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Abstract

With increasing regulations on private data usage in AI systems, machine unlearning
has emerged as a critical solution for selectively removing sensitive information
from trained models while preserving their overall utility. While many existing
unlearning methods rely on the retain data to mitigate the performance decline
caused by forgetting, such data may not always be available (retain-free) in real-
world scenarios. To address this challenge posed by retain-free unlearning, we
introduce RUAGO, utilizing adversarial soft labels to mitigate over-unlearning and
a generative model pretrained on out-of-distribution (OOD) data to effectively distill
the original model’s knowledge. We introduce a progressive sampling strategy
to incrementally increase synthetic data complexity, coupled with an inversion-
based alignment step that ensures the synthetic data closely matches the original
training distribution. Our extensive experiments on multiple benchmark datasets
and architectures demonstrate that our approach consistently outperforms existing
retain-free methods and achieves comparable or superior performance relative
to retain-based approaches, demonstrating its effectiveness and practicality in
real-world, data-constrained environments.

1 Introduction

In recent years, the success of machine learning across diverse domains has been driven by the
availability of massive datasets. A prominent example is GPT-4, a milestone in advancing machine
learning, which was trained on approximately 5 trillion data points [1]. However, these advancements
have raised serious privacy concerns due to including sensitive or unauthorized information in
training data. Widely deployed models such as ChatGPT have also demonstrated risks of information
leakage [2]. In response, regulations [3, 4] such as the EU/US Copyright Law [5] and the General
Data Protection Regulation (GDPR) emphasize the Right to be Forgotten, ensuring “the data subject
shall have the right to obtain from the controller the erasure of personal data concerning him or
her without undue delay” [6]. Consequently, model owners, including those of AI systems, must
carefully manage personal data and comply with removal requests. However, removing data may alter
the original model’s behavior and can lead to performance degradation. The most straightforward
solution is to retrain the model without the requested data, referred to as the forget data, but this
strategy is computationally and financially prohibitive.

To address rising privacy concerns and regulatory demands, Machine Unlearning (MU) [7, 8] has
emerged as a framework for removing specific training data. While early work focused on simple
models [9–11], recent efforts have extended MU to deep neural networks [12–16]. In particular, MU
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can be interpreted as a multi-objective task, where the two main opposing goals are removing the
forget data while preserving the utility of the remaining data, which we refer to as the retain data.
Since forgetting significantly affects model behavior and performance, achieving both objectives
is challenging. A further challenge is to minimize overall training costs. Although recent SOTA
methods [13, 17, 18] show strong unlearning performance, they often assume full access to the original
or retain data. However, such assumptions are often impractical due to storage limitations, expired
permissions, or privacy constraints. To mitigate this issue, recent approaches [12, 14–16, 19, 20]
explore the retain-free setting, using only the forget data. Although these retain-free methods have
demonstrated strong performance in class-wise unlearning, a scenario involving the removal of entire
information from a model, their effectiveness in instance-wise unlearning [12] remains uncertain
and unexplored. Instance-wise unlearning, which targets specific samples instead of entire classes, is
particularly challenging due to distributional overlap between forget and retain data.
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Figure 1: Conceptual overview of RUAGO.
Our method, RUAGO (“retain-free w/ G”),
uses a generator (‘G’) trained on out-of-
distribution (OOD) data, requiring no re-
tain set. It is compared with a retain-based
method, Bad Teacher [17] (“Baseline 1”),
and a retain-free one, Boundary Shrink [19]
(“Baseline 2”). The figure shows RUAGO’s
performance is comparable to the retain-
based baseline and superior to the retain-free
one.

In this work, we present a novel unlearning
method for the retain-free scenario, Retain-free
Unlearning via Adversarial attack and Generative
model using OOD training, RUAGO as briefly
illustrated in Fig. 1. Our method investigates the
critical issue of existing instance-wise unlearning
methods, particularly over-unlearning, which oc-
curs when excessive removal severely degrades
model performance. To mitigate this, we gener-
ate adversarial probabilities and use them as soft
labels for forget data. These soft labels are posi-
tioned near decision boundaries and guide the for-
getting process more smoothly than deterministic
hard labels, which often induce drastic parame-
ter shifts and information loss in instance-wise
scenarios.

However, relying solely on the above strategy may
still degrade model generalization performance,
especially in the retain-free setting, where access
to retain data is restricted. To overcome this chal-
lenge, we use a generative model trained on out-
of-domain (OOD) data, which can avoid training
on the retain data and eliminates the privacy risks
associated with using a generator trained on the
original dataset. In contrast, we believe synthetic
data generated from OOD distributions can inher-
ently and completely mitigate privacy concerns, while effectively transferring essential knowledge
from the original model, thus preserving model utility [21]. To enhance the quality of synthetic
supervision, we introduce two additional strategies. First, through a VC theory-based analysis, we
demonstrate that progressively increasing the model’s complexity during knowledge distillation sig-
nificantly improves the final model’s performance and generalization stability. Therefore, we design
a dynamic sample difficulty scheduler, assigning higher initial weight to simpler synthetic samples
to support stable early convergence and gradually introducing more complex samples to enhance
model robustness. Second, we extract key characteristics from the original model via inversion-based
fine-tuning, and progressively align the generator’s output distribution with the original data distribu-
tion, even without access to retain data. Consequently, after refinement, the OOD-trained generator
produces samples similar to the original distribution, enabling effective knowledge transfer and
preserving robust performance in retain-free conditions. We validate RUAGO through extensive ex-
periments on four benchmark datasets and three network architectures, showing superior performance
over retain-free baselines and competitive results with SOTA retain-based methods.

Our contributions are summarized as follows:

• We propose RUAGO, a novel retain-free unlearning framework that leverages adversarial soft
labels to prevent over-unlearning and employs synthetic data from an OOD-trained generator to
preserve model performance and protect data privacy in retain-free scenarios.
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• We introduce a dynamic scheduling strategy guided by sample difficulty and grounded in VC
theory, gradually increasing model complexity during distillation. We also refine the OOD-
trained generator via inversion-based alignment to better match the original data distribution
and improve knowledge transfer.

• Through comprehensive experiments, we show that RUAGO consistently outperforms prior
retain-free methods and matches retain-based approaches across diverse datasets and architec-
tures, highlighting its effectiveness and practical utility in realistic scenarios.

2 Related Work

2.1 Machine Unlearning

The primary objective of machine unlearning (MU) is to effectively remove information from the
forget data, while maintaining the utility of the retain data [19]. We categorize MU into retain-based
and retain-free methods based on whether the retain dataset is required during unlearning.

Retain-based methods utilize the retain data to support the unlearning process. Various methods
have been proposed to enhance the efficiency of the retraining process for the retain data [7, 22, 23].
However, due to the substantial computational resources and memory requirements, many studies
have focused on updating parameters within pre-trained models. Goel et al. [24] proposed two
methods, retraining the last k layers from scratch (EU-k) and fine-tuning the last k layers (CU-k)
using the retain data. Bad-T [17] and SCRUB [13] employ a teacher-student framework wherein the
teacher induces forgetting through positive and negative knowledge transfer. SalUn [25] identifies
and modifies weights with significant influence on the forget data, thereby effectively removing them.
Despite demonstrating strong unlearning performance, these approaches require large amounts of the
retain data, limiting their applicability in scenarios where access to the retain data is constrained.

Retain-free methods focus on unlearning without the retain data. In such scenarios, effectively
forgetting specific data while maintaining overall model performance is difficult and often necessitates
additional metadata. Yoon et al. [26] used model inversion to train a conditional GAN (CGAN) along
with the forget data to perform unlearning, but it suffers from the complexity of model inversion and
underperforms compared to recent methods. Boundary unlearning [19] employs adversarial attacks
to guide the forget data toward incorrect labels near decision boundaries. SSD [14] computes the
relative importance of parameters between the entire training dataset and the forget data, selectively
dampening parameters. While it achieves effective unlearning without training, it requires importance
information from the entire training dataset. SCAR [16] uses Mahalanobis distance to delete the
influence of the forget data and maintain performance without accessing the retain data by leveraging
OOD data. However, its reliance on metadata such as means and covariance matrices limits its
applicability in scenarios where this information is unavailable. Moreover, these methods generally
exhibit lower unlearning performance than the retain-based methods, and face additional challenges
when applied to instance-wise unlearning.

2.2 Curriculum Learning

Curriculum Learning (CL) is a training strategy that mimics human learning by gradually adjusting
the difficulty of the training process, progressing from easier to harder samples [27]. This approach
facilitates stable learning by allowing models to incrementally build their understanding across various
tasks [28–30]. We reinterpret the teacher-student relationship in knowledge distillation through the
lens of VC theory, showing that achieving generalization in early stages with limited model capacity
leads to more stable subsequent learning. Building on this theoretical insight and inspired by CL,
we implement a progressive knowledge transfer strategy by assigning weights to generated images
based on their difficulty, thus guiding the model from easier to harder samples. To the best of our
knowledge, we are the first to utilize the concept of sample difficulty in the field of MU.

2.3 Data-Free Knowledge Distillation

Data-Free Knowledge Distillation (DFKD) aims to train student model without the use of original
training data. The core idea of DFKD is to generate synthetic data that mimics the distribution of
the original training data through a model inversion process, considering the teacher model as a
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Figure 2: Overall procedure of our proposed method. (a) Unlearning the model, where the blue
arrow denotes knowledge distillation from the original model via generated images with the sample
difficulty module (SDM); and the red arrow denotes deletion of the forget set Df via the adversarial
probability module (APM). (b) Training the generator Gψ on an OOD dataset. (c) Aligning Gψ to
the training data D via model inversion.

discriminator. This process often involves using generative models such as Generative Adversarial
Networks (GANs) to generate synthetic data [31–34]. The student model is trained on these synthetic
data to match the predictions of the teacher model using distillation process. In this work, we
apply the model inversion strategy to the unlearning process, focusing on effectively preventing
performance decline from a model without requiring access to the original training data. By leveraging
synthetic data generated through a generator, our approach enables precise unlearning, addressing
key challenges in real-world scenarios.

3 Preliminaries and Problem Statement

We first introduce notation for a supervised image-classification setting. Let X ⊂ Rd be the image
space and Y = {1, . . . , c} the label set. We denote the full training dataset D = {(xi, yi)}Ni=1 ⊆
X × Y . Let Dt ⊆ X × Y be an independent test set from the same distribution. We assume that
Fθ : X → Y is a deep learning model with parameter θ trained on D.

Machine unlearning seeks an updated model FUθ that “forgets” the forget set Df ⊂ D, while
preserving performance on the retain set Dr = D \ Df and on Dt. Formally, FUθ should behave
such as Fθ∗ , a model retrained from scratch on Dr. In the instance-wise unlearning scenario, where
individual examples are removed regardless of their class, rather than removing entire classes as in
class-wise unlearning, the resulting class distribution of the forget setDf and the retain setDr remains
nearly identical. This heavy overlap between Df and Dr makes it difficult to remove information
of Df without inadvertently degrading performance on Dr. We therefore evaluate FUθ against Fθ∗
using standard accuracy metrics on Dr and Dt, as well as membership inference attack (MIA) metric.

