sup
α∈Uϵ

(
α̂(π⋆)

)Regret(π⋆,α) ≤ 2ϵ.

Thus, SGPO is robust: under any shift of at most ϵ, its regret is bounded by a constant factor of ϵ.

2.4.1 Comparison: DPO’s Linear Regret

Let πDPO∈argmaxπP
(
π,α̂(π)

)
be a DPO solution on the empirical center. For any target α⋆ with

δ :=W1

(
α⋆,α̂(πDPO)

)
, we have:

Theorem 2.6 (DPO regret lower bound). Regret
(
πDPO,α

⋆
)
≥ δ−2ϵ. In particular, if δ≫ϵ, DPO’s

regret grows linearly in δ.
Corollary 2.7 (SGPO advantage over DPO). If W1

(
α̂(π),α⋆

)
=δ>2ϵ, then

Regret(πDPO,α
⋆)

Regret(π⋆,α⋆)
≥ δ−2ϵ

2ϵ
.

Thus, SGPO’s robust policy can outperform DPO by a factor of δ
2ϵ − 1 under sufficiently large

distribution shift δ. SGPO builds in-sample performance and out-of-sample robustness into a single
objective by optimizing against Uϵ in gap space. The O(ϵ) worst-case degradation contrasts with
DPO’s linear sensitivity to distribution mismatch δ, mirroring our empirical results in Section 4.

3 Practical Instantiation: SSAPO Algorithm

We now present a practical and computationally tractable realization of the Stackelberg scheme from
the theory section, called Stackelberg Self-Annotated Preference Optimization (SSAPO). SSAPO
implements the iterative leader–follower updates of Theorem 2.3 and (7)–(8) for preference alignment.

Notation. Let σ(u)=(1+e−u)−1 and define the margin random variable

ξ := ∆Rθ(x,yw,yℓ) for winner–loser pairs (yw,yℓ), α̂(πt) =
1
N

N∑
i=1

δξ̂i , ξ̂i :=∆Rθt(x
i,yiw,y

i
ℓ).

The follower (adversary) chooses a distribution α over ξ inside the W1 Wasserstein ball Uϵ(α̂(πt))
centered at α̂(πt), while the leader (policy) updates θ.
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Implementation challenges addressed. 1. Minimal human labels via self-annotation. We bootstrap
from a small seed of human-labeled preferences and enlarge the dataset by letting the current policy
rank its own responses on unlabeled prompts. 2. Loss re-representation for tractable DRO. The
follower minimizes a concave inner objectiveEα[logσ(ξ)]. Writing ℓ(ξ) :=−logσ(ξ), which is convex
and 1-Lipschitz, turns the inner problem into−supαEα[ℓ(ξ)] and allows a convex PWL surrogate that
yields a finite convex program for the follower. 3. Scalability via uniform grouping. For large datasets,
we solve the follower subproblem on groups and average the resulting worst-case distributions, trading
a small approximation for substantial speed-ups.

3.1 Follower objective: loss re-representation and a closed form

Since logσ is concave and 1-Lipschitz, define the convex 1-Lipschitz loss

ℓ(ξ) := −logσ(ξ) = log(1+e−ξ), min
α∈Uϵ(α̂(πt))

Eα[logσ(ξ)] = − sup
α∈Uϵ(α̂(πt))

Eα[ℓ(ξ)].

When Ξ=R (no support restrictions) and the ground metric is the absolute value, the worst-case expec-
tation of anyL-Lipschitz function equals the empirical mean plusLϵ. Specializing this convex reduction
result of Mohajerin Esfahani and Kuhn [13, Thm. 6.3] to ℓ (whose Lipschitz constant is 1) gives:
Lemma 3.1 (Closed-form follower in the unconstrained one-dimensional case; 13, Thm. 6.3). If
Ξ=R and Uϵ is a W1 ball (absolute ground metric), then

sup
α∈Uϵ(α̂(πt))

Eα[ℓ(ξ)] =
1
N

N∑
i=1

ℓ(ξ̂i) + ϵ, ⇐⇒ min
α

Eα[logσ(ξ)] =
1
N

N∑
i=1

logσ(ξ̂i) − ϵ.

Although Lemma 3.1 provides an exact closed form in the unconstrained 1-D setting, in this paper
we propose to solve a finite convex program that also returns a discrete worst-case distribution.

3.2 Follower via a max-of-affine surrogate and a finite convex program

We approximate ℓ by a convex piecewise-linear under-approximation

ℓ̃(ξ) = max
1≤k≤K

{akξ+bk} ≤ ℓ(ξ), with ak=ℓ′(ξ(k))=−σ(−ξ(k)), bk=ℓ(ξ(k))−akξ(k).

Knots {ξ(k)}Kk=1 are chosen on a window [at, bt] in margin space (empirical quantiles or
[miniξ̂i−τ,maxiξ̂i+τ ] with small τ >0). Endpoint tangents extend ℓ̃ outside [at,bt], preserving ℓ̃≤ℓ

globally. Because ℓ̃≤ℓ, replacing ℓ by ℓ̃ in (3.1) yields an upper bound on the original inner minimum,
which tightens with K:
Proposition 3.2 (Monotone tightening in K). Let α̂ be a probability measure on R with finite first
moment and let Uϵ(α̂) be the W1 ball of radius ϵ≥0. Let ℓ(ξ)=−logσ(ξ) and let (ℓ̃K)K≥1 be convex
piecewise-linear underestimators of ℓ such that ℓ̃K≤ ℓ̃K+1≤ℓ pointwise and ℓ̃K ↑ℓ. Define

v⋆ := inf
α∈Uϵ(α̂)

Eα[logσ(ξ)]=− sup
α∈Uϵ(α̂)

Eα[ℓ(ξ)], vK :=− sup
α∈Uϵ(α̂)

Eα[ℓ̃K(ξ)].

Then, for all K≥1: (i) vK≥v⋆ (valid upper bound); (ii) vK+1≤vK (monotone in K); (iii) vK ↓v⋆
as K→∞.

A finite convex program for the worst case (after 13, Thm. 4.4). For losses representable as a
pointwise maximum of finitely many affine functions,

sup
α∈Uϵ(α̂(πt))

Eα

[
max
k≤K
{akξ+bk}

]
admits a finite convex program whose solution is a discrete extremal distribution. Specializing Mo-
hajerin Esfahani and Kuhn [13, Thm. 4.4] to our one-dimensional ξ and absolute ground metric yields:
Theorem 3.3 (Finite convex program for max-of-affine (PWL convex) losses; specialization of
Mohajerin Esfahani and Kuhn [13], Thm. 4.4). Let ℓ̃(ξ)=maxk≤K{akξ+bk} and Ξ⊆R. Introduce,
for each sample i and piece k, a mixing weight sik≥0 and a displacement qik∈R. Then

sup
α∈Uϵ(α̂(πt))

Eα[ℓ̃(ξ)] = max
{sik,qik}

1

N

N∑
i=1

K∑
k=1

[
sik(ak ξ̂i+bk) − akqik

]
(9)
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Large Prompt Pool
(small seed-labeled prefs)

Self-Annotation
(Policy ranks new responses)

Preference DataBase
(new pairs added)

Follower Update
(optimize worst-case distribution with DRO)

Policy Update
(optimize reweighted loss with gradient descent)

Figure 1: SSAPO workflow. We maintain a large prompt pool and a small set of seed-labeled
preferences. The policy self-annotates new prompts by generating and ranking responses, thus
expanding the preference database. A follower then identifies a worst-case distribution for these
preferences, and the leader (policy) is updated accordingly. This process repeats for iterations.

subject to the Wasserstein and feasibility constraints

1

N

N∑
i=1

K∑
k=1

|qik| ≤ ϵ,

K∑
k=1

sik=1, sik≥0 (∀i), atsik ≤ sik ξ̂i−qik ≤ btsik (∀i,k).

An extremal discrete measure α∗
t =

1

N

N∑
i=1

K∑
k=1

s∗ikδξ̂i−q∗ik/s
∗
ik

attains the supremum.

The change of variables zik = ξ̂i − qik/sik (when sik > 0) reveals that sik splits the unit mass at
ξ̂i across pieces, while qik transports that mass in margin space. The interval constraints are linear
“perspective” constraints enforcing ξ∈ [at,bt].

3.3 SSAPO workflow

Figure 1 summarizes the SSAPO workflow. Starting with a small seed of human-labeled preferences
plus a large unlabeled pool, we proceed in the following loop, at iteration t:

1. Self-annotation. Sample prompts from the unlabeled pool, generate multiple responses,
and let the current policy πθt rank them to create new preference pairs (yw,yℓ).

2. Empirical center. Compute ξ̂i=∆Rθt(x
i,yiw,y

i
ℓ) and set α̂(πt)=

1
N

∑
iδξ̂i .

3. Follower (DRO). Build ℓ̃(ξ)=maxk≤K(akξ+bk) using tangents at knots {ξ(k)}; choose
[at,bt] as above. Solve the convex program in Theorem 3.3 to obtain the worst-case α∗

t .
4. Leader update. Update θ by minimizing

θt+1 ∈ argmin
θ

E(x,yw,yℓ)∼DEξ∼α∗
t

[
ℓ
(
∆Rθ(x,yw,yℓ)

)]
,

implemented as standard minibatch SGD on the preference pairs while incorporating the
per-sample mixture weights induced by (s∗,q∗).

Repeating for T total iterations yields the final aligned policy πθT . A more explicit version of SSAPO
is provided in Algorithm 1 (Appendix E), along with its computational complexity analysis.

How α∗
t enters the leader step. The optimizer (s∗,q∗) associates to each training pair i a set of

active affine pieces (weights {s∗ik}k) and a transport direction (through q∗ik/s
∗
ik). In practice we (i)

weight the per-pair loss contributions by {s∗ik}k and (ii) optionally add a proximal penalty nudging
the current margin toward ξ̂i−q∗ik/s∗ik for stability.

3.4 Scalability and Complexity

Grouping for large N . When N is large (e.g. 105 or more preferences), solving the convex program
in Step (Worst-Case Distribution) can be expensive. A popular heuristic partitions {ξ̂1,...,ξ̂N} into
M groups (each of size G=N/M ), and solves the finite program (9) separately within each group.

The resulting distributions α∗
m are then averaged (or merged proportionally):

P ∗
final =

1

M

M∑
m=1

α∗
m.
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While not an exact solution to the global N -sample problem, this still confers substantial robustness
while reducing complexity fromN toG≪N in each subproblem. In summary, this grouping approach
greatly reduces memory/compute cost, and is parallelizable. Section F in the appendix remarks the
approximation effects of SSAPO algorithm design on SGPO guarantees

Complexity. The program in Theorem 3.3 introducesO(NK) variables andO(NK) constraints and
becomes a pure LP after linearizing |qik| via standard slack variables. With warm starts, per-iteration
time scales nearly linearly in N and linearly in K. A more detailed algorithmic complexity analysis
is in Appendix E.

