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Abstract001

Cognitive tasks originally developed for hu-002
mans are now increasingly used to study lan-003
guage models. While applying these tasks is004
often straightforward, interpreting their results005
can be challenging. In particular, when a model006
underperforms, it is often unclear whether this007
results from a limitation in the cognitive ability008
being tested or a failure to understand the task009
itself. A recent study argues that GPT 3.5’s010
declining performance on 2-back and 3-back011
tasks reflects a working memory capacity limit012
similar to humans (Gong et al., 2024). By ana-013
lyzing a range of open-source language models014
of varying performance levels on these tasks,015
we show that the poor performance is due at016
least in part to a limitation in task comprehen-017
sion and task set maintenance. We challenge018
the best-performing model with progressively019
harder versions of the task (up to 10-back) and020
experiment with alternative prompting strate-021
gies, before analyzing model attentions. Our022
larger aim is to contribute to the ongoing con-023
versation around refining methodologies for the024
cognitive evaluation of language models.025

1 Introduction026

Psychologists rely on behavioral experiments to027

test hypotheses about cognitive constructs and pro-028

cesses. For these experiments to be valid, partic-029

ipants have to understand exactly what they are030

being asked to do. To that end, human study proto-031

cols often include detailed task instructions, demon-032

strations, and practice runs. When adapting these033

experiments for language models, ensuring task034

comprehension can be more challenging, given that035

these models are often more hesitant than humans036

to express uncertainty (Zhou et al., 2024).037

A recent study applies the n-back task (Figure 1)038

to GPT 3.5 and concludes from the model’s poor 2-039

back and 3-back performance that it has a working040

memory capacity limit (WMCL) of approximately041

3, apparently similar to humans (Gong et al., 2024).042
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Figure 1: The n-back task is a common working mem-
ory task in which subjects are presented with a sequence
of stimuli. At each step, they must decide whether the
current item matches the one appearing n step(s) earlier.
This requires them to continuously update a list of n
most recent stimuli in the working memory.

This interpretation raises two concerns. First, while 043

WMCL is well established in human cognition, 044

we cannot assume these same constraints exist or 045

can be meaningfully measured in language models. 046

Second, these results may reflect the model’s fail- 047

ure to understand the task requirements rather than 048

any inherent memory limitation. 049

In this paper, we show that low-performing lan- 050

guage models, even when provided with detailed n- 051

back task instructions and demonstrations, commit 052

errors that are consistent with a different m-back 053

task (m ̸= n). Notice that, if a human subject com- 054

mitted such systematic errors, we would conclude 055

that they had misunderstood the task. In compari- 056

son, intermediate models, including GPT 3.5, tend 057

to start with the correct task but drift toward a dif- 058

ferent one as errors accumulate, resulting in poor 059

average 2-back and 3-back performance, consistent 060

with Gong et al. 2024. High-performing models, 061

on the other hand, consistently execute the correct 062

task, even for larger n’s, achieving task accuracies 063

of 90.08%, 90.08%, and 84.75% for n = 8, 9, 10. 064
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The remainder of this paper is organized as fol-065