4 Our Approach

This section introduces RUAGO, our framework for instance-wise unlearning without access to a
retain set Dr. Instead of relying solely on the forget set Df , which can degrade overall performance
and utility, RUAGO focuses on adversarial probabilities to guide the forgetting process and a generator
pretrained on out-of-domain (OOD) data to preserve decision-boundary fidelity to the original model.
To stabilize distillation from synthetic samples generated by the OOD-pretrained generator, we
develop a VC-theoretic analysis of knowledge distillation and implement a dynamic sample-difficulty
schedule. Additionally, we refine the generator via a model-inversion step to align its outputs with the
original training distribution D. The complete pipeline is illustrated in Fig. 2.
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4.1 Adversarial Probability

Adversarial attacks [35, 36] inject imperceptible perturbations into images to maximize model
prediction errors, thereby inducing misclassification toward the nearest alternative class in the loss
landscape. While traditionally employed to evaluate model robustness or construct defenses against
adversaries, these perturbations have recently been applied in machine unlearning [12, 15, 19], where
adversarial labels generated by perturbations serve as alternative targets for forget-set samples Df .
However, unlike class-wise unlearning methods, instance-wise unlearning does not aim to completely
misclassify samples in Df away from their original classes. Since Df constitutes unseen data from
the retrained model’s perspective, these samples inherently carry higher ambiguity than those in the
retain set, Dr. Consequently, although the retrained model may exhibit uncertainty toward Df , it can
still correctly predict a subset of it. Therefore, strictly assigning completely different class labels to
samples in Df risks causing over-unlearning [25]. Specifically, recall that using hard one-hot targets
q with cross-entropy loss, defined as L = −

∑
q log(p), results in gradients ∂L

∂z = p − q. For the
targeted class j, this yields a gradient of pj − 1, which can become large in magnitude, triggering
drastic parameter updates and potentially destroying useful general features.

To circumvent this issue, we instead propose using the adversarial probability vector padv as a
soft target. These soft labels distribute gradient contributions more evenly, as ∂L

∂z = p − padv,
thereby producing milder parameter updates and preserving the model’s inherent uncertainty toward
samples in the forget set. This approach effectively treats Df analogously to unseen or ambiguous
data, mitigating its influence without excessive parameter drift. Moreover, this design aligns with
knowledge distillation principles [37], wherein soft targets convey richer probabilistic information
and exhibit lower gradient variance than hard labels. Consequently, our instance-wise unlearning
method not only prevents over-unlearning but also better maintains the model’s overall utility.

Formally, adversarial examples and probabilities are computed as:
xadv = x+ argmax

|δ|≤ϵ
L
(
F(x+ δ),y

)
, padv = σ

(
Fθ(xadv)

)
, (1)

where σ denotes softmax. Finally, the forget loss is defined by:

Lf (Df ,padv) =
1

Nf

Nf∑
j=1

LCE(x
j
f , p

j
adv), (2)

where LCE is cross-entropy, andNf denotes the number of samples. The overall procedure is depicted
in the Adversarial Probability Module (APM) in Fig. 2(a).

4.2 Pre-trained Generator with OOD Data

Due to our assumption that Dr is inaccessible, it is essential to practically obtain additional data that
can facilitate the extraction of knowledge from Fθ. Thus, to replace Dr while obtaining high-quality
images, we use a generator trained on an OOD dataset as shown in Fig. 2(b). This strategy offers
remarkable flexibility: One may employ readily available open-source datasets or pre-train a generator
well in advance of any unlearning requirement.

Previous studies [21, 38, 39] have shown that knowledge distillation (KD) can be performed using
OOD data to address similar assumptions that are inaccessible to training data. Fang et al. [21]
demonstrated effective KD using OOD data with GANs. Motivated by this, RUAGO employs a
generator Gψ , trained on an OOD data to replace the Dr and preserve model utility.

This strategy provides the advantage of using an open-source pre-trained generator or training the
generator with an open-source dataset without Dr. Hence, our approach can always respond to rapid
unlearning requests. In RUAGO, Gψ does not condition on label space Y , which means it cannot
assign labels to the generated images. To address this issue, RUAGO calculates the KL divergence
between the logits zo and zu, which are obtained by passing the generated images x̃ from Gψ through
Fθ and FUθ , respectively, as shown by the following equation:

Lr(x̃) =
1

Ng

Ng∑
k=1

DKL
(
zko/τ ∥ zku/τ

)
, (3)

where Ng is the number of generated images, DKL is the KL divergence function, and τ is a
temperature.
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4.3 Sample Difficulty-Driven Distillation

To effectively transfer information from Fθ to FUθ , we design the loss in Eq. (3). However, since
x̃ is generated from the OOD dataset distribution, Eq. (3) may not fully capture comprehensive
information. To enhance the distillation process using samples generated by Gψ, RUAGO employs
an easy-to-hard training strategy inspired by curriculum learning (CL) [27, 40–44].
Theorem 1 (Generalization Bound under Sample Difficulty Scheduling). Let H1 ⊆ H2 ⊆ · · · ⊆
HT be a nested sequence of hypothesis spaces with VC-dimensions dt = VCdim(Ht) in each
curriculum stage t, and define the true risk by R(F) = E(x,y)∼D

[
ℓ
(
F(x), y

)]
, and the empirical

risk by R̂n(F) = 1
n

∑n
i=1 ℓ

(
F(xi), yi

)
. Let the original (teacher) model be Fθ ∈ H1, and let the

unlearned (student) model be FUθ ∈ HT . Consider the optimal retrained model Fθ∗ ∈ HT such that
R(Fθ∗) = minF∈HT

R(F). Then, drawing n i.i.d. samples,

R(FUθ )−R(Fθ∗) ≤ O
( T∑
t=1

√
dt logn
n

)
+ ϵ.

See Section D for the full proof. Theorem 1 provides a theoretical guarantee that our easy-to-hard
sample schedule preserves model utility while controlling generalization error. This theorem builds
on the principle of Structural Risk Minimization, where the model’s effective capacity is gradually
increased. In the initial phase, training focuses on “easy” samples, which corresponds to learning
within a hypothesis space Ht with a small VC-dimension dt. As progressively more challenging
samples are introduced, the model’s effective capacity grows, but it updates from a stable, near-
optimal state achieved in the previous stage. To theoretically ground this approach, we adapt a
line of VC-based analysis from the related field of DFKD [45], which allows us to ensure robust
generalization even with noisy OOD samples.

In RUAGO, we quantify each sample’s difficulty via its loss and adjust it dynamically:

L̂r(x̃) =
1

Ng

Ng∑
k=1

wk ℓk, wk =
1 + exp(−1/λ)

1 + exp
(
ℓk − 1/λ

) , (4)

where ℓk is the loss of the k-th generated sample (see Eq. (3)), and λ > 0 is a temperature hyper-
parameter controlling the softness of the difficulty weighting. By modulating weight wk from easy
to hard, RUAGO achieves faster, more stable convergence. This loss-based difficulty scheduling
serves as a practical implementation of the curriculum described in our theoretical analysis. We
begin with easy (low-loss) samples to keep the empirical risk small, preventing divergence before
gradually incorporating harder samples. The Sample Difficulty Module (SDM) in Fig. 2(a) illustrates
this process. To the best of our knowledge, RUAGO is the first method to leverage sample difficulty
scheduling during unlearning, directly addressing OOD challenges in knowledge distillation to boost
generalization and model utility.

4.4 Inversion-based Generator Alignment

Inspired by model inversion techniques from DFKD [21, 33, 34, 45–48], We insert a brief generator
refinement step into our pipeline to ensure that the synthetic samples used in unlearning closely mirror
the teacher model’s implicit data distribution, thereby promoting a more stable knowledge transfer
process. This step optimizes the generator so that its outputs 1) elicit high-confidence predictions
from the teacher, 2) expose challenging hard regions of the decision boundary for the student, and 3)
match the teacher’s internal feature-map statistics. Figure 2(c) represents this procedure.

Concretely, let x̃ = G(z) be a generated sample. We minimize the following inversion loss:

Linv(x̃) = γcls LCE

(
Fθ(x̃), argmaxFθ(x̃)

)
− γadv KL

(
Fθ(x̃) ∥FUθ (x̃)

)
+ γbn

∑
l

∥∥∥µl − µBN
l

∥∥∥
2
+

∥∥∥σl − σBN
l

∥∥∥
2
.

(5)

In particular, the cross-entropy term LCE compels the generator to emit samples that the teacher
model classifies with high confidence. The negative KL divergence term, by contrast, encourages
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the synthesis of challenging hard examples that broaden the output discrepancy between teacher
and student. Finally, the statistic-matching term enforces agreement between the batch-wise feature
statistics (µl, σl) and the teacher’s stored BatchNorm running statistics (µBN

l , σBN
l ). This batch

normalization regularizer, primarily used to speed convergence, is only applicable to architectures
that include such layers. For models without them, such as Vision Transformers, this term is simply
deactivated by setting γbn = 0, with our method still demonstrating strong performance. We adopt this
inversion formulation (Deep Inversion [33]) as a drop-in module for high-fidelity sample synthesis.
Note that after completing the unlearning process, we safely discard the refined generator to eliminate
any potential privacy risks.

4.5 Retain-Free Unlearning

We now introduce final unlearning loss of RUAGO, which combines Eq. (2) for forgetting objective
and Eq. (4) for retaining objective, formulated as follows:

Lu(Df ,padv, x̃) = γ1 · Lf (Df ,padv) + γ2 · L̂r(x̃), (6)

Algorithm 1 RUAGO
Input: Fθ, Df , Gψ
Parameters:
η,E : LR & epochs for unlearning
ηg, Eg : LR & epochs for generator alignment

1: FUθ ← Fθ
2: for e = 1 to E do
3: for g = 1 to Eg do
4: Generate x̃ and calculate Linv(x̃)
5: ψ ← ψ − ηg · ∇ψLinv(x̃)
6: end for
7: Generate padv and updated x̃
8: Calculate Lu(Df ,padv, x̃)
9: θ ← θ − η · ∇θLu(x̃)

10: end for
11: return FUθ

where γ1 and γ2 are hyper-parameters that con-
trol the trade-off between the forgetting and
retaining components. Algorithm 1 provides a
detailed overview of our method’s operational
procedure. In each epoch, our approach first
performs model inversion. Once the model in-
version is completed, it generates the adversar-
ial probability padv and the synthesized image
x̃. These generated components are then used
to compute the unlearning loss Lu. The calcu-
lated loss is subsequently employed to update
the model parameters. This entire process is re-
peated over multiple epochs. RUAGO enables
rapid and effective unlearning without requiring
the Dr. Our method suits scenarios where pri-
vacy concerns, resource limitations, or expired
access rights restrict data storage or access.

