
Under review as a conference paper at ICLR 2022

IMPROVING LONG-HORIZON IMITATION THROUGH
LANGUAGE PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Complex, long-horizon planning and its combinatorial nature pose steep chal-
lenges for learning-based agents. Difficulties in such settings are exacerbated in
low data regimes where over-fitting stifles generalization and compounding errors
hurt accuracy. In this work, we explore the use of an often unused source of aux-
iliary supervision: language. Inspired by recent advances in transformer-based
models, we train agents with an instruction prediction loss that encourages learn-
ing temporally extended representations that operate at a high level of abstrac-
tion. Concretely, we demonstrate that instruction modeling significantly improves
performance in planning environments when training with a limited number of
demonstrations on the BabyAI and Crafter benchmarks. In further analysis we
find that instruction modeling is most important for tasks that require complex
reasoning, while understandably offering smaller gains in environments that re-
quire simple plans. Our benchmarks and code will be publicly released 1.

1 INTRODUCTION

Intelligent agents ought to be able to complete complex, long horizon tasks and generalize to new
scenarios. Unfortunately, policies learned by modern deep-learning techniques often struggle to ac-
quire either of these abilities. This is particularly true in planning regimes where multiple, complex,
steps must be completed correctly in sequence to complete a task. Realistic constraints, such as
partial observability, the underspecification of goals, or the sparse reward nature of many planning
problems make learning even harder. Reinforcement learning approaches often struggle to effec-
tively learn policies and require billions of environment interactions to produce effective solutions
(Wijmans et al., 2019; Parisotto et al., 2020). Imitation learning is an alternative approach based on
learning from expert data, but can still require millions of demonstrations to learn effective planners
(Chevalier-Boisvert et al., 2019). Such high data constraints make learning difficult and expensive.

Unfortunately the aforementioned issues with behavior learning are only exacerbated in the low data
regime. First, with limited training data agents are less likely to act perfectly at each environment
step, leading to small errors that compound overtime in the offline setting. Ultimately, this leads to
sub-par performance over long horizons that can usually only be improved by carefully collecting
additional expert data (Ross et al., 2011). Second, deep-learning based policies are more likely to
overfit small training datasets, making them unable to generalize to new test-time scenarios. On the
other hand, humans have the remarkable ability to interpolate previous knowledge and solve unseen
long-horizon tasks. After observing an environment, we might deduce plan or sequence of the steps
to follow to complete our objective. However, imitation learning agents are not required to construct
plans by default – they are trained to only output the direct next action given seen observations. This
begs the question: how can we make agents reason better in long-horizon tasks?

An attractive solution lies in language instructions, the same medium humans use for mental plan-
ning (Gleitman & Papafragou, 2005). Several prior works directly provide agents with language
instructions to follow (Anderson et al., 2018; Shridhar et al., 2020; Chen et al., 2019). Unfortu-
nately, such approaches require the specification of exhaustive instructions at test time for systems
to function. A truly intelligent agent ought to be able to devise its own plan and execute it, with
only a handful of demonstrations. We propose improving policy learning in the low-data regime

1Code is available at: <github will be made public after reviewing period>

1

Under review as a conference paper at ICLR 2022

Goal: Move the purple box next to a green box

Instructions: “Move the green box” “Open the blue door”“Pickup the purple box”

… …

“Drop the box”

…

Goal: Make stone pickaxe

“Chop down the tree to
get wood”

Figure 1: The left half of the figure shows key frames and their associated instructions for a task in
the BabyAI environment. The right half depicts a single state from the Crafting environment and its
associated goal and instruction.

by having agents predict high-level planning instructions in addition to their immediate next ac-
tion. As we do not input instructions to the policy, we can plan without their specification at test
time. Though prior works have used hierarchical structures that generate their own instructions
to condition on (Chen et al., 2021c; Hu et al., 2019; Jiang et al., 2019), we surprisingly find that
just predicting language instructions is in itself a powerful objective to learn good representations
for planning. Teaching agents to output language instructions for completing tasks has two con-
crete benefits. First, it forces them to learn at a higher level of abstraction where generalization is
easier. Second, by outputting multi-step instructions agents explicitly consider the future. Practi-
cally, we teach agents to output instructions by adding an auxiliary instruction prediction network to
transformer-based policy networks, as in seq2seq translation (Vaswani et al., 2017). Our approach
can be interpreted as translating observations or trajectories into instructions.

We test our representation learning method in limited data settings and combinatorially complex en-
viornments. In the BabyAI benchmark, we attain near the same performance as Chevalier-Boisvert
et al. (2019) with only 5% of the data. To our knowledge, we achieve the highest success rate
in the Crafting environment from (Chen et al., 2021c), while using fewer demonstrations and no
reinforcement learning. We find that in many settings higher performance can be attained by rela-
beling existing demonstrations with language instructions instead of collecting new ones, creating
a new, scalable type of data collection for practitioners. Furthermore, our method is conceptually
simple and easy to implement. This work is the first to show that direct representation learning with
language can accelerate imitation learning.

To summarize, our contributions are as follows. First, we introduce a method for training trans-
former based planning networks on paired demonstration and instruction data via an auxiliary lan-
guage prediction loss. Second, we test our objective in long-horizon planning based environments
with limited data and find that it substantially outperforms contemporary approaches. Finally, we
analyze the scenarios in which predicting instructions provides fruitful training signal, concluding
that instruction modeling is a valuable objective when tasks are sufficiently complex.

2 RELATED WORK

Language in the context of policy learning has been heavily studied (Luketina et al., 2019), usually
to communicate a task objective. Uniquely, we use natural language instructions to aid in learning
via an auxiliary objective. Here we survey the most relevant works to our approach.

Language Goals. Language offers a natural medium to communicate goals to intelligent agents. As
such, several prior work have focused on learning language goal conditioned policies, particularly
for robotics (Nair et al., 2021; Stepputtis et al., 2020; Kanu et al., 2020; Hill et al., 2020; Akakzia
et al., 2021; Goyal et al., 2021; Shridhar et al., 2021a), or for games (Chevalier-Boisvert et al., 2019;
Chaplot et al., 2018; Hermann et al., 2017). Others in the area of inverse reinforcement learning
use language to specify reward functions (Fu et al., 2019; Bahdanau et al., 2018; Williams et al.,
2018) or shape them (Mirchandani et al., 2021; Goyal et al., 2019). Unlike these works, we use
language instructions that dictate how an agent should complete a task instead of language goals
that specify what the task itself is. Other works, particularly in the visual navigation space, provide
agents with instructions similar to those we use, sometimes in addition to language goals. Anderson
et al. (2018); Fried et al. (2018); Chen et al. (2019); Krantz et al. (2020); Chen et al. (2021a; 2019)
use instructions for visual navigation or drones (Blukis et al., 2019), while Shridhar et al. (2020);

2

Under review as a conference paper at ICLR 2022

Pashevich et al. (2021); Shridhar et al. (2021b) use instructions for household tasks. Critically unlike
our method, these approaches use both language goals and instructions as input, and consequently
require the creation of instructions at test-time for every desired task. Other proposed environments
(Zhong et al., 2019; Wang & Narasimhan, 2021) assess understanding by prompting agents with
necessary information about task dynamics, precluding the removal of text-prompting at test time.

