
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVING TABULAR GENERATIVE MODELS: LOSS
FUNCTIONS, BENCHMARKS, AND ITERATIVE OBJEC-
TIVE BAYESIAN APPROACHES

Anonymous authors
Paper under double-blind review

ABSTRACT

Access to extensive data is essential for improving model performance and gener-
alization in deep learning (DL). When dealing with sparse datasets, a promising
solution is to generate synthetic data using deep generative models (DGMs). How-
ever, these models often struggle to capture the complexities of real-world tabu-
lar data, including diverse variable types, imbalances, and intricate dependencies.
Additionally, standard Bayesian optimization (SBO), commonly used for hyper-
parameter tuning, struggles with aggregating metrics of different units, leading to
unreliable averaging and suboptimal decisions.
To address these gaps, we introduce a novel correlation- and distribution-aware
loss function that regularizes DGMs, enhancing their ability to generate synthetic
tabular data that faithfully represents actual distributions. To aid in evaluating this
loss function, we also propose a new multi-objective aggregation method using
iterative objective refinement Bayesian optimization (IORBO) and a comprehen-
sive statistical testing framework. While the focus of this paper is on improving
the loss function, each contribution stands on its own and can be applied to other
DGMs, applications, and hyperparameter optimization techniques.
We validate our approach using a benchmarking framework with twenty real-
world datasets and ten established tabular DGM baselines. Results demonstrate
that the proposed loss function significantly improves the fidelity of the synthetic
data generated with DGMs, leading to better performance in downstream ma-
chine learning (ML) tasks. Furthermore, the IORBO consistently outperformed
SBO, yielding superior optimization results. This work advances synthetic data
generation and optimization techniques, enabling more robust applications in DL.

1 INTRODUCTION

For a wide range of deep learning (DL) applications, additional data is crucial for improving both
model performance and generalization. The fast-paced advancements in deep generative modeling
have opened exciting possibilities for data synthesis. Models trained on images and text (Karras
et al., 2021; Team et al., 2023) effectively learn probability distributions over complex data and
generate high-quality, realistic samples. This success on structured data has fueled a surge in deep
generative model (DGM)-based methods (Goodfellow et al., 2014) for tabular data generation in
recent years. However, modeling tabular data presents unique challenges due to the lack of clear
structure and the presence of both continuous and discrete variables with complex interactions, im-
balances, and non-linear relationships.

Existing deep neural network (DNN) models often fail to effectively capture the complexities in
tabular data, struggling to approximate even basic statistics such as the mean and variance of a vari-
able (Xu et al., 2019). Moreover, tabular data inherently contains structure and correlations that
DNNs find particularly challenging to learn. Current approaches to improve downstream machine
learning (ML) analyses focus primarily on addressing data imbalance (Xu et al., 2019; Sun et al.,
2023; Zhao et al., 2021), while neglecting the equally crucial roles of feature distribution and cor-
relation analysis. To overcome this gap, we propose a novel correlation- and distribution-aware
loss function for DGMs, designed to enforce these statistics in generative models. This loss func-
tion works with various DGMs and promotes more effective modeling of the complex relationships

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

within tabular data. To address the growing use of DGMs for tabular data, we also introduce a
benchmarking framework based on statistical tests.

Hyper-parameter search is essential for optimizing DGMs performance, and Bayesian optimization
(BO) efficiently fine-tunes these parameters to improve outcomes without exhaustive trials. How-
ever, Standard Bayesian optimization (SBO) struggles to aggregate multiple metrics with different
units, making mean aggregation unreliable and leading to sub-optimal decisions. To overcome this
limitation, we introduce iterative objective refinement Bayesian optimization (IORBO), which ag-
gregates metrics by ranks, enabling meaningful comparisons across diverse objectives and paving
the way for more robust optimization strategies.

This work focuses on enhancing the performance of DGMs through a novel loss function, supported
by a new multi-objective aggregation method and a comprehensive statistical testing framework that
strengthen the performance and evaluation of our approach. In summary, we provide:
(1) A Correlation- and Distribution-Aware Loss Function: We propose a custom correlation- and
distribution-aware loss function that emphasizes the importance of feature correlation and distribu-
tion in tabular data. Acting as a regularizer, this custom loss function significantly enhancing the
performance of DGMs, including generative adversarial network (GAN), variational auto-encoder
(VAE), and denoising diffusion probabilistic model (DDPM), as demonstrated through extensive
benchmark evaluations.
(2) Benchmarking Framework for Synthetic Data Generation Algorithms: We establish a com-
prehensive open-source benchmarking framework that includes twenty tabular datasets and various
evaluation metrics based on statistical tests. This framework implements ten state-of-the-art tabular
DGMs and supports extensions with additional methods and datasets.
(3) Iterative Objective Refinement Bayesian Optimization: We propose IORBO to aggregate
multiple objectives through ranking, resolving inconsistencies caused by metrics with different units
or scales.

