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ABSTRACT

The attention mechanism underpinning the transformer architecture is effective in
learning the token interaction within a sequence via softmax similarity. However,
the current theoretical understanding on optimization dynamics of the softmax
attention is insufficient in characterizing how attention performs intrinsic token
separation and selection, which is crucial to sequence-level understanding tasks.
On the other hand, support vector machines have been well-studied of its max-
margin separation behaviour. In this paper, we will formulate the softmax attention
convergence dynamics as hard-margin SVM optimization problem. We adopt a
tensor trick to formulate the matrix-based attention optimization problem and relax
the strong assumptions on the derivative of the loss function from the prior works.
As a result, we demonstrate that gradient descent converges to the optimal solution
for SVM. In addition, we show softmax is more stable than other linear attention
through analysis on their lipschitz. Our theoretical insights are validated through
numerical experiments, shedding insights on the convergence dynamics of softmax
attention as the foundational stones on the success of the large language models.

1 INTRODUCTION

The transformer architecture was introduced and traditionally consists of alternating attention and
multilayer-perceptron (MLP) sublayers, has given rise to influential models in the realm of complex
natural language tasks. These models include BERT Devlin et al. (2018), RoBERTa Liu et al. (2019),
XLNet Yang et al. (2019), GPT-3 Brown et al. (2020), OPT Zhang et al. (2022a), Llama Touvron
et al. (2023), and PaLM Chowdhery et al. (2022). Among these, GPT series, with hundreds of
billion parameters, have served as fundamental building block to power ChatGPT OpenAI (2022), a
chat software capable of generating highly convincing textual responses, creating immersive user
experiences. In addition, the arrival of the next-generation GPT-4 OpenAI (2023) has expanded
the horizons of AI capabilities, enabling it to excel in tasks previously considered beyond its reach,
achieving human-level proficiency in various professional and academic benchmarks. While widely
studied, it is still very challenging to understand the training dynamics of transformer models.

In this paper, we aim to understand the training dynamics of the core component of transformers,
known as attention Vaswani et al. (2017); Radford et al. (2018); Devlin et al. (2018); Brown et al.
(2020); Alman & Song (2023); Zandieh et al. (2023); Brand et al. (2023); Gao et al. (2023b). It
involves projecting tokens into queries, keys, and values and then comparing queries with keys to
calculate attention scores. This attention matrix is a dynamic structure that guides the model in
assigning importance to individual tokens within a text, allowing it to focus more on tokens relevant
to its predictions while downplaying the significance of less informative tokens. This capability has
proven invaluable across various domains, including NLP Devlin et al. (2018); Brown et al. (2020);
Raffel et al. (2020), computer vision Parmar et al. (2018); Cornia et al. (2020), and reinforcement
learning Chen et al. (2021b); Wu et al. (2022). During training, the attention matrix is learned,
enabling the model to allocate additional attention to pivotal tokens. To delve into the specifics,
the attention matrix computation begins with the multiplication of the query matrix XQ and the
key matrix XK, followed by the application of a softmax function to generate a matrix with values
ranging between 0 and 1. These values signify the relative importance of each element in the input
sequence. A final softmax operation results in the attention matrix. It’s obvious that the formulation
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of the self-attention is a special instance of cross-attention. Given input sequences A1, A2 2 Rn⇥d,
we provide the general formulation of the attention computation as the following:

Att(X,Y ) = D(X)�1 exp(A1XA
>
2 )A2Y

where X 2 Rd⇥d denotes the combined parameter X := QK
>, Q 2 Rd⇥d

,K 2 Rd⇥d are
trainable parameter key and query matrices, Y 2 Rd⇥d denotes the value matrix and D(X) :=
diag(exp(A1XA

>
2 )1n) 2 Rd⇥d.

We delve into the language modeling task that applied in many popular pretrained models such as
BERT Devlin et al. (2018), RoBERTa Liu et al. (2019), GPT-3 Brown et al. (2020). We work with
a dataset denoted as {Al0,1, Al0,2, Bl0}ml0=0 (for language modeling task, we have Al0,1 = Al0,2),
comprising labeled instances Bl0 , where each row represents a one-hot vector corresponding in the
target sentence. In practice, logistic loss or cross entropy loss is commonly used to do NLP tasks to
help classify the next token generation.