Language and Hierarchical Learning. Instead of directly using instructions as policy inputs, other
works use language instructions as an intermediary representation for hierarchical policies. Usually,
a high-level planner outputs language instructions for a low-level executor to follow. Andreas et al.
(2017) and Oh et al. (2017) provide agents with fixed, hand-designed high-level language instruc-
tions or policy “sketches”. Such approaches require new instruction labels at test-time for every
new task unlike our method. Jiang et al. (2019) and Shu et al. (2017) provide interactive language
labels to agents to train hierarchical policies with reinforcement learning. In the imitation learn-
ing setting, Hu et al. (2019) learn a hierarchical policy using behavior cloning for a strategy game.
Unlike the planning problems we consider, their environment has no oracle solution and does not
consider generalization to unseen tasks. Most related to our work, Chen et al. (2021c) use latent
representations from a learned high-level instruction predictor to aid a low-level policy. However,
unlike Chen et al. (2021c), we learn latent representations that can predict instructions, but do not
explicitly condition on them at test-time. While hierarchical approaches have shown great promise,
the quality of learned policies is inherently limited by the amount of language data available for
training. Even with a perfect low-level policy, inaccurate high-level languages commands will yield
poor overall performance. This is not an issue for our loss-based approach, as our instruction pre-
diction network can be completely detached from the policy. Additionally, this allows our method
to work on a mix of instruction annotated and unannotated data, letting it more easily scale than
hierarchical approaches particularly in data-limited scenarios.

Auxiliary Objectives. The learning community has extensively studied the use of auxiliary objec-
tives in policy learning. Though to our knowledge no prior works use instructions as an auxiliary
objective, auxiliary objectives in general have been found to aid policy learning (Jaderberg et al.,
2017). Laskin et al. (2020) and Stooke et al. (2021) demonstrated the success of contrastive auxil-
iary objectives in robotic reinforcement learning domains. Schwarzer et al. (2020) and Anand et al.
(2019) did the same in the Atari game-playing environments. We were inspired by their effective-
ness. Additionally, works like Andreas et al. (2018) have previously used language question and
answering for representation leaning in visual domains.

Transformers. Our approach is based on several innovations involving transformer networks.
Vaswani et al. (2017) previously showed state of the art results in machine translation using trans-
formers. While the application of transformers has extended to behavior learning (Zambaldi et al.,
2018; Parisotto et al., 2020; Chen et al., 2021b), prior works in the area have not leveraged the
transformer decoder. Closest to our domain, Lin et al. (2021) generate captions from video. The
architecture of our policy networks take inspiration from recent works adapting transformers to
mediums beyond text, namely in vision (Kolesnikov et al., 2021) and offline reinforcement learning
(Chen et al., 2021b).

3 METHOD

In this section we formally describe the problem of imitation learning with instruction prediction,
then describe our implementation for both Markovian and non-Markovian environments.

3.1 PROBLEM SETUP

The standard learning from demonstrations setup assumes access to a dataset of expert trajectory
sequences containing paired observations and actions o1, a1, o2, a2, ..., oT , aT . The goal of imitation
learning is to learn a policy π(at|·) that predicts the correct actions an agent should take. In our
work we consider both fully observed (MDP) and partially observed (POMDP) settings. In the
partially observed case, policies are given access to previous observations in order to infer state
(Kaelbling et al., 1998), and we denote the policy as π(at|o1, ...ot). In the fully-observed setting this
is unnecessary, and the policy is simply π(at|ot). It is common for policies to be goal conditioned,
or even conditioned on language goals as is the case in our experiments. This means they take

3

Under review as a conference paper at ICLR 2022

Transformer Encoder 𝑓𝜃

𝑧1 𝑧2 𝑧𝑡

𝑜1 𝑜2 𝑜𝑡

…

…

Goal and Observation Sequence

𝑔

𝑎1 𝑎2 𝑎𝑡

Transformer Decoder 𝑔𝜓

𝑥2 𝑥1 𝑥𝑙𝑛…𝑥1

𝑥3 𝑥2 𝑥𝑙𝑛…𝑥2

Language Instructions
𝑜𝑡 …

𝑧𝑡

𝑎𝑡

𝑜𝑇

𝑧𝑇

𝑎𝑇

+1

+1

+1

Mask future observations for
instructions beyond time 𝑡

…

…

𝑥𝑙𝑖
…

𝑥𝑙𝑖…

𝜋𝜙𝜋𝜙𝜋𝜙𝜋𝜙𝜋𝜙

(1) (1)

(1) (1) (𝑖) (𝑖)

(𝑖)(𝑖)

(𝑛)

(𝑛)

𝑇𝑖 𝑇𝑖+1𝑇1 instr for time 𝑡
Encoder 𝑓𝜃

action Instr

obs, goal

latent

𝜋𝜙 𝑔𝜓

Instr

−1 −1

Figure 2: The left diagram depicts the general model architecture used for our approach. Notice how
the policy and encoder can be completed separated from the instruction component for mixed-data
training or inference. The diagram on the right depicts its implementation for the partial observed
environments using a GPT-like transformer encoder. The diagram shows our masking scheme at
episode step t: latent vectors from beyond time t are masked from the language decoder.

an encoding of the desired task or goal g as input. As our approach works with or without goal
conditioning we omit it from the rest of this section for brevity. A standard imitation learning
technique is behavior cloning, which in discrete domains maximizes the likelihood of the actions in
the dataset using a negative log likelihood objective, Laction = −

∑
t log π(at|·).

In this work, we assume access to oracle language instructions that tell an agent how it should
complete a task to provide useful training signal. As mentioned in Section 2, for the purposes of our
method we distinguish goals from instructions. Language goals tell an agent what to do, whereas
language instructions communicate how an agent should complete a task. Each trajectory may have
several language instructions x(1), x(2), ..., x(n) corresponding to different steps in the task. For
example, a language instruction like “open the door” only applies to the part of the demonstration
before the agent opens the door and after it completes the last instruction. The i-th instruction
x(i) thus corresponds to an interval [Ti, Ti+1) where Ti marks the time the instruction was given
and Ti+1 denotes the start of the next instruction. A depiction of an example instruction sequence
can be found in Figure 1. While language instructions are an additional data requirement, they
can be cheap to obtain, particularly in scenarios where demonstrations are expensive to collect. If
one has to collect demonstrations in the real world, providing instructions while they are collected
likely only constitutes a marginal increase in effort. Moreover, humans can easily re-label existing
demonstrations with instructions. Video data could easily be captioned with voice-over. Similar
statements can be made for simulators – if one can code an oracle policy, instructions are likely
easy to generate along the way. These modifications can easily be done on simulators with planning
stacks, as we do with BabyAI. Moreover, we focus on the data limited regime, where the cost of
setting up an environment and collecting more demonstrations is likely be higher than annotating
an existing small set of demonstrations. Next, we describe how we train agents to predict language
instructions to aid in imitation learning.