2 RELATED WORK

Most existing methods to generate synthetic tabular data developed in the past decade model mea-
surements in a table as a joint parametric density and then sample from that parametric model. Dif-
ferent models have been employed based on data characteristics: multivariate Gaussian (Frühwirth-
Schnatter et al., 2018), Bayesian networks (Aviñó et al., 2018; Zhang et al., 2017), and copulas (Patki
et al., 2016) for non-linearly correlated continuous variables. However, these methods are limited
by their inability to capture complex relationships beyond the chosen model types.

The remarkable performance and flexibility of DGMs, particularly VAEs (Kingma and Welling,
2013), diffusion models (Sohl-Dickstein et al., 2015; Kotelnikov et al., 2023), and GANs with their
numerous extensions (Arjovsky et al., 2017; Gulrajani et al., 2017; Zhu et al., 2017; Yu et al., 2017),
have made them very appealing for data representation. This appeal extends to generating tabular
data, especially in the healthcare domain. For example, Yahi et al. (2017) leveraged GANs to create
synthetic continuous time-series medical records, and Camino et al. (2018) proposed to generate
discrete tabular healthcare data using GANs. CTGAN (Xu et al., 2019), DP-CGANS (Sun et al.,
2023) and CTAB-GAN (Zhao et al., 2021) were proposed to address the complexities of mixed-
type tabular data and to address challenges when generating realistic synthetic data, particularly for
imbalanced datasets. TabDDPM (Kotelnikov et al., 2023) is a diffusion model designed specifically
for tabular data offering the flexibility to incorporate various backbone architectures to model the
reverse process.

3 METHODS

DGMs learn to map a random noise vector, denoted by z, to an output sample. This allows them
to generate new data instances that resemble the training data. DGMs have found various applica-
tions, e.g., to generate images (Goodfellow et al., 2014; Karras et al., 2020), multi-modal medical
images (Zhu et al., 2017), or vectors of tabular data (Xu et al., 2019; Sun et al., 2023; Zhao et al.,
2021). In this work, the focus was to generate tabular data with continuous and discrete variables.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3.1 A CORRELATION- AND DISTRIBUTION-AWARE LOSS FUNCTION

Let the training dataset be X = {xi = (x
(c)
i ,x

(d)
i ) : ∀i ∈ {1, . . . , N}}, where N is the number

of training samples. The xi ∈ Rm denotes the i-th training sample from X, and x
(c)
i and x

(d)
i are

continuous and discrete features, respectively. Let pX̃ be the learned probability density over the
synthetic data, x̃, such that x̃ ∈ Rm is a sample from the DGM, G. Here, G is a learned mapping
from a prior distribution p(z) to the data space p(x|z).
Correlation-aware loss function. The correlation-aware loss function is defined as

Lcorrelation =
2

m(m− 1)

m∑
j=1

m∑
k=j+1

(gj,k − g̃j,k)
2, (1)

where g is the sample correlation over the real data and g̃ is the sample correlation over the generated
data, such that

gj,k =
1

N

N∑
i=1

xi,j − µj

σj + ϵ
· xi,k − µk

σk + ϵ
and g̃j,k =

1

B

B∑
i=1

x̃i,j − µ̃j

σ̃j + ϵ
· x̃i,k − µ̃k

σ̃k + ϵ
, (2)

with B the size of the mini-batch used when training the DGM, and elements xi,j and x̃i,j belonging
to vectors xi ∈ X and x̃i ∈ X̃, respectively. A small positive value, ϵ = 1 · 10−5, was added to the
denominators of the correlation terms to avoid division by zero. The mean and standard deviation
of the j-th column in a tabular data set, X, were estimated as

µj =
1

N

N∑
i=1

xi,j and σj =

√√√√ 1

N

N∑
i=1

(xi,j − µj)2. (3)

Similarly, µ̃j and σ̃j were estimated as the mean and standard deviation of the generated data,
{x̃i : ∀i ∈ {1, . . . , B}}.