Inspired from Tarzanagh et al. (2023a) we give the general form of empirical risk minimization with
a logistic loss function as the following:

min
X2Rd⇥d

L(X) = min
X2Rd⇥d

logistic(Att(X) ·H,B)

where H 2 Rd⇥V denotes the linear prediction head and B 2 Rn⇥V denotes the labels. As H is a
fixed linear prediction head that does not impact our analysis, we will ignore that in the theoretical
analysis of our paper.

In addition, for the regression task such as sentiment analysis, we give the formulation of optimization
problem of `2 loss as the following:

min
X2Rd⇥d

L(X) = min
X2Rd⇥d

kD(X)�1 exp(A1XA
>
2 )A3Y �Bk22

We first convert the matrix representation into a vector representation by employing the well-known
tensor trick Diao et al. (2018; 2019); Zhang (2022). This transformation condenses the multiple
regression into a single regression task, entailing the rearrangement and grouping of all the elements.
Then, we have the simplified optimization problem:

min
x2Rd2

L(x) = min
x2Rd2

kmat(D(x)�1 exp(Ax))A3Y �Bk22

where A := A1 ⌦A2 and x = vec(X) 2 Rd2

.

Our main contributions are as follows:

• SVM equivalence We characterize the optimization of attention layer by connecting it with
a hard max-margin SVM problem (Att-SVM). We show that W = QK

> trained by gradient
descent in the language modeling pretraining converge to the solution of SVM with the
Frobenius norm objective.

• Token selection and contextual sparsity Building upon the inherent similarity between
SVM and attention mechanisms, our experiments show that only a few tokens, which can be
regarded as feature vectors, contribute to the gradient computation for each update. Tokens
that do not serve as support vectors have zero gradients and can be safely disregarded during
pretraining. This property help elucidates the practical effectiveness of sparse training
techniques, as evidenced in prior studies Choromanski et al. (2020); Roy et al. (2021); Liu
et al. (2023).

• Token separation Inspired by the property of SVM, we show that all tokens are gradually
separated during the training process. For each subsequent in language modeling task, the
decision hyperplane are fundamentally different as the optimal tokens are different for each
next work prediction.

• Lipschitz of Loss Functions By computing the Lipschitz of different loss functions (logistic
loss and `2-loss) with softmax attention and linear attention, we show that the training of
softmax attention is more stable than linear attention.
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2 RELATED WORKS

In this section, we introduce background of Transformer theory as well as SVM, which are critical
for our analysis later.

Transformer Theory Previous research has established that the exceptional performance of
Transformer-based models can be ascribed to the rich information embedded within their con-
stituent elements, particularly multi-head attention mechanisms. Various studies (Hewitt & Liang,
2019; Tenney et al., 2019; Belinkov, 2022) have presented empirical proof that these components
carry a substantial amount of information, making them valuable for tackling a diverse range of
probing tasks.

Recent research has explored the potential of Transformer models through a combination of theoretical
and experimental approaches. These investigations have delved into several aspects, including their
Turing completeness (Bhattamishra et al., 2020b), their capacity for function approximation (Yun
et al., 2020; Chen et al., 2021a), their ability to represent formal languages (Bhattamishra et al.,
2020a; Ebrahimi et al., 2020; Yao et al., 2021), and their aptitude for learning abstract algebraic
operations (Zhang et al., 2022b). Some of these studies the theoretical analysis of attention in
different application such as in-context learning Li et al. (2023); Gao et al. (2023b), contextual
sparsity prediction Liu et al. (2023).

There are also many methods have been proposed to speedup the computation of Transformer from
theoretical perspective. In Brand et al. (2023), they focus on dynamic attention computation and
proposed an algorithm that is conditionally optimal, unless the hinted matrix vector multiplication
conjecture is proven false. They integrate lazy update methods into their attention computation
approach and use the Hinted Matrix-Vector Conjecture to demonstrate the inherent difficulty of this
problem. In contrast, other studies Zandieh et al. (2023); Alman & Song (2023) focused on static
attention computation. Specifically, Alman & Song (2023) delved into static attention and introduced
an algorithm that assessed its complexity within the framework of the exponential time hypothesis.