lows. Section 2 covers relevant background and066

related work. Section 3 introduces the dataset, mod-067

els, prompting approach, and evaluation metrics.068

Section 4.1 benchmarks each model on 1-back, 2-069

back, and 3-back tasks, focusing on retrieval ac-070

curacy and identifying three distinct performance071

tiers. Section 4.2 investigates whether these perfor-072

mance disparities are explained by differences in073

task comprehension. Section 4.3 examines the mod-074

els’ ability to consistently apply the correct task set075

throughout each trial (task set maintenance). In076

Section 4.4, we challenge the best model to per-077

form 1-back through 10-back tasks and notice a078

signature of task comprehension. In Sections 4.5079

to 4.7, we discuss additional experiments with al-080

ternative prompting strategies for comparison. In081

Section 4.8, we identify an attention pattern whose082

prevalence predicts 2-back task performance.083

2 Background and Related Work084

There has been a growing body of work that evalu-085

ates pre-trained language models using cognitive086

tasks originally developed for humans. These ef-087

forts often aim to identify whether the models ex-088

hibit cognitive constructs or capabilities that are089

present in humans. Subjects of study include the-090

ory of mind (Strachan et al., 2024; Gandhi et al.,091

2024), analogical reasoning (Hu et al., 2023; Webb092

et al., 2023), cognitive biases (Binz and Schulz,093

2023; Lampinen et al., 2024), and WMCL (Gong094

et al., 2024), among many others. Such evaluations095

are susceptible to both overclaiming and under-096

claiming. On the one hand, false positives can re-097

sult from training data contamination (Sainz et al.,098

2023), potentially compromising the validity of099

vignette-based assessments where models may pro-100

duce memorized responses. On the other hand,101

underestimation of model capabilities can happen102

when we erroneously assume task comprehension,103

especially for smaller models (Hu and Frank, 2024).104

Prior studies have also investigated how well lan-105

guage models adhere to prompt instructions, espe-106

cially compared to humans (Webson and Pavlick,107

2022; Webson et al., 2023). In light of other108

methodological challenges in the cognitive eval-109

uation of language models, such as prompt sensi-110

tivity and cultural biases, Ivanova 2023 outlines111

recommendations for best practices.112

Virtually any task, from routine text compre-113

hension to complex problem solving, involves the114

creation of intermediate or partial results. Success- 115

ful task completion requires that these results be 116

maintained in a way that facilitates later access. 117

In humans, this mechanism is known as working 118

memory, one of the most studied constructs in psy- 119

chology for over half a century (Miyake and Shah, 120

1999). This concept can be extended to transformer- 121

based language models designed to process inter- 122

dependent, serial information. In fact, the trans- 123

former architecture, particularly its attention mech- 124

anism where key-query matching drives retrieval 125

(Vaswani et al., 2017), bears striking resemblance 126

to cue-based parsing and retrieval models proposed 127

in psycholinguistics (Lewis et al., 2006), making 128

it a promising candidate for modeling human sen- 129

tence processing. 130

One of the most salient and mysterious aspects of 131

human working memory is its severely constrained 132

capacity (Miller, 1956; Cowan, 2012). One promi- 133

nent task used to measure working memory capac- 134

ity is the n-back task (Kirchner, 1958). To the best 135

of our knowledge, Gong et al. 2024 is the first to 136

apply the n-back task to a language model, specif- 137

ically the GPT 3.5 TURBO variant of ChatGPT. 138

They experiment with different prompting strate- 139

gies, including those incorporating feedback and 140

reasoning. As n increases from 1 to 3, they observe 141

a sharp decline in model performance and conclude 142

that the model has a WMCL of approximately 3. 143

3 Methods 144

3.1 Data and Prompts 145

We use the dataset from Gong et al. 2024 (MIT 146

License). For each n-back task, there are 50 trials 147

in total. Each trial consists of a sequence of 24 148

letters. In exactly 8 random positions within each 149

sequence, the letters are the same as those appear- 150

ing n step(s) earlier. After each letter prompt, the 151

models are instructed to answer “[ current letter 152

] and [ letter n back ] are [ different / identical ]”. 153

This is designed to facilitate chain-of-thought rea- 154

soning (Wei et al., 2022) and to make explicit the 155

specific letter retrieved by the model for compari- 156

son with the current one. To teach the models the 157

correct answer format and maximize their chances 158

of correctly inferring the tasks, each trial begins 159

with a demonstration, which includes a sequence of 160

24 letters and the correct responses. The “without 161

demo” trials in Section 4.2 are the only exception. 162

Following the demonstration, a new sequence of 163

24 letters is presented, one at a time, and the mod- 164
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Figure 2: Retrieval accuracies on 1-back, 2-back, and 3-back tasks, averaged across 50 trials, for all models tested,
organized by model family.

els are prompted to respond after each letter. An165

example 1-back trial is shown below; actual model166

responses are underlined.167

SYS: [TASK INSTRUCTIONS]
USR: k
LLM: k and none are different.
USR: k
LLM: k and k are identical.
USR: a
LLM: a and k are different.