Why a finite convex program is necessary in practice. We argue the special case of unconstrained
one–dimensional case the follower (that collapses to an exact closed form from Lemma 3.1) is too
restrictive for real pipelines: we (i) clip or restrict the support of margins for stability, (ii) require
extremal discrete adversaries whose mixture weights can be recycled to form stochastic gradients
for the leader, and (iii) need a controllable approximation whose accuracy improves monotonically.
Accordingly, SSAPO replaces the inner concave expectationminα∈Uϵ(α̂(θt))Eα[logσ(ξ)] by a tractable
finite convex program obtained from a convex piecewise-linear surrogate ℓ̃K(ξ)=maxk≤K{akξ+bk}
of ℓ(ξ) = − logσ(ξ). This yields an upper bound − supαEα[ℓ̃K(ξ)] on the inner minimum that
tightens monotonically in K (Proposition 3.2) and becomes exact as K→∞. Moreover, specializing
Mohajerin Esfahani and Kuhn [13, Thm. 4.4] to our one–dimensional absolute ground metric produces
a finite convex program whose optimizer is a discrete extremal distribution supported on at most NK
atoms: exactly the structure we need to implement sample reweighting and efficient leader updates.
In short, the finite convex program is both theoretically correct (via 13, Thm. 6.3 and Thm. 4.4) and
operationally necessary for SSAPO’s stability and efficiency.

4 Experiments

In this section, we present an extensive empirical evaluation of our proposed Stackelberg Self-Annotated
Preference Optimization (SSAPO) algorithm.

4.1 Experiment Setup

We introduce the basic experiment setup in this subsection (Cf. Appendix G for more details).
The settings are mostly consistent to the recent literature Kim et al. [9]. Datasets. We used the
UltraFeedback dataset [18], containing 60K samples. A seed of 2K human-labeled preferences (3.3%
of total 60K data) was used for initial training. The rest (58K samples) were split into three subsets
(8K, 20K, and 30K) for self-annotation in iterative stages.

Models. We use the supervised fine-tuned Mistral-7B-0.1 [19] as the initial model πinit and
LLaMA-3-8B2 for compatibility checks. All models are fine-tuned on UltraChat [20].

Evaluations. We use AlpacaEval 2.0 [14] for instruction-following tasks and MT-Bench [15]
to evaluate multi-turn performance across tasks like math, coding, and writing. Both benchmarks
assess the alignment with human preferences and the model’s functional proficiency. We stress
that AlpacaEval 2.0 is especially useful for measuring how well the model aligns with general
user preferences (and controlling for length bias), whereas MT-Bench tests the model’s functional
capabilities across a broader range of tasks.

Implementation. We initialize training with DPO on 2K seed samples, followed by 3 iterative stages
of self-annotation. In each stage, new preferences are generated via a policy that ranks response pairs.
A distributionally robust optimization (DRO) is performed using sequential least squares programming
(SLSQP) to adjust the model based on adversarial shifts within a Wasserstein ball. The group size
G for parallel computation is set to 100 unless otherwise specified.

Baselines. We consider the following baselines for comparison: (1) DPO, which performs DPO
training only on the seed data. (2) Iter DPO [11], which iteratively generates preference data using an
external reward model (PairRM) [21] or LLM-as-judge [22]. (3) SPA [9], which iteratively generates
preference data using implicit reward model.

2meta-LLaMA/Meta-LLaMA-3-8B-Instruct
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Table 1: Main results. Evaluation results on AlpacaEval 2.0 and MT-Bench with different variants
of Mistral-7B-v0.1 and LLaMA3-8B. All models use the same 2K preference data with gold label
as seed data. The best and second-best results are highlighted in bold and underlined, respectively.
Most of the baseline results are from [9].

Models AlpacaEval 2.0 MT-Bench
Len-control. Win Rate (%) Win Rate vs. GPT-4 (%) Avg. Score (0-10)

Mistral-7B-DPO 9.03 7.68 6.81
Mistral-7B-Iter DPO (PairRM) 11.87 9.46 6.98
Mistral-7B-Iter DPO (LLM-as-judge) 9.28 9.18 6.67
LLaMA3-8B-DPO 20.61 18.04 -
Mistral-7B-SPA 15.39 21.13 6.94
LLaMA3-8B-SPA 21.85 24.95 7.86

Mistral-7B-SSAPO (Ours) 24.44 35.82 6.68
LLaMA3-8B-SSAPO (Ours) 33.33 40.12 8.03

Table 2: Comparison with different variants of Mistral. Evaluation results on AlpacaEval 2.0 and
MT-Bench with different variants of Mistral-7B-v0.1. The best scores are highlighted with bold. The
baseline results are from [9] and [23].

Models Gold Label (%) AlpacaEval 2.0 MT-Bench
Len-control. Win Rate (%) Win Rate vs. GPT-4 (%) Avg. Score (0-10)

Mistral-7B-v0.1 - 0.17 0.50 3.25
Zephyr-7B-β 100 11.75 10.03 6.87
Mistral-7B-SFT - 7.58 4.72 6.34
Mistral-7B-DPO 3.3 9.03 7.68 6.81
Mistral-Large (123B) - 21.4 32.7 -
Mistral-7B-SSAPO (Ours) 3.3 24.44 35.82 6.68

4.2 Main Results

Table 1 summarizes our primary comparison on AlpacaEval 2.0 and MT-Bench. All models in this
comparison use only 2K preference pairs of the UltraFeedback dataset as seed data (3.3% out of 60K),
with the remainder self-annotated. Our SSAPO method consistently outperforms DPO and other
iterative baselines (e.g., Iter-DPO, SPA) in both the length-controlled (LC) and raw win-rate metrics
on AlpacaEval 2.0. For Mistral-7B, SSAPO achieves 24.44% LC win rate and 35.82% raw win rate,
compared to only 9.03% and 7.68% with standard DPO. On the larger LLaMA-3-8B model, SSAPO
reaches a 33.33% LC win rate and 40.12% raw win rate, surpassing its SPA counterpart by a wide
margin. MT-Bench scores corroborate these improvements, indicating that SSAPO yields robust,
high-quality responses across diverse tasks.

To further illustrate SSAPO’s data-efficiency and robustness, Table 2 compares various Mistral models,
including Mistral-7B-SFT, Mistral-Large (the number of parameters is 123B), and a fully-finetuned
Zephyr-7B-β variant with 100% labeled data. Remarkably, Mistral-7B-SSAPO outperforms or
closely approaches these stronger references in AlpacaEval 2.0, despite using only 2K preference pairs
(3.3% out of the 60K human-labeled training set). This demonstrates that a principled Stackelberg
method can substantially mitigate the reliance on massive human annotations. It also aligns with our
theoretical findings (Section 2) that SGPO-based approaches, when instantiated as SSAPO, achieve
bounded regret under moderate preference shift.

4.3 Ablation and Sensitivity Analysis

Table 3: Effect of Wasserstein Radius ϵ on Performance. Evaluation results on Mistral-7B, showing
the impact of varying the Wasserstein radius on the Len-control. Win Rate and Win Rate vs. GPT-4.

ϵ 0 0.01 0.03 0.05 0.1

Len-control. Win Rate (%) 19.76 24.44 22.42 23.20 19.78
Win Rate vs. GPT-4 (%) 26.58 35.82 32.30 32.92 25.84

We conduct a series of ablation studies to understand the factors influencing the efficacy and robustness
of our Stackelberg Self-Annotated Preference Optimization (SSAPO). Specifically, we vary the
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Table 4: Impact of Tangent Size (K) and Impact of Group Size (G) on Model Performance.
Evaluation results on Mistral-7B.

Impact of Tangent Size (K) Effect of Group Size (G)
K 5 6 7 G 100 200 300

Len-control. Win Rate (%) 22.89 23.20 19.05 CPU Runtime (min) 45 206 630
Win Rate vs. GPT-4 (%) 29.19 32.92 25.84 Len-control. Win Rate (%) 13.70 14.81 16.95

Win Rate vs. GPT-4 (%) 10.00 11.74 14.91

Figure 2: Improvement during iterations Evaluation results on AlpcaEval 2.0 of initial DPO stage
and each iteration, the results of the SFT model are from [9].

Wasserstein radius ϵ, the number of tangents K, and the group size G. We conduct the experiments
on the Mistral-7B model for budget consideration. These experiments confirm our method’s flexibility
and validate the practical design choices guided by our theoretical framework.

Wasserstein Radius ϵ. Table 3 demonstrates how performance changes with different Wasserstein
radius. When ϵ=0, our approach reduces to self-annotated DPO without robust reweighting, yielding
weaker results (19.76% LC win rate). As ϵ increases slightly (e.g., 0.01–0.05), both win-rates improve
substantially, with the best outcomes at ϵ= 0.01. However, overly large ϵ (e.g., 0.1) can make the
adversarial shift too pessimistic, degrading performance. These findings align with our theoretical
analysis in Section 2, where moderate ϵ provides a robust yet not overly conservative solution, thus
striking the optimal balance between data fidelity and adversarial resilience.

Number of Tangents K. Since our piecewise-linear approximation of −log σ(·) uses K linear
segments (cf. Section 3), we examine how varying K affects alignment (Table 4 left). At K=5, the
model attains a 22.89% LC win-rate, while increasing to K =6 yields a marginally better 23.20%.
Interestingly, moving to K =7 leads to performance drops (19.05%). We hypothesize that while a
larger K refines the convex under-approximation, it may also overcomplicate optimization or amplify
minor errors in the approximation. Thus, K = 6 serves as a sweet spot in our setting, balancing
expressiveness and computational stability.

Group Size G. Our distributionally robust optimization solver randomly partition data into groups
of size G for parallel subproblem solutions. Table 4 (right half) illustrates the trade-off between
computational cost and performance. A small group size (G=100) has faster runtime (45 min) but
yields a 13.70% LC win-rate, whereas a larger G=300 reaches 16.95% yet takes over 10 times longer
(630 min). This confirms that while bigger groups permit more fine-grained reweighting and hence
improved alignment, the overhead grows significantly. In practice, we choose G=100 or G=200
for an acceptable performance–efficiency balance.

Iterative Performance Gains. Figure 2 provides a direct illustration of iterative improvement
over three rounds of SSAPO. Starting from a baseline DPO model, each round not only adds new
self-annotated preferences but also reweights them adversarially within an ϵ-ball. We observe a
consistent upward trend in alignment metrics during the first two rounds, validating our claim that
robust self-annotation can compensate for scarce human labels while preserving alignment quality.
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Taken together, these ablations highlight the flexibility and effectiveness of SSAPO: Moderate ϵ
balances robustness and data fidelity, confirming our theoretical finding that worst-case reweighting
within a bounded radius can significantly enhance alignment without over-penalizing feasible
distributions.Piecewise-linear approximations with small K are sufficient to capture the shape of
−log(σ(·)), maintaining computational tractability. Group size G offers a controllable trade-off
between runtime and fine-grained adversarial reweighting, making the approach scalable to different
budget constraints. Iterative self-annotation with minimal seed data substantially boosts alignment,
demonstrating that only 2K human-labeled preferences can suffice to achieve high performance.
Overall, these experiments affirm our primary contributions: a data-efficient and theoretically
grounded approach to preference alignment.

Practical Hyperparameter Guidelines

Wasserstein radius ϵ. Scale ϵ with expected self-annotation noise. Capable models:
ϵ ∈ [0.005, 0.02]; smaller models: ϵ ∈ [0.01, 0.05]. A robust default is ϵ = 0.01 when no
validation is available.
Piecewise approximation tangents K. We recommend K=6 as a stable default. K=7 may
hurt due to solver instability rather than approximation error.
Grouping size G. For parallel DRO, G ∈ [100,1000] balances robustness and throughput;
we find G≈100–300 a sweet spot in practice.