Panigrahi et al. (2023) introduce innovative techniques that approximate self-attention back propa-
gation that allow a transformer in transformer model to simulate and fine-tune a transformer model
within a single forward pass. Malladi et al. (2023) proposed a memory-efficient zero-th order opti-
mizer and theoretically show that adequate pre-training ensures the per-step optimization rate and
global convergence rate of their model. Zhao et al. (2023) shows that attention models implicitly
approximate parsing to achieve low masked language modeling loss.

Support Vector Machine Before the rise of deep learning, Support Vector Machines (SVMs) held a
prominent position as one of the most favored machine learning models, resulting in a rich of research
focused on enhancing the computational efficiency of SVM. For linear SVMs, Joachims (2006)
introduces a first-order algorithm that efficiently resolves its Quadratic Programming (QP) problem
with nearly linear time complexity. In the case of SVM classification, established algorithms such
as SVM-Light Platt (1998a), SMO Platt (1998b), LIBSVM Chang & Lin (2011), and SVM-Torch
Collobert & Bengio (2001) excel in high-dimensional data settings.

It is well-known that attention maps, represented as softmax outputs, serve as a mechanism for
selecting relevant features and reveal the tokens relevant to classification. Tarzanagh et al. (2023b;a)
establish the connection between attention and SVM. Tarzanagh et al. (2023a) formulate the attention
computation as X>

i V S(XiKQ
>
zi), where S is the softmax function, Xi is the i-th input sentence

and zi is the classification token [CLS]. They demonstrate that one-layer transformer solves an SVM
problem that separates the optimal tokens within each input sequence from other tokens. However,
their approach relies on assumptions concerning the loss function and token sequences. In our paper,
we relax their assumption of the loss function’s derivative and Lipschitz. In addition, they provide
proofs for the regularization path analysis in casual language modeling task. In our paper, we show
that the QK

> trained by gradient descent also converge to the SVM solution with Frobenius norm
object in casual language modeling task.

In Nguyen et al. (2022), they establish a connection between self-attention and support vector
regression (SVR) by deriving self-attention as a support vector expansion. They introduce a principled
primal-dual framework for the study and development of self-attentions. Through the solution of a
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support vector regression problem, they achieved a more profound comprehension and elucidation of
diverse attention mechanisms.

3 THE EQUIVALENCE BETWEEN SOFTMAX ATTENTION AND SUPPORT
VECTOR MACHINE

In this section, we first provide several important definitions and then our main theorem.

3.1 PRELIMINARY

Notations Let u 2 Rn
, exp(u) 2 Rn denote the vector that exp(x)i = exp(xi). Given positive

integer n, we use [n] to denote set {1, 2, · · · , n}. For two vectors u, v, we use hu, vi to denote the
inner product. Let 1n denote a length-n vector where all the entries are ones. For matrix A 2 Rn⇥d,
we use A⇤,i to denote the i-the column of matrix A for each i 2 [d]. We use u � v to denote a vector
whose i-th entry is uivi.

Let’s define a vector x in Rn2

and a matrix X in Rn⇥n. We say that x is the vectorization of X ,
denoted as x = vec(X), if the i-th row of matrix X is equivalent to the subsequence of elements in x

from the (i�1)n+1-th position to the in-th position, for all i in the range [n]. Conversely, if we have
a vector x and we want to reconstruct the matrix X,X = mat(x). Additionally, for two matrices A
in Rn1⇥d1 and B in Rn2⇥d2 , the Kronecker product A⌦ B results in a new matrix in Rn1n2⇥d1d2 .
Each entry at position (i1 � 1)n2 + i2, (j1 � 1)d2 + j2 in this new matrix is obtained by multiplying
the corresponding elements from A and B, where i1 2 [n1], j1 2 [d1], i2 2 [n2], j2 2 [d2].

In this paper, we denote m as the number of data points. Let n denote the length of sentence. Let d
denote the size of feature dimension.