Distribution-aware loss function. The distribution-aware loss function integrates the strengths of the
method of moments and maximum likelihood estimation (MLE) to align with the true distribution
by capturing both statistical moments and likelihood properties in order to enhance the model’s
ability to learn accurate data representations (Pearson, 1936; Rice, 2007). Additionally, the choice
of moments over distance-based metrics, such as Wasserstein, is motivated by their computational
efficiency and stability, as lower-order moments provide a robust approximation of the distribution
while avoiding the high computational cost associated with distance-based methods. To characterize
the training data distribution, we employed the raw first and central second moments,

S(1)
j =

1

N

N∑
i=1

xi,j = µj and S(2)
j =

1

N

N∑
i=1

(xi,j − µj)
2 = σ2

j , (4)

and for h ≥ 3 the standardized higher moments,

S(h)
j =

1

N

N∑
i=1

(
xi,j − µj

σj

)h

= γh. (5)

Similarly, the empirical moments were computed for the synthetic data, denoted as S̃(1)
j , S̃(2)

j , and

S̃(h)
j , again for h ≥ 3. In this case, B was used in place of N . Finally, the distribution loss was

defined as

Ldistribution =
1

m

m∑
j=1

H∑
h=1

1

h

(
1−

S̃(h)
j + ϵ

S(h)
j + ϵ

)2

(6)

=
1

m

m∑
j=1

(1− µ̃j + ϵ

µj + ϵ

)2

+
1

2

(
1−

σ̃2
j + ϵ

σ2
j + ϵ

)2

+

H∑
h=3

1

h

(
1− γ̃h + ϵ

γh + ϵ

)2
 , (7)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where the number of moments, H , was hyper-parameter Instead of making the moments equal,
their quotient was made to be equal to one as a way to handle scale differences. By using a unified
distribution-aware loss, we handle continuous and discrete variables in the same manner, simplifying
implementation and preventing imbalances that could arise from separate regularization terms for
different data types.

Custom loss function for DGMs. The correlation- and distribution-aware loss function was integrated
into three prominent DGMs: GAN, VAE, and DDPM. For GANs, the proposed loss function was
incorporated into the generator’s loss

L̃G = Ez∼pz(z)

[
log(1−D(G(z)))

]︸ ︷︷ ︸
LG

+αLcorrelation + βLdistribution, (8)

where LG is the original GAN’s generator loss, and G and D the generator and discriminator of the
GAN, respectively. The hyper-parameters, α and β, controlled the influence of the correlation and
distribution terms.

We extended the TVAE model (Xu et al., 2019) (a VAE designed for tabular data) with the proposed
loss function

L̃TVAE = Lreconstruction + LKLD︸ ︷︷ ︸
LTVAE

+αLcorrelation + βLdistribution, (9)

where LTVAE is the original TVAE’s loss, and Lreconstruction and LKLD are the reconstruction loss and
the Kullback–Leibler (KL) regularization term, respectively.

For the diffusion model, TabDDPM (Kotelnikov et al., 2023), the proposed loss function was inte-
grated into the total loss of the multinomial diffusions as

L̃TabDDPM = Lsimple
t +

∑
i≤C Li

t

C︸ ︷︷ ︸
LTabDDPM

+αL(d)
correlation + βL(d)

distribution + ζL(c)
distribution, (10)

where LTabDDPM denotes the original TabDDPM loss, comprising the mean-squared error for the
Gaussian diffusion term, Lsimple

t , and the KL divergence for all multinomial diffusion terms,∑
i≤C Li

t/C (Kotelnikov et al., 2023).

Unlike other DGMs, TabDDPM handles continuous and discrete features separately. For continu-
ous features, TabDDPM predicts the Gaussian noise added through a forward Markov process. For
discrete features, it predicts their one-hot encoded representation. To align our proposed loss func-
tions with this characteristic, we adapted the correlation and distribution loss functions, L(d)

correlation

and L(d)
distribution, to focus exclusively on discrete features. For continuous features, the Gaussian input

noise is treated as the real data and the TabDDPM’s predicted noise component as the synthetic data,
incorporating a controlling parameter ζ into the L(c)

distribution computation.