3.2 INSTRUCTION PREDICTION FOR IMITATION LEARNING

The central hypothesis of this work is that predicting high-level language instructions will force
agents to learn representations beneficial for long-horizon planning. In our learning framework, we
first construct an observation encoder fθ(o1, ..., ot) that produces latent representations zt of the
observation(s). Ultimately, it will be trained using both behavior cloning and language modeling
losses. As in standard behavior cloning we predict actions using a policy network πφ(at|zt), which
in our case is placed on top of the encoder’s latent representation. The same latent representation
is also used to predict the current high-level language instruction x(i), where t ∈ [Ti, Ti+1). This
is accomplished via a language decoder gφ(x(i)|zt). Our general setup is shown in the left half of
Figure 2. As is common in natural language processing, we treat each language instruction x(i) as
a sequence of multiple text tokens x(i)1 , x

(i)
2 , ..., x

(i)
li

where li is the length of the i-th instruction.
The decoder is trained using the standard language modeling loss. We construct our total imitation
learning objective for a given trajectory is as follows

4

Under review as a conference paper at ICLR 2022

L = −
T∑
t=1

log πφ(at|zt, ..., z1)− λ
n∑
i=1

Ti+1−1∑
t=Ti

li∑
j=1

log gφ(x
(i)
j |x

(i)
1 , ..., x

(i)
j−1, z1, ..., zt) (1)

where latent representations z are all produced by the shared encoder fθ. The first term of the loss is
the standard classification loss used for behavior cloning in discrete domains. The second term of the
loss corresponds to the negative log-likelihood of the language instructions. We index the language
loss by instructions via the first sum. The second summations ensures that we compute the likelihood
of instruction i using only observations during or before its execution. The final sum over token log
likelihoods is from the standard auto-regressive language modeling framework, where the likelihood
of an instruction is the product of the conditional probabilities p(x(i)) =

∏li
j=1 p(x

(i)
j |x

(i)
1 , ...x

(i)
j−1).

Finally, λ is a weighting coefficient that trades off the importance of instruction prediction and ac-
tion modeling. During training, we propagate gradients from both behavior cloning and language
prediction to the encoder weights θ. In some of our experiments we test additional learning objec-
tives which are also trained on top of the same latent representations z as is standard in the literature
(Jaderberg et al., 2017).

Though our method is general to any network architecture, we train transformer based policies since
they have been shown to be extremely effective at natural language processing tasks (Vaswani et al.,
2017) and carry a good inductive bias for combinatorial planning problems (Zambaldi et al., 2018).
For details on the transformer architectures we use, we defer to Kolesnikov et al. (2021); Chen et al.
(2021b) and Radford et al. (2018). In the following sections we describe our transformer-based
models for both partially observed and fully observed settings.

Partially-Observed Setting. For environments that are Partially Observed Markov Decision Pro-
cesses (POMDPs) or fully observed we use a transformer based sequence model as our policy
network, similar to those employed in Chen et al. (2021b). Thus, the model can attempt to in-
fer the true state from all observations. Every observation is preprocessed then fed into a trans-
former encoder fθ to produce latent representations. We operate in the entire sequence at once:
z1, ...zT = fθ(o1, ..., oT). Causal masking similar to that in Radford et al. (2018) ensures that at
time t the representation zt only depends on current and previous observations o1, ...ot. The same
policy network πφ(at|zt) is applied to each latent to produce actions for each timestep. The language
decoder gψ operates on the same set of latents. Our overall architecture is depicted in Figure 2. Cru-
cially, the decoder employs both causal attention masks to the language inputs and cross attention
masks to the latents. Causal-self attention masks on the language inputs enforce the auto-regressive
modeling of the instruction tokens. Cross attention masks to the latent representations ensure that
predictions for the ith instruction cannot attend to latents from timesteps after its execution as is de-
picted by the red “x”s in Figure 2. This forces language prediction during training to mirror test-time
as the agent cannot use the future information to predict what instruction it should execute.

Fully Observed Setting. For environments that are Markov Decision Processes (MDPs) or fully ob-
served, we do not need to model the entire sequence of observations and instead use only the most
recent observation ot. This corresponds to removing all conditioning on prior latents z1, ..., zt−1

in Equation 1. As such, we employ networks based on the Vision Transformer architecture from
Kolesnikov et al. (2021) that predict actions only for a single timestep. Observations are prepro-
cessed into tokens and prepended with a special CLS token: ot −→ CLS, ot,1, ot,2, ot,3, As we
do not input future observations, the transformer encoder uses full unmasked self attention. At the
end of the network we take the latent representation corresponding to the CLS token and use it to
predict the action πφ(at|zt,CLS). We use all latent tokens to predict the current language instruction
with gφ. A depiction of this architecture would be largely similar to that shown in Figure 2, except
the encoder would have only a single observation ot as input and the decoder would only operate
on the current instruction x(i) used for t ∈ [Ti, Ti+1). An architecture figure for this model can be
found in Appendix C.

4 EXPERIMENTS

In this section we detail our experimental setup and empirical results. In particular, we investigate
the benefits of instruction modeling for planning in limited data regimes. We seek to answer the
following questions: How effective is instruction modeling loss? How does instruction modeling

5

Under review as a conference paper at ICLR 2022

Env Observable Language Train Tasks Test Tasks Vocab Size Steps/Instr
BabyAI Partial Synthetic =# Demos ∞ 45 11-12
Crafting Full Human 14 35 226 5-6

Table 1: An outline of the differences between the two environments we study.

scale with both data and instruction annotations? What architecture choices are important? And
finally, when is instruction modeling a fruitful objective?

4.1 ENVIRONMENTS

We test our method on two distinct environments, BabyAI (Chevalier-Boisvert et al., 2019) and the
Crafting Environment from Chen et al. (2021c), to evaluate the effectiveness of instruction prediction
at enabling long-horizon planning and generalization to unseen tasks. Differences between the two
environments are outlined in Table 1. Across both environments, we cover challenges in partial
observability and modeling human generated text. Both environments provide temporally delineated
coarse high-level instructions.

BabyAI: Here, an agent must navigate a partially observable grid-world to complete arbitrarily
complex goals specified through procedurally generated language such as locating objects, moving
objects, opening locked doors, and more. Goals can also be specified relative to an agents’ initial
position. Agents are evaluated on their ability to complete unseen missions in unseen environment
configurations. We modify the BabyAI demonstration collection agent to output language instruc-
tions based on its high level planning logic. Each high level instruction corresponds to multiple
low-level actions. The BabyAI environment suite comes with multiple environments of varying dif-
ficulty. We focus our experiments on the hardest environment, BossLevel, and use only 1.25%−5%
of the standard 1 million samples used for agent training with imitation learning. Because of the en-
vironment’s partial observability and reliance on memory, we employ a transformer sequence model
as described in Section 3.2 with the same convolutional network extractor from Chevalier-Boisvert
et al. (2019). Goals from the environment are tokenized and fed as additional inputs to the policies.
We train all BabyAI models for 1 million steps and evaluate the model that achieves the highest
validation action prediction accuracy on five hundred unseen tasks for two seeds.