We first give the formal definitions of some basic functions in attention computation. We first
introduce the computation of softmax with key and value matrix. By using the tensor trick, we turn
the multiple regression into a single regression with re-ordering all the entries.
Definition 3.1. Let Al0,1, Al0,2 2 Rn⇥d. Let Al0 = Al0,1 ⌦ Al0,2 2 Rn2⇥d2

. Let Al0,j0 2 Rn⇥d2

denote the j0-th block of Al0 2 Rn2⇥d2

. Let x = vec(X) 2 Rd2

For each l0 2 [m], for each j0 2 [n].

We define u(x)l0,j0 2 Rn as follows
u(x)l0,j0| {z }

n⇥1

:= exp(Al0,j0| {z }
n⇥d2

x|{z}
d2⇥1

)

Definition 3.2. For each l0 2 [m], for each j0 2 [n].

We define ↵(x)l0,j0 2 R as follows
↵(x)l0,j0| {z }

scalar

:= hu(x)l0,j0| {z }
n⇥1

, 1n|{z}
n⇥1

i.

Next, we give the formal definition of
Definition 3.3. Let Al0,1, Al0,2 2 Rn⇥d. Let Al0 = Al0,1 ⌦ Al0,2 2 Rn2⇥d2

. Let Al0,j0 2 Rn⇥d2

denote the j0-th block of Al0 2 Rn2⇥d2

.

For each l0 2 [m], for each j0 2 [n], we define f(x)l0,j0 : Rd2 ! Rn,

f(x)l0,j0| {z }
n⇥1

:= ↵(x)�1
l0,j0| {z }

scalar

·u(x)l0,j0| {z }
n⇥1

Definition 3.4. For each l0 2 [m], for each i0 2 [d], we define h(y)l0,i0 2 Rd2 ! Rn

h(y)l0,i0| {z }
n⇥1

= Al0,3| {z }
n⇥d

yi0|{z}
d⇥1

Here yi0 2 Rd is i0-th column of y 2 Rd⇥d. (We can view y as the value matrix V )
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By using the above definitions, we formulate the attention as hf(x)l0,j0 , h(y)l0,i0i. Next, we formally
define the logistic loss function.
Definition 3.5. Let x 2 R, then we defined the logistic function as follows:

g(x) :=
1

1 + exp(�x)

Now, we provide the formal definition of empirical loss function.
Definition 3.6. If the following conditions hold

• Let f(x)l0,j0 be defined in Definition 3.3

• Let h(y)l0,i0 be defined in Definition 3.4

• Let ✓ 2 R

• Let g : R ! R denote logistic function which follows from Definition 3.5

• Let bl0,j0,i0 2 R

Then we define the loss function based on logistic function as follows:

L(x, y)l0,j0,i0 := g(hf(x)l0,j0 , h(y)l0,i0ibl0,j0,i0)

Then,
Definition 3.7 (Algorithm W-GD). Given X(0) 2 Rd⇥d, for k � 0 do:

X(k + 1) = X(k)� ⌘rL(X(k))

Now, we introduce a convex hard-margin SVM problem, denoted as (Att-SVM). Its objective is to
distinguish a particular token from the other tokens in the input sequence Al0 by evaluating the dot
product between the key-query features before applying the softmax.
Definition 3.8. Given Al0 2 Rn⇥d, we defined the Att-SVM as the following:

X
mm = argmin

X
kXkF

s.t. (Al0,opti �Al0,t)
>
XAl0,i � 1 for all t 6= opti, i 2 [n], l0 2 [m]

3.2 ASYMPTOTICALLY EQUIVALENT CONVERGENCE DIRECTION OF SOFTMAX ATTENTION

Before we introduce our main result, we give the basic definitions of optimal tokens and support
indices in our casual language modeling setting.

First, we define the score of the tokens and the optimal tokens. Tokens’ scores can provide valuable
information of the importance of individual tokens and how they contribute to the overall objective
respectively. The tokens’ scores quantifies the impact of each token to specific classification or
prediction task. The optimal token is the token that manifest the greatest relevance to the input
sequence.
Definition 3.9 (Token Score and Optimality). Given a prediction head vi 2 Rd, the score of a token
Al0t of input Al0 is defined as �l0t = Bl0, · v>i Ait. The optimal token for each input Al0 is given by
the index optl0 2 argmaxt2[T ] �l0t for all l0 2 [m].