5 Experimental Results

5.1 Datasets, Models and Unlearning Setups

We conduct our experiments using the CIFAR-10, CIFAR-100 [49], TinyImageNet [50] and VG-
GFace2 [51] datasets. For each dataset, we employ deep learning architectures including VGG16 [52],
ResNet18 [53] and Vision Transformer (ViT) [54]. In addition, we employed the COCO dataset [55]
as an out-of-distribution resource for training our generative model. We randomly designate 10% of
the entire training dataset as Df , focusing on evaluating instance-wise forgetting. Further experimen-
tal details and additional results, including those for CIFAR-100, TinyImageNet, and the deletion of
50% of D, are provided in the Appendix due to space constraints.

5.2 Baselines and Evaluation Metrics

In our experiments, we evaluated our method against the Original and Retrain models, as well as six
unlearning baselines, including three retain-based methods, Bad-T [17], SCRUB [13], and SalUn [25],
and three retain-free methods, Boundary Shrink (BS) [19], SSD [14], and SCAR [16].

To evaluate the performance, we utilize 6 different metrics: 1) RA: accuracy on Dr; 2) UA: accuracy
on Df ; 3) TA: accuracy on Dt; 4) AVG: measures the mean of the absolute differences between each
method’s RA, UA, and TA values and those of the Retrain model; 5) Membership Inference Attack
(MIA) [56]: a canonical privacy metric for evaluation unlearning models [13, 14, 16, 17, 19, 25, 57].
The maximized or minimized MIA score could lead to the Streisand effect, unintentionally providing
information to attackers. Thus, an MIA value near to the Retrain model is ideal; 6) Running-Time
Efficiency (RTE): measure the time efficiency of each method in seconds.
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Table 1: Performance of RUAGO and baselines on CIFAR-10 and VGGFace2, reported as mean ±
std, with AVG indicating the accuracy gap between unlearned and retrained models. The “Dr-free”
columns (!/%) marks retain-free methods. Blue and red highlight the best results for retain-based
and retain-free methods, respectively.

(a) Results on CIFAR-10.
Dr
free

VGG16 ResNet18 ViT
RA UA TA AVG RA UA TA AVG RA UA TA AVG

Original - 100.00±0.00 100.00±0.00 93.33±0.35 - 99.99±0.00 100.00±0.00 86.54±0.23 - 99.85±0.01 99.84±0.05 98.97±0.07 -
Retrain % 100.00±0.00 93.25±0.19 92.98±0.19 0 99.99±0.00 86.73±0.58 85.96±0.14 0 99.85±0.01 99.03±0.17 98.93±0.03 0

Bad-T % 100.00±0.00 93.99±0.55 91.88±0.13 0.61 100.00±0.00 85.43±1.96 84.59±0.28 0.89 99.82±0.02 99.48±0.12 98.82±0.06 0.2
SCRUB % 99.74±0.32 92.04±1.18 90.57±0.78 1.30 100.00±0.00 86.87±0.31 86.11±0.32 0.1 99.97±0.00 99.86±0.07 99.10±0.03 0.37
SalUn % 100.00±0.00 93.68±0.42 91.69±0.08 0.57 100.00±0.00 85.82±0.80 83.55±0.14 1.11 99.93±0.01 98.13±0.52 98.57±0.14 0.45

BS ! 80.49±1.02 74.63±0.99 73.90±0.63 19.07 80.20±0.53 69.40±1.27 69.27±0.36 17.93 57.27±0.82 56.26±0.91 56.44±0.81 42.62
SSD ! 74.05±37.58 74.17±37.62 67.36±33.79 23.55 79.87±37.95 80.06±37.79 69.60±32.21 14.38 83.95±35.53 83.91±35.63 83.36±35.15 15.53
SCAR ! 93.03±2.24 92.90±1.94 83.64±1.90 5.56 88.61±1.27 88.19±1.20 74.33±0.79 8.16 98.97±0.41 99.08±0.33 97.88±0.49 0.66
RUAGO ! 99.94±0.02 93.38±0.39 92.32±0.29 0.28 99.34±0.15 84.02±1.00 84.36±0.26 1.65 99.81±0.01 98.95±0.16 98.95±0.05 0.05

(b) Results on VGGFace2.
Dr
free

VGG16 ResNet18 ViT
RA UA TA AVG RA UA TA AVG RA UA TA AVG

Original - 98.13±0.15 98.59±0.20 95.96±0.10 - 99.88±0.02 99.88±0.02 97.52±0.07 - 99.24±0.06 99.25±0.15 96.79±0.18 -
Retrain % 98.13±0.15 94.46±0.35 94.91±0.15 0 99.88±0.01 96.63±0.39 97.20±0.18 0 99.21±0.03 96.23±0.32 96.55±0.12 0

Bad-T % 98.45±0.02 95.85±1.23 95.62±0.19 0.81 99.84±0.01 98.39±1.81 96.71±0.11 0.76 99.15±0.03 98.42±0.10 96.75±0.08 0.82
SCRUB % 100.00±0.00 98.42±0.05 96.92±0.06 2.61 100.00±0.00 98.32±0.79 97.80±0.08 0.8 99.76±0.10 99.27±0.15 96.96±0.11 1.33
SalUn % 99.61±0.07 93.66±1.41 95.17±0.25 0.85 99.99±0.00 98.71±0.27 96.97±0.14 0.81 99.26±0.19 93.03±1.28 95.26±0.44 1.51

BS ! 95.13±0.12 95.13±0.19 91.86±0.19 2.24 96.53±0.12 96.61±0.42 91.99±0.15 2.86 89.45±0.69 89.70±0.66 86.52±0.67 8.77
SSD ! 88.23±5.39 88.29±5.83 85.32±5.15 8.56 95.05±2.95 95.22±2.86 91.32±3.30 4.04 97.49±1.07 97.43±1.24 94.87±1.09 1.54
SCAR ! 95.24±0.16 95.40±0.16 91.79±0.28 2.32 96.84±0.64 96.97±0.70 92.86±0.89 2.57 96.53±0.47 96.62±0.29 93.71±0.37 1.97
RUAGO ! 97.44±0.06 95.44±0.26 94.88±0.17 0.57 99.32±0.05 96.64±0.22 96.41±0.15 0.45 98.91±0.02 96.94±0.20 96.28±0.09 0.42

5.3 Results

Accuracy Performance. Table 1 presents unlearning accuracy on two datasets
for the original model, the retrained model, six baselines, and RUAGO. Ta-
ble 1(a) presents the accuracy results for CIFAR-10 dataset, indicating that retain-
free baselines are largely ineffective at unlearning, regardless of the model type.
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Figure 3: MIA results for each unlearning
method. The red dotted line represents the Re-
train model; it is best to be closer to this line.

In the worst case, an AVG value of 42.62 is ob-
served. The similar RA and UA values across
the three methods indicate that a general perfor-
mance degradation has occurred rather than erasing
Df . In contrast, RUAGO demonstrates remarkable
performance. The AVG values indicate that RU-
AGO outperforms the other three methods, with
RA, UA, and TA closely aligning with those of
the Retrain model. Although, Bad-T, SCRUB, and
SalUn are slightly more effective than RUAGO for
the ResNet18 model, our method still demonstrates
comparable performance. Notably, RUAGO out-
performs these methods for VGG16 and ViT, with
AVG values of 0.28 and 0.05, respectively, indicat-
ing the closest match to the Retrain model.

Table 1(b) presents the results for the VGGFace2
dataset. Retain-free methods, such as Boundary
Shrink, SSD, and SCAR, exhibit significant perfor-
mance degradation, similar to the CIFAR-10 results.
In contrast, our approach outperforms all other
methods, including retain-based methods. This re-
sult indicates that even when Gψ is trained on an
OOD dataset (COCO) that is significantly different
from D (VGGFace2), it still supports the unlearn-
ing process effectively. In conclusion, although un-
learning without Dr is challenging, RUAGO suc-
ceeds admirably, comparable to or outperforming
other baselines.
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Table 2: Running Time Efficiency (RTE) results
measured in seconds.

CIFAR-10 VGGFace2
VGG16 ResNet18 ViT VGG16 ResNet18 ViT

Retrain 1,758 1,991 4,862 5,071 4,735 5,790
Bad-T 181 215 2,105 5,403 1,200 2,418
SCRUB 172 203 1,752 4,844 1,073 1,993
SalUn 161 184 1,502 4,005 1,146 1,755
BS 55 83 514 1,599 446 153
SSD 13 15 581 299 59 685
SCAR 26 35 333 133 68 466
RUAGO 433 473 532 892 395 625

Table 3: Results of the ablations studies for the
VGG16 model on CIFAR-10.

RA UA TA MIA AVG

RUAGO 99.94 93.38 92.32 0.85 0.282
Hard labels 96.61 93.93 87.62 0.51 3.146
Diff. OOD 99.93 93.55 92.20 0.85 0.384
w/ Init Gψ 72.55 72.45 68.22 0.60 24.338

w/o MI 99.95 93.48 92.38 0.85 0.297
w/o SD 99.47 88.93 91.44 0.86 2.133

MIA Score. To evaluate privacy leakage, we analyze the MIA scores of all methods. The Bad-T
method, which shows excellent accuracy performance, records the worst MIA score. This suggests
that the Bad-T approach does not guarantee privacy protection. In contrast, the MIA values of SCAR
show a minor discrepancy from the Retrain model, but it shows poor accuracy, as mentioned above.
As a result, the evaluation of effective unlearning requires a comprehensive set metrics. Our method,
which performs accurately, also demonstrates strong privacy protection. As shown in Fig. 3, our
approach achieves MIA values comparable to those of the Retrain model in all experiments except
for ResNet18 trained on CIFAR-10. Particularly for ViT on both datasets, the MIA scores are almost
identical to the Retrain model, with only about a 1% difference. This indicates that RUAGO exhibits
excellent unlearning performance in accuracy and protecting privacy.

Running-Time Efficiency. Efficient unlearning requires latency that is lower than that of a full
retraining procedure. Table 2 reports each unlearning method’s running-time efficiency (RTE),
measured in seconds. Notably, this metric omits all preparatory computations, such as the Fisher
information matrix estimation in SSD, the mean and covariance computations in SCAR, and the out-
of-distribution generator training in our approach, and concentrates solely on post-request execution
time. Although these offline steps can be time-consuming, they may be precomputed without affecting
the immediate unlearning latency. Methods that depend on the retain dataset Dr (Bad-T, SCRUB,
and SalUn) incur substantial RTE costs, especially when applied to large architectures like ViT or
high-resolution datasets such as VGGFace2. In contrast, techniques that do not use Dr (BS, SSD, and
SCAR) achieve lower RTE values but do not deliver effective unlearning performance, as noted above.
Our method, however, strikes an ideal balance: it matches or exceeds the efficiency of retain-free
baselines (providing up to a 12× speed-up over full retraining) without sacrificing unlearning efficacy.
These results underscore the practical advantage of our framework for real-time unlearning, even in
the most challenging scenarios where the retain data is unavailable.