...


DEMO

SYS: [TASK INSTRUCTIONS]
USR: e
LLM: e and none are different.
USR: f
LLM: f and e are different.
USR: f
LLM: f and f are identical.

...


TEST

168

3.2 Models169

We use GPT 3.5 TURBO and open-source170

instruction-tuned models from the QWEN (Bai171

et al., 2023), LLAMA (Dubey et al., 2024), and172

GEMMA (Team et al., 2024) families. Each model173

is prompted recursively to complete the trials. For174

the open-source models, we analyze the token log175

probabilities and attention patterns in addition to176

the generated responses.177

3.3 Metrics178

The n-back task requires continuously matching179

the current letter and the letter from n steps back to180

determine the correct label. However, compared to181

binary labels, the retrieved letters can tell us more182

about the models’ understanding of the task. And183

since the correct label is almost always assigned184

given the correct retrieval, our analyses focus on185

the retrieval accuracies and the log probabilities of186

the retrieved letters.187

Tier Model 1bk 2bk 3bk

T3

QWEN 1.5 14B CHAT 1.00 0.09 0.08
LLAMA 3.1 8B INSTR. 1.00 0.14 0.17
GEMMA 2 9B INSTR. 1.00 0.15 0.20
QWEN 1.5 32B CHAT 1.00 0.14 0.22

T2 GEMMA 2 27B INSTR. 1.00 0.57 0.36
GPT 3.5 TURBO 1.00 0.51 0.43

T1 QWEN 2 72B INSTR. 1.00 0.81 0.84
LLAMA 3.1 70B INSTR. 1.00 0.99 0.93

Table 1: Retrieval accuracies on 3-back, 2-back, and
1-back tasks, averaged across 50 trials, for all models
tested, organized by performance tier.

But how can we be sure that a model has inferred 188

the right task from the instructions? One hypothe- 189

sis is that, despite being prompted to do the n-back 190

task, the model might be following m-back instruc- 191

tions instead. To investigate this, we adopt counter- 192

factual measures by providing n-back instructions 193

and evaluating the accuracies and log probabilities 194

of retrievals consistent with the m-back task. We 195

also apply variants of these measures, which we 196

detail in later sections. 197

4 Experimental Results 198

4.1 Task Performance 199

We begin by comparing retrieval accuracies across 200

models for all three tasks (Figure 2) and categoriz- 201

ing them into three performance tiers (Table 1): T3 202

models achieve nearly perfect retrieval accuracies 203

on 1-back trials, but their performances drop to 204

around 20% or lower on 2-back and 3-back trials; 205

T2 models achieve nearly perfect retrieval accura- 206

cies on 1-back trials and around 50% and 40% on 207

2-back and 3-back trials, respectively; T1 models 208

achieve 100% retrieval accuracies on 1-back trials 209

and over 80% on 2-back and 3-back trials. 210

For subsequent analyses, we select the best- 211
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Figure 3: Retrieval log probabilities for 1-back task
continuations, with and without demonstrations. From
top to bottom are results for QWEN 1.5 14B CHAT (T3),
GEMMA 2 27B INSTRUCT (T2), and LLAMA 3.1 70B
INSTRUCT (T1). Each point corresponds to the average
retrieval log probability of one trial.