Crafting: This environment from Chen et al. (2021c) tests how well an agent can generalize to
new tasks using instructions collected from humans. The original dataset contains around 5.5k
trajectories with human instruction labels of which we use 20%-60%. Each task is specified by a
specific item the agent should craft, encoded via language. The agent must complete a number of
independent steps, collecting and combining resources, to obtain the final item. The tasks vary in
difficulty from one-step to five-steps. As this environment is fully observed, we employ the Vision
Transformer based model described in Section 3.2. Like in Chen et al. (2021c), we use GloVe
embeddings (Pennington et al., 2014) to preprocess both the language goals and instructions, and
tokenize the grid as input to our model. For more details on the dataset, we refer the reader to Chen
et al. (2021c). We train all Crafting Models for three-hundred thousand steps for four seeds.

For both environments and models the encoder is comprised of four transformer blocks of dimension
128 with two attention heads and the decoder has one transformer block of the same dimension.
As both environments use language based goals, we tokenize the goal text, apply embeddings, and
append it to the beginning of the observation tokens. Attention then acts jointly over both modalities.
More experiments are detailed in Appendix A.

4.2 BASELINES

We compare the effectiveness of our instruction modeling auxiliary loss to a number of baselines.
The text in parenthesis indicates how we refer to the method in Tables 2, 4, 5, 6, and 7.

1. Original Architecture (Orig): The original state of the art model architectures proposed
for each environment in their respective papers. The crafting environment uses a language-
instruction hierarchy. In BabyAI, we use convolutions and FiLM layers as in Chevalier-
Boisvert et al. (2019).

6

Under review as a conference paper at ICLR 2022

Goal: “open a purple door and put the purple box next to the grey ball”

Oracle

Ours

“open the purple door” “go to the red door” “open the grey door” “go to the grey door” “pickup the purple box” “drop the purple box”

“drop the purple box”“open the purple door” “open the grey door” “open the purple door” “pickup the purple box” “go to the grey door”

Figure 3: Snapshots of a rollouts from an oracle agent and our trained agents on the same unseen
task in BabyAI. Our agent is able to predict instructions, given below each image, with high fi-
delity. Additionally, we see that our learned agent employs a different exploration strategy, but still
completes the task exhibiting strong generalization.

2. Transformer (Xformer): Our transformer based models without any auxiliary objectives
to determine the effectiveness of our architectures.

3. Transformer Hierarchy (Hierarchy): A high-level transformer model is trained to out-
put the current instruction that the agent should execute. A low-level executor transformer
model is trained to output the actions conditioned on the high-level’s language instruction.
Prior work has not used hierarchy on observation sequences from partially observed en-
vironments like those in BabyAI, and thus we devise our own method. This baseline is
designed to compare our auxiliary method to methods in Chen et al. (2021c) and Hu et al.
(2019).

4. Transformer with ATC (ATC): Our transformer model with the active temporal contrast
(ATC) self-supervised objective proposed in Stooke et al. (2021), which we found to per-
form better than Laskin et al. (2020) in our environments. This compares representation
learning with language to vision based representation learning.

5. Transformer with Lang (Lang): Our transformer based models with the instruction mod-
elling auxiliary objective only.

6. Transformer with ATC and Lang (Lang + ATC): Our transformer based models with
both instruction modeling and constrastive auxiliary losses.

4.3 HOW EFFECTIVE IS INSTRUCTION PREDICTION?

Our main experimental results can be found in Table 2, where we compare the performance of all
methods on both environments with three differing dataset sizes. We find that for all environments
and dataset sizes our instruction modeling objective improves or has no effect in the worst case. In
BabyAI, we achieve a 70% success rate on the hardest level with fifty thousand demonstrations and
instructions. For comparison, it is worth noting that the original BabyAI implementation (Chevalier-
Boisvert et al., 2019) achieved a success rate of 77% with one million demonstrations on a single
seed. In the crafting environment, using instruction modeling boosts the success rate by about 5%
or more in the 1.1k and 2.2k demonstration setting. To our knowledge our results are state of art in
this environment, exceeding the reported 69% success rate on unseen tasks in Chen et al. (2021c).

Visual representation learning was not as fruitful as language based representation learning over-
all. The combination of ATC and instruction modeling was unfortunately not constructive in all
scenarios: it performed better in some instances and worse than just language loss in others. This
is consistent with results found in Chen et al. (2021d) that show that observation based auxiliary
objectives often yield mixed results in the imitation learning setting. We find that our hierarchical
implementations do not perform very well in comparison to plain transformer models. This is likely
because with only a few demonstrations high level language policies are likely to output incorrect
instructions for unseen tasks leading low-level instruction conditioned policies to output sub-optimal
actions. More analysis of the hierarchical baselines is in Appendix B.

7

Under review as a conference paper at ICLR 2022

Env Demos Orig Xformer Hierarchy ATC Lang ATC+Lang

BabyAI
BossLevel

50k 35.3±0.1 40.2±2.2 36.8±3.5 45.8±.6 70.3±1.3 64.3±0.5
25k 32.3±2.4 39.9±0.5 37.2±3.0 37.1±1.1 55.4±7.0 56.0±3.0
12.5k 29.9±0.9 37.3±0.1 36.4±2.6 38.4±1.4 39.4±1.0 38.6±0.6

Crafting
3.3k 9.3±0.4 74.5±3.3 59.9±11 75.7±1.0 74.5±2.8 76.0±2.8
2.2k 4.9±1.0 69.4±4.9 56.5±9.9 73.9±2.1 75.2±4.4 78.2±4.6
1.1k 1.7±0.8 70.1±3.8 39.4±3.8 70.1±3.7 74.8±2.6 71.4±2.9

Table 2: Success rates (in %) of all methods for varying amounts of demonstration data in both
environments. The best method(s) is bolded.

Figure 4: Data scaling with and without instrucutions.

Model Base Lang ATC
Boisvert et al. 1052297 - -
GPT-Like 661385 253056 98816
Chen et al. 1379980 218083 -
ViT-like 579177 259712 98816

Table 3: Model Parameter counts by
component. The hierarchical trans-
former baselines roughly double the pa-
rameter counts of their respective mod-
els.

4.4 HOW DOES INSTRUCTION PREDICTION SCALE WITH MORE DATA AND ANNOTATIONS?

Overall, we find that instruction modeling scales well in the low to medium data regime. With too
little data, policies are unlikely to learn good high-level representations that generalize even with
the language objective. With a significant amount of data instruction modeling may become unnec-
essary. Figure 4 depicts how model performance changes with dataset size. In BabyAI, instruction
modeling does not appear to significantly help with the smallest number of demonstrations, likely
because both the policy and language decoder overfit quickly. However, after that we find that pol-
icy performance with language scales almost linearly while policies without language are unable
to perform substantially better even with more data. This is not just because training with instruc-
tions helps overcome partial observability – we show similar results on a fully observed version of
BabyAI in Appendix A.1. The Crafting environment has only fourteen training tasks in comparison
to BabyAI’s potentially infinite number causing it to require fewer demonstrations to solve. Thus,
we observe the opposite problem: instruction modeling helps when the policy is data constrained,
and then is neutral when more data is introduced.