5.4 Ablation Studies

In this section, we present ablation studies demonstrating the importance of various design choices
in RUAGO. We summarize the main findings here, with additional results and analyses provided in
Section G.

Component Analysis. We first analyze the impact of each component using the VGG16 model on
CIFAR-10. As shown in Table 3, each component of RUAGO plays a crucial role. First, unlearning
with hard labels instead of our soft targets significantly reduces test accuracy (TA) and yields
membership inference attack (MIA) scores that diverge from the retrained model, indicating lower
utility and potential privacy risks. Second, employing generators trained on different OOD datasets,
such as TinyImageNet, consistently ensures robust unlearning, highlighting RUAGO’s versatility.
Third, using a randomly initialized generator leads to markedly poor performance, underscoring
the necessity of a pre-trained OOD generator. Fourth, while RUAGO is effective without the model
inversion technique, its inclusion further improves unlearning outcomes. Lastly, omitting the sample
difficulty scheduling from the distillation process critically harms model utility. These findings
collectively validate our design choices in achieving efficient and robust unlearning.

Hyperparameter Sensitivity Analysis. To address concerns about the hyperparameter space, we
conducted a sensitivity analysis on the loss weights (γadv, γbn, γcls, γ1, γ2) for the VGG16 model on
CIFAR-10, varying one while keeping others fixed. The detailed results are presented in the Appendix
(Tables 9 and 10). Our findings show that the performance of RUAGO is not overly sensitive to
its hyperparameters. Key metrics remained stable across a wide range of values, demonstrating the
robustness of our method. This leads to a practical and efficient tuning guideline. In our experiments,
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Table 4: Effect of the number of alignment epochs (Eg) across different models on VGGFace2.
Metrics remain stable or slightly improve as Eg increases, demonstrating that the alignment process
is safe and does not re-inject forgotten information across diverse architectures.

Eg
VGG16 ResNet18 ViT

RA UA TA RA UA TA RA UA TA

10 97.44 95.44 94.88 99.32 96.64 96.41 98.91 96.94 96.28
30 97.53 95.43 94.90 99.43 96.46 96.51 98.92 96.88 96.31
50 97.57 95.43 94.95 99.47 96.43 96.57 98.92 96.89 96.32
70 97.59 95.54 94.98 99.47 96.41 96.48 98.92 96.89 96.31
100 97.62 95.57 95.01 99.49 96.38 96.60 98.92 96.87 96.32

a simple one-dimensional sweep for γ1 after fixing other weights was sufficient to find a near-optimal
configuration. This demonstrates that RUAGO can achieve strong performance without extensive,
multi-dimensional hyperparameter tuning.

Analysis of Alignment and Re-injection Risk. A critical consideration is whether the generator
alignment step could inadvertently re-inject forgotten information. We mitigate this risk through
safeguards like the forget loss Lf . In the class-wise unlearning scenario, we employ an additional
safeguard of output filtering. To empirically validate the safety of this component, we analyzed the
effect of alignment strength. As detailed in the Appendix (Table 11), using a high learning rate to
induce overly aggressive alignment leads to a general performance collapse rather than selective
re-injection, indicating optimization instability.

Furthermore, we investigated the impact of the number of alignment epochs (Eg) across multiple
architectures, as shown in Table 4. The results are highly consistent, as increasing the alignment
epochs from 10 to 100 maintains robust unlearning performance (stable UA) while slightly improving
utility (RA and TA) across VGG16, ResNet18, and ViT. This compellingly demonstrates that the
alignment module operates within a safe regime, stabilizing distillation without re-introducing
forgotten data, regardless of the model architecture.

6 Conclusion

We propose RUAGO, a unified retain-free unlearning framework that prevents over-unlearning issues
and preserves the model’s utility without access to retain data. We aim to tackle the performance
drop common in retain-free scenarios, especially in instance-wise unlearning. Our method generates
adversarial probabilities to prevent forget samples from being pushed beyond decision boundaries,
thereby mitigating over-unlearning. Simultaneously, to compensate for the absence of retain data,
we leverage a generator pretrained on OOD data to distill knowledge from the original model using
synthetic samples. To address potential instability caused by synthetic samples and to enhance gener-
alization during distillation, we incorporate a sample scheduling strategy informed by VC theory, and
apply inversion-based alignment to adjust the generator’s outputs toward the original data distribution.
These components form a cohesive framework that achieves effective and practical unlearning in
retain-free scenarios. Our extensive experimental results show that RUAGO outperforms existing
retain-free methods, and matches or exceeds retain-based approaches, confirming its practicality for
real-world unlearning scenarios without the retain data.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contributions of this work are accurately reflected in both the abstract
and the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Appendix I includes a dedicated “Limitations” section, highlighting our re-
liance on generators pretrained on richly-featured datasets and noting that applicability
beyond supervised image classification remains unverified.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are explicitly stated in the statement of Theorem 1 in the main
text (Section 4), and the full proof of Theorem 1 is provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: The experimental procedure and pseudo-code are described in the main text
(see Algorithm 1), Section 5 details all datasets, model architectures, and hyperparameters,
and we have made the full code available for reproducers.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The full code is available at the repository URL listed in the appendix, and
all experiments use standard open-source datasets; detailed instructions for data access and
environment setup are provided in that repository.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5 and Appendix C details all datasets, model architectures, hyperpa-
rameters, and optimizers.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars in Figs. 3 and 4 denote one standard deviation computed over five
runs with different random seeds (capturing variability from initialization and data splits),
and all main table results are reported as mean ± standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Section 5 specifies that all experiments were conducted on a single NVIDIA
RTX A5000 GPU (24 GB VRAM) and reports running time efficiency in Table 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research fully conforms to the NeurIPS Code of Ethics: we use only
publicly available datasets, involve no human subjects or sensitive personal data, maintain
transparency in methods and reporting, and preserve anonymity where applicable.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: Our work’s primary objective is to enhance privacy through machine unlearning,
and we assess that the risk of malicious misuse is negligible. We anticipate solely positive
societal outcomes and improved protection of user data and, therefore, have not included a
discussion of negative impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work’s primary objective is to enhance privacy through machine unlearning,
and we assess that the risk of malicious misuse is negligible.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite the original publications for all datasets, models and code
used in this work, and note that they are publicly available under their respective open
licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: We have ensured comprehensive documentation of our assets in Section 5 and
Appendix C. We make it available alongside the assets via an anonymized URL.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
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Justification: We used LLMs solely for manuscript writing, editing, and formatting, and they
did not contribute to the core methodological development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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This Appendix provides additional insights and detailed explanations supporting our main findings.
We begin with a brief description of the datasets and evaluation metrics. We then describe the
hyperparameter configurations in our method. We subsequently present the full proof of Theorem 1
and additional experimental results, including CIFAR-100 and TinyImageNet. Furthermore, we
explore the effects of deleting 50% of the training dataset and provide ablation studies for datasets
and models not covered in Section 5.4. To demonstrate the versatility of our method, we also
conduct supplementary experiments based on a class-wise unlearning scenario. Finally, we outline
our limitations and propose avenues for future work. The source code is available here: https:
//github.com/Lemma1727/RUAGO

A Datasets

A.1 CIFAR-10 and CIFAR-100

The CIFAR-10 and CIFAR-100 datasets [49] are widely used benchmarks for image classification.
Each dataset contains 60,000 color images at a resolution of 32×32 pixels. CIFAR-10 has 10 classes,
such as airplanes, automobiles, and animals, while CIFAR-100 expands this to 100 fine-grained
classes. Both datasets are split into a training set of 50,000 images and a test set of 10,000 images.
These datasets are valuable in the computer vision area for evaluating the performance of classification
models due to their balanced class distribution and moderate complexity.

A.2 TinyImageNet

TinyImageNet dataset [50] is an image classification dataset commonly used in deep learning research.
It is a smaller version of the original ImageNet dataset [58]. The dataset comprises 200 classes, with
each class containing 500 training images and 50 validation images. Each image has a resolution of
64×64 pixels, making it smaller than the original ImageNet dataset. The dataset includes 100,000
training images, 10,000 validation images, and 10,000 test images. We utilize the train set and
validation set for experiments.

A.3 VGGFace2

The VGGFace2 dataset [52] is a large-scale collection intended for face recognition applications.
This dataset comprises facial data and is related to privacy preservation tasks. The dataset’s high
similarity among classes makes it essential for evaluating the effectiveness of unlearning methods in
practical applications involving facial data. The dataset comprises various facial images that differ in
identity, pose, illumination, background, and expression. The dataset comprises over 3.31 million
images sourced from more than 9,000 individuals. To conduct our unlearning task, we randomly
selected 100 individuals from a training dataset and resized them into 224×224 resolution.

A.4 Stanford Cars

The Stanford Cars [59] dataset is a fine-grained image classification benchmark for car recognition. It
consists of 196 classes, categorized by the manufacturer, model, and year of the vehicle. The dataset
includes 8,144 training images and 8,041 test images. Many cars from the same manufacturer or
similar models and years share very similar designs. Thanks to these characteristics, the Stanford
Cars dataset is useful for evaluating how effectively unlearning methods can remove fine-grained
visual details.

B Metrics

B.1 Accuracy

In order to assess a classifier’s performance, accuracy is frequently utilized. It measures the percentage
of samples for which the true classes can be predicted with maximum certainty. Accuracy of a model
F tested on a dataset of N samples {(x1, y1), ..., (xN , yN )} is formulated as follows:

ACC = 100 ·
∑N
i=1 δ(σ(F(xi)), yi)

N
,
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where δ(·, ·) is the Kronecker delta function.

B.2 Membership Inference Attack Score

Membership inference attack (MIA) [56] is a metric used to determine whether a specific data point
was used during the model training. We employ MIA to verify the effectiveness of unlearning. To
compute the MIA score, we pass the retain set (Dr) and the test set (Dt) through the target model to
obtain probabilities for each data point:

pr = FUθ (Dr), pt = FUθ (Dt)

After that, We assign label 1 to the probabilities from Dr and label 0 to those from Dt, and train a
shallow model using these labeled data points:

Fshallow({(pr,1), (pf ,0)})

In our case, we used the LogisticRegression model from Scikit-learn [60]. Following this, we pass
the forget set (Df ) through the target model to compute probabilities for each data point and use the
shallow model to predict labels:

pf = FUθ (Df ), ŷf = Fshallow(pf )

The average of these predicted values is used as the MIA score:

MIA score =
1

Nf

Nf∑
j=1

ŷjf

B.3 Running Time Efficiency

To measure the Running Time Efficiency (RTE), we record the time taken for the entire unlearning
process, from the execution of the unlearning algorithm to its completion, expressed in seconds.
This measurement excludes any preparations, such as data loading, preprocessing, or any metadata
computation that may need to be conducted in advance. These steps are not included in the RTE
metric to ensure a fair comparison that focuses solely on the efficiency of the unlearning methodology
itself.