performing model, LLAMA 3.1 70B INSTRUCT212

(T1), the worst-performing model, QWEN 1.5 14B213

CHAT (T3), and GEMMA 2 27B INSTRUCT (T2) to214

represent each performance tier.215

4.2 Task Comprehension216

To better understand the source of these perfor-217

mance disparities, we ask: are less successful mod-218

els able to infer the task from the provided instruc-219

tions and demonstrations? Moreover, are high-220

performing models relying on task cues from the221

instructions or demonstrations? To address these222

questions, we 1) provide n-back instructions with223

and without demonstrations, 2) present three con-224

tinuations, each consistent with a different m-back225

task, and 3) measure the average log probabilities226

of letters at retrieval positions for each trial.227

Let P−
n,m be the average m-back retrieval log228

Figure 4: Retrieval log probabilities for 2-back task
continuations, with and without demonstrations. From
top to bottom are results for QWEN 1.5 14B CHAT (T3),
GEMMA 2 27B INSTRUCT (T2), and LLAMA 3.1 70B
INSTRUCT (T1). Each point corresponds to the average
retrieval log probability of one trial.

probability given n-back instructions only. Let 229

Pn,m be the average m-back retrieval log probabil- 230

ity given n-back instructions and demonstrations. 231

1-back. Under 1-back instructions, P1,1 > 232

P1,2 > P1,3 across all models. The same is true 233

when no task demonstrations are provided, with no 234

significant difference between P1,m and P−
1,m for 235

m = 1, 2, 3, as shown in Figure 3. Overall, this is 236

unsurprising, given the near-perfect performances 237

of all models on 1-back trials. 238

2-back. We analyze the representative model 239

from each tier (Figure 4). 240

T3: Under 2-back instructions, including with 241

demonstrations, 1-back continuations are assigned 242

to be the most plausible, with both P−
2,1 > P−

2,2 > 243

P−
2,3 and P2,1 > P2,2 > P2,3. The task demonstra- 244

tions do bring P2,2 and P2,3 closer to P2,1, although 245
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Figure 5: Retrieval log probabilities for 3-back task
continuations, with and without demonstrations. From
top to bottom are results for QWEN 1.5 14B CHAT (T3),
GEMMA 2 27B INSTRUCT (T2), and LLAMA 3.1 70B
INSTRUCT (T1). Each point corresponds to the average
retrieval log probability of one trial.