4.3.1 Robustness to Seed Label Noise (25% flips)

To assess robustness promised by our O(ϵ)-regret guarantee, we flip the preferred/unpreferred labels
on 25% of the 2K seed pairs and re-run SSAPO end-to-end. Table 5 shows that Mistral-SSAPO
suffers only a∼7–13% degradation, while LLaMA-SSAPO improves under noise, indicating DRO
regularization and stronger self-annotation can counteract moderate seed noise.

Table 5: Effect of 25% seed label corruption. Entries show (AlpacaEval 2.0 LC win-rate / Win-rate
vs GPT-4), higher is better.

Model No noise 25% noise
Mistral-SSAPO 26.90% / 31.93% 19.70% / 18.51%
LLaMA-SSAPO 33.33% / 40.12% 43.74% / 46.70%

Discussion. For Mistral, bounded degradation empirically aligns with our O(ϵ)-regret theory. For
LLaMA-3-8B, noise acts as implicit regularization: the worst-case distribution explores a wider ϵ-ball
region and mitigates overfitting to small seeds.

5 Conclusion, Limitations and Future Work

Aiming at a data-efficient alignment method, we have introduced SGPO alignment framework with
O(ϵ)-bounded regret under moderate noise or distribution shifts. Our practical instantiation, SSAPO,
uses self-annotation and distributionally robust reweighting to achieve strong performance with far
fewer human labels. The scalability limitation of SSAPO comes from the number of preferences N , we
use a simple uniform group trick to balance between robustness and complexity. For further improve-
ment, one may resort to primal-dual or specialized cutting-plane methods [13], or use approximate re-
laxations with entropic regularization [24]. Our guarantees target training-time robustness to preference
noise and mild distribution shifts (e.g., reweightings within aW1 ϵ-ball). This is distinct from inference-
time robustness to adversarial prompts or jailbreak attacks. While our DRO step improves alignment
under noisy supervision, it does not replace dedicated safety mechanisms for adversarial inputs. We only
consider the human-labeled preference restricted scenario, however, SSAPO can also be integrated with
prompt-generation procedure such as EVA [25], which could be crucial to scaling large language model
based intelligence, considering that high-quality human data is running out in the next few years [26].
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Organization of the Appendix.

• Section A recap LLM alignment and data-efficient methods, as well as the Game-theoretic
alignment methods. And dicuss the connection and distinction between SGPO/SSAPO with
them.

• Section B revisits the core definitions and properties of the 1-Wasserstein metric, including
a statement of the Kantorovich–Rubinstein duality.

• Section C restates and discusses the regularity conditions needed for our theoretical
guarantees, such as compactness and Lipschitz continuity.

• Section D provides Proofs for the existence and convergence of the Stackelberg equilibrium,
as well as the regret bounds for SGPO and comparisons with DPO.

• Section E presents the SSAPO algorithm in pseudocode and includes an analysis of its
computational complexity.

• Section F remarks the approximation effects of SSAPO algorithm design on SGPO guarantees
• Section G gives supplementary information on experimental setups, hyperparameter choices,

grouping strategies for DRO, and other implementation details.
• Section H illustrates additional qualitative comparisons of model outputs, highlighting the

differences between DPO, SPA, and SSAPO in practice.
• Section I discusses the potential broader impact of this work.

A More Detailed Related Work

LLM Alignment and Data-Efficient Methods Aligning large language models (LLMs) with human
preferences is central to modern deployments [1, 2, 3],. While Reinforcement Learning with Human
Feedback (RLHF) [4] trains a reward model and then maximizes it under KL constraints, it typically
requires massive human-annotated data. Recent alternatives focus on directly fine-tuning LLMs from
pairwise preference data without an explicit reward model. Notably, Direct Preference Optimization
(DPO) [5] derives a closed-form surrogate objective that recovers RLHF’s solution but avoids a separate
reward modeling stage. Subsequent works simplify or extend this pipeline; for instance, Ethayarajh et al.
[27] remove the need for pairwise labels by adopting a human utility model, while there are also works
[28, 29, 30] introduce novel optimization objectives to handle different preference formats. Despite
progress, these approaches still rely on large-scale preference annotations, making label-efficiency a key
challenge. To reduce the reliance on expensive human labels, several methods have explored letting the
LLM or an auxiliary model generate and rank unlabeled responses, thereby creating synthetic preference
data [21, 8, 11, 9]. However, many of these approaches assume accessibility to a reliable well-aligned
"judge", which could be prohibitive costly in realistic scenarios. To address the cost bottleneck, Kim et al.
[9] propose a Spread Preference Annotation (SPA) framework that starts from a small seed of human-
annotated preferences and iteratively expands the dataset by self-annotation. Our work is closely related
to SPA: we replicate its experimental setup by using the same small-scale seed preferences and iterating
between new response generation and preference learning. However, our Stackelberg perspective
considers the inaccuracy of self-annotation, and explicitly defends against worst-case preference shifts.
Empirically, we show that this game-theoretic distributional approach yields stronger label efficiency.

Game-Theoretic Alignment Methods An emerging body of work has begun to frame preference
alignment of LLMs through the lens of games. A conceptual similar work [31] propose Stackelberg
Alignment RLHF. However, their nested gradient-based heuristic does not guaranteed to converge to
the equilibrium. While we prove our updates for the leader and follower converge to an equilibrium.
Meanwhile, Ye et al. [25] present a framework that casts prompt-creator and solver asymmetric players
in an evolving game, the differences between our work is we focus on evolving the distribution of the
responses , while they focus on evoling the distribution of the prompts. SPIN [32] use self-play to
iteratively refine a policy without additional human data, however they assume accessible to adequate
supervised fine-tuning (SFT) data. Other works adopt Nash or minimax formulations: Melnyk et al.
[33] study alignment via an optimal-transport objective to capture distributional preferences, Zhang
et al. [34] and Rosset et al. [35] formulate alignment as a two-player game aiming for a Nash policy, and
Munos et al. [36] proposes “Nash learning from human feedback” by treating the policy and a competing
policy as iterative players. Likewise, Swamy et al. [37], Wu et al. [38] introduce self-play preference
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optimization methods in which two policies repeatedly compete under a constant-sum setting. They
demonstrate promising performance on synthetic and text-based benchmarks, but typically set both
players as policy vs. policy. By contrast, our SGPO framework focuses on policy vs. distribution: the
leader policy maximizes preference likelihood, while the follower adversarially reweights or shifts the
empirical preference distribution. This setup offers a distinct distributional robust-control view, leading
to tight theoretical guarantees (e.g.,O(ϵ)-bounded regret) and a practical algorithm (SSAPO) that is
readily integrated with self-annotation. Hence, our method complements the “policy vs. policy” family
by delivering strong resistance to noisy or distribution-mismatched preferences at small annotation cost.

B Preliminaries on the Wasserstein Metric Space

Wasserstein (or Earth Mover’s) distances are widely used in robust optimization and optimal transport
to measure how far two probability distributions are from one another [12]. Below, we give a concise
overview of the 1-Wasserstein metric on a subset Ξ⊆Rm. We also recap the Kantorovich–Rubinstein
duality (Lemma B.2), which is central to several of our regret and robustness proofs in the main text.

B.1 Definition of the 1-Wasserstein Metric

LetM(Ξ) be the space of all probability distributions supported on Ξ such that

Eξ∼F

[
∥ξ∥

]
=

∫
Ξ

∥ξ∥dF (ξ)<∞.

In our setting, ∥·∥ can be any norm on Rm, typically the Euclidean norm (although other choices are
possible).
Definition B.1 (1-Wasserstein Metric). For two probability distributions F1, F2 ∈ M(Ξ), the
1-Wasserstein distance (often just called “the Wasserstein distance”) is defined as

W1(F1,F2) := inf
π∈Π(F1,F2)

{∫
Ξ×Ξ

∥∥ξ1− ξ2
∥∥dπ(ξ1,ξ2)}, (10)

where Π(F1, F2) is the set of all joint distributions on Ξ × Ξ whose marginals are F1 and F2,
respectively. Intuitively, π specifies how “mass” is transported from points in the support of F1 to
points in the support of F2, and ∥ξ1−ξ2∥ is the cost of moving a unit of mass from ξ1 to ξ2.

Domain used in this paper. All Wasserstein balls in our analysis live in Ξ=R over scalar preference
gaps ξ=∆Rπ(yw,yℓ) induced by a fixed prompt x; we do not transport x or raw sentences. Robustness
is with respect to annotation noise through the induced gap distribution.

Equivalently, one can interpret the Wasserstein distance as the minimal cost of transforming the
distribution F1 into F2 when the cost of moving a unit mass from ξ1 to ξ2 is ∥ξ1−ξ2∥. This framework
underpins many distributionally robust methods, including the SGPO formulation in our paper.

B.2 Kantorovich–Rubinstein Duality

A crucial result for the 1-Wasserstein distance is the Kantorovich–Rubinstein duality (Theorem 5.9
in Villani et al. [12]), which states that the infimum over transport plans (as in Definition B.1) is
equivalent to a supremum over 1-Lipschitz test functions. We use this lemma extensively to derive
Lipschitz-based bounds in the main proofs (e.g., Theorems 2.5–2.6).
Lemma B.2 (Kantorovich–Rubinstein Duality). Let F1,F2∈M(Ξ) with finite first moments. Then
the 1-Wasserstein distance (10) admits the following dual representation:

W1(F1,F2) = sup
∥f∥Lip≤1

(
Eξ∼F1

[f(ξ)]−Eξ∼F2
[f(ξ)]

)
, (11)

where the supremum is taken over all 1-Lipschitz functions f :Ξ→R, i.e. functions satisfying∣∣f(ξ)−f(ξ′)∣∣≤ ∥ξ−ξ′∥ ∀ξ,ξ′∈Ξ.
Lemma B.2 underpins many of our theoretical arguments, particularly in bounding the impact of
perturbations measured in the W1 ball Uϵ(α̂(π)) in gap space, via

∣∣Eα[f ]−Eβ [f ]
∣∣≤W1(α,β) for

1-Lipschitz f . As shown in Section D of our paper, it simplifies comparing EP [f ] and EP̂ [f ] when
f is Lipschitz in model parameters or responses.
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C Regularity Conditions for Stackelberg Game Preference Optimization

Setup. Let Π denote a (parameterized) class of policies π. Given preference triples (xi,yiw,y
i
ℓ)

for i = 1, ... , N , define the empirical measure on triples P̂ = 1
N

∑N
i=1 δ(xi,yi

w,yi
ℓ)

and the gap
map ∆Rπ(x,yw,yℓ) := Rπ(x,yw)−Rπ(x,yℓ). The corresponding empirical gap distribution is
α̂(π) := (∆Rπ)#P̂ = 1

N

∑N
i=1δ∆Rπ(xi,yi

w,yi
ℓ)
∈P(R). For ϵ > 0, we denote the 1-Wasserstein ball

in gap space by Uϵ(α̂(π)) :={α∈P(R) :W1(α,α̂(π))≤ ϵ}, where the ground metric is the absolute
value on R. The leader payoff isP

(
π,α

)
:=Eξ∼α[logσ(ξ)] and the follower chooses α∈Uϵ(α̂(π)).