Next, we state two assumptions that is of significant importance to guarantee that the attention layer
possess a benign optimization landscape. Specifically, the first part of the assumption below provide
insights into overparameterization. The second assumption described a scenario that every token that
is not optimal has the same token score, which is less than the score of the optimal token. In the
scenarios where data are distributed such that d is sufficiently large, such phenomenon is likely to
persist. The second assumption states that for any token that is not optimal, possess the same token
score. The second part of the assumption below is a relatively stringent assumption that needs to be
relaxed.
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Assumption 3.10 (Assumption B in Tarzanagh et al. (2023a)). Optimal tokens’ indices (optl0)
m
l0=1

are unique and one of the following on the tokens holds:

1. All tokens are support vectors, i.e., (xiopti � xit)>Wmm
zi = 1 for 8t 6= opti and i 2 [n].

2. The token’s scores, as defined in Definition 3.9, satisfy �it = �i⌧ < �iopti for 8t, ⌧ 6= opti
and i 2 [n].

The next lemma is a important intermediate step of analyzing the loss function defined in Defini-
tion 3.6. It computes the gradient of the loss function whose lipschitz property is of great importance
of proving our main results and would be evaluated in the lemmas afterwards.
Lemma 3.11 (Formal version of Lemma F.2). If the following conditions hold

• Let L(x, y)l0,j0,i0 be defined as Definition 3.6

• Let f(x)l0,j0 be defined in Definition 3.3

• Let h(y)l0,i0 be defined in Definition 3.4

Then we have
dL(x, y)l0,j0,i0

dxi

= g(hf(x)l0,j0 , h(y)l0,i0i)(1� g(hf(x)l0,j0 , h(y)l0,i0i))bl0,j0,i0
· (hf(x)l0,j0 � Al0,j0,i, h(y)l0,i0i � hf(x)l0,j0 , h(y)l0,i0ihf(x)l0,j0 ,Al0,j0,ii)

Next, we would prove a well known fact in the real world applications regarding the logistic function.
Lemma 3.12 (Informal version of Lemma F.4). Let g(x) be defined in Definition 3.5. Then we have

|g0(x)� g
0(bx)|  |x� bx|

Then, we evaluate the lipschitz property of several basic function, which is the stepping stone for
many analysis in this paper. By combining those analysis and Lemma 3.12, we are able to evaluate
the lipschitz property of rL(x, :), stated as the lemma below.
Lemma 3.13 (Informal version of F.9). If the following conditions hold

• Let f(x)l0,j0 be defined in Definition 3.3

• Let h(y)l0,i0 be defined in Definition 3.4

• Let d(x) := hf(x)l0,j0 , h(y)l0,i0i

• Let R � 4

• Let x, y 2 Rd satisfy kAl0,j0 xk2  R and kAl0,j0 yk2  R

• kAl0,j0 k  R

• Let L(x, y)l0,j0,i0 be defined in Definition 3.5

• Let w(x) := hf(x)l0,j0 , v1i � hf(x)l0,j0 , v2ihf(x)l0,j0 , v3i

Then we have

|rL(x, :)l0,j0,i0 �rL(bx, :)l0,j0,i0 |  3n3
R

7 exp(13R2)kx� bxk2

This lemma is the basis to proving our main results.

Finally, we state the main result of this paper. The theorem below proved that the global convergence
of the gradient descent algorithm to the max-margin direction X

mm under the second assumption of
Assumption 3.10 which states that all the tokens who are not optimal possess the same score that is
lower than the score of the optimal token.
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Theorem 3.14 (Informal version of Theorem G.4). Suppose Assumption 3.10 on the tokens’ score
hold. Let X(k) denote the k-th iteration of X . Then, Algorithm W-GD (Definition 3.7) with the step
size ⌘  1/LX and any starting point X(0) satisfies

lim
k!1

X(k)