3.2 EVALUATION

Statistical similarity. The statistical similarity evaluation focuses on how well the statistical prop-
erties of the real training data are preserved in the synthetic data. Inspired by a previous review
study (Goncalves et al., 2020), we compared two aspects: (1) Individual variable distributions as-
sess how closely the distributions of each variable in the real and synthetic data sets resemble each
other; and (2) pairwise correlations reveal the differences in pairwise correlations between variables
across the real and synthetic data (Step 1 in Figure 1).

We employed four metrics to quantify how closely the real and synthetic data distributions resemble
each other: the KL divergence (Hershey and Olsen, 2007), the Pearson’s Chi-Square (CS) test (Pear-
son, 1992), the Kolmogorov–Smirnov (KS) test (Massey Jr, 1951) and the dimension-wise proba-
bility (DWP) (Armanious et al., 2020). To assess how effectively the synthetic data captures the
inherent relationships between variables observed in the real data, we used the Pearson correlation
coefficient and Cramer’s V coefficient (Frey, 2018) (see Section A in the Appendix for more details).

ML performance. The ML performance evaluation is meant to enable researchers to leverage syn-
thetic data when developing ML methods in two key areas: Train-Synthetic-Test-Real (TSTR) (Lu

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Training

Synthetic

KL div.
CS test
KS test

Cramer’s V
Pearson
DWP

Step 1: Statistical evaluation

Θ∗
Mp,Dj

Regression

SVM

Bagging

XGBoost

RFTest

Training

Synthetic

ML methods

Bal. accuracy
Precision
Recall
G-mean
F-score
AUC

Classification

MAE
MSE
R2

Regression

Step 2: ML TSTR evaluation

Θ∗
Mp,Dj

Training

Training
+

Synthetic

Regression

SVM

Bagging

XGBoost

RFTest

ML methods

Bal. accuracy
Precision
Recall
G-mean
F-score
AUC

Classification

MAE
MSE
R2

Regression

Step 3: ML augmentation evaluation

Optimal ML parameters

Train prediction models

Test prediction models

Figure 1: Evaluation pipeline. For dataset Dj and ML method Mp, the optimal hyper-parameters,
Θ∗

Mp,Dj
, were determined using five-fold cross-validation based on ML evaluation metrics (see

Figure 4 in the Appendix).

et al., 2023) and augmentation (see Figure 1 and Steps 2 and 3). In the TSTR task (Step 2 in Fig-
ure 1), the goal for ML methods trained on synthetic data was to achieve performance comparable
or identical to those trained on real data. This work introduces the concept of an ML augmentation
task, which, to our knowledge, is the first application of its kind when evaluating tabular synthetic
data (Step 3 in Figure 1). Here, the objective was for models trained on a combination of real and
synthetic data to outperform models trained solely on real data. By incorporating synthetic data, the
models can potentially learn from a richer dataset and achieve improved performance.

To comprehensively evaluate the performance of trained ML models on imbalanced classification
datasets, we employed a suite of metrics including balanced accuracy, precision, recall, geometric
mean (G-mean), F-score, and area under the ROC curve (AUC). For regression, we used metrics
focused on capturing regression error: mean absolute error (MAE), mean squared error (MSE), and
the coefficient of determination, R-squared (R2). This combined evaluation approach provides a
nuanced understanding of model performance across both classification and regression tasks.

3.3 HYPER-PARAMETER SEARCH

Gi, Dj and Lk

Suggest
hyper-parameters

Hyper-parameters
ΘGi,Dj ,Lk

Build Gi Train Gi

Generative model

Evaluation
Stats./TSTR/Aug.

Iterative objective
refinement

Update
Gaussian model

Bayesian optimization

Θ∗
Gi,Dj ,Lk

Sufficient # trials

Input – generative model: Gi, dataset: Dj , loss function: Lk

Output – optimal hyper-parameters for Gi, Dj and Lk

Figure 2: Hyper-parameter search for a single
generative model.

Hyper-parameters play a pivotal role in tailor-
ing ML methods and DGMs to specific datasets
and achieving optimal performance. To system-
atically optimize the hyper-parameters, we em-
ployed BO, a powerful technique to efficiently
explore black-box functions. Specifically, we
utilized the tree-structured parzen estimator ap-
proach (TPE) algorithm (Bergstra et al., 2011)
within the Hyperopt1 library to identify op-
timal hyper-parameter configurations for each
combination. This approach enabled us to ef-
fectively navigate the complex hyper-parameter
space and select the most suitable settings for
the experiments.