Standing assumptions. We use the following minimal conditions.

(A1) Compactness. Π is compact (with respect to the topology induced by the model
parameterization).

(A2) Continuity of rewards. For each (x,y), the map π 7→Rπ(x,y) is continuous. Consequently,
for each i, the map π 7→∆Rπ(x

i,yiw,y
i
ℓ) is continuous.

(A3) Continuity of the push-forward center. The map π 7→ α̂(π)=(∆Rπ)#P̂ is continuous in
the topology induced by W1; in particular, W1

(
α̂(π1),α̂(π2)

)
→0 whenever π1→π2. (This

actually follows from (A2). See Lemma C.1.)

(A4) Gap-link function. f(ξ) :=logσ(ξ) is continuous, concave, and 1-Lipschitz on R.

(A5) (Optional, for local convergence.) There exists λ>0 such that the proximal leader objective
G(π;πt,α) :=Eξ∼α[f(∆Rπ(x,yw,yℓ))]− λ

2 ∥θ(π)−θ(πt)∥2 is µ-strongly concave in θ(π)
on a neighborhood of a solution, uniformly over α∈Uϵ(α̂(πt)).

(A6) ( Optional„ for bounded margins or clipping.) Either |∆Rπ(x, yw, yℓ)| ≤ B for all
(x,yw,yℓ) and π∈Π, or margins are deterministically clipped to a window [a,b]. All PWL
error bounds are computed on this interval. The Rmax in the paper can be set to B/2.

Lemma C.1 (Continuity of the center in W1). Under (A2), for any π1,π2∈Π,

W1

(
α̂(π1),α̂(π2)

)
≤ 1

N

N∑
i=1

∣∣∆Rπ1
(xi,yiw,y

i
ℓ)−∆Rπ2

(xi,yiw,y
i
ℓ)
∣∣.

In particular, π 7→ α̂(π) is continuous in W1.

Proof. Couple the Dirac masses in α̂(π1) and α̂(π2) index-wise. The claim follows because the
1-Wasserstein distance on R is bounded above by the average transport cost under any coupling.

Lemma C.2 (logσ is 1-Lipschitz and concave). For all ξ ∈ R, d
dξ logσ(ξ) = σ(−ξ) ∈ (0,1) and

d2

dξ2 logσ(ξ)=−σ(ξ)σ(−ξ)≤0. Hence logσ is 1-Lipschitz and concave.

Proof. Direct differentiation; |σ(−ξ)| ≤ 1 gives the Lipschitz constant and the second derivative is
nonpositive.

Lemma C.3 (Compact follower feasible set). For each fixed π, the set Uϵ(α̂(π)) ⊂ P(R) is tight,
closed in W1, and thus compact.

Proof. On the Polish space (R,|·|), closed and W1-bounded sets of probability measures are relatively
compact; tightness follows from Markov’s inequality under bounded first moments, which hold for
all α with W1(α,α̂(π))≤ϵ. Closure is standard for W1-balls.

Remarks. (i) No Lipschitz condition on Rπ in the output space y is needed because robustness is
posed in gap spaceR. (ii) Assumption (A5) matches practice (small stepsizes/weight decay) and is only
required for the local rate. (iii) Although neural network parameters θ∈Rd are technically unbounded,
many theoretical analyses restrict θ to a large but bounded ball (via a norm constraint) or rely on a coer-
cive objective to prevent unbounded parameter growth. Hence, requiringΠ to be compact is common in
theoretical treatments. In practice, gradient-based optimization does not typically push ∥θ∥ to infinity.
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D Theoretical Results

D.1 Preliminaries and basic lemmas

Notation and spaces. All random variables in this section take values in (R,| · |) equipped with
the Borel σ-algebra. For a policy π and i.i.d. samples {(xi,yiw,y

i
ℓ)}Ni=1∼ P̂ , define the empirical gap

distribution

α̂(π) := (∆Rπ)#P̂ =
1

N

N∑
i=1

δξ̂i , where ξ̂i := ∆Rπ(x
i,yiw,y

i
ℓ)∈R.

For ϵ>0, the (1-)Wasserstein ball around α̂(π) is

Uϵ
(
α̂(π)

)
:=

{
α∈P(R) :W1

(
α,α̂(π)

)
≤ϵ

}
.

We write u(ξ) :=logσ(ξ) (concave, 1-Lipschitz) and ℓ(ξ) :=−u(ξ)=−logσ(ξ) (convex, 1-Lipschitz).
When a piecewise-linear (PWL) surrogate is used, we set

ℓ̃(ξ) := max
1≤k≤K

ℓk(ξ), ℓk(ξ) :=akξ+bk,

chosen as global supporting tangents so that ℓ̃(ξ)≤ℓ(ξ) for all ξ.

Lemma D.1 (logσ is concave and 1-Lipschitz). For every ξ ∈R, d
dξ logσ(ξ) = σ(−ξ)∈ (0,1) and

d2

dξ2 logσ(ξ)=−σ(ξ)σ(−ξ)≤0. Hence u(ξ)=logσ(ξ) is concave and 1-Lipschitz.

Proof. Recall σ(ξ)= 1
1+e−ξ . Then

d

dξ
logσ(ξ)=

σ′(ξ)

σ(ξ)
=

σ(ξ)(1−σ(ξ))
σ(ξ)

=1−σ(ξ)=σ(−ξ)∈(0,1).

Hence | ddξ logσ(ξ)| ≤ 1 for all ξ, so logσ is 1-Lipschitz: | logσ(ξ)− logσ(ξ′)| ≤ |ξ − ξ′| by the
mean-value theorem. Further,

d2

dξ2
logσ(ξ)=

d

dξ
σ(−ξ)=−σ(−ξ)

(
1−σ(−ξ)

)
=−σ(ξ)σ(−ξ)≤0,

so logσ is concave.

Kantorovich–Rubinstein (KR) duality for W1. For any 1-Lipschitz h :R→R and α,β∈P(R),∣∣Eα[h]−Eβ [h]
∣∣ ≤ W1(α,β).

We use this both as a continuity tool and as a tight transport sensitivity bound.
Lemma D.2 (Continuity of the empirical-center map). If π 7→∆Rπ(x

i,yiw,y
i
ℓ) is continuous for each

i∈ [N ], then for any π1,π2,

W1

(
α̂(π1),α̂(π2)

)
≤ 1

N

N∑
i=1

∣∣∆Ri
π1
−∆Ri

π2

∣∣,
hence π 7→ α̂(π) is continuous in the W1 metric.

Proof. Write α̂(πj)=
1
N

∑N
i=1δξ̂(j)i

with ξ̂
(j)
i :=∆Rπj (x

i,yiw,y
i
ℓ) for j∈{1,2}. Define the coupling

γ= 1
N

∑N
i=1δ(ξ̂(1)i ,ξ̂

(2)
i )

. By definition of W1 (optimal transport with cost |·| on R),

W1

(
α̂(π1),α̂(π2)

)
≤

∫
|x−y|dγ(x,y) = 1

N

N∑
i=1

∣∣ξ̂(1)i −ξ̂
(2)
i

∣∣ = 1

N

N∑
i=1

∣∣∆Ri
π1
−∆Ri

π2

∣∣.
If for each i the mapπ 7→∆Rπ(x

i,yiw,y
i
ℓ) is continuous (Assumption (A2)), thenW1

(
α̂(πn),α̂(π)

)
→0

whenever πn→π, i.e., π 7→ α̂(π) is continuous in the W1 metric.
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Lemma D.3 (Compactness of Wasserstein balls about empirical centers). For fixed π, the feasible
follower set Uϵ(α̂(π)) is nonempty, tight, closed in W1, hence compact.

Proof. Fix π. Let B :=Uϵ(α̂(π))=
{
α∈P(R) :W1(α,α̂(π))≤ϵ

}
.

(i) Nonemptiness. Trivially α̂(π)∈B.

(ii) Uniform first-moment bound. On R with ground metric |·|, we have W1(α,δ0)=
∫
|x|dα(x). By

the triangle inequality,∫
|x|dα(x)=W1(α,δ0)≤W1(α,α̂(π))+W1(α̂(π),δ0)≤ϵ+

∫
|x|dα̂(π)(x),

so the family B has uniformly bounded first moments.

(iii) Tightness. For any R>0,

α
(
|x|>R

)
≤ 1

R

∫
|x|dα(x) ≤

ϵ+
∫
|x|dα̂(π)
R

∀α∈B,

by Markov’s inequality. Hence B is tight.

(iv) Closedness in W1. If αn ∈ B with W1(αn, α) → 0, then W1(α, α̂(π)) ≤
liminfn

[
W1(α,αn)+W1(αn,α̂(π))

]
≤ϵ, so α∈B and B is closed.

(v) Compactness. On the Polish space R, Prokhorov’s theorem gives that tight families are relatively
compact in the weak topology; the uniform first-moment bound tightens this to relative compactness in
W1 (since W1 convergence is equivalent to weak convergence plus convergence of first moments on R).
Combining relative compactness with closedness in W1 yields compactness of B in (P1(R),W1).

D.2 Existence of a Stackelberg solution

Theorem D.4 (Existence). Assume: (A1) Π compact; (A2) each π 7→∆Rπ(x
i,yiw,y

i
ℓ) is continuous;

(A3) hence π 7→ α̂(π) is W1-continuous (Lemma D.2); (A4) u(·) is 1-Lipschitz and concave
(Lemma D.1). Then

max
π∈Π

min
α∈Uϵ(α̂(π))

Eα

[
u(ξ)

]
admits a solution (π⋆,α⋆).

Proof. We verify the conditions of Berge’s maximum theorem step by step.

Step 1 (Follower minimizer exists for each fixed π). For fixed π, Lemma D.3 shows the feasible
set Uϵ(α̂(π)) is nonempty and compact in W1. By Lemma D.1, u is 1-Lipschitz, hence α 7→Eα[u]
is continuous under W1 (KR inequality). Therefore, the follower problem admits a minimizer
α⋆(π)∈argminα∈Uϵ(α̂(π))Eα[u].

Step 2 (Continuity of the feasible-set correspondence in π). By Lemma D.2, π 7→ α̂(π) is continuous
in W1. The set-valued map π 7→Uϵ(α̂(π)) thus varies continuously in the Hausdorff metric induced
by W1 (closed balls move continuously with their centers in a metric space), in particular it is upper
hemicontinuous and compact valued.

Step 3 (Upper semicontinuity of the value map). Define V (π) :=minα∈Uϵ(α̂(π))Eα[u]. By Berge’s
maximum theorem (compact-valued, upper hemicontinuous correspondence; continuous objective),
V is upper semicontinuous on Π.

Step 4 (Maximizer exists). Under (A1), Π is compact. Since V is upper semicontinuous on a
compact set, it attains its maximum at some π⋆ ∈ Π. By Step 1, there is a realizing follower
α⋆∈argminα∈Uϵ(α̂(π⋆))Eα[u].

Therefore the problem admits a solution (π⋆,α⋆).