C Implementation and Hyperparameter Settings

We set the hyperparameters for RUAGO as follows. The weights γcls, γadv, and γbn were selected
within the range [0, 5]. The coefficient γ1 was varied within [0.01, 1.50], while γ2 was fixed at 0.01.
The learning rate was adjusted within [5× 10−6, 5× 10−4], and training was performed for 1 to 50
epochs. We used the SGD optimizer for training the original model and the Adam optimizer [61] for
unlearning baselines. For adversarial attacks, we applied the PGD attack [36]. All experiments were
conducted using five different random seeds on a single NVIDIA RTX A5000 GPU.

D Proof

Theorem 1 (Generalization Bound under Sample Difficulty Scheduling). Let H1 ⊆ H2 ⊆ · · · ⊆
HT be a nested sequence of hypothesis spaces with VC-dimensions dt = VCdim(Ht) in each
curriculum stage t, and define the true risk by R(F) = E(x,y)∼D

[
ℓ
(
F(x), y

)]
, and the empirical

risk by R̂n(F) = 1
n

∑n
i=1 ℓ

(
F(xi), yi

)
. Let the original (teacher) model be Fθ ∈ H1, and let the

unlearned (student) model be FUθ ∈ HT . Consider the optimal retrained model Fθ∗ ∈ HT such that
R(Fθ∗) = minF∈HT

R(F). Then, drawing n i.i.d. samples,

R(FUθ )−R(Fθ∗) ≤ O
( T∑
t=1

√
dt logn
n

)
+ ϵ.
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Proof. Fix δ > 0. For each t = 1, . . . , T , define

εt = C

√
dt
(
log(n/dt) + log(T/δ)

)
n

= O
(√

dt logn
n

)
,

where C > 0 is a universal constant from the VC uniform-convergence bound, dt ≥ 1 is the (finite)
VC-dimension of the stage-t hypothesis space, n ≥ 1 is the sample size, and δ ∈ (0, 1), respectively.
Hence ϵt > 0. By the standard VC uniform-convergence theorem [62–64], for any single hypothesis
spaceHt,

Pr

[
sup
F∈Ht

∣∣R(F)− R̂n(F)∣∣ ≤ εt] ≥ 1− δ
T .

To ensure this bound holds simultaneously for all T stages, we apply a union bound. Thus, with
probability at least 1− δ, we have∣∣R(F)− R̂n(F)∣∣ ≤ εt for every F ∈ Ht , t = 1, . . . , T.

Let
F1 = Fθ, FT = FUθ , F∗ = Fθ∗ ,

and define
ϵ = R(F1)−R(F∗) ,

which is a fixed constant since F1 and F∗ are fixed; hence, their error gap depends on the generator.
Then

R(FT )−R(F∗) =
[
R(FT )−R(F1)

]
+

[
R(F1)−R(F∗)

]
=

[
R(FT )−R(F1)

]
+ ϵ.

Next, telescope the first term:

R(FT )−R(F1) =

T∑
t=2

[
R(Ft)−R(Ft−1)

]
.

For each t = 2, . . . , T , usingHt−1 ⊆ Ht and the fact that Ft minimizes the empirical risk overHt,
we have R̂n(Ft) ≤ R̂n(Ft−1). Thus,

R(Ft)−R(Ft−1) =
(
R(Ft)− R̂n(Ft)

)
+

(
R̂n(Ft)− R̂n(Ft−1)

)
+

(
R̂n(Ft−1)−R(Ft−1)

)
≤

∣∣R(Ft)− R̂n(Ft)∣∣+ (
R̂n(Ft)− R̂n(Ft−1)

)
+
∣∣R̂n(Ft−1)−R(Ft−1)

∣∣
≤ εt + 0 + εt−1 = εt + εt−1,

The first line is an identity. The second line follows from the property that x ≤ |x|. The third line
follows because: (1) by the uniform convergence bound, |R(Ft)− R̂n(Ft)| ≤ ϵt and |R̂n(Ft−1)−
R(Ft−1)| ≤ ϵt−1; and (2) since Ft minimizes the empirical risk over Ht and Ft−1 ∈ Ht (due to
the nested spaces), we have R̂n(Ft) ≤ R̂n(Ft−1), which implies the middle term is non-positive.
Summing over t = 2, . . . , T gives

R(FT )−R(F1) ≤
T∑
t=2

(εt + εt−1) ≤ 2

T∑
t=1

εt.

Therefore

R(FUθ )−R(Fθ∗) ≤ 2

T∑
t=1

εt + ϵ.

Noting that each εt = O
(√

dt log n/n
)
, we conclude

R(FUθ )−R(Fθ∗) ≤ O
( T∑
t=1

√
dt logn
n

)
+ ϵ.
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Table 5: Performance of RUAGO and baselines on CIFAR-100 and TinyImageNet, reported as mean
± std, with AVG indicating the accuracy gap between unlearned and retrained models. The “Dr-free”
columns (!/%) marks retain-free methods. Blue and red highlight the best results for retain-based
and retain-free methods, respectively.

(a) Results on CIFAR-100.
Dr
free

VGG16 ResNet18 ViT
RA UA TA AVG RA UA TA AVG RA UA TA AVG

Original - 99.98±0.00 99.98±0.02 72.93±0.24 - 99.97±0.00 99.99±0.02 56.55±0.32 - 98.43±0.41 98.30±0.52 92.62±0.28 -
Retrain % 99.98±0.00 71.92±0.71 71.89±0.26 0 99.97±0.00 64.18±20.01 55.44±0.41 0 98.45±0.39 92.16±0.53 92.51±0.31 0

Bad-T % 99.97±0.00 71.47±0.76 70.05±0.10 0.77 99.91±0.01 45.14±2.67 51.52±0.35 7.67 92.93±0.25 92.97±0.15 86.92±0.17 0.5
SCRUB % 99.88±0.10 75.91±6.45 69.89±0.34 2.03 99.70±0.08 55.16±0.58 54.34±0.28 3.46 99.32±0.02 97.35±0.64 93.03±0.08 2.19
SalUn % 99.98±0.00 67.93±1.00 66.63±0.16 3.09 99.98±0.01 46.75±2.18 47.61±0.19 8.42 98.74±0.18 96.78±0.20 92.47±0.26 1.65

BS ! 80.48±0.76 78.40±0.55 54.70±0.41 14.39 61.15±0.58 45.95±0.82 36.91±0.34 25.19 97.32±0.04 97.26±0.15 91.93±0.10 2.27
SSD ! 89.15±10.78 89.06±10.79 63.27±8.59 12.2 86.34±13.98 86.21±13.75 46.34±6.12 14.92 92.22±2.59 91.86±2.81 87.50±2.48 3.84
SCAR ! 71.93±1.83 71.40±1.95 45.22±1.07 18.42 58.33±0.62 57.53±0.39 24.06±0.37 26.56 92.93±0.25 92.97±0.15 86.92±0.17 3.97
RUAGO ! 99.03±0.13 67.00±0.98 68.70±0.35 3.02 99.01±0.18 58.90±1.48 52.42±0.53 3.09 98.51±1.18 96.32±2.46 94.82±3.75 2.18

(b) Results on TinyImageNet.
Dr
free

VGG16 ResNet18 ViT
RA UA TA AVG RA UA TA AVG RA UA TA AVG

Original - 99.98±0.00 99.98±0.02 58.97±0.09 - 99.98±0.00 99.98±0.01 45.67±0.32 - 96.22±0.04 96.28±0.10 90.98±0.06 -
Retrain % 99.98±0.00 58.19±0.44 58.09±0.33 0 99.98±0.00 44.63±0.44 44.35±0.32 0 96.21±0.03 90.82±0.28 91.03±0.24 0

Bad-T % 99.98±0.00 51.59±1.63 54.85±0.26 3.28 98.83±0.16 14.68±3.15 36.33±0.40 13.04 96.00±0.02 89.10±0.10 90.63±0.14 0.78
SCRUB % 99.98±0.00 96.41±1.30 58.60±0.22 12.91 99.98±0.00 99.96±0.01 46.02±0.07 19 97.32±1.72 95.01±1.61 90.15±1.37 2.06
SalUn % 99.97±0.01 9.24±14.42 44.12±1.43 20.98 99.98±0.01 10.07±15.03 32.51±2.04 15.47 97.90±0.00 94.83±0.08 90.67±0.09 2.02

BS ! 62.72±0.71 55.25±0.85 35.64±0.29 20.88 73.14±0.72 55.19±0.67 31.09±0.39 16.89 96.29±0.02 96.26±0.17 90.99±0.01 1.86
SSD ! 84.33±13.18 84.01±13.06 46.02±7.72 17.85 71.17±25.56 70.98±25.68 30.97±10.00 22.85 85.62±10.68 85.42±10.25 80.93±9.74 8.7
SCAR ! 57.04±0.72 57.03±0.99 27.23±1.56 24.99 46.06±0.82 45.93±0.36 13.49±0.38 28.7 91.37±0.36 91.21±0.20 85.53±0.32 3.58
RUAGO ! 99.87±0.02 55.65±0.62 55.02±0.08 1.91 98.66±0.15 41.52±1.10 39.48±0.22 3.1 95.98±0.03 92.44±0.23 90.56±0.06 0.77

E Additional Experiments

We additionally conducted experiments using the CIFAR-100 and TinyImageNet datasets. The
results for CIFAR-100 are summarized in Table 5(a). Consistent with the findings from previous
experimental results in Section 5.3, RUAGO demonstrates the most robust performance among
retain-free methods. Retain-free baselines, such as those evaluated on VGG16 and ResNet18 models,
demonstrate AVG values exceeding 10.00. In contrast, our proposed method achieves an AVG value
of approximately 3.00, indicating a significant improvement over the other approaches. Additionally,
RUAGO demonstrates unlearning performance comparable to retain-based methods. Notably, for
the ResNet18 model, RUAGO achieves an AVG value of 3.09, representing the highest unlearning
performance across all baselines. In terms of the MIA score, our method effectively mitigates privacy
leakage. As shown in Fig. 4(a), Bad-T (Bad-T), which demonstrated the highest accuracy performance,
exhibits a substantial discrepancy in the MIA score compared to the Retrain model. This discrepancy
suggests a potential Streisand effect, which could lead to significant privacy leakage. On the other
hand, while the SCAR method achieves an MIA score close to that of the Retrain model, it falls
short in accuracy performance, as indicated in Table 5(a). Unlike these methods, RUAGO not only
achieves superior unlearning performance in accuracy but also shows an MIA score similar to that of
the Retrain model, indicating better privacy protection compared to other methods.