A benefit of our loss-based approach is that it can easily be applied to mixed datasets that have only
some instruction labels. To additionally study the scaling properties of our language prediction ob-
jective, we construct datasets in BabyAI where only half of the trajectories have paired instructions.
Results can be found in Table 4. Surprisingly, we find that using half the number of instructions
as demonstrations yields significantly more than half of the performance gains from language in
the 25k demonstration setting and nearly all the gains in the 50k demonstration setting. As seen
in both Tables 4 and 2, one is better off collecting 12.5k language annotations than collecting an
additional 25k demonstrations in the BabyAI environments. A similar statement can be made in the
crafting environment for 1.1k demonstrations. This means that collecting language annotations is a
real feasible alternative to collecting more demonstrations.

% Instr Labels 0% 50% 100%
50k Demos 40.2±2.2 68.6±1.4 70.3±1.3
25k Demos 39.9±0.5 50.3±1.3 55.4±7.0

Table 4: We ablate the number of language instruction annota-
tions used in training. 0% means no instructions, 50% means
half of the demos have instructions, and 100% means all have
instructions. Values are % success rates.

Model Success %
Lang 70.3±1.3
Lang No Mask 50.1±12.1

Table 5: Comparison of BabyAI
Model on Boss Level with and
without masking.

8

Under review as a conference paper at ICLR 2022

50k Demos 25k Demos 12.5k Demos
Level Xformer Lang Xformer Lang Xformer Lang
GoTo (Easy) 88.6±1.8 91.0±1.4 77.6±2.2 82.3±3.3 68.9±2.9 68.4±2.2
SynthLoc (Med) 72.5±2.3 86.2±1.2 60.1±0.5 69.4±1.6 57.5±0.4 58.7±1.2
BossLevel (Hard) 40.2±2.2 70.3±1.3 39.9±0.5 55.4±7.0 37.3±0.1 39.4±1.0

Table 6: Performance, in percent, of instruction prediction when varying the BabyAI level difficulty.

Demonstrations Model 2 Steps 3 Steps 5 Steps

3.35k
Xformer 98.1±0.4% 66.9±6.2% 22.1±3.1%
Lang 96.1±3.2% 73.0±7.2% 19.3±4.4%
Lang+ATC 97.1±2.2% 75.1±10.0% 13.2±1.7%

2.2k
Xformer 89.3±8.6% 58.4±6.2% 20.5±1.8%
Lang 96.1±0.7% 73.5±10.7% 17.3±1.7%
Lang+ATC 93.9±2.7% 78.3±13.9% 19.8±2.7%

1.1k
Xformer 90.9±4.0% 58.2±8.5% 15.0±5.1%
Lang 94.5±1.4% 76.0±8.4% 13.8±6.0%
Lang+ATC 89.5±3.2% 65.2±10.7% 11.6±2.8%

Table 7: Difficulty comparison in the crafting environment. Steps indicate the number of steps
required for the agent to craft the goal item.

4.5 WHAT MODELING DECISIONS ARE IMPORTANT?

In Table 5 we ablate the use of our instruction decoder cross-attention masking. We find that the
omission of the masking scheme leads to a 20% drop in performance. Without masking the language
decoder has an easier time predicting an instruction as it can attend to observations from after the
instruction finished, creating a disparity between train and test time and leading to lower quality
representations. Overall, the transformer architecture appears to be critical to high performance,
likely because of its good inductive bias for reasoning about objects and their interactions. This
is especially evident in the Crafting environment. As stated in Chen et al. (2021c), the imitation
learning approaches with the original model were unable to achieve a meaningful success rate on
any of the unseen tasks, whereas our baseline transformer achieves a success rate of around 70%.
This is better than the reported 69% success rate in Chen et al. (2021c) using all 5.5k trajectories
from the dataset and additionally applying reinforcement learning. Our architecture choice is also
extremely parameter efficient. As seen in Table 3, our models use significantly fewer parameters
than baseline models, even accounting for the additional language decoder.

4.6 WHEN IS INSTRUCTION PREDICTION USEFUL?

We hypothesize that instruction prediction is particularly useful for combinatorially complex, long
horizon tasks. Many simple tasks, like “open the door” or “grab a cup and put it in the coffee maker”
communicate all required steps and consequently stand to gain little from instruction modeling.
Conversely, tasks in both environments we study do not communicate all required steps to agents.
In the BabyAI environment, exploration is needed to locate objects and implicit tasks arise. For
example, agents may need to collect keys to open locked doors. In the crafting environment, goals
are a single items that can only be attained through a sequence of steps. Thus, as task horizon and
difficulty increase one would expect instruction modeling to be more important. In BabyAI we
consider two additional levels – GoTo, which only requires object localization, and SynthLoc which
uses a subset of the BossLevel goals. Results in Table 6 indicate that instruction modeling is indeed
most important for harder tasks and yields modest gains in the easiest GoTo level. The same trend is
true in the Crafting environment as seen in Table 7. All policies are able to craft items requiring two
steps tasks with a success rate near or above 90%. However, models with language objectives boast
a significant performance boost in the 3-step tasks, from around 58% to closer to 75% in most cases.
No agents were able to consistently complete five-step tasks, which is understandable given only
one is included in the set of training tasks. The takeaway from these observations is that instructions
offer less training signal for combinatorially simple tasks, where reaching the goal requries only
a few, obvious logical steps. Thus, we expect instruction modeling to not perform extremely well
in benchmarks where instructions can easily be predicted from goals alone. We provide further
analysis of this using the ALFRED benchmark (Shridhar et al., 2020) in Appendix A.2. As our

9

Under review as a conference paper at ICLR 2022

approach works for both procedurally generated and human annotated language, we believe most of
the training signal in instructions comes from information about how to solve the task and not the
natural structure of human langauge. As task difficulty scales in the future we expect instructions to
become a critical modeling component.

5 CONCLUSION

We introduce an auxiliary objective that predicts language instructions for imitation learning and
associated transformer based architectures. We demonstrate that our language modeling objective
consistently improves generalization to unseen tasks with few demonstrations. Moreover, our ap-
proach scales efficiently, leading us to conclude that in many settings providing language instructions
for demonstrations yields a greater impact than collecting a larger dataset. We further analyze the
domains where our method is successful, and make recommendations for when to apply it.