kX(k)kF
=

X
mm

kXmmkF

We provide another theorem below. This theorem is a relaxation of the second assumption in
Assumption 3.10. This theorem demonstrates that the global convergence can still happen even when
the score of the tokens are equal.
Theorem 3.15 (Informal version of Theorem G.5). For any initialization X(0), there exists a dataset
dependent sufficiently small � > 0 such that the following holds: Suppose non-optimal scores obey
|�it � �i⌧ |  � for all t, ⌧ 6= opti, i 2 [m]. Then, Algorithm X-GD, with ⌘  1/(2Lx) obeys

lim
k!1

kX(k)kF = 1 and lim
k!1

X(k)

kX(k)kF
=

X
mm

kXmmkF

By showing that gradient descent converges to the optimal solution for SVM with Frobenius norm
objective, we establish a fundamental connection between attention mechanisms and Att-SVM,
shedding light on the optimization dynamics of attention layers. Specifically, we demonstrate that the
weight matrix, denoted as W , learned through gradient descent during language modeling pretraining,
converges to a solution analogous to that of SVM with a Frobenius norm objective. Notably, our
investigations reveal that during this optimization process, only a few selected tokens can be equated
to feature vectors and play a pivotal role in the gradient computation for each update, while tokens
that do not function as support vectors have gradients that effectively amount to zero. This intrinsic
sparsity in attention mechanisms paves the way for the practical applicability of sparse training
techniques.

Token Selection & Separation In Zhang et al. (2023), they introduce a groundbreaking approach
aimed at optimizing the memory utilization of the KV cache. This innovative method yields
substantial reductions in memory footprint, a development that can have far-reaching implications
for various applications. Their approach lies in the observation that only a small subset of tokens
significantly contributes to the value computation during the process of attention scoring.

Considering the language modeling task we study in this paper, our result provide the evidence to
this phenomenon. Attention mechanisms are tasked with the responsibility of identifying a highly
relevant subset of tokens from the input sequence. This selection process is integral to the accurate
prediction of subsequent tokens. Consequently, for tokens that exhibit low token scores (as defined in
Definition 3.9), omitting their computational contributions does not detrimentally impact the final
outcome. This unique insight underscores the intriguing interplay between attention mechanisms and
the principles underlying Support Vector Machines (SVM). This insight underscores the interplay
between attention mechanisms and SVM.

3.3 LIPSCHITZ OF BASIC FUNCTIONS

For the ease of proving the lipschitz property for complex terms, we would like to address the lipschitz
property of some basic terms as follows:

• k exp(Al0,j0 x)� exp(Al0,j0 y)k2  R exp(R2) · kx� yk2
• |↵(x)l0,j0 � ↵(y)l0,j0 | 

p
n · k exp(Ax)� exp(Ay)k2

• |↵(x)�1
l0,j0

� ↵(y)�1
l0,j0

|  �
�2 · |↵(x)� ↵(y)|

• kf(x)l0,j0 � f(y)l0,j0k2  Rf · kx� yk2
• kc(x, z)l0,j0,i0 � c(y, z)l0,j0,i0k2  R

2
�
�2

n exp(3R2)kx� yk2
• k diag(f(x)l0,j0)� diag(f(y)l0,j0)k  �

�2
n exp(3R2)kx� yk2

• f(x)l0,j0f(x)
>
l0,j0

� f(y)l0,j0f(y)l0,j0  2��3
n
2 exp(5R2)kx� yk2

The lipschitz property for these basic function is easy to prove, and we will use them as the stepping
stone for proving the lipschitz property for rL(x, :).
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3.4 LIPSCHITZ FOR LOGISTIC LOSS

By using the lipschitz property of several basic functions, we could combine them to prove the
lipschitz property for more complex functions. In this section, we aim to find M such that

|rL(x, :)l0,j0,i0 �rL(bx, :)l0,j0,i0 |  M · kx� bxk2
where

L(x, :)l0,j0,i0 = logistic(hf(x)l0,j0 , h(y)l0,i0ibl0,j0,i0)
denote the loss function based on logistic(.). We find M by the following steps:

Step 1: Prove the lipschitz property for logistic function we can prove the following property for
logistic(.) through mean value theorem:

| logistic(x)� logistic(bx)|  |x� bx|

Step 2: Compute the gradient rL(x, :)l0,j0,i0 . We are able to compute

dL(x, y)l0,j0,i0
dxi

= g(hf(x)l0,j0 , h(y)l0,i0i)(1� g(hf(x)l0,j0 , h(y)l0,i0i))bl0,j0,i0
· (hf(x)l0,j0 � Al0,j0,i, h(y)l0,i0i � hf(x)l0,j0 , h(y)l0,i0ihf(x)l0,j0 ,Al0,j0,ii)

Step 3: Reform rL(x, :)l0,j0,i0 for the convenience of analysis We reform the gradient to

dL(x, y)l0,j0,i0
dxi

= g
0(hf(x)l0,j0 , h(y)l0,i0i)bl0,j0,i0 · (hf(x)l0,j0 , v1i � hf(x)l0,j0 , v2ihf(x)l0,j0 , v3i)

where

• v1 := h(y)l0,i0 � Al0,j0,i

• v2 := h(y)l0,i0
• v3 := Al0,j0,i

this would make the analysis for the gradient more convenient.

Step 4: Split the gradient and combine the lipschitz for basic functions to get the final result

M = 3n3
R

7 exp(13R2)

4 EXPERIMENT

To validate the Theorem 3.15, we use a 1-layer casual transformer to perform the casual language
modeling task with a synthetic dataset, and compare the cosine similarity of X(k) (Definition 3.6) and
X

mm (Definition 3.8) during the optimization of X(k) with logistic loss. We first design a synthetic
language and specify all token-level autoregressive sample probability, and we then sample m

sequences with sequence length n from this synthetic language. The Att-SVM solution X
mm is solved

by treating each sub-sequence next-token prediction problem P (Al0,j0 |[Al0,1Al0,2 . . . Al0,j0�1]) as
an individual classification problem over the vocabulary set with query from the last token Al0,j0�1.
We also add a soft margin term to Attn-SVM minimization problem since the vanilla formulation of
X

mm is often unsolvable due to the non-existence of linear separability of tokens.
Definition 4.1. Given Al0,1 2 Rn⇥d, we defined the soft-margin Att-SVM as the following:

X
mm
soft = argmin

X
kXkF + C

X

l0,t

⇠l0,t

s.t. (Al0,opti �Al0,t)
>
XAl0,i � 1� ⇠l0,t & ⇠l0,t � 0 for all t 6= opti, i 2 [n], l0 2 [m]

Although we relax the hard-margin Att-SVM (Definition 3.8) to a soft-margin one, we empirically
find using a large penalty term C = 10 still works well. This observation still complies with our
Theorem 3.15 and is further illustrated in Figure 2 which shows that the softmax attention is implicitly
maximizing the margin between optimal and non-optimal tokens throughout the training process.

8
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Figure 1: Synthetic Dataset: Casual Language Modeling with Default Configuration as m = 10, n =
5, d = 100. We control over m, n, and d in each subfigure and report the mean, the colored line,
and standard error, the shaded areas, of the cosine similarity during the optimization of X(k) with a
known X

mm
soft solution over 5 different runs.

Figure 2: Histogram of Token Separation Margin between Optimal Tokens and Non-optimal Tokens
of Softmax Attention in the Synthetic Casual Language Modeling Task. k here is the number of
gradient descent steps. The initial margin is near 0 as shown by the blue bins, and as training proceeds,
the margin generally becomes larger and eventually converges to violet bins as sufficiently large
positive values.

5 CONCLUSION

In this work, we build a profound connection between attention mechanisms and Att-SVM for casual
language modeling task. We’ve shown that the weight matrix W = QK

>, trained via gradient
descent in language modeling pretraining, converges to the SVM solution with a Frobenius norm
objective. Furthermore, our experiments have revealed the practical implications of this connection,
including token selection and contextual sparsity, where only select tokens contribute to gradients,
token separation during training, and the stability of training with softmax attention compared to
linear attention. These findings not only deepen our understanding of attention mechanisms but
also open new avenues for enhancing training efficiency and exploring novel applications in natural
language processing.
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