We conducted two distinct tuning processes.
First, each ML method used in ML TSTR and
augmentation evaluation (Figure 1 and Step 2
and 3), was fine-tuned for each dataset using five-fold cross-validation on the ML evaluation metrics
(Figure 4 in the Appendix). Second, we optimized the hyper-parameters for each combination of
DGM, dataset, and loss function (Figure 2).

3.4 ITERATIVE OBJECTIVE REFINEMENT BAYESIAN OPTIMIZATION

Previous research on DNN often relied on tuning hyper-parameters based on a single metric or
aggregating multiple metrics with varying units in SBO. For example, the objective function guiding
the BO process could be the Dice score for medical segmentation (Vu et al., 2021), mean macro-

1https://hyperopt.github.io/hyperopt/

5

https://hyperopt.github.io/hyperopt/


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

accuracy for visual question answering (Vu et al., 2020), or metrics like F-score (classification)
and R-squared (regression) evaluated with Catboost (Dorogush et al., 2018) on synthetic tabular
data (Kotelnikov et al., 2023). A significant challenge in SBO arises from managing diverse metrics,
such as those used in statistical evaluations and ML performance, that differ in units, complicating
direct aggregation. This limitation can hinder the ability to fully capture trade-offs between different
objectives. To overcome the issues associated with aggregating metrics with varying units in multi-
objective SBO, we propose a ranking-based approach, named IORBO, to enhance BO performance.

To illustrate, consider optimizing a DGM. We define yu as the vector comprising all evaluated
metrics where u ∈ {1, . . . , U}, with U representing the number of samples used in the optimization.
In the SBO, the objective function of sample u is defined as ru = f(yu) where f is an aggregation
function. As outlined in Algorithm 1, the SBO holds ru constant throughout the optimization.

In contrast, IORBO defines the objective function as r
(p)
u , where u ≤ p and p ∈ {1, . . . , U} (see

Algorithm 2). Here, u represents the iteration where the objective is first generated, while p denotes
when it is updated, introducing iterative refinement into the process. In the IORBO, the objective
function of sample u is defined as r(p)u = g(yu|y1,y2, . . . ,yp) where g is a rank-based function. For
example, at the second iteration, y2 is evaluated, then both r

(2)
1 and r

(2)
2 are computed. In the third

iteration, y3 is added, allowing for the computation of r(3)1 , r(3)2 , and r
(3)
3 , and so on. The objective

functions are recalculated as the mean ranks of all generated samples, yielding r
(u)
1 , r

(u)
2 , . . . , r

(u)
u

based on y1,y2, . . . ,yu. To compute the mean ranks, all data points that are generated by the
IORBO for each evaluated metric are first ranked and then the average rank across metrics is calcu-
lated.

The objective function for the first set of hyper-parameters, Θ1, is iteratively updated: r
(1)
1 →

r
(2)
1 → · · · → r

(U)
1 . For the Θ2, we updated: r(2)2 → r

(3)
2 → · · · → r

(U)
2 , and so on. The surrogate

model is simultaneously refitted with the revised samples, (Θ1, r
(u)
1 ), (Θ2, r

(u)
2 ), . . . , (Θu, r

(u)
u ).

IORBO incurs a slight additional cost for refitting the surrogate model with revised samples during
the iterative refinement. However, this overhead is negligible compared to the overall computational
cost. Apart from this refinement step, the process is essentially the same as SBO. For a numerical
illustration, see Section E in the Appendix.

Algorithm 1 Standard Bayesian Optimization
(SBO)

Initialize surrogate model
Initialize generative model Gi
Suggest initial hyper-parameters Θ1

Build and train Gi
Perform evaluation to obtain y1

Compute r1 = f(y1)

Fit surrogate model with (Θ1, r1)
for u← 2 to U do

Suggest Θu

Build and train Gi
Perform evaluation to obtain yu and ru
Update surrogate model with (Θu, ru)

end for
return Optimal hyper-parameters Θ∗

Algorithm 2 Iterative Objective Refinement
Bayesian Optimization (IORBO)

Initialize surrogate model
Initialize generative model Gi
Suggest initial hyper-parameters Θ1

Build and train Gi
Perform evaluation to obtain y1

Compute r
(1)
1 = g(y1|y1)