REFERENCES

Ahmed Akakzia, Cédric Colas, Pierre-Yves Oudeyer, Mohamed Chetouani, and Olivier Sigaud.
Grounding language to autonomously-acquired skills via goal generation. In ICLR 2021, 2021. 2

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R Devon
Hjelm. Unsupervised state representation learning in atari. In Proceedings of the 33rd Interna-
tional Conference on Neural Information Processing Systems, pp. 8769–8782, 2019. 3

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2018. 1, 2

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In International Conference on Machine Learning, pp. 166–175. PMLR, 2017.
3

Jacob Andreas, Dan Klein, and Sergey Levine. Learning with latent language. In NAACL-HLT,
2018. 3

Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Arian Hosseini, Pushmeet Kohli, and
Edward Grefenstette. Learning to understand goal specifications by modelling reward. In Inter-
national Conference on Learning Representations, 2018. 2

Valts Blukis, Yannick Terme, Eyvind Niklasson, Ross A Knepper, and Yoav Artzi. Learning to map
natural language instructions to physical quadcopter control using simulated flight. arXiv preprint
arXiv:1910.09664, 2019. 2

Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj Ra-
jagopal, and Ruslan Salakhutdinov. Gated-attention architectures for task-oriented language
grounding. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018. 2

Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touchdown: Natural
language navigation and spatial reasoning in visual street environments. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12538–12547, 2019. 1,
2

Kevin Chen, Junshen K Chen, Jo Chuang, Marynel Vázquez, and Silvio Savarese. Topological
planning with transformers for vision-and-language navigation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11276–11286, 2021a. 2

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. arXiv preprint arXiv:2106.01345, 2021b. 3, 5, 15

10

Under review as a conference paper at ICLR 2022

Valerie Chen, Abhinav Gupta, and Kenneth Marino. Ask your humans: Using human instructions
to improve generalization in reinforcement learning. In International Conference on Learning
Representations, 2021c. URL https://openreview.net/forum?id=Y87Ri-GNHYu.
2, 3, 6, 7, 9, 16

Xin Chen, Sam Toyer, Cody Wild, Scott Emmons, Ian Fischer, Kuang-Huei Lee, Neel Alex,
Steven H Wang, Ping Luo, Stuart Russell, et al. An empirical investigation of representation
learning for imitation. 2021d. 7

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJeXCo0cYX. 1, 2, 6, 7

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe
Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell. Speaker-follower
models for vision-and-language navigation. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, pp. 3318–3329, 2018. 2

Justin Fu, Anoop Korattikara, Sergey Levine, and Sergio Guadarrama. From language to
goals: Inverse reinforcement learning for vision-based instruction following. arXiv preprint
arXiv:1902.07742, 2019. 2

Lila Gleitman and Anna Papafragou. Language and thought. Cambridge University Press, 2005. 1

Prasoon Goyal, Scott Niekum, and Raymond J Mooney. Using natural language for reward shaping
in reinforcement learning. arXiv preprint arXiv:1903.02020, 2019. 2

Prasoon Goyal, Raymond J Mooney, and Scott Niekum. Zero-shot task adaptation using natural
language. arXiv preprint arXiv:2106.02972, 2021. 2

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer, David
Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, et al. Grounded lan-
guage learning in a simulated 3d world. arXiv preprint arXiv:1706.06551, 2017. 2

Felix Hill, Sona Mokra, Nathaniel Wong, and Tim Harley. Human instruction-following with deep
reinforcement learning via transfer-learning from text. arXiv preprint arXiv:2005.09382, 2020. 2

Hengyuan Hu, Denis Yarats, Qucheng Gong, Yuandong Tian, and Mike Lewis. Hierarchical de-
cision making by generating and following natural language instructions. Advances in Neural
Information Processing Systems, 32:10025–10034, 2019. 2, 3, 7, 16

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In-
ternational Conference on Learning Representations, 2017. 3, 5

YiDing Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. Language as an abstrac-
tion for hierarchical deep reinforcement learning. Advances in Neural Information Processing
Systems, 32:9419–9431, 2019. 2, 3

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998. 3

John Kanu, Eadom Dessalene, Xiaomin Lin, Cornelia Fermuller, and Yiannis Aloimonos. Following
instructions by imagining and reaching visual goals. arXiv preprint arXiv:2001.09373, 2020. 2

Alexander Kolesnikov, Alexey Dosovitskiy, Dirk Weissenborn, Georg Heigold, Jakob Uszkoreit,
Lucas Beyer, Matthias Minderer, Mostafa Dehghani, Neil Houlsby, Sylvain Gelly, Thomas Un-
terthiner, and Xiaohua Zhai. An image is worth 16x16 words: Transformers for image recognition
at scale. 2021. 3, 5

Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra, and Stefan Lee. Beyond the nav-
graph: Vision-and-language navigation in continuous environments. In European Conference on
Computer Vision, pp. 104–120. Springer, 2020. 2

11

https://openreview.net/forum?id=Y87Ri-GNHYu
https://openreview.net/forum?id=rJeXCo0cYX

Under review as a conference paper at ICLR 2022

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International Conference on Machine Learning, pp. 5639–
5650. PMLR, 2020. 3, 7

Xudong Lin, Gedas Bertasius, Jue Wang, Shih-Fu Chang, Devi Parikh, and Lorenzo Torresani.
Vx2text: End-to-end learning of video-based text generation from multimodal inputs. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7005–7015,
2021. 3

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward Grefen-
stette, Shimon Whiteson, and Tim Rocktäschel. A survey of reinforcement learning informed by
natural language. arXiv preprint arXiv:1906.03926, 2019. 2

Suvir Mirchandani, Siddharth Karamcheti, and Dorsa Sadigh. Ella: Exploration through learned
language abstraction. arXiv preprint arXiv:2103.05825, 2021. 2

Suraj Nair, Eric Mitchell, Kevin Chen, Brian Ichter, Silvio Savarese, and Chelsea Finn. Learning
language-conditioned robot behavior from offline data and crowd-sourced annotation. Conference
on Robot Learning (CoRL), 2021. 2

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with
multi-task deep reinforcement learning. In International Conference on Machine Learning, pp.
2661–2670. PMLR, 2017. 3

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International Conference on Machine Learning, pp. 7487–7498.
PMLR, 2020. 1, 3

Alexander Pashevich, Cordelia Schmid, and Chen Sun. Episodic Transformer for Vision-and-
Language Navigation, 2021. 3, 14, 15

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543,
2014. URL http://www.aclweb.org/anthology/D14-1162. 6

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018. 5

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011. 1

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. In International
Conference on Learning Representations, 2020. 3

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. ALFRED: A Benchmark for Interpreting Grounded Instruc-
tions for Everyday Tasks. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. URL https://arxiv.org/abs/1912.01734. 1, 2, 9

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
manipulation. 2021a. 2

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. ALFWorld: Aligning Text and Embodied Environments for Interactive Learning. In
Proceedings of the International Conference on Learning Representations (ICLR), 2021b. URL
https://arxiv.org/abs/2010.03768. 3

Tianmin Shu, Caiming Xiong, and Richard Socher. Hierarchical and interpretable skill acquisition
in multi-task reinforcement learning. arXiv preprint arXiv:1712.07294, 2017. 3

12

http://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/2010.03768

Under review as a conference paper at ICLR 2022

Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee, Chitta Baral, and Heni
Ben Amor. Language-conditioned imitation learning for robot manipulation tasks. Advances
in Neural Information Processing Systems, 33, 2020. 2

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In International Conference on Machine Learning, pp. 9870–9879.
PMLR, 2021. 3, 7

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. 2, 3, 5

HJ Wang and Karthik Narasimhan. Grounding language to entities and dynamics for generalization
in reinforcement learning. arXiv preprint arXiv:2101.07393, 2021. 3

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019. 17

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva,
and Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames.
arXiv preprint arXiv:1911.00357, 2019. 1

Edward C Williams, Nakul Gopalan, Mine Rhee, and Stefanie Tellex. Learning to parse natural
language to grounded reward functions with weak supervision. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 4430–4436. IEEE, 2018. 2

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl
Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, et al. Deep reinforcement learning
with relational inductive biases. In International Conference on Learning Representations, 2018.
3, 5

Victor Zhong, Tim Rocktäschel, and Edward Grefenstette. Rtfm: Generalising to novel environment
dynamics via reading. arXiv preprint arXiv:1910.08210, 2019. 3

13

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Under review as a conference paper at ICLR 2022

A ADDITIONAL EXPERIMENTS

A.1 FULLY-OBSERVED BABYAI

In addition to the standard partially observed BabyAI environment, we created a fully observed
version where the agent can view the entire world grid. In this fully observed setting we employ the
same model architecture as in the Crafting environment, but with the hyperparameters from BabyAI.
Results for a single seed on the BossLevel in the fully observed setting can be found in Table 8, and
look largely similar to those of the partially observed BabyAI environment.