this is not enough to offset the strong 1-back priors.246

T2: Under 2-back instructions only, the order-247

ing of P−
2,m remains the same, albeit with P−

2,2 and248

P−
2,3 noticeably closer to P−

2,1 than for T3. How-249

ever, with additional task demonstrations, 2-back250

continuations are assigned to be the most likely,251

with P2,2 > P2,1 > P2,3.252

T1: Somewhat surprisingly, we notice that253

P−
2,2 > P−

2,1 > P−
2,3, showing that the model is254

able to infer the task from the instructions alone.255

However, the demonstrations do help further con-256

solidate the mapping.257

3-back. As shown in Figure 5, the 3-back pat-258

terns are largely analogous to the 2-back case.259

Summary. Thus, through analyzing models from260

different performance tiers, we clearly identify261

three distinct levels of task comprehension capa-262

bilities: T3 models fail to map 2-back and 3-back 263

instructions to the correct responses, given either 264

the instructions or demonstrations; T2 models fail 265

to map 2-back and 3-back instructions to the cor- 266

rect responses, given the instructions, but can do so 267

if demonstrations are also provided; T1 models can 268

map 2-back and 3-back instructions to the correct 269

responses based on the instructions alone, although 270

this mapping is augmented by further demonstra- 271

tions. 272

4.3 Task Set Maintenance 273

Each n-back trial presents a sequence of 24 letters. 274

Successful task completion requires consistent ad- 275

herence to the task instructions as more stimuli 276

are presented. Here, we investigate whether lan- 277

guage models show a progressive decline in their 278

ability to produce n-back consistent responses over 279

time. Previously, performance metrics were av- 280

eraged across time steps for each trial. Now, we 281

average across trials for each time step: at each 282

time step i in the n-back task, we measure the av- 283

erage accuracy of m-back consistent retrievals for 284

each m ≤ n, given the model’s own responses up 285

to time step i− 1. Denote this as An,·(i,m). 286

1-back. Unsurprisingly, A1,·(i, 1) stays close to 287

1 for each model as i increases (not shown). 288

2-back. As shown in Figure 6: 289

T3: Throughout the task, A2,·(i, 1) and A2,·(i, 2) 290

stay close to 1 and 0, respectively, consistent with 291

findings from Section 4.2. 292

T2: At first, the model tends to perform the 293

right task. However, over time, A2,·(i, 2) decreases 294

while A2,·(i, 1) increases, with the latter eventually 295

overtaking the former halfway through the task. In 296

other words, while the model is initially able to 297

follow 2-back instructions, the gradual accumula- 298

tion of 1-back consistent errors ultimately shifts its 299

behavior away from the intended task. 300

T1: Throughout the task, A2,·(i, 2) and A2,·(i, 1) 301

stay close to 1 and 0, respectively, contrary to T3. 302

3-back. As shown in Figure 7: 303

T3: Throughout the task, A3,·(i, 1) stays close 304

to 1 while both A3,·(i, 2) and A3,·(i, 3) stay close 305

to 0, consistent with Section 4.2. 306

T2: After a transient initial lead, A3,·(i, 3) is 307

quickly surpassed by A3,·(i, 2), suggesting yet 308

greater difficulty with task set maintenance. 309

T1: Throughout the task, A3,·(i, 3) remains close 310

to 1, though it shows a gradual decline over time. 311
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Figure 6: A2,·(i,m) for m = 1, 2 and 3 ≤ i ≤ 24.
From top to bottom are results for QWEN 1.5 14B CHAT
(T3), GEMMA 2 27B INSTRUCT (T2), and LLAMA 3.1
70B INSTRUCT (T1).

Meanwhile, A3,·(i, 1) and A3,·(i, 2) remain rela-312

tively close to each other, with A3,·(i, 2) slowly313

rising to be slightly greater than A3,·(i, 1).314

Effect of error accumulation. Despite 2-back in-315

structions and demonstrations, the T2 model grad-316

ually drifts toward 1-back consistent responses317

over time, suggesting that the accumulation of 1-318

back consistent errors may have significantly bi-319

ased subsequent responses. To test this hypothe-320

sis, we manipulate the model’s response history321

by providing m-back consistent responses for i322

steps following n-back instructions and demon-323

strations. We then compute the average m-back324

accuracy for time steps i+ 1 through 24, denoted325

as An,m(i + 1 : 24,m). Figure 8 shows that, as326

1-back errors accumulate, 1-back responses are in-327

creasingly favored by the T2 model for subsequent328

steps, despite 2/3-back instructions and demonstra-329

tions. In comparison, both A2,2(i+ 1 : 24, 2) and330

Figure 7: A3,·(i,m) for m = 1, 2, 3 and 4 ≤ i ≤ 24.
From top to bottom are results for QWEN 1.5 14B CHAT
(T3), GEMMA 2 27B INSTRUCT (T2), and LLAMA 3.1
70B INSTRUCT (T1).

A3,3(i + 1 : 24, 3) remain relatively low, show- 331

ing that correct responses do not bias subsequent 332

answers to the same degree. 333

4.4 T1 Model Performance as N Increases 334

Given that the best model, LLAMA-3.1-70B- 335

INSTRUCT, performs well for 1 through 3-back 336

tasks, we would like to know how its performance 337

might change for larger n’s. Figure 9 shows that 338

the retrieval accuracy gradually declines as n in- 339

creases; although, even at n = 8, 9, 10, the model 340

is still able to exactly retrieve the correct letters 341

75.25%, 66.08%, and 57.1% of the time, which 342

translates to task accuracies of 83.33%, 78.25%, 343

and 71.92%. In addition, we measure Pn,m for each 344

n,m ∈ {1, 2, 3, ..., 10}, as shown in Figure 11. We 345

notice that maxm Pn,m = Pn,n for 1 ≤ n < 10. 346

Moreover, Pn,m tends to decrease symmetrically 347

as m deviates from n. We can consider this pattern 348
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Figure 8: Top: A2,m(i + 1 : 24,m) for m = 1, 2
and 3 ≤ i ≤ 23, using GEMMA 2 27B INSTRUCT
(T2). Bottom: A3,m(i+ 1 : 24,m) for m = 1, 2, 3 and
4 ≤ i ≤ 23, using the same model.