The experimental results on TinyImageNet, as shown in Table 5(b), further confirm that our method
significantly outperforms retain-free baselines. These findings indicate that retain-free approaches
struggle with datasets containing many classes, such as TinyImageNet, which includes 200 classes.
In contrast, RUAGO demonstrates remarkable unlearning performance under these challenging
conditions. Furthermore, when compared to retain-based methods, our approach consistently achieves
superior results. Specifically, for the ResNet18 model, competing methods fail to deliver satisfactory
unlearning outcomes, deviating from the desired unlearning objectives. Conversely, RUAGO achieves
an AVG value of 3.1, the best among all baselines. Regarding the MIA score, our approach consistently
achieves an MIA score relatively close to that of the Retrain model as illustrated in Fig. 4(b),
similar to results observed on other datasets. This alleviates concerns about the Streisand effect.
Furthermore, our method demonstrates superior accuracy performance, indicating its capacity to
achieve a remarkable equilibrium between model efficacy and privacy safeguarding. These results
emphasize the effectiveness of RUAGO in the instance-wise unlearning scenario, even in settings
without access to Dr.
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Table 6: Performance comparison for unlearning 50% ofD on the CIFAR-10 and VGGFace2 datasets.

(a) Results on CIFAR-10
Dr
free

VGG16 ResNet18 ViT
RA UA TA AVG RA UA TA AVG RA UA TA AVG

Original - 100.00±0.00 100.00±0.00 93.33±0.35 - 99.99±0.00 100.00±0.00 86.54±0.23 - 99.85±0.01 99.84±0.05 98.97±0.07 -
Retrain % 100.00±0.00 90.79±0.18 90.19±0.28 0 100.00±0.00 81.55±0.03 81.03±0.31 0 99.84±0.02 98.96±0.02 98.79±0.05 0

Bad-T % 99.98±0.02 89.83±4.29 86.19±2.22 1.66 99.98±0.00 82.32±1.10 77.51±0.22 1.43 99.47±0.07 98.88±0.14 98.01±0.16 0.41
SCRUB % 100.00±0.00 99.84±0.02 92.97±0.09 3.94 100.00±0.00 99.73±0.05 86.95±0.05 8.03 99.90±0.02 99.86±0.02 99.12±0.01 0.43
SalUn % 99.92±0.06 88.96±1.31 87.01±0.41 1.70 99.26±0.16 81.49±1.49 75.19±0.81 2.22 99.73±0.08 98.97±0.09 98.24±0.11 0.22

BS ! 98.67±0.04 98.57±0.14 89.96±0.12 3.11 90.99±0.36 90.84±0.37 77.02±0.22 7.44 99.71±0.03 99.74±0.02 98.89±0.01 0.34
SSD ! 95.96±2.54 96.02±2.61 87.43±2.52 4.01 72.01±41.78 72.18±41.74 62.84±34.30 18.51 99.76±0.05 99.80±0.05 98.89±0.12 0.34
SCAR ! 93.73±0.30 93.65±0.09 85.18±0.30 4.72 87.93±0.41 87.66±0.04 71.36±0.27 9.28 99.47±0.04 99.38±0.02 98.40±0.05 0.39
RUAGO ! 98.70±0.08 91.42±0.58 89.89±0.10 0.75 97.29±0.41 82.54±1.11 82.48±0.30 1.71 99.75±0.04 99.08±0.04 98.81±0.05 0.08

(b) Results on VGGFace2
Dr
free

VGG16 ResNet18 ViT
RA UA TA AVG RA UA TA AVG RA UA TA AVG

Original - 98.13±0.15 98.59±0.20 95.96±0.10 - 99.88±0.02 99.88±0.02 97.52±0.07 - 99.24±0.06 99.25±0.15 96.79±0.18 -
Retrain % 99.91±0.01 94.07±0.07 94.59±0.27 0 92.09±0.13 85.85±0.11 86.22±0.26 0 98.81±0.10 94.03±0.18 94.19±0.20 0

Bad-T % 99.82±0.01 96.84±0.82 94.12±0.72 1.11 98.03±0.21 79.78±3.95 88.92±0.86 4.90 98.50±0.11 93.77±0.31 93.72±0.15 0.34
SCRUB % 100.00±0.00 96.69±5.19 97.44±0.02 1.85 97.27±0.15 97.26±0.09 94.18±0.07 8.21 99.52±0.04 99.30±0.05 96.99±0.05 2.93
SalUn % 99.96±0.02 92.60±1.26 93.01±0.43 1.03 98.74±0.16 92.09±0.77 91.66±0.60 6.11 98.01±0.33 94.83±0.42 93.44±0.60 0.78

BS ! 76.58±0.67 76.64±0.70 78.41±11.33 18.98 69.50±1.17 69.19±1.53 65.65±1.30 19.94 98.63±0.12 98.61±0.08 95.95±0.04 2.17
SSD ! 97.58±0.38 97.59±0.48 93.88±0.63 2.19 83.77±2.68 83.88±2.93 81.12±2.71 5.13 97.39±0.58 97.39±0.42 94.65±0.52 1.75
SCAR ! 97.89±0.41 97.93±0.34 94.08±0.59 14.15 88.25±0.88 86.99±2.53 84.70±0.82 2.17 97.27±0.08 97.20±0.02 94.54±0.13 1.68
RUAGO ! 98.11±0.04 93.61±0.15 94.32±0.09 0.84 90.03±0.26 87.56±0.25 87.28±0.51 1.61 97.58±0.11 93.32±0.35 94.44±0.17 0.73

F Results with 50% deletion

We designate 50% of the entire training dataset as forget set, thereby removing half of the training
data. We conduct these experiments on the CIFAR-10 and VGGFace2 datasets. The results are
summarized in Table 6. RUAGO demonstrates consistently robust unlearning performance even in
large-scale unlearning. On the CIFAR-10 dataset, results are similar to those presented in Section 5.3,
where retain-free methods fail to achieve effective unlearning, leading instead to a significant decline
in overall model performance. In particular, the Boundary Shrink method demonstrates a substandard
outcome with an AVG value of 18.52. Retain-based methods also exhibit suboptimal unlearning
performance; for instance, the SCRUB method records an AVG value as high as 3.94 in certain cases.
In contrast, RUAGO achieves an AVG value of 0.75 and 0.08 on ResNet18 and ViT models, respec-
tively, outperforming both retain-free and retain-based methods. Similarly, on the VGGFace2 dataset,
various baseline methods fail to achieve complete unlearning. Retain-free methods consistently fail
to achieve effective unlearning, and even retain-based methods, such as the Bad-T method, exhibit
excessive misclassification ofDf when applied to the ResNet18 model. Conversely, RUAGO not only
outperforms all retain-free methods but also achieves lower AVG values than retain-based methods on
ResNet18 and VGG16 models. These results highlight RUAGO as a practical and scalable solution
for unlearning, effectively removes forget data while consistently maintaining model utility.

G Ablation Studies

Table 8 presents the ablation study results on the CIFAR-10, CIFAR-100, TinyImageNet, and
VGGFace2 datasets. To assess the utility of padv, we perform experiments using hard labels, which
lead to UA values significantly lower than TA, indicating over-unlearning. This indicates that most
samples in Df are misclassified as an outcome counter to the objectives of instance-wise unlearning.
If Df , which should behave as unseen data due to model generalization, is entirely misclassified, it
risks triggering the Streisand effect.

Furthermore, unlearning experiments with a generator trained on the TinyImageNet dataset demon-
strate effective unlearning performance, highlighting the robustness of RUAGO when employing a
generator trained on different OOD datasets. Specifically, we exclude experiments with classification
models trained on the TinyImageNet dataset, as the training datasets for both the classification
model and generator are identical. The unlearning performance is significantly diminished when a
generator is trained from scratch through model inversion rather than pre-trained on an OOD dataset.
Interestingly, omitting model inversion occasionally results in slightly better AVG values; however,
the overall benefit of incorporating model inversion is evident across different datasets. Lastly, the
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Table 7: Performance comparison for unlearning 10% of D on Stanford Cars dataset.
Dr
free

VGG16 ResNet18 ViT
RA UA TA AVG RA UA TA AVG RA UA TA AVG

Original - 99.72±0.04 99.63±0.15 52.97±1.62 - 99.61±0.05 99.51±0.15 74.85±1.04 - 92.67±0.30 92.38±0.60 77.92±0.49 -
Retrain % 99.72±0.04 45.38±1.45 44.14±1.06 0 99.51±0.07 72.09±1.66 71.61±1.06 0 91.93±0.44 75.80±0.85 75.96±0.29 0

Bad-T % 99.60±0.02 32.51±11.54 49.73±0.31 6.19 99.42±0.05 67.69±6.53 72.72±0.62 1.87 92.31±0.10 80.17±1.48 77.05±0.16 1.95
SCRUB % 98.46±0.60 48.60±2.93 51.17±1.77 3.84 99.74±0.05 75.58±1.44 73.63±0.27 1.91 78.88±40.55 69.68±36.38 63.81±32.76 8.85
SALUN % 99.85±0.02 47.81±2.43 45.62±0.67 1.34 99.82±0.03 44.45±14.09 67.64±0.43 10.64 98.30±0.21 73.56±2.18 77.12±0.50 3.26

BS ! 69.70±1.47 56.98±1.93 28.16±0.74 19.2 99.42±0.04 99.39±0.34 72.41±0.10 9.39 89.54±0.67 88.97±1.56 74.79±0.79 5.57
SSD ! 95.87±3.85 95.13±4.53 47.49±4.23 18.98 98.56±8.76 97.86±1.16 72.60±1.16 9.24 85.28±5.84 80.25±1.33 71.07±8.58 5.32
SCAR ! 60.76±2.29 57.74±3.22 27.71±1.10 16.25 22.15±9.13 21.57±8.28 12.20±5.64 62.43 11.80±7.55 12.14±8.02 9.56±6.12 70.07
RUAGO ! 89.89±0.17 45.28±1.29 37.51±0.09 5.52 97.77±0.08 69.29±1.14 65.97±0.15 3.39 91.19±0.25 76.76±0.65 75.70±0.16 0.65

Table 8: Results of the ablations studies on four datasets.