Demonstrations XFormer Lang
50k 41.4% 73.4%
25k 39.8% 56.2%
12.5k 38.4% 40.2%

Table 8: Performance, in percent of unseen tasks completed, of instruction prediction loss on a fully
observed version of the BabyAI-BossLevel for a single seed.

A.2 ANALYZING INSTRUCTION INFORMATION AND ALFRED

In section 4.6 we find that instruction prediction is more useful as task difficulty increases. In this
section, we try to measure how useful provided instructions are and additionally analyze instruction
prediction in the ALFRED visual environment. Instruction prediction is likely to only provide a
strong learning signal when they provide information not already available to the agent. Logically
this makes sense: if all of the requisite information has been given to the agent in its task, instructions
will add nothing new. For example, one goal from the ALFRED environment is “put a watch on the
table”. If the provided instructions for this task were “pick up the watch”, “go to the table”, and “put
down the watch”, the instructions would provide very little useful signal as all of their information
was already conveyed by the goal.

By default, ALFRED provides language instructions and goals as inputs to the agent. We remove
the instructions from the input so they can be used for our auxiliary instruction prediction objective.
Following the methodology and architecture choices of Pashevich et al. (2021), we generate an ad-
ditional 42K demonstrations in ALFRED and label them with vocabulary from the planner. Overall,
we found that instruction prediction had little impact on performance across three seeds as seen in
Table 9. Based on these results, we assess why instruction prediction was not fruitful in ALFRED.

We identify two ways in which instructions can provide new information that is useful for training.
First, instructions can operate at differing resolutions than the goal. In BabyAI given tasks may
involve completing numerous subgoals spanning navigation or object movement, and we provide
instructions at this level instead of at the global scale. In the Crafting environment, goals like “make
an iron pickaxe” are broken down into instructions like “mine iron ore”, “go to the crafting bench”.
Both scenarios have instructions that give information to the agent at a finer temporal resolution
than the goal. If provided goals are too obvious, they cannot practically be broken down at a finer
resolution above action-level. The second way instructions can provide useful information is by
revealing hidden sub-tasks. For example, instructions in BabyAI may reveal that an agent has to
collect a key to unlock a door on the way to its objective. On the other hand, goals from ALFRED
tend to be logically simpler as the ALFRED benchmark primarily focuses on visual understanding
instead of logical task difficulty. As mentioned in section 4.6, instruction prediction is most effective
with harder tasks. Other example tasks in ALFRED include “Put a clean sponge on a metal rack”
and “put a cooked potato slice on the counter”.

Success Measure Xformer Lang
Task Success Rate 28.3±1.0% 28.5±0.7%
Subgoal Success Rate 36.1±1.0% 36.0±0.8%

Table 9: We train models in the ALFRED environment with and without language prediction and
evaluate their success on the “seen” validation set.

14

Under review as a conference paper at ICLR 2022

Model Inputs BabyAI, 50K Crafting, 2.2k ALFRED, 42K
Text Goal 86.4% 43.8% 96.9%
Text Goal and Observation(s) 92.4% 49.9% 99.0%

Table 10: Instruction prediction accuracies for models trained with and without access to observa-
tions. When instructions can be easily predicted without access to observations, they likely provide
little additional signal to the agent. The number next to the environment indicates the number of
demonstrations used for training. The BabyAI level used was BossLevel, the hardest level.

We can measure how much information instructions are able to provide to an agent by measuring
how easy it is to predict them from just the goal. If instructions can easily be predicted from the
goal alone, then they are unlikely to provide any additional learning signal to the agent. If the
agent can only accurately predict instructions by observing the behavior in the demonstrations and
the goal, then instructions prediction is more likely to encourage salient representation learning or
logical reasoning about the task. For each benchmark, we take our transformer based architecture
for instruction prediction and train only the language head to predict instructions with and without
access to observations from the demonstrations. We report the best attained prediction accuracies in
Table 10. Our results indicate that the instructions in ALFRED can be nearly predicted perfectly
from the text goals (96.9%), indicating that the tasks are too easy and do not require instructions.
This result has also been verified by the community. As of writing, one of the top models on the
ALFRED leaderboard found here does not even use the language instructions as inputs. Conversely,
we see lower accuracy overall and much larger gaps in accuracy for both BabyAI BossLevel (86.4%
to 92.4%) and the Crafting environments (43.8% to 49.9%). We hope this result will drive the com-
munity to develop more logically challenging benchmarks with complex tasks where the scaling of
instruction prediction can be further studied. Additionally, one can begin to assess the effectiveness
of instruction prediction before using it by following this methodology.

A.3 ADDITIONAL BASELINES

We ran a additional baselines in the BabyAI environment.

1. GPT Enc: In order to demonstrate that instruction prediction is not just aiding in the agent’s
understanding of text goals, we construct a baseline that encodes the text goals in BabyAI
using a pretrained GPT-2 Model before giving them to the agent. As the text-embeddings
have been pretrained, this simulates the case where we have a maximal understanding of
the text goal before interacting with the environment.

2. XFormer AC: Our original architecture does not use previous actions as input due to the
substantial increase in input tokens it causes. This baseline inputs both observation and
action sequences into the transformer based model.

3. Goal Prediction: Our architecture with language prediction, except instead of predicting
the unseen instructions we predict the goal text that is used as input to the policy. This is a
type of reconstruction objective in the text regime.

We ran these additional baselines for two seeds. Results for these new baselines and XFormer and
Lang can be found in Table 11. We find that encoding text goals with GPT does not lead to perfor-
mance gas as large as language prediction. This indicates that our instruction prediction helps with
learning good representations for planning, and not just language understanding. The transformer
with action inputs (XFormer AC) does not perform better than the regular transformer and in fact
performs slightly worse, indicating that action inputs are not an important modeling component in
the imitation domain and may just make learning harder by adding additional modalities and dou-
bling sequence length. This is different than results found in the Offline RL setting in Chen et al.
(2021b), which makes sense as rewards often depend on both states and actions. Moreover, inverse
models in the discrete action spaces in BabyAI are relatively easy to learn. Previous works with
transformers in imitation (Pashevich et al., 2021) have also found that conditioning on entire action
sequences leads to a degradation of performance as policies can more easily overfit.