Model 2bk 3bk

LLAMA 3.1 70B INSTR. 0.99 (–.00) 0.62 (–.31)
GEMMA 2 27B INSTR. 0.61 (+.04) 0.31 (–.05)
QWEN 1.5 14B CHAT N/A N/A

Table 2: Retrieval accuracies on 2-back and 3-back
tasks, for representative models, under interactive demo.

as a signature of n-back task understanding.349

4.5 Curriculum Learning350

The practice of training models on examples of351

increasing difficulty is known in machine learn-352

ing as curriculum learning (Bengio et al., 2009).353

Here, we repeat the experiments from Section 4.4354

with in-context curriculum learning to gradually355

familiarize the model with the task. Specifically,356

before prompting LLAMA 3.1 70B INSTRUCT357

to perform an n-back task, we provide instruc-358

tions and demonstrations that include letter se-359

quences and corresponding correct responses for360

tasks ranging from 1-back to n-back. As shown361

in Figure 9, this approach leads to significant362

improvements in performance for larger n val-363

ues. The model achieves retrieval accuracies of364

79.83%, 80.17%, and 71.67% and task accuracies365

of 90.08%, 90.08%, and 84.75% for n = 8, 9, 10.366

Figure 9: 1-back to 10-back accuracies for LLAMA
3.1 70B INSTRUCT with (bottom) and without (top)
curriculum learning. Each full bar corresponds to task
(identical/different categorization) accuracy. The blue
portion corresponds to retrieval accuracy.

4.6 Interactive Demo 367

We explore an alternative prompting strategy that 368

more closely mirrors human study paradigms. Af- 369

ter receiving task instructions, human participants 370

typically go through brief demo sequences with an 371

experimenter to confirm their understanding. For 2- 372

back trials, we interleave short example sequences 373

of four letters in the forms A-B-A-C and A-B-C-B. 374

Feedback is given for each model response. If a 375

model provides two consecutive correct answers 376

(retrieval and label) within 10 attempts, we pro- 377

ceed with the test sequence. A similar procedure is 378

applied for 3-back trials. 379

For both 2-back and 3-back trials, QWEN 1.5 380

14B CHAT (T3) fails to achieve two consecutive 381

correct answers after 10 demo sequences, further 382

confirming the model’s difficulty with task compre- 383

hension. Interestingly, GEMMA 2 27B INSTRUCT 384

(T2) performs better on 2-back trials compared to 385

the original experiments (non-interactive demo) but 386

does worse on 3-back trials, as shown in Table 2. 387

LLAMA 3.1 70B INSTRUCT (T1)’s 2-back perfor- 388

mance remains high at 99% with the interactive 389

demo but drops significantly for 3-back trials. 390

4.7 Reciting N Most Recent Stimuli 391

We experiment with an alternative answer format 392

that encodes task requirements in greater detail. 393

For 2-back trials, models are instructed to answer 394

“current: [ current letter ], 1 back: [ letter 1 back ], 2 395
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Figure 10: Retrieval accuracies under alternative answer format on 1-back, 2-back, and 3-back tasks, averaged
across 50 trials, for all models tested, organized by model family.