CIFAR-10 VGGFace2
RA UA TA MIA AVG RA UA TA MIA AVG

V
G

G
16

RUAGO 99.94±0.02 93.38±0.39 92.32±0.29 0.85±0.00 0.282 97.44±0.06 95.44±0.26 94.88±0.17 0.69±0.01 0.567
Hard Labels 96.61±1.23 93.93±1.78 87.62±1.29 0.51±0.04 3.146 82.98±0.91 55.96±0.62 79.73±0.65 0.59±0.01 22.951
Diff. OOD 99.93±0.03 93.55±0.49 92.20±0.17 0.85±0.01 0.384 97.38±0.09 95.45±0.28 94.82±0.12 0.68±0.01 0.612
w/ Init Gψ 72.55±16.08 72.45±15.63 68.22±13.85 0.60±0.09 24.338 1.57±0.21 1.60±0.22 1.47±0.18 0.73±0.02 94.287

w/o MI 99.95±0.02 93.48±0.52 92.38±0.16 0.85±0.00 0.297 97.44±0.11 95.49±0.28 94.91±0.08 0.70±0.01 0.573
w/o SD 99.47±0.11 88.93±0.22 91.44±0.23 0.86±0.00 2.133 96.75±0.12 94.68±0.38 94.49±0.19 0.71±0.01 0.673

R
es

N
et

18

RUAGO 99.34±0.15 84.02±1.00 84.36±0.26 0.48±0.00 1.654 99.32±0.05 96.64±0.22 96.41±0.15 0.72±0.01 0.453
Hard Labels 98.12±0.74 87.55±2.84 82.65±0.99 0.37±0.03 2.003 60.96±1.43 31.52±0.57 57.12±1.23 0.61±0.01 48.041
Diff. OOD 99.17±0.15 84.13±1.40 83.98±0.28 0.48±0.01 1.799 99.34±0.05 96.61±0.16 96.44±0.15 0.72±0.01 0.442
w/ Init Gψ 27.55±6.74 27.15±6.68 26.10±6.46 0.34±0.22 63.961 66.27±18.51 66.31±18.41 64.71±17.47 0.46±0.02 32.141

w/o MI 99.34±0.14 84.60±1.06 84.38±0.16 0.48±0.01 1.454 99.31±0.06 96.64±0.22 96.35±0.16 0.72±0.01 0.476
w/o SD 84.08±0.51 48.31±0.75 68.54±0.38 0.73±0.01 23.917 98.95±0.06 95.82±0.26 95.97±0.18 0.69±0.01 0.992

V
iT

RUAGO 99.81±0.01 98.95±0.16 98.95±0.05 0.89±0.01 0.047 98.91±0.02 96.94±0.20 96.28±0.09 0.76±0.01 0.425
Hard Labels 95.29±0.75 93.39±0.92 94.18±0.75 0.71±0.01 4.985 88.78±1.53 86.23±1.91 85.69±1.58 0.54±0.01 10.431
Diff. OOD 99.80±0.01 98.86±0.22 98.93±0.02 0.89±0.00 0.075 98.91±0.02 96.94±0.18 96.28±0.10 0.76±0.01 0.425
w/ Init Gψ 99.54±0.05 98.44±0.24 98.42±0.06 0.87±0.01 0.472 98.83±0.03 96.82±0.17 96.10±0.13 0.76±0.01 0.471

w/o MI 99.81±0.01 98.94±0.16 98.95±0.04 0.89±0.00 0.052 98.91±0.02 96.94±0.19 96.28±0.13 0.76±0.01 0.427
w/o SD 99.66±0.04 98.50±0.26 98.61±0.04 0.88±0.01 0.345 98.84±0.03 96.80±0.19 96.11±0.10 0.76±0.01 0.457

CIFAR-100 TinyImageNet
RA UA TA MIA AVG RA UA TA MIA AVG

V
G

G
16

RUAGO 99.03±0.13 67.00±0.98 68.70±0.35 0.49±0.00 3.021 99.87±0.02 55.65±0.62 55.02±0.08 0.33±0.01 1.913
Hard Labels 95.75±0.34 25.55±1.17 63.16±0.49 0.45±0.01 19.779 98.91±0.10 7.97±0.69 51.50±0.18 0.58±0.01 19.293
Diff. OOD 99.13±0.13 69.24±2.16 68.63±0.43 0.48±0.01 2.264 - - - - -
w/ Init Gψ 16.12±5.43 14.57±4.60 13.87±4.14 0.40±0.04 66.411 4.98±0.62 4.65±0.54 4.17±0.31 0.40±0.25 81.710

w/o MI 99.01±0.14 67.22±1.04 68.68±0.35 0.49±0.00 2.964 99.87±0.03 55.93±0.79 54.79±0.06 0.33±0.01 1.894
w/o SD 89.37±0.71 51.35±0.56 57.60±0.37 0.69±0.00 15.157 94.42±0.52 37.44±0.26 48.59±0.61 0.68±0.00 11.941

R
es

N
et

18

RUAGO 99.01±0.18 58.90±1.48 52.42±0.53 0.47±0.01 3.086 98.66±0.15 41.52±1.10 39.48±0.22 0.36±0.01 3.101
Hard Labels 91.93±0.59 14.58±2.14 45.01±0.40 0.76±0.03 22.690 85.88±0.92 4.50±0.47 29.76±0.39 0.87±0.02 41.103
Diff. OOD 99.22±0.21 56.25±1.62 52.65±0.51 0.45±0.02 3.822 - - - - -
w/ Init Gψ 2.40±0.82 2.34±0.65 2.15±0.69 0.42±0.13 70.898 2.50±0.31 2.79±0.36 2.20±0.30 0.20±0.29 62.339

w/o MI 99.00±0.14 59.65±1.03 52.19±0.52 0.48±0.01 2.918 98.59±0.17 41.11±1.43 39.54±0.31 0.36±0.00 3.243
w/o SD 76.26±0.89 48.76±0.20 39.34±0.13 0.68±0.01 18.411 43.52±0.97 24.08±0.27 21.53±0.43 0.82±0.01 45.952

V
iT

RUAGO 97.65±0.06 94.64±0.33 92.10±0.06 0.74±0.00 1.228 95.98±0.03 92.44±0.23 90.56±0.06 0.77±0.00 0.773
Hard Labels 90.31±0.47 86.38±0.67 84.52±0.32 0.63±0.01 7.302 86.11±0.27 80.45±0.46 81.31±0.19 0.62±0.00 10.064
Diff. OOD 97.59±0.08 94.65±0.29 92.00±0.15 0.74±0.00 1.286 - - - - -
w/ Init Gψ 95.14±0.25 92.05±0.58 89.32±0.10 0.72±0.01 2.200 95.72±0.06 92.38±0.24 90.24±0.16 0.77±0.00 1.712

w/o MI 97.64±0.07 94.67±0.34 92.08±0.12 0.75±0.00 1.249 95.99±0.03 92.45±0.26 90.59±0.07 0.77±0.00 0.765
w/o SD 95.64±0.15 92.32±0.45 89.81±0.15 0.72±0.01 1.890 95.76±0.05 92.38±0.24 90.29±0.12 0.77±0.00 0.919

importance of including sample difficulty is apparent, as omitting this strategy, particularly for the
TinyImageNet dataset, leads to complete unlearning failure.

To further demonstrate the effectiveness of our approach, we conduct experiments on a fine-grained
dataset where class-level similarities make discrimination particularly challenging. The experimental
results on the Stanford Cars dataset [59] are presented in Table 7. The Stanford Cars dataset poses
challenges for unlearning due to many similar classes and features. Nevertheless, our method shows
consistently strong performance, achieving an AVG of 0.65 on the ViT model, outperforming all
baselines.

H Class-wise Unlearning Scenario Experiments

As an extension of our main experiments, we explore class-wise unlearning to assess how well
unlearning methods can eliminate information tied to specific semantic categories. Unlike the instance-
wise unlearning scenario, which aims to delete individual instance samples independently of their
classes, class-wise unlearning involves erasing all information about a specific class. Hence, an ideal
class-wise unlearning outcome for a classification model should result in entirely incorrect predictions
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Table 9: Sensitivity analysis of inversion loss
weights (γadv, γbn, γcls) on CIFAR-10 with
ResNet18.

γadv γbn γcls RA UA TA

0 1 1 99.25 96.84 96.29
1 1 1 99.26 96.92 96.27
2 1 1 99.24 96.86 96.29
3 1 1 99.24 96.84 96.22

0 2 1 99.25 96.92 96.25
0 3 1 99.25 96.86 96.23

0 1 2 99.25 96.82 96.26
0 1 3 99.24 96.82 96.23

Table 10: Sensitivity analysis of main loss
weights (γ1, γ2) on CIFAR-10 with ResNet18.

γ1 γ2 RA UA TA

0 0.01 95.34 95.29 91.65
0.15 0.01 99.24 96.86 96.29
0.5 0.01 99.28 96.45 96.39
1 0.01 99.27 96.35 96.34

1.5 0.01 99.22 96.28 96.32

0.15 0 98.59 96.00 95.49
0.15 0.01 99.24 96.86 96.29
0.15 0.5 98.54 98.91 95.30
0.15 1 97.92 98.22 94.49
0.15 1.5 97.49 97.71 93.90

for the targeted class. Table 13 presents the performance of various unlearning methods across three
models trained on the CIFAR-10 dataset.

Specifically, for TRA and TUA, the reported accuracies correspond to the test retain set and test forget
set, respectively, based on the targeted class within the test set Dt. In alignment with the Retrain
model, RA and TRA should remain as high as possible, while UA and TUA should be close to 0,
indicating complete deletion.

All baseline methods generally exhibit robust class-wise unlearning performance; however, certain
limitations are observed. For instance, the Bad Teaching method records high RA and TRA values,
demonstrating that model utility remains intact, yet the elevated UA and TUA scores reveal incomplete
deletion. SCRUB exhibits highly unstable unlearning results across different seeds, particularly for
the VGG16 and ViT model. SalUn outperforms the other two baselines that utilize the retain set,
showcasing more stable unlearning performance but still falling short of complete deletion.

Turning to retain-free methodologies, Boundary Shrink not only fails to preserve model utility but also
does not accomplish complete deletion. In contrast, SSD and SCAR deliver impressive unlearning
performance without relying on a retain set. However, SSD fails to handle larger models, as shown
by its poor results on ViT. SCAR similarly struggles with large models and incurs substantial training
time costs, as evidenced by the ResNet18 scenario, making it inefficient since it requires significant
computation for each unlearning request. In contrast, our approach involves training the generator
on out-of-distribution (OOD) data, allowing us to prepare for unlearning requests proactively before
they are made.

Table 11: Effect of alignment learning rate (lr).
Excessive alignment strength leads to collapse.