15

https://leaderboard.allenai.org/alfred/submission/c2v3806nv9gjbp2idigg

Under review as a conference paper at ICLR 2022

Demos XFormer XFormer AC GPT Enc Goal Pred Lang
50K 40.2 ± 2.2 37.4 ± 0.4 47.6 ± 0.4 43.5 ± 1.5 70.3 ± 1.3
25K 39.9 ± 0.5 37.0 ± 0.3 37.6 ± 0.3 39.6 ± 1.9 55.4 ± 7.0

Table 11: Results of additional baselines on the BabyAI Boss Level. The table gives success rates
in % on 500 unseen levels.

B HIERARCHICAL BASELINES

Here we provide further details on our hierarchical baselines. The two prior works relevant on
hierarchical language most relevant to our investigations are Chen et al. (2021c) and Hu et al. (2019).
Both of these works learn Markovian, or nearly-Markovian models.

In the crafting environment (Chen et al., 2021c), the authors train a high-level RNN to output the
current language instruction. They then condition their low-level policy on the latent representation
fed to the RNN that predicts instructions. While they show latent condition to be effective, trans-
formers purposefully avoid encoding entire streams of data into a single vector, and instead operate
on a token level. Thus, we found it impractical to attempt this approach with our significantly more
effective transformer models.

The environment in Hu et al. (2019) is a partially observed multi-player strategy game. As alluded
to in the related work, this environment has multiple viable strategies and is thus distinct from the
oracle imitation learning we mostly consider. Though the environment is partially observed, the
authors do not train a sequence model. Instead, they concatenate command data from previous
time-steps to the model input. As information from the very beginning of the trajectory is necessary
for some BabyAI tasks, we found it impractical to scale this concatenation based approach. In Hu
et al. (2019), a discriminative high level policy is trained to select an instruction from a fixed set.
A low-level is trained with ground-truth human labeled instructions to output actions. In their strat-
egy game, hierarchical approaches perform very well, unlike in our experiments where hierarchical
models do not perform the best. One explanation for this comes from the nature of the strategy
game environment. The distribution of optimal actions from a given state may be multi-modal, as
different strategies may dictate different actions from the same state. Conditioning on an instruction
would remove this multi-modality. Below we describe the hierarchical approaches we tried. For all
approaches we used the same architectures as detailed in Section 3.

Fully-Observed Setting. In the fully observed setting, we adopt a similar strategy to Hu et al.
(2019). A high-level policy takes as input the observation o and goal g and predicts the current
instruction x(i). We train a low-level policy that predicts actions from the current instruction, goal,
and observation π(at|ot, x(i), g). At test time, the high-level auto-regressively generates instructions
that are then given to the low level.

Partially-Observed Setting. Unfortunately, we find that there is no clear cut way to train a hierar-
chical model using only transformers where instructions and actions operate at different time scales.
Here are the methods we tried:

1. Sequences for Each Instruction. We take each trajectory take slices of it up until the com-
pletion of each instruction. Our high-level model predicts only the language instruction
corresponding to that trajectory slice. This essentially means that the high-level predicts
one instruction conditioned on all the history before the instruction. The same sequences
are used to train the low-level, conditioned on the single instruction. The low-level policy
can be written as π(at|o1, ..., ot, g, x(i). Because training sequence models with only indi-
vidual losses is very inefficient, we train the low-level model to output the correct actions
at all points in time corresponding to the instruction it is conditioned on.

2. All Instructions. Instead of conditioning a policy on a single instruction, we train the
high level policy to output all of the instructions for the entire task. This is especially
challenging at the beginning of an episode when there are few frames. The low-level
policy is then conditioned on the entire sequence of instructions and can be written as
π(at|o1, ..., ot, g, x(1), ..., x(n)). As this performs relatively well, we hypothesize that the
model learns to ignore instructions far in the future when deciding which actions to take at
the current timestep.

16

Under review as a conference paper at ICLR 2022

Demonstrations Seq for Each Instr All Instr All Instr, Aggressive Mask
50k 27.1±2.9% 36.8±3.5% 33.3±2.8%
25k 25.5±3.7% 37.2±3.0 % 32.4±2.3

Table 12: Results for hierarchical configurations we tried.

3. All Instructions, Aggressive Mask. This is the same as the above, except we use an ag-
gressive masking scheme when training the high level that only allows plans to be predicted
from observations strictly preceding the time frame of the current instruction.

In Table 12 we give results for each of the sequence-style hierarchical approaches we tried on two
seeds. In Table 2 we report the accuracy for the All Instructions method which we found to perform
best. Other potential methods could include providing an encoding of the current instruction after
each timestep to the transformer. However, such approaches would either employ an RNN or bag-
of-words style model to generate the encoding and not be purely transformer based like the rest of
our models.

C ADDITIONAL FIGURES

ViT Encoder

𝑧𝑡,1 𝑧𝑡,2 𝑧𝑡,𝑁CLS

𝑔 𝑜𝑡,1 𝑜𝑡,𝑁CLS

…

…

Seq2Seq Transformer
Decoder

Tokenized Observation and Goal

𝑎𝑡

𝑥2
(𝑖)

𝑥3
(𝑖)

𝑥𝑙
(𝑖)…𝑥1

(𝑖)

𝑥3
(𝑖)

𝑥4
(𝑖)

𝑥𝑙
(𝑖)…𝑥2

(𝑖)

Unmaksed
Cross Attention

Language Instructions

𝑖

𝑖

−1

Figure 5: Architecture figure for the fully observed case. Observations are tokenized and then input
to a Vision-Transformer like encoder.

D HYPERPARAMETERS

Here we include all hyper-parameters we used. We used pytorch for our experiments. Our im-
plementation for the partially observed sequence models was based on MinGPT by Andrej Karpa-
thy. Our implementation of the Vision Transformer for fully observed environments was based on
Wightman (2019). We determined parameters for ATC by testing different frame skip values in
both environments. In the crafting environment we tested using λ coefficients of 0.5 and 0.25 and
found 0.25 to perform better. We also tested using weight decay and dropout in BabyAI with 50k
demonstrations and found it to have no significant impact and thus did not use it for the other ex-
periments. When evaluating models we found those for the Crafting environment to perform better
in Pytorch “train” mode, meaning with dropout on, while those for BabyAI worked better in “eval”
mode. We ran our experiments on NVIDIA GTX 1080 Ti GPUs. In BabyAI we train all models
for two seeds and in the crafting environment we train all models for four. This was done because
BabyAI experiments could take upwards of 48 hours to train.

17

Under review as a conference paper at ICLR 2022

Hyperparameter BabyAI Crafting
Encoder Blocks 4 4
Decoder Blocks 1 1
Embedding Dim 128 128
MLP Size 256 256
Dropout 0 0.1
policy πφ Dense Layer Dense Layer
Batch Size 32 64
Training Steps 1 million 300k
Optimizer Adam AdamW
Optimizer Epsilon 1× 10−8 1× 10−8

Learning Rate 0.0001 0.0001
Weight Decay 0.0 0.05
Grad Norm Clip N/A 1
λlang 0.7 0.25
λATC 0.7 0.25
EMA τ 0.01 0.01
EMA update freq 1 1
ATC Frame Skip 3 1

Table 13: Hyperparameters

18