Fit surrogate model with (Θ1, r
(1)
1 )

for u← 2 to U do
Suggest Θu

Build and train Gi
Perform evaluation to obtain yu

Update ranks {r(u)1 , r
(u)
2 , · · · , r(u)u } based on

{y1,y2, · · · ,yu}
Fit surrogate model with revised samples

(Θ1, r
(u)
1 ), (Θ2, r

(u)
2 ), . . . , (Θu, r

(u)
u )

end for
return Optimal hyper-parameters Θ∗

3.5 STATISTICAL TESTS

To compare loss functions across DGMs and datasets, we used the Friedman test (Friedman, 1937;
1940) to rank the loss functions independently. For non-parametric analysis of repeated-measures

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

data, the Friedman test offers an alternative to the widely used repeated-measures ANOVA (Fisher,
1919). We used the Friedman test with equivalence on two ML efficacy problems for test set predic-
tions and statistical similarity between training and synthetic data (detailed in Section 3.6). Follow-
ing Demšar (2006), we further explored significant differences between methods using the Nemenyi
post-hoc test (Nemenyi, 1963). Table 1 shows the p-values divided into three positive and three
negative differences.

3.6 BENCHMARKING FRAMEWORK

Table 1: Ranges of p-values and specification obtained
from statistical tests.

Notation Rank Range of p-value Specification

++ Better p ≤ 0.01 Highly significantly better
+ Better 0.01 < p ≤ 0.05 Significantly better
0 Better p > 0.05 Not significantly better
0 Worse p > 0.05 Not significantly worse
− Worse 0.01 < p ≤ 0.05 Significantly worse
−− Worse p ≤ 0.01 Highly significantly worse

Figure 3 provides an overview of
the proposed benchmarking framework,
which consists of the following core
components:

Generative models. DGMs are used
to generate synthetic data. We eval-
uated six models. Three models that
leverage conditional GANs for data
synthesis: CTGAN (Xu et al., 2019),
CTAB-GAN (Zhao et al., 2021), and
DP-CGANS (Sun et al., 2023). A model that combines Gaussian Copula with the CTGAN archi-
tecture: CopulaGAN. A model that utilizes VAEs (Kingma and Welling, 2013) for data genera-
tion: TVAE (Xu et al., 2019). Finally, a model that employs DDPM: TabDDPM (Kotelnikov et al.,
2023). To explore the impact of the conditional element, we additionally evaluated versions of
CTGAN, CopulaGAN, and DP-CGANS with conditioning disabled. We also used two backbones
for TabDDPM: a simple multilayer perceptron (MLP) and a ResNet.

Θ∗
Gi,Dj ,L Train Gi on Dj

using L
Synthetic data

X̃Gi,Dj ,L

Evaluate
X̃Gi,Dj ,L

Concatenate

Θ∗
Gi,Dj ,L̃ Train Gi on Dj

using L̃
Synthetic data

X̃Gi,Dj ,L̃

Evaluate
X̃Gi,Dj ,L̃

Concatenate

Friedman test

Nemenyi test

Vanilla loss function

Proposed loss function

Statistical tests

Θ∗
Mp,Dj

Figure 3: Proposed benchmarking framework. The Gi, Dj , Lk and Mp denote a DGM, a dataset,
a loss function, and an ML method, respectively. Θ∗ denotes the optimal set of hyper-parameters.
See Figure 2 and Figure 4 in the Appendix to see how we determined Θ∗

Gi,Dj ,Lk
and Θ∗

Mp,Dj
.

Custom loss function. During training, each evaluated DGM utilized either the custom loss function
defined in Equation 8 (for GAN models), the one presented in Equation 9 (for TVAE model) or the
one in Equation 10 (for TabDDPM model). We subsequently fixed α, β, and ζ to specific values of
0 or positive value, resulting in two different experiments: vanilla loss function (L with α = β =

ζ = 0) and the proposed loss function, L̃, with at least one non-zero hyper-parameters.

Statistical tests. We used the Friedman test on all evaluated metrics, followed by the Nemenyi post-
hoc test detailed in Section 3.5 for comparative analyses. These analyses can be divided into three
categories: (1) General-purpose loss function assesses which loss function—between the vanilla
(original loss function used in the evaluated DGM) and the proposed—performs better for general
applications; (2) Dataset-specific loss determines which loss function is more effective for each eval-
uated dataset; and (3) Method-specific loss identifies the superior loss function for each evaluated
DGM architecture. For each category, we based the evaluations on either statistical similarity, ML
TSTR performance, ML augmentation performance, or a combination of evaluated metrics.