D.3 Local linear convergence of alternating updates

Consider the iterates with a (Euclidean) proximal leader step:

αt+1∈arg min
α∈Uϵ(α̂(πt))

Eα[u(ξ)], πt+1∈argmax
π∈Π

{
Eαt+1 [u(ξ)]− λ

2 ∥θ(π)−θ(πt)∥2
}
.
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Theorem D.5 (Well-posedness and local linear convergence). Assume (i) the leader’s proximal
objective is µ-strongly concave in θ(π) uniformly over α∈Uϵ(α̂(πt)) on a neighborhood of a solution,
and (ii) the map π 7→Uϵ(α̂(π)) is Lipschitz in the W1-Hausdorff distance near π⋆. Then the update
map (πt,αt) 7→(πt+1,αt+1) is a contraction in a neighborhood of (π⋆,α⋆), and the iterates converge
linearly to (π⋆,α⋆).

Proof. Let the follower best-response be any measurable selection α♯(π)∈argminα∈Uϵ(α̂(π))Eα[u],
whose existence follows from the measurable maximum theorem since the correspondence is compact
valued and upper hemicontinuous.

Define the proximal leader map at iterate πt:

T (α;πt) ∈ argmax
π∈Π

G(π;πt,α), G(π;πt,α) :=Eξ∼α[u(∆Rπ)]− λ
2 ∥θ(π)−θ(πt)∥2.

Step 1 (Follower map is Lipschitz in the center, hence in π locally). Fix π1,π2, and let αj =α♯(πj).
Because Uϵ(α̂(π)) is a closed ball in (P1(R),W1), for any β we can project it to the closest point in
the ball (metric projection is 1-Lipschitz). In particular, for β=α1 we have

distW1

(
α1,Uϵ(α̂(π2))

)
≤ W1

(
α̂(π1),α̂(π2)

)
.

Let α̃2∈Uϵ(α̂(π2)) be a nearest point to α1. Using 1-Lipschitzness of u and the optimality of α2 at π2,

Eα2
[u] ≤ Eα̃2

[u] ≤ Eα1
[u]+W1(α̃2,α1) ≤ Eα1

[u]+W1

(
α̂(π1),α̂(π2)

)
.

Symmetrizing the roles of 1 and 2 gives by triangle inequality

W1(α1,α2) ≤ 2W1

(
α̂(π1),α̂(π2)

)
.

Thus the follower map is Lipschitz in the empirical center with constant Lf ≤2. By Lemma D.2,

W1

(
α̂(π1),α̂(π2)

)
≤ 1

N

N∑
i=1

∣∣∆Ri
π1
−∆Ri

π2

∣∣.
Assume (locally around the target) the maps θ 7→∆Ri

πθ
are LR-Lipschitz for i=1,...,N . Then locally

W1(α
♯(π1),α

♯(π2)) ≤ LfW1

(
α̂(π1),α̂(π2)

)
≤ LfLR∥θ(π1)−θ(π2)∥.

Step 2 (Leader prox map is Lipschitz in α under local strong concavity). By (A5), for each fixed πt

the map π 7→G(π;πt,α) is µ-strongly concave in θ(π) on a neighborhood of the solution, uniformly
over α∈Uϵ(α̂(πt)). Let π+

j :=T (αj ;πt) for j∈{1,2}. Since u is 1-Lipschitz and ∆Rπ is continuous
in π, there exists Lℓ (local) such that∥∥∇θEα1

[u(∆Rπ)]−∇θEα2
[u(∆Rπ)]

∥∥ ≤ LℓW1(α1,α2) for π near the solution.

By standard stability of maximizers under strong concavity (e.g., by the implicit function theorem
or strong monotonicity of the gradient mapping), we obtain the Lipschitz dependence

∥θ(π+
1 )−θ(π

+
2 )∥ ≤

Lℓ

µ
W1(α1,α2).

Step 3 (Contraction of the composition and linear rate). Set αt :=α♯(πt) and πt+1 :=T (αt;πt). Let
(π⋆,α⋆) be a Stackelberg solution; then α⋆=α♯(π⋆) and π⋆=T (α⋆;π⋆). Combining Steps 1 and 2,

∥θ(πt+1)−θ(π⋆)∥ ≤ Lℓ

µ
W1(αt,α

⋆) ≤ Lℓ

µ
LfLR∥θ(πt)−θ(π⋆)∥.

Choose the proximal weight λ (hence the local strong-concavity modulus µ) so that ρ := LℓLfLR

µ <1.
Then Banach’s fixed-point theorem yields linear convergence:

∥θ(πt)−θ(π⋆)∥ ≤ ρt−t0∥θ(πt0)−θ(π⋆)∥ for all t≥ t0 in the neighborhood.

This also implies well-posedness (local single-valuedness) of the composite best-response map in
that neighborhood.
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D.4 Worst-case performance drop and SGPO regret bound

Theorem D.6 (Worst-case performance drop). If α∈Uϵ(α̂(π)), then Eα[u(ξ)]≥Eα̂(π)[u(ξ)]−ϵ.

Proof. By Lemma D.1, u is 1-Lipschitz. For anyα withW1(α,α̂(π))≤ϵ, the Kantorovich–Rubinstein
inequality yields

Eα[u]−Eα̂(π)[u] ≥ −W1(α,α̂(π)) ≥ −ϵ.

Rearranging gives the claim.

Theorem D.7 (SGPO regret bound). Let π⋆ solve maxπminα∈Uϵ(α̂(π))Eα[u]. Then

sup
α∈Uϵ(α̂(π⋆))

Regret(π⋆,α) ≤ 2ϵ.

Proof. Let π⋆∈argmaxπminα∈Uϵ(α̂(π))Eα[u] and fix any α∈Uϵ(α̂(π⋆)). Let π⋆
α∈argmaxπEα[u]

be the α-optimal policy. By Theorem D.6,

Eα[u]π⋆
α
≤ Eα̂(π⋆)[u]π⋆

α
+ϵ, Eα[u]π⋆ ≥ Eα̂(π⋆)[u]π⋆−ϵ.

Subtracting gives

Regret(π⋆,α)=Eα[u]π⋆
α
−Eα[u]π⋆ ≤

(
Eα̂(π⋆)[u]π⋆

α
−Eα̂(π⋆)[u]π⋆

)︸ ︷︷ ︸
≤0 by def. of π⋆

+ 2ϵ ≤ 2ϵ.

D.5 DPO regret lower bound under a stability assumption

Assumption D.8 (Center stability at the robust follower). Let α⋆∈Uϵ(α̂(π⋆)) be a follower minimizer
for π⋆ and π∗

α⋆ ∈argmaxπEα⋆ [u]. Assume there exists κ≤ϵ such that W1

(
α̂(π∗

α⋆),α̂(πDPO)
)
≤κ.

Theorem D.9 (DPO regret lower bound (stability version)). Let δ := W1

(
α⋆, α̂(πDPO)

)
. Under

Assumption D.8,
Regret

(
πDPO,α

⋆
)
≥ δ−(κ+ϵ) ≥ δ−2ϵ.

Proof. Let δ :=W1(α
⋆,α̂(πDPO)) and recall Assumption D.8. First, by KR and 1-Lipschitzness of u,

Eα⋆ [u]π∗
α⋆
≥ Eα̂(πDPO)[u]π∗

α⋆
−δ, Eα⋆ [u]πDPO ≤ Eα̂(πDPO)[u]πDPO+δ.

Subtracting,

Regret(πDPO,α
⋆) ≥

[
Eα̂(πDPO)[u]π∗

α⋆
−Eα̂(πDPO)[u]πDPO

]
− 2δ.

By center stability and optimality of π∗
α⋆ at α⋆,

Eα̂(πDPO)[u]π∗
α⋆
≥ Eα̂(π∗

α⋆ )[u]π∗
α⋆
−κ ≥ Eα⋆ [u]π∗

α⋆
−κ.

Finally, since W1(α̂(π
⋆),α⋆)≤ϵ and π⋆ is optimal at α̂(π⋆),

Eα⋆ [u]π∗
α⋆
≥ Eα̂(π⋆)[u]π⋆−ϵ.

Combining the displays and cancelling the center-optimal term gives Regret(πDPO, α
⋆) ≥

δ−(κ+ϵ)≥δ−2ϵ (using κ≤ϵ).

Remark. Without Assumption D.8, the lower bound can vanish if π∗
α⋆ recenters too far from

α̂(πDPO); the stability phrasing makes explicit the (mild) continuity needed for a linear-in-δ lower
bound.
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D.6 Approximation effects (piecewise, grouping, inner tolerance)

Let m(π) := minα∈Uϵ(α̂(π))Eα[u] denote the true follower value and let m̃K,grp,η(π) denote the
value computed with: (i) PWL under-approximation ℓ̃K with K pieces, (ii) a restricted feasible set
ŨK(α̂(π))⊆Uϵ(α̂(π)) (e.g., via grouping), and (iii) inner tolerance η.
Proposition D.10 (Monotone tightening in the number of pieces). Fix a reference distribution α̂
on R with finite first moment and radius ϵ≥ 0, and let Uϵ(α̂) denote the associated 1-Wasserstein
ambiguity set (absolute ground metric). Let ℓ :R→ [0,∞) be convex and define {ℓ̃K}K≥1 as convex
piecewise-linear underestimators of ℓ of the form

ℓ̃K(ξ) = max
1≤k≤K

{akξ+bk}, with ℓ̃K(ξ)≤ ℓ̃K+1(ξ)≤ℓ(ξ) ∀ξ,

such that ℓ̃K(ξ)↑ℓ(ξ) pointwise as K→∞. Define the exact and surrogate inner values

v⋆ := inf
α∈Uϵ(α̂)

Eα[logσ(ξ)] =− sup
α∈Uϵ(α̂)

Eα[ℓ(ξ)], vK :=− sup
α∈Uϵ(α̂)

Eα[ℓ̃K(ξ)].

Assume supα∈Uϵ(α̂)Eα[ℓ(ξ)]<∞. Then:

1. (Validity) vK≥v⋆ for all K≥1.

2. (Monotonicity) vK+1≤vK for all K≥1.

3. (Limit) vK ↓v⋆ as K→∞.

Moreover, if for some K the supremum in the definition of vK is attained by αK ∈ Uϵ(α̂) and
ℓ̃K(ξ)=ℓ(ξ) holds αK-almost surely, then vK=v⋆.

Proof. By definition of ℓ=−logσ we have infαEα[logσ] =−supαEα[ℓ], hence v⋆=−supαEα[ℓ].
Since ℓ̃K≤ℓ, it follows that supαEα[ℓ̃K ]≤supαEα[ℓ], which implies vK≥v⋆, proving (a). Because
ℓ̃K+1≥ ℓ̃K pointwise, also supαEα[ℓ̃K+1]≥supαEα[ℓ̃K ], hence vK+1≤vK , proving (b). For (c), by
monotone convergence, for each fixed α we have Eα[ℓ̃K ]↑Eα[ℓ]; therefore supαEα[ℓ̃K ]↑supαEα[ℓ],
and taking negatives yields vK ↓v⋆. The final claim is immediate from the definitions.

Remark D.11. In our setting ℓ(ξ) = − log σ(ξ) is nonnegative and 1-Lipschitz, so
supα∈Uϵ(α̂)Eα[ℓ(ξ)]<∞whenever Uϵ(α̂) is a W1-ball around a measure with finite first moment.