Figure 11: Retrieval log probabilities for 1-back to 10-
back task continuations under 1-back to 10-back task
instructions for LLAMA 3.1 70B INSTRUCT (T1).

back: [ letter 2 back ]; current letter [ current letter396

] and letter 2 back [ letter 2 back ] are [ different /397

identical ].” The 3-back format is analogous.398

Retrieval accuracies show significant improve-399

ments (Figure 10), including for T3 models, though400

their performances still lag slightly on 3-back tri-401

als. We include these results only for comparison,402

given that this format changes the original task into403

one that allows covert verbal rehearsal. In human404

experiments, participants would not have enough405

time to recite all n most recent letters upon presen-406

tation of each new letter. However, these results407

do highlight the malleability of language models’408

performance on working memory tasks.409

4.8 Attention Analysis410

Attentions in transformer-based language models411

reveal how much each generated token attends to412

every preceding token. We hypothesize that, for 413

each retrieval, a more performant model should 414

attend more to the source token from n steps back. 415

This is precisely what we observe in the QWEN 416

models. For each (trial, layer, head), we obtain the 417

mean retrieval attention (MRAT) by averaging the 418

attention each retrieval token gives to the correct 419

source token. Compared to the 14B model, QWEN 420

2 72B INSTRUCT (T1) contains a much larger pro- 421

portion of high-MRAT attentions, with its high- 422

est scoring attention (71.98%) closely matching 423

our hypothesized pattern (Appendix A). However, 424

LLAMA models do not exhibit this pattern to the 425

same degree. Attentions in LLAMA 3.1 models 426

are much more diffuse. The maximum MRATs for 427

LLAMA 3.1 8B INSTRUCT and LLAMA 3.1 70B 428

INSTRUCT are 4.86% and 8.52%, respectively. 429

5 Conclusion 430

In this work, we apply the n-back task, a com- 431

mon working memory test, to a range of language 432

models, identifying three distinct performance tiers. 433

We find that these tiers differ not only in retrieval 434

accuracy but also in our measure of task under- 435

standing and task set maintenance, suggesting that 436

the performance gap is due at least in part to these 437

differences. We challenge the best model to per- 438

form 1 through 10-back tasks, noticing a signature 439

of task comprehension and the benefit of in-context 440

curriculum learning for larger n’s. We find that 441

interactive demos, though closer to human study 442

paradigms, are less effective at conveying the task. 443

For comparison, we also include results under an 444

alternative answer format that allows for rehearsal, 445

observing a significant boost in retrieval accuracies. 446

Finally, we notice that more performant models 447

tend to have higher retrieval attentions. 448
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6 Limitations449

Prompt selection. Despite our careful selec-450

tion of prompts and experimentation with various451

prompting strategies, the potential for more effec-452

tive prompts or techniques to enhance task under-453

standing remains.454

Mechanistic understanding. Another limitation455

is that we do not examine the internal model cir-456

cuits that may be responsible for inferring and457

maintaining task sets. However, our experiments458

with the n-back paradigm provide a good starting459

point for future research. Causal interventions on460

smaller models may yield insights into the underly-461

ing mechanisms.462

LLAMA 3.1 model attentions. As mentioned in463

Section 4.8, LLAMA models seem to have much464

more diffuse attentions. Whereas QWEN 1.5 14B465

CHAT and QWEN 2 72B INSTRUCT reach maxi-466

mum MRATs of 38.95% and 71.98%, respectively,467

the same values for both LLAMA models are un-468

der 10%, even though QWEN (Bai et al., 2023)469

and LLAMA (Dubey et al., 2024) models both use470

Grouped Query Attention (Ainslie et al., 2023). We471

are puzzled by this difference and call for closer472

examination in future work.473
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A Attention Figures597

Figure 12 shows 2-back MRAT counts between 0.2598

and 1 for QWEN 1.5 14B CHAT (T3) and QWEN599

2 72B INSTRUCT (T1), aggregated over all layers,600

heads, and trials. QWEN 1.5 14B CHAT counts are601

scaled by a factor of QWEN 2 72B Attention Count
QWEN 1.5 14B Attention Count =602

3.2. Figure 13 shows QWEN 2 72B INSTRUCT (T1)603

attention pattern with the highest MRAT (71.98%)604

at trial 48, layer 79, and head 63. The top left and605

bottom right sections correspond to the demo and606

test sequences, respectively.607

Figure 12: 2-back MRAT (scaled) counts.

Figure 13: QWEN 2 72B INSTRUCT (T1) attention pat-
tern with highest MRAT.
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