Loss function. To analyze the performance of the proposed loss function against the vanilla version,
we applied the benchmarking framework using different independent evaluations: (1) statistical

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

analysis on its own, (2) ML TSTR performance on its own, (3) ML augmentation on its own, and
(4) a comprehensive evaluation that combines all evaluated metrics.

Bayesian Optimization Method. To compare the performance of the IORBO with the SBO using
mean and median aggregation methods, we fine-tuned each DGM on each dataset across different
loss functions, employing three evaluated BO approaches. Statistical tests were then conducted to
evaluate the three BO methods.

4 EXPERIMENTS

Datasets. To evaluate the capability of the proposed method, we conducted experiments on twenty
publicly available datasets encompassing a variety of ML tasks, data sizes, and diversities in terms
of categorical and continuous variables (detailed in Table 6 in the Appendix).

Implementation Details and Training. We implemented all DGMs (CTGAN, CTAB-GAN,
DP-CGANS, CopulaGAN, TVAE, and TabDDPM) and the proposed losses using PyTorch 1.13.
To ensure replicability, we maintained the DGMs’ original framework structures and adopted the
model parameters specified in their publications. We disabled conditional elements within evaluated
DGMs by reimplementing their data samplers. This modification removed the conditional vector
from the training process, effectively transforming them into unconditional DGMs. For all DGMs,
we employed the Adam optimizer (Kingma and Ba, 2015). We used the proposed IORBO approach
introduced in Section 3.4 to fine-tune the hyper-parameters in two tuning processes (Section 3.3).
See Section D in the Appendix for more details on the implementation and training. The detailed
search spaces are provided in Section H in the Appendix.

5 RESULTS AND DISCUSSION

Loss function. To analyze the performance of the proposed loss function against the vanilla version,
we employed the proposed benchmarking framework (Section 3.6) across four key tasks: statistical
evaluation (Stat.), TSTR evaluation, augmentation evaluation (Aug.), and a comprehensive evalua-
tion (Comp.) combining all three. The statistical tests evaluated the performance of the proposed
loss function compared to the vanilla loss. In addition, we define the win rate as as the proportion
of evaluated metrics where the proposed loss function exceeds the vanilla loss function, relative
to the total number of metrics assessed. A win rate of 1 indicates that the proposed loss function
performed better than the vanilla version across all evaluated metrics, while a value of 0 signifies
that it performed worse in every metric. A win rate greater than 0.5 indicates that the proposed loss
function was “better” more often than it was “worse.” We also report standard errors for each metric,
estimated from 1 000 bootstrap rounds.

Table 2: Results of the Nemenyi post-hoc test and win rate (with standard error in parentheses)
comparing the proposed against the vanilla loss function on all DGMs and datasets. Loss functions
were evaluated for statistical similarity (Stat.), TSTR, augmentation (Aug.), and a comprehensive
evaluation (Comp.) combining all metrics. For details on p-value ranges, refer to Table 1.

Statistical Tests Win Rate

Comparison Stat. TSTR Aug. Comp. Stat. TSTR Aug. Comp.

Proposed vs. Vanilla 0 ++ ++ ++ 0.484 (0.012) 0.611 (0.007) 0.551 (0.007) 0.567 (0.004)

General-purpose loss function. Table 2 presents the results of a comprehensive analysis comparing
the performance of the proposed loss function against the vanilla loss function across all DGMs and
datasets. The table highlights the influence of loss function selection for general purposes.

First, two loss functions performed statistically similarly (zero (0) in the “Stat.” column in Ta-
ble 2). Second, in the ML TSTR evaluation, the proposed loss function significantly outperformed
the vanilla version, with a win rate of 0.611 and a standard error of 0.007, suggesting that the pro-
posed loss function better captures the complexities of real-world tabular data during synthetic data
generation. Third, the augmentation evaluation consistently favored the proposed loss function (win
rate 0.551), demonstrating its ability to enhance the performance of predictive models trained on a
mix of real and synthetic data. Finally, the comprehensive evaluation (win rate 0.567), which com-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

bined all prior evaluations, continues this trend, indicating the proposed loss function’s potential
to improve model generalizability. A possible reason for this superiority is that the proposed loss
function provides a regularizing effect, which likely reduces overfitting on unseen data and positions
it as a strong candidate for general-purpose use in generative modeling tasks.