Proposition D.12 (Error from PWL under-approximation). Let ∆pl(K) :=supξ
(
ℓ(ξ)−ℓ̃K(ξ)

)
≥0.

Then
0 ≤ m̃K(π)−m(π) ≤ ∆pl(K).

Proof. By construction ℓ̃K≤ℓ pointwise. Since u=−ℓ, for any feasible α,

Eα[u] = −Eα[ℓ] ≤ −Eα[ℓ̃K ] ≤ − sup
α′∈Uϵ

Eα′ [ℓ̃K ] = m̃K(π),

so m̃K(π)≥m(π). Moreover, for any α, Eα[ℓ]−Eα[ℓ̃K ]≤ supξ
(
ℓ(ξ)− ℓ̃K(ξ)

)
=:∆pl(K). Taking

the supremum over α and flipping the sign gives

0 ≤ m̃K(π)−m(π) ≤ ∆pl(K).

Proposition D.13 (Error from grouping/restriction). Let dH denote the directed Hausdorff distance
(under W1) from Uϵ(α̂(π)) to ŨK(α̂(π)). Then

0 ≤ m̃grp
K (π)−m(π) ≤ dH .

Proof. Let α⋆ ∈ argminα∈Uϵ(α̂(π))Eα[u] and let α̃ be any element of the restricted set ŨK(α̂(π))
satisfyingW1(α

⋆,α̃)≤dH by definition of the directed Hausdorff distance. Using 1-Lipschitzness of u,

min
α̃∈ŨK(α̂(π))

Eα̃[u] ≤ Eα̃[u] ≤ Eα⋆ [u]+W1(α̃,α
⋆) ≤ m(π)+dH .

Thus 0≤m̃grp
K (π)−m(π)≤dH .
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Algorithm 1 Stackelberg Self-Annotated Preference Optimization (SSAPO)
Require: Seed labeled setDseed; unlabeled dataDunlabeled; Wasserstein radius ϵ; number of linear

pieces K; max iterations T .
1: Initialize policy θ0, setD←Dseed.
2: for t=0 to T−1 do
3: (Self-Annotation): FromDunlabeled, sample prompts, generate & rank responses under πθt ,

add new preference pairs (yw,yℓ) toD.
4: (Form α̂(πt)): For each (yiw, y

i
ℓ) ∈ D, define ξ̂i = Rθt(y

i
w) − Rθt(y

i
ℓ), and let

α̂(πt)=
1
N

∑N
i=1δξ̂i .

5: (Convex Pieces): Choose K linear functions ℓk(·) such that ℓ̃(ξ) = max1≤k≤K ℓk(ξ) ≤
−log σ(ξ). Choose K knots {ξ(k)} in ξ-space over a bounded interval [at, bt] (e.g.,
at =mini ξ̂i−τ , bt =maxi ξ̂i+τ with τ > 0, or empirical (α,1−α) quantiles). Define ℓk as
tangents (or chords) from below to−logσ(ξ) at those knots.

6: (Worst-Case Distribution): Solve the DRO finite convex program

α∗
t ∈ arg max

α∈Uϵ(α̂(πt))
Eα

[
ℓ̃(ξ)

]
.

By Theorem 3.3, α∗
t is discrete with atoms

{
ξ̂i− q∗ik

s∗ik

}
and weights s∗ik/N .

7: (Policy Update): Let w(t)
i :=

∑K
k=1s

∗(t)
ik . Update θt+1 by minimizing the weighted logistic loss

1

N

N∑
i=1

w
(t)
i

[
−logσ

(
∆Rθ(x

i,yiw,y
i
ℓ)
)]

(optionally with KL or weight decay), via standard gradient methods.
8: end for
9: return θT (final policy).

Proposition D.14 (Cumulative approximation bound). For all π,

0 ≤ m̃K,grp,η(π)−m(π) ≤ ∆pl(K)+dH+η.

Proof. Combine Proposition D.12 (PWL gap≤∆pl(K)), Proposition D.13 (restriction gap≤dH ),
and note that an inner solver with tolerance η perturbs the value by at most η. Errors add up, giving
0≤m̃K,grp,η(π)−m(π)≤∆pl(K)+dH+η.

Theorem D.15 (Effect on regret guarantees under approximations). Let π̃ be produced by SSAPO
with K PWL pieces, G groups, inner tolerance η. Then, compared to Theorem D.7,

sup
α∈Uϵ(α̂(π̃))

Regret(π̃,α) ≤ 2ϵ + 2
[
∆pl(K)+dH+η

]
.

Proof. Let π⋆ be the SGPO optimizer and π̃ the SSAPO solution under approximations (PWL with
K pieces, grouping, and inner accuracy η). For any α∈Uϵ(α̂(π̃)),

Regret(π̃,α)=Eα[u]π⋆
α
−Eα[u]π̃≤

(
Eα̂(π̃)[u]π⋆

α
−Eα̂(π̃)[u]π̃

)
+2ϵ

by Theorem D.6. Replacing the center objectivem(·) by its approximate counterpart m̃K,grp,η(·) incurs
at most∆pl(K)+dH+η at π̃ and the same at the comparator, hence the extra 2

[
∆pl(K)+dH+η

]
.

E SSAPO algorithm and Analysis on Computational Complexity

E.1 The SSAPO algorithm
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E.2 Computational Complexity of SSAPO

In this subsection, we analyze the computational costs incurred by each step of the Stackelberg
Self-Annotated Preference Optimization (SSAPO) algorithm (Algorithm 1). We denote:

• N : the total number of preference pairs in the datasetD at a given iteration,
• K: the number of linear pieces used in the convex piecewise approximation of−logσ(ξ),
• T : the total number of outer iterations for SSAPO.

We assume each iteration refers to Steps 1–5 of Algorithm 1.

Step 1 (Self-Annotation) The cost of self-annotation depends on the number of prompts and
the policy’s inference procedure. Let Mt denote the number of new prompts labeled at iteration t.
Generating and ranking responses under πθt typically dominates this step. If:

• Gt is the number of candidate responses generated per prompt,
• Cinference is the average cost of a single forward pass (token generation) under πθt ,

then the time complexity for Step 1 is approximately

O
(
Mt ·Gt ·Cinference

)
,

plus any overhead for storing new winner–loser pairs in D. Since the number of newly added
preferences grows over iterations, N itself typically increases from iteration to iteration.

Step 2 (Forming α̂(πt)) OnceD is updated, we compute ξ̂i=Rθt(y
i
w)−Rθt(y

i
ℓ) for each pair. The

cost here depends on:

• N , the current size ofD,

• Creward, the average cost to compute Rθt(y)=βlog
πθt (y|x)
πref (y|x) for a given response y.

Because each preference pair requires evaluating Rθt on (yiw,y
i
ℓ), this step has complexity

O
(
N ·Creward

)
.

In practical implementations, Rθt(y) often just reads off the log-probabilities from πθt and πref at
the final tokens, making Creward similar to a single forward-pass cost per response.

Step 3 (Convex Piecewise Approximation) We construct K linear functions ℓk(ξ) such that
ℓ̃(ξ)=max1≤k≤Kℓk(ξ)≤−logσ(ξ). In principle, one can precompute these K pieces over a small
interval (e.g., [0,1]) once and reuse them in every iteration. Hence, the complexity for updating or
verifying the piecewise function at iteration t is typically: O(K), assuming {ξ(k)}Kk=1 are fixed or
can be quickly adapted based on the range of {ξ̂i}. This step is therefore relatively cheap compared
to distributionally robust optimization.

Step 4 (Worst-Case Distribution) Step 4 solves the distributionally robust optimization (DRO)
finite convex program

α∗
t = arg max

α∈Uϵ(α̂(πt))
Eα

[
ℓ̃(ξ)

]
.

The naive formulation (per [13]) becomes high-dimensional if N is large, because each sample point
ξ̂i and each piecewise component ℓk introduces auxiliary variables (such as sik,qik). Concretely, the
number of decision variables can scale likeO(N ·K), and the resulting linear or convex program might
requireO((NK)γ) time in the worst case for some exponent γ>1 (depending on the chosen solver
and constraints).

However, several factors can reduce this cost:

• Approximate Solvers. In practice, specialized cutting-plane or primal-dual methods solve
these DRO problems more efficiently than the worst-case theoretical bound.
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• Grouping Heuristics. If one partitions the N samples into smaller groups (each of size
G<N ), the complexity per group isO((GK)γ). Then one aggregates M= N

G group-level
solutions. This lowers the complexity significantly if G≪N .

Hence, the worst-case step here is often O(N ·K) to O((NK)γ), but can be much more tractable
in practice with grouping or approximate methods. Regardless, Step 4 typically dominates the iteration
complexity for large N .

Step 5 (Policy Update) Finally, we minimize

Eξ∼α∗
t

[
−logσ(ξ)

]
, α∗

t ∈arg max
α∈Uϵ(α̂(πt))

Eξ∼α

[
−logσ(ξ)

]
(by the ℓ = − log σ reparameterization). In practice we compute gradients via the chain rule
ξ=∆Rθ(x,yw,yℓ) and reweight per-pair contributions to match α∗

t (see Alg. 1).

Assuming each of the N preference pairs in α∗
t can be sampled over multiple epochs. In many

implementations, N can be large, so the training complexity depends heavily on how many gradient
epochs or passes one uses at iteration t.

Overall Complexity per Iteration Putting the above pieces together, let us summarize the
dominating terms:

1. Self-Annotation (Step 1): O(Mt ·Gt ·Cinference),
2. Forming α̂(πt) (Step 2): O(N ·Creward),
3. Convex Piecewise Approx. (Step 3): O(K),
4. Worst-Case Distribution (Step 4): O((NK)γ) in the naive case, often reduced by grouping,
5. Policy Update (Step 5): O(N ·Creward ·(number of epochs)).

If we denote the cost of solving the DRO subproblem by CDRO(N,K) (which could itself be
significantly reduced by grouping into subproblems of size G), then each iteration of SSAPO costs
approximately:

O
(
Mt ·Gt ·Cinference+N ·Creward+CDRO(N,K)+...

)
.

In most scenarios, either the distributionally robust optimization (Step 4) or the gradient-based policy
update (Step 5) will be the main bottleneck, depending on solver implementation and whether grouping
is employed.

Total Complexity over T Iterations Over T total iterations, we multiply the above per-iteration
cost by T . Additionally, note that N can increase each iteration if new self-annotated preferences
are continuously appended toD. Denoting Nt as the dataset size at iteration t, the total complexity
from Steps 2–5 is roughly

∑T−1
t=0

[
O(Nt ·Creward)+CDRO(Nt,K)

]
, plus the self-annotation cost

from Step 1. If N grows in a controlled manner (for example, linearly in t), the cumulative cost can
be bounded accordingly.

Practical Guidelines.

• Grouping for DRO. To handle large N , we recommend partitioning the data into multiple
groups G ≪ N . The overall complexity then becomes O

(
M · CDRO(G,K)

)
, where

M=N/G, which can be significantly faster in practice.
• Caching Log-Probabilities. The reward Rθt(y) can be computed from log-probabilities

of πθt and πref . Caching or reusing these values may reduce Creward.
• Adjusting K. Increasing K refines the concave approximation but grows the size of the DRO

problem. Hence, K is a hyperparameter balancing approximation quality and computational
overhead.