LR RA UA TA

5.0e-05 99.14 97.12 96.09
1.0e-04 99.24 96.84 96.29
5.0e-04 98.21 96.62 95.71
1.0e-03 94.20 96.49 92.87
5.0e-03 11.63 15.47 12.14
1.0e-02 2.95 3.11 3.07

In our proposed method, RUAGO, we filter out the
generated outputs x̃ that are predicted as belonging
to the class slated for deletion. While not exhibiting
the highest performance metrics, our approach pro-
vides adequate and stable unlearning performance.
This characteristic stems from the core design of
RUAGO: its main signal, the adversarial soft target,
is optimized for reshaping decision boundaries lo-
cally around individual samples, making it highly
effective for instance-wise unlearning. In contrast,
class-wise unlearning requires a more global ob-
jective of erasing an entire semantic concept across the input space. To maintain a consistent and
unified pipeline, we applied the same mechanism to both scenarios. This design choice led to effective
unlearning, especially on VGG-16 and ViT where UA/TUA values were near-zero, though it resulted
in residual information in some specific model-setting combinations. Notably, this highlights a crucial
trade-off. Other retain-free methods such as SSD and SCAR, which perform well in class-wise
deletion, tend to struggle significantly with instance-wise unlearning, larger models, or high com-
putational costs. In contrast, RUAGO maintains commendable and balanced performance across
both class-wise and instance-wise unlearning scenarios. This versatility underscores the applicability
of RUAGO to diverse unlearning challenges, demonstrating its robustness and efficacy in various
operational contexts.
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I OOD Datasets and Generator Pretraining

To assess distributional differences between classification datasets and generator training sets, we
embed each image with a CLIP [65] encoder and compute the Fréchet Distance (FD):

FD(X ,Y) = ∥µX − µY∥2 +Tr
(
ΣX +ΣY − 2 (ΣXΣY)

1
2
)
,

where (µX ,ΣX ) and (µY ,ΣY) represent the means and covariances of the features extracted from
two datasets, X and Y , respectively. Lower FD indicates more similar distributions. Figure 5 shows
these FD scores as a confusion matrix. COCO diverges markedly from all four classification datasets,
and TinyImageNet has an exceptionally high FD with VGGFace2. These observations confirm that
COCO and TinyImageNet are valid OOD sources under our easy-access assumption.
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Figure 4: MIA results for each unlearning
method. The red dotted line represents the Re-
train model; it is best to be closer to this line.

Table 12 summarizes ablation results using genera-
tors pretrained on three datasets: in-domain CIFAR-
10 and two OOD sources (COCO, TinyImageNet).
Although a generator pretrained on the in-domain
data (CIFAR-10) yields the best unlearning perfor-
mance, it presents a critical flaw: to prevent infor-
mation leakage, it must be discarded after a single
unlearning task. This single-use nature makes it
impractical for scenarios requiring sequential un-
learning requests and introduces substantial over-
head. This highlights a fundamental challenge in
retain-free unlearning: a mechanism is needed to
approximate the distribution of data that should be
retained. We posit that an OOD-trained generator
serves as an efficient and straightforward surrogate
for this purpose. The importance of this pretraining
step is demonstrated in Table 8, where using an un-
trained, randomly initialized generator results in a
significant performance drop. Therefore, we focus
our main approach on OOD-pretrained models.

We further evaluate an extreme OOD case by pre-
training on VGGFace2. Despite its much smaller
size, making it less readily accessible and poses
challenges for generator training, the VGGFace2
generator only slightly underperforms the COCO
model. Still, it outperforms all retain-free baselines
from Table 1, demonstrating robustness even in challenging worst-case scenarios.

We use a StyleGAN2-ADA [66, 67] backbone for these experiments. While this requires a pretraining
step, we consider its cost a practical trade-off for effective unlearning under the strict retain-free
constraint. Training on COCO took ≈4 hours and on TinyImageNet ≈3 hours (32×32 resolution
on our GPU), with generated samples shown in Figures 6 and 7. To mitigate this dependency in
future work, one could explore the use of off-the-shelf generative models, assuming their training
data does not introduce other privacy issues. We expect higher-resolution training to boost unlearning
performance further.

J Limitations and Future Work

We can point out several limitations of RUAGO. Initially, our experiments utilize a generator trained
on datasets with rich feature content. Generally, numerous open-source datasets with rich features
are easily accessible, making them easy to obtain. However, there may be extreme scenarios where
such datasets are not accessible. In such situations, it remains uncertain whether unlearning would be
complete when employing a generator trained on simpler datasets, such as those with single-channel
images, to unlearn classification models trained on complex, high-feature datasets. Additionally, our
experiments are limited to supervised image classification models. However, we believe that the
fundamental design principles of RUAGO, particularly curriculum-based training over OOD samples,
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Figure 5: Confusion matrix of FD scores across
all datasets.

Table 12: Unlearning performance across differ-
ent generator training datasets.

Model
Generator CIFAR-10 VGGFace2 COCO

VGG16

RA 99.99±0.01 99.70±0.09 99.94±0.02
UA 93.12±0.27 91.36±0.50 93.38±0.39
TA 92.79±0.05 91.33±0.22 92.32±0.29

AVG 0.11 1.28 0.28

ResNet18

RA 99.94±0.01 96.60±0.30 99.34±0.15
UA 84.95±0.61 87.28±0.63 84.02±1.00
TA 86.20±0.24 81.57±0.37 84.36±0.26

AVG 0.69 2.78 1.65

ViT

RA 99.83±0.02 98.89±1.47 99.81±0.01
UA 98.98±0.11 99.05±0.09 98.95±0.16
TA 99.00±0.01 98.87±0.05 98.95±0.05

AVG 0.05 0.35 0.05

adversarial soft-target regularization, and generator-teacher alignment, are not inherently tied to
this specific domain. For instance, in natural language processing (NLP), these principles could be
adapted by replacing the image generator with a small language model, defining sample difficulty
via token-level cross-entropy, and performing alignment in the hidden feature space rather than the
pixel space. Adversarial soft-targets could similarly be constructed through perturbations applied
to token logits. Nonetheless, we do not claim that our method can be directly applied to generative
models. Adapting RUAGO to architectures like GANs, diffusion models, or large language models
would require careful redesign and new, task-specific metrics. In summary, this work establishes
our method in a foundational supervised setting to analyze the core mechanics of unlearning, while
acknowledging that extending it to other domains is feasible but requires further investigation.

Consequently, future work should explore more versatile methodologies, including generators trained
on low-quality images or even randomly initialized generators that do not rely on OOD data. On the
theoretical front, our current analysis offers a generalization bound for the curriculum learning aspect,
which helps explain how scheduling sample difficulty stabilizes the unlearning process. However, a
unified theoretical framework that encompasses all components of RUAGO, including the adversarial
soft-target mechanism, has not yet been established and remains an important direction for future
work. Another key direction for future research is to realize the roadmap for adapting RUAGO to
other domains. This includes empirically verifying its effectiveness in tasks such as object detection
and NLP, guided by the principles outlined above. Expanding the applicability of RUAGO is an
important avenue for future research.
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Table 13: Class-wise unlearning performance of baseline methods and our proposed RUAGO on the
CIFAR-10 dataset.

VGG16
RA UA TRA TUA AVG MIA RTE

Retrain % 100.00 ± 0.00 0.00 ± 0.00 92.74 ± 0.17 0.00 ± 0.00 0 0.41 ± 0.02 869

Bad-T % 100.00 ± 0.00 18.12 ± 35.01 92.92 ± 0.13 15.74 ± 30.52 8.51 0.00 ± 0.00 65
SCRUB % 80.56 ± 38.69 0.00 ± 0.00 73.28 ± 34.66 0.00 ± 0.00 9.72 0.26 ± 0.15 112
SalUn % 100.00 ± 0.00 0.81 ± 1.23 92.42 ± 0.21 0.70 ± 0.92 0.46 0.00 ± 0.00 65

BS ! 94.17 ± 0.35 29.98 ± 0.91 85.26 ± 0.40 28.32 ± 0.50 17.9 0.19 ± 0.01 62
SSD ! 100.00 ± 0.00 0.00 ± 0.00 93.09 ± 0.02 0.00 ± 0.00 0.09 0.00 ± 0.00 15
SCAR ! 99.66 ± 0.05 0.93 ± 0.03 91.46 ± 0.14 0.60 ± 0.25 0.79 0.00 ± 0.00 143
RUAGO ! 97.77 ± 0.21 0.02 ± 0.04 90.18 ± 0.23 0.04 ± 0.09 1.21 0.07 ± 0.02 119

ResNet18
RA UA TRA TUA AVG MIA RTE

Retrain % 99.99 ± 0.01 0.00 ± 0.00 86.56 ± 0.24 0.00 ± 0.00 0 0.34 ± 0.02 1,917

Bad-T % 99.98 ± 0.00 19.98 ± 44.36 86.62 ± 0.10 16.76 ± 37.48 9.2 0.00 ± 0.00 81
SCRUB % 100.00 ± 0.00 0.00 ± 0.00 86.76 ± 0.15 0.00 ± 0.00 0.05 0.01 ± 0.00 67
SalUn % 100.00 ± 0.00 7.39 ± 8.13 86.49 ± 0.13 5.76 ± 7.96 3.31 0.00 ± 0.00 67

BS ! 85.79 ± 0.66 19.40 ± 0.49 75.02 ± 0.46 18.62 ± 0.54 15.94 0.32 ± 0.00 82
SSD ! 99.99 ± 0.00 0.00 ± 0.00 86.70 ± 0.04 0.00 ± 0.00 0.04 0.00 ± 0.00 15
SCAR ! 98.89 ± 0.25 0.95 ± 0.03 84.38 ± 0.22 0.42 ± 0.23 1.16 0.12 ± 0.01 3,793
RUAGO ! 94.95 ± 0.37 5.79 ± 0.51 81.24 ± 0.32 6.00 ± 0.79 5.54 0.19 ± 0.01 489

ViT
RA UA TRA TUA AVG MIA RTE

Retrain % 99.85 ± 0.03 0.00 ± 0.00 98.90 ± 0.07 0.00 ± 0.00 0 0.04 ± 0.01 4,856

Bad-T % 99.78 ± 0.03 12.45 ± 4.27 98.95 ± 0.08 11.44 ± 5.39 6 0.00 ± 0.00 4,592
SCRUB % 99.75 ± 0.18 80.33 ± 43.53 98.88 ± 0.22 80.34 ± 43.18 40.20 0.74 ± 0.24 3,656
SalUn % 99.99 ± 0.00 2.33 ± 0.51 98.97 ± 0.06 2.12 ± 0.60 1.16 0.00 ± 0.00 2,832

BS ! 94.45 ± 0.81 55.16 ± 7.65 93.45 ± 0.77 54.54 ± 7.76 30.14 0.05 ± 0.03 522
SSD ! 84.77 ± 0.29 1.98 ± 0.75 83.70 ± 0.33 1.88 ± 0.69 8.54 0.06 ± 0.00 593
SCAR ! 23.55 ± 9.78 0.00 ± 0.00 23.35 ± 9.48 0.00 ± 0.00 37.96 0.27 ± 0.22 265
RUAGO ! 99.60 ± 0.05 0.78 ± 0.13 98.59 ± 0.10 0.76 ± 0.09 0.53 0.02 ± 0.01 524
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Figure 6: Sample images generated by the generator trained on the COCO dataset.
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Figure 7: Sample images generated by the generator trained on the TinyImageNet dataset.
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