Overall, the time complexity of SSAPO grows with N , K, and the iteration count T . By employing
grouping and efficient solvers, We can typically achieve robustness benefits without incurring excessive
computational cost.
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F Approximation Effects of SSAPO Algorithm Design on SGPO Guarantees

Setup. Section 2 establishes guarantees for the Stackelberg game
max
π

min
α∈Uϵ

(
(∆Rπ)#P̂

) Eξ∼α

[
logσ(ξ)

]
, (12)

where ξ=∆Rπ(x,yw,yℓ) is the reward gap and the Wasserstein ball is taken over the push-forward
of the empirical pair distribution by ∆Rπ . This choice matches the semantics of preference robustness
and was the condition attached to acceptance. We abbreviate ϕ(ξ)≜ logσ(ξ), note that ϕ is 1-Lipschitz
and bounded on [−2Rmax,2Rmax] under the standing bounded-reward assumption from Section 2.

Throughout this section we write u(ξ) := logσ(ξ) and identify the PWL loss-approximation gap
∆pl(K) := supξ∈[a,b]

(
ℓ(ξ) − ℓ̃K(ξ)

)
with the symbol δK used in the main text. Likewise we

upper bound the grouping error δgrp(ϵ) by the directed Hausdorff distance dH between Uϵ and its
group-restricted surrogate.

Goal of this section. SSAPO instantiates (12) with three pragmatic approximations: (i) a K-tangent
convex under-approximation of the − logσ loss used to form a tractable DRO subproblem, (ii) a
group-restricted Wasserstein ball that disallows cross-group transport for scalability, and (iii) inexact
solves (tolerance η) of the follower and leader subproblems. We quantify how each approximation
perturbs the clean guarantees of Section 2 and provide principles for choosing (K,G,η).

F.1 A bias decomposition for SSAPO

Let V(π)≜minα∈Uϵ
Eα[ϕ(ξ)] denote the ideal follower value for a fixed policy π, and let Ṽ(π) be

the value obtained by SSAPO with all approximations enabled. Then

Ṽ(π)−V(π)︸ ︷︷ ︸
optimism induced by approximations

=
(
VK(π)−V(π)

)︸ ︷︷ ︸
piecewise loss

+
(
VK,G(π)−VK(π)

)︸ ︷︷ ︸
group restriction

+
(
Ṽ(π)−VK,G(π)

)︸ ︷︷ ︸
solve tolerance

, (13)

where VK is the value when ϕ is replaced by its K-tangent surrogate and VK,G additionally restricts
the follower to a group-wise uncertainty set (defined below). Each term in (13) is nonnegative (the
approximations weaken the adversary) and admits a simple Lipschitz control.

F.2 Effect of the K-tangent surrogate

Let ℓ̃(·) be the convex piecewise-linear under-approximation of − logσ(·) built from K tangents,
constructed on [−B,B] with B=2Rmax. Define the uniform approximation error

δK ≜ sup
ξ∈[−B,B]

∣∣(−logσ(ξ))−ℓ̃(ξ)∣∣.
Because ϕ= logσ =−(−logσ), replacing ϕ by −ℓ̃ in the follower objective can only increase its
minimum:

0≤ VK(π)−V(π)≤ δK , (14)
Thus, the K-tangent surrogate yields a one-sided, additive slack δK in the inner value and therefore
at most δK optimism in the leader’s objective. In practice, we found K=6 strikes a stable accura-
cy/conditioning trade-off, whereas K =7 can degrade numerics without reducing δK appreciably
(solver instability rather than approximation error).

Design takeaway. Choose K so that δK is below the statistical noise floor of the preference
estimator on [−2Rmax,2Rmax]. Empirically, K=6 is a robust default; increasing K past this point
can complicate the convex program and harm solver stability.

F.3 Effect of group-restricted Wasserstein uncertainty

Partition the support of the empirical gap distribution α̂(π) into G disjoint bins {Sg}Gg=1 (uniform
in ξ for SSAPO). The group-restricted follower can transport mass only within each Sg ,

Ugrp
ϵ

(
α̂(π)

)
≜

{
α=

∑
g

αg

∣∣∣ αg∈Uϵg
(
α̂(π)↾Sg

)
,
∑
g

ϵg≤ϵ
}
⊆ Uϵ

(
α̂(π)

)
.
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Let Π(ϵ) be the set of optimal global followers and define the projection gap of the restriction

δgrp(ϵ)≜ sup
α⋆∈Π(ϵ)

inf
α̃∈Ugrp

ϵ

W1(α
⋆,α̃).

By Kantorovich–Rubinstein duality and the 1-Lipschitzness of ϕ,

0≤ VK,G(π)−VK(π)≤ δgrp(ϵ). (15)

On the real line, uniform (equal-mass) binning gives a simple control δgrp(ϵ)≤ w̄G, the average
within-bin width in ξ; hence the restriction error decays as O(1/G) as bins refine. This formalizes the
empirical guideline that G between 102 and 103 preserves robustness while enabling embarrassingly
parallel solves.

Design takeaway. Use G∈ [100,1000] (sweet spot 100–300): it keeps w̄G small, retains near-global
robustness, and maximizes parallel throughput. Disallowing cross-group transport weakens the
adversary only by at most a bin-width in W1—not by ϵ itself—so the O(ϵ) regret from Section 2 is
intact up to an O(1/G) term.

F.4 Effect of inexact solves

Suppose each follower problem is solved to absolute tolerance η and the leader update attains an
η-accurate step (e.g., via a proximal DPO update). Then for any π,

0≤ Ṽ(π)−VK,G(π)≤ η. (16)

and the cumulative leader suboptimality over T rounds contributes at most O(η) to the final value,
consistent with the linear-convergence picture reported in Section 2. In SSAPO, the follower is solved
offline and in parallel with modest wall clock, so η can be driven small at negligible training-loop cost.

F.5 Putting the pieces together

Combining (14), (15), and (16) in (13), the approximation-induced optimism in the follower value obeys

0≤ Ṽ(π)−V(π)≤ δK︸︷︷︸
K-tangent

+ δgrp(ϵ)︸ ︷︷ ︸
grouping

+ η︸︷︷︸
tolerance

. (17)

Therefore, the leader who maximizes Ṽ(π) enjoys the same O(ϵ) robustness as in Section 2, up to
an additive O(δK+δgrp+η) slack. Because δK and η are user-controlled and δgrp shrinks with G, the
theory carries over with explicit, tunable error bars.

Practical summary.

• Where the ball lives. All results hinge on placing Uϵ on the gap push-forward (∆Rπ)#P̂
(not on (x,yw,yℓ)). This keeps the geometry 1-D and the Lipschitz constants sharp.

• K tangents. K=6 gives a stable frontier; K=7 may hurt due to conditioning rather than
approximation quality. Tune K to make δK sub-dominant to data noise.

• G groups. Choose G∈ [100,1000] (sweet spot 100–300) to make the group-restriction gap
δgrp(ϵ)≲ w̄G negligible while exploiting parallelism.

• Tolerance. Solve the offline follower to a tight η (cutting-plane typically converges in 10–20
iterations), so training-time overhead is small and approximation slack is dominated by
statistical error.

• Scope. These approximations target training-time robustness to noisy preferences; they are
orthogonal to inference-time adversarial prompts and do not weaken that disclaimer.

G More Details of Experimental Setups

G.1 Detailed Experimental Setups

We introduce more detailed experimental setups in Section 4 as follows.
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Datasets. For preference learning, we employed the UltraFeedback dataset [18]3, aligning with prior
research [35, 9]. Specifically, we extracted a seed dataset comprising 2K samples (3.3% of the total
60K training samples), which included prompts, responses, and ground-truth preference labels. These
ground-truth preference labels are referred to as gold labels in Table 1. The remaining training samples
were then partitioned into three subsets of 8K, 20K, and 30K samples, retaining only the prompts.
These subsets were utilized as the prompt sets for the 1st, 2nd, and 3rd iteration stages, respectively.

Models. Following previous work [9], we primarily conducted our experiments using the supervised
fine-tuned Mistral-7B-0.1 model [19] as the initial model πinit. Specifically, we used the open-sourced
model4 that follows the recipe of Zephyr [39] and is fine-tuned on the instructions of UltraChat [20].
In Table 1, we also used LLaMA-3-8B5 to validate the compatibility of our method across different
models. We used the generally fine-tuned models as there are no models that have been fine-tuned
on the UltraChat dataset.

Evaluations. Following standard practices for aligning LLMs, we employed two primary evaluation
benchmarks to assess model performance. First, we used AlpacaEval 2.0 [14, 23], a benchmark
designed to approximate human preferences in instruction-following tasks. This evaluation involves
805 diverse instructions sourced from multiple datasets, where responses from the model under test
are compared against those generated by GPT-4 [40] to determine win rates. To address potential
biases related to response length—a known factor influencing LLM preferences [15, 41], we report
both the original win rate and a length-controlled (LC) win rate. The LC win rate is calculated using
a regression model trained to neutralize the impact of response length, thereby focusing on the quality
of the generated content [23].

Second, we employed MT-Bench [15] to evaluate the model’s capabilities across a broader range
of tasks. MT-Bench assesses a chatbot’s performance in areas such as math, coding, role-playing, and
writing through multi-turn interactions. Responses are scored by GPT-4, providing a comprehensive
measure of the model’s proficiency in key LLM functionalities. Together, these benchmarks offer
a robust evaluation of how well the model aligns with human preferences and its effectiveness in
real-world applications.

Implementation Details. In the initial alignment phase, we train the model using Direct Preference
Optimization (DPO) on a seed dataset of 2K samples to obtain the base model π0. Following this,
we conduct 3 iterative stages of data expansion. In the i-th iteration (i=1,2,3), we generate preference
data by independently sampling two responses for each prompt using a temperature of 0.7 and labeling
them as chosen or rejected through R(x,y), resulting in a preference dataset {ξi}Ni=1 (N is the size
of the i-th prompt set). Following SPA [9], we restricted the maximum token length for self-generated
responses to 300 tokens. This limit corresponds to approximately 900 characters. To model the
worst-case distribution program, we define a set of linear functions ℓk(x) =−K

k (x−
k
K )− log( k

K )
for k=1,...,K (the family of tangents of the loss function at the K-equipartition of [0,1]). We solve
the associated optimization program using the Sequential Least Squares Programming (SLSQP)
method. The group size G is set to 100 unless otherwise specified for parallel computation of the
convex program. Finally, we update the policy model by minimizing the reweighted loss to get πi,
ensuring improved alignment with the desired preferences.

Hyper-parameters for Different LLMs. For Mistral-7B-0.1, We set learning rate = 5×10−7

and DPO hyper-parameter β = 0.1 throughout the entire preference learning process. We conduct
3 epoch for the initial DPO training and 3 iteration for SSAPO game play (leader-follower updates).

For LLaMA-3-8B, We set learning rate=1×10−6 and DPO hyper-parameter β=0.05 throughout
the entire preference learning process. We conduct 1 epoch for the initial DPO training and 2 iteration
for SSAPO game play (leader-follower updates).

3argilla/ultrafeedback-binarized-preferences-cleaned
4alignment-handbook/zephyr-7b-sft-full
5meta-LLaMA/Meta-LLaMA-3-8B-Instruct
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G.2 Construction of Seed Data

Seed data (e.g. the initial labeled training data) has an impact on the performance of self-training
algorithms. In our experiments, we explore two different methods of selecting seed data from the
original training set, namely UltraFeedback dataset [18] . Ground truth labels (e.g. the preferred and
dispreferred response) of the selected seed data are retained, while the labels of the remaining data
are discarded. As a result, our proposed method use only a small proportion of ground truth labels.

Random sampling. We select seed data from the entire training dataset randomly.

Farthest point sampling. Intuitively, the distribution of the seed data should "cover" as much part
of the entire training dataset as possible, such that subsequent self-training iterations won’t suffer from
distribution shift. With this motivation, we first leverage the SFT model to obtain an embedding vector
for each prompt in the dataset, and then use farthest point sampling algorithm to select a subset of
the embeddings (and corresponding preference pairs) as seed data. Specifically, we feed each prompt
into the SFT model, and extract the hidden state of the last token of the last layer as the embedding.
We use cosine similarity as the distance metric for embedding vectors.

Stability across runs. Using farthest-point sampling (FPS) for seed selection reduced performance
variance by approximately 40% compared to random seeds in our experiments, by covering the
preference space more uniformly.

In our implementation, we find that Mistral-7B model is not sensitive to either seed data sampling
method. And LLaMA-3-8B model enjoy a slightly better performance with respect to the farther point
sampling.

G.3 Infrastructure

For all experiments, we utilized 4 A800 GPUs. Under this computational resource, generating
responses for 10K prompts takes approximately 15 minutes, and preference judging for generated
responses takes about 30 minutes. Solving worst-case distribution with Eq. 9 takes about 40 minutes.
Policy update takes about 1 hour per 10K training data.

H Qualitative Examples

In this section, we present qualitative examples of the responses from the models trained under
different methods: DPO (only train on initial seed data using DPO), SPA[9], and SSAPO (our proposed
method). The results are presented below. These examples show that the model trained under SSAPO
provides more detailed and precise responses to various questions.

Prompt:

The given text must be classified as offensive or not offensive.

You acted really crazy last night.

DPO response:

I do not have any information about the specific context or situation in which the statement ÿou
acted really crazy last nightẅas made. Therefore, I am unable to determine whether it is classified
as offensive or not. Please provide more context or details about the situation so that I can provide
a more accurate response.

SPA response:

Based on the given text, it can be classified as "offensive" because it uses a colloquial and informal
expression ("acted really crazy") to describe someone’s behavior, which may convey a negative or
derogatory connotation towards the person’s actions. In formal or professional contexts, using such
language may be considered inappropriate or unprofessional, and it could potentially offend the person
involved or others who may be present. Using precise and objective language to describe behavior or
actions is generally recommended in such situations to avoid any potential offense or misunderstanding.
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Therefore, using a more neutral or appropriate expression, such as "displayed unconventional behavior
last night," may be a better option in this case.

SSAPO response:

Based on the given text "You acted really crazy last night," it is difficult to determine whether it
is classified as offensive or not offensive. The text does not contain any explicit or direct insults,
profanities, or derogatory language directed towards the person addressed. The phrase "acted really
crazy" could be interpreted as a subjective assessment of the person’s behavior or actions during the
previous night, and may not necessarily be intended as an insult or criticism.

However, the tone or context in which the text is used could influence its perceived offensiveness. If the
phrase "acted really crazy" is used sarcastically or with a condescending tone, it may be interpreted as
an indirect insult or criticism aimed at the person’s behavior or character. Alternatively, if the phrase is
used casually or with a neutral tone, it may be interpreted as a straightforward observation or comment
on the person’s actions without any malicious intent.

In summary, the given text "You acted really crazy last night" may or may not be classified as
offensive, depending on the tone, context, and intended meaning behind the phrase. Without additional
information or context, it cannot be definitively labeled as either offensive or not offensive.

Prompt:

Verify the correctness of the given statement.

"For all integers j and k, if j and k are odd, then jk is odd."

DPO response:

The statement "For all integers j and k, if j and k are odd, then jk is odd" is correct.

Proof:

Let j and k be any two odd integers.

Since j and k are both odd, there exist positive integers a and b such that:

j = 2a + 1 and k = 2b + 1

where a and b are integers.

Multiplying j and k, we get:

jk = (2a + 1)(2b + 1)

= 2(2ab + a + b) + 1

= 2(2a*2b + a + b) + 1

= 2(2a*2b + 1) + (2*a + 2*b + 1)

Since 2a and 2b are even integers, the product 2(2a*2b + 1) is an odd integer. Also, (2*a + 2*b + 1)
is an odd integer since it is of the form 2*c + 1 where c is the sum of two even integers (2a and 2b).
Therefore, jk is an odd integer.

Hence, for all integers j and k, if j and k are odd, then jk is odd.

Q.E.D.

SPA response:

The statement "For all integers j and k, if j and k are odd, then jk is odd" is correct.

To prove this statement, we can use mathematical induction on the sum of the absolute values of j
and k, denoted by |j| + |k|.
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First, consider the base case where |j| + |k| = 1. In this case, either j = 1 and k = 0 or j = 0 and k = 1.
In both cases, jk = 1, which is odd.

Next, assume the statement holds for all pairs of integers j and k such that |j| + |k| = n, where n is a
positive integer. Let j and k be any two integers such that |j| + |k| = n + 2. Then, either |j| = n + 1 and
|k| = 1 or vice versa. Without loss of generality, let |j| = n + 1 and |k| = 1. Then, j = n + 1 and k = 1 or
j = -(n + 1) and k = -1. In both cases, jk = (n + 1) * 1 = n + 1, which is odd by the induction hypothesis.

By mathematical induction, the statement holds for all integers j and k if j and k are odd, and jk is
odd. Thus, the statement is correct.

SSAPO response:

The given statement "For all integers j and k, if j and k are odd, then jk is odd" is correct.

To prove this statement, we need to show that for all integers j and k, if both j and k are odd, then their
product jk is also odd.

Let j and k be two odd integers, i.e., j = 2n + 1 and k = 2m + 1, where n and m are any integers.

Then, their product jk can be written as:

jk = (2n + 1) * (2m + 1) = 4nm + 2n + 2m + 1 = 2(2nm + n + m) + 1

Since n, m are integers, the product 2nm + n + m is also an integer. Therefore, the above expression
jk is equal to the sum of an even number (2(2nm + n + m)) and an odd number (1).

As the sum of two odd numbers is always even, the sum 2(2nm + n + m) + 1 is an odd number.

Hence, the product jk = (2n + 1) * (2m + 1) = 2(2nm + n + m) + 1 is an odd integer, which proves the
given statement.

Therefore, the given statement "For all integers j and k, if j and k are odd, then jk is odd" is correct.

Prompt:

Find the answer that best describes the underlined SAT word. Select the correct option and explain
the meaning of the underlined word.

Despite the _cacophony, the student tried to study.

A. Loud sounds

B. Difficult subject

C. Late hour

D. Low lighting

DPO response:

The correct option is A. Loud sounds. The word cacophony means "a loud and confusing mixture of
sounds." In this sentence, it describes the noise level in the environment where the student is trying to
study. Therefore, the underlined word cacophony refers to the loud sounds that are making it difficult
for the student to concentrate.

SPA response:

A) Loud sounds (cacophony)

Explanation:

The word "cacophony" refers to a loud and unpleasant combination of sounds, typically characterized by
a discordant or confusing mixture of noise. In the context of the sentence, "despite the _cacophony" sug-
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gests that the student is trying to study despite the overwhelming and distracting noise around them. The
underlined word "cacophony" modifies the phrase "loud sounds" and provides a descriptive adjective.

Option B) Difficult subject, C) Late hour, and D) Low lighting are not relevant to the given context as
they do not refer to loud or unpleasant sounds. Option A) "loud sounds" is a synonym for "cacophony"
and accurately describes the situation mentioned in the sentence.

Therefore, the correct option for the underlined word is A) Loud sounds (cacophony).

SSAPO response:

Option A: "Despite the cacophony, the student tried to study"

The underlined word "cacophony" means a loud or chaotic combination of sounds. It describes a
situation where there is an overwhelming or unpleasant mixture of noise or sounds.

Cacophony is derived from the Greek words "kakos" meaning "bad" or "ugly" and "phone" meaning
"sound". It is commonly used to describe a variety of loud or unpleasant sounds, such as traffic noise,
barking dogs, screaming children, or discordant music. In the given sentence, the student is trying
to study despite the distracting and disruptive noise or sounds, which creates a cacophony. The word
"despite" implies that the student is facing an obstacle or hindrance, which is the excessive noise or
chaos, but they still persist in their efforts to concentrate and study.

Therefore, the meaning of the underlined word "cacophony" is a loud or chaotic combination of sounds,
which creates an unpleasant or distracting environment for the student’s studying. Option A is the
correct answer. Option B refers to a difficult subject, Option C refers to a late hour, and Option D refers
to low lighting, none of which are relevant to the given context.

I Broader Impact

Our work aims to improve the data efficiency and robustness of language model alignment by for-
mulating preference optimization as a Stackelberg game and introducing a self-annotation mechanism.
By reducing reliance on large-scale human-labeled data, our framework could democratize alignment
research and make it more accessible to smaller organizations, labs, and communities (those lack
substantial annotation budgets). Moreover, robust optimization against noisy or adversarial preference
distributions may help mitigate unintentional bias if the seed data deviate from the true user preference
distribution.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the introduction section, we delineate the problems addressed by this work
and outline our contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the conclusion section (Section 5:Conclusion, Limitation and Future work),
we highlight the limitations of the current work and suggest directions for future research.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend
on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide the complete theoretical proofs in Appendix D.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed experiment results in Appendix G. Besides, code is
anonymously available at https://anonymous.4open.science/r/SSAPO-6888.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Code is anonymously available at https://anonymous.4open.science/
r/SSAPO-6888.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be pos-
sible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to
run to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide experiment settings in Section 4 and Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Due to the computational constraints associated with training and evaluating large-scale
models, we could not perform multiple repetitions of each experiment. Thus, traditional
error bars based on multiple runs are not included. However, we have taken other
appropriate measures to demonstrate robustness and significance, including clearly reporting
the experimental settings, model hyperparameters, and performing ablation studies or
comparisons to baselines wherever possible. Additionally, we’ve detailed any relevant
sources of variability or uncertainty in the experimental setup and results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

34

https://anonymous.4open.science/r/SSAPO-6888
https://anonymous.4open.science/r/SSAPO-6888
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: I have read the NeurIPS Code of Ethics and I confirm our research in the paper
conforms with Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require

a deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential broader impacts in Appendix I.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The framework proposed in our paper does not extend to application domains
requiring safeguards. Additionally, the datasets used are widely-used node classification
datasets, thus eliminating the need for specific safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all referenced works.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release our code anonymously during reviewing phase at
https://anonymous.4open.science/r/SSAPO-6888. During the camera ready
phase, we release our code https://github.com/EunTilofy/SSAPO.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as an important, original, or non-standard component
of the core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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