Table 3: Results of the Nemenyi post-hoc test and win rate (with standard error in parentheses)
comparing the proposed against the vanilla loss function across various DGMs on all datasets. Eval-
uations include TSTR, augmentation (Aug.), statistical similarity (Stat.), and a comprehensive mea-
sure (Comp.) combining all evaluated metrics. Models denoted with an asterisk (*) have disabled
conditioning. For details on p-value ranges, refer to Table 1.

Statistical Tests Win Rate

Method Stat. TSTR Aug. Comp. Stat. TSTR Aug. Comp.

CTGAN 0 ++ ++ ++ 0.478 (0.034) 0.639 (0.020) 0.583 (0.021) 0.593 (0.014)
CTGAN* 0 ++ ++ ++ 0.459 (0.036) 0.726 (0.018) 0.611 (0.020) 0.640 (0.013)

TVAE 0 0 ++ ++ 0.519 (0.034) 0.501 (0.021) 0.593 (0.020) 0.543 (0.013)
CopulaGAN 0 ++ + ++ 0.491 (0.033) 0.633 (0.020) 0.547 (0.022) 0.577 (0.013)

CopulaGAN* 0 ++ + ++ 0.447 (0.034) 0.684 (0.019) 0.554 (0.020) 0.595 (0.013)
DP-CGANS 0 ++ ++ ++ 0.500 (0.051) 0.669 (0.028) 0.683 (0.028) 0.651 (0.018)

DP-CGANS* 0 ++ 0 ++ 0.587 (0.054) 0.798 (0.023) 0.538 (0.030) 0.656 (0.019)
CTAB-GAN −− −− 0 −− 0.391 (0.033) 0.418 (0.020) 0.497 (0.020) 0.448 (0.014)

TABDDPM-MLP 0 ++ 0 ++ 0.516 (0.035) 0.617 (0.020) 0.482 (0.021) 0.545 (0.014)
TABDDPM-ResNet 0 + 0 0 0.512 (0.033) 0.547 (0.021) 0.487 (0.021) 0.517 (0.013)

Method-specific loss function. Table 3 compares the performance of the proposed loss function
against the vanilla loss functions across all datasets and different DGM selections. Models denoted
with an asterisk (*) have disabled conditioning. For most models, the proposed loss function demon-
strates significant improvements in ML TSTR performance and augmentation effectiveness. For in-
stance, CTGAN, CTGAN*, CopulaGAN, and DP-CGANS consistently show highly significant gains
(++) in TSTR, augmentation, and comprehensive evaluation. For example, DP-CGANS* achieved
the highest win rate across the TSTR metric, 0.798, indicating that the proposed loss function sig-
nificantly enhanced its ability to generate synthetic data that boosts downstream ML performance.

Interestingly, the statistical similarity (Stat.) evaluation reveals no significant differences between
the proposed and vanilla loss functions for most models, suggesting that both loss functions perform
similarly in terms of generating synthetic data that statistically match the real data distributions.
However, the CTAB-GAN model stands out as an exception, showing a statistically significant de-
crease (−−) in performance across most evaluations when using the proposed loss function. This
result suggests that the CTAB-GAN may require a more specialized loss function or optimization
strategy to fully benefit from the proposed approach.

The comprehensive evaluation (Comp.), which combines all three metrics, underscores the effective-
ness of the proposed loss function on eight out of ten evaluated DGMs. Models including CTGAN,
CopulaGAN, DP-CGANS, and their non-conditioned variants, consistently outperform the vanilla
loss function with win rates exceeding 0.5. These results imply that the proposed loss function of-
fers a well-rounded improvement across various aspects of synthetic data generation, specifically in
terms of enhancing ML utility and model augmentation performance.

Dataset-specific loss function. Table 4 compares the proposed loss function to the vanilla loss func-
tion across various datasets on all DGMs. The results demonstrate the effectiveness of the proposed
loss function across a diverse set of datasets. The statistical tests reveal that the proposed loss func-
tion achieves statistically significant improvements in TSTR performance for 14 out of 20 datasets,
as indicated by the total count of (+) and (++). In addition, the proposed loss function exhibits
a consistent advantage in augmentation (Aug.). Specifically, datasets such as Insurance and
MNIST12 show marked improvements in win rates (0.7). Conversely, the proposed loss function
shows variable performance in statistical similarity (Stat.) across different datasets. While it signifi-
cantly improves TSTR and augmentation tasks for many datasets, its impact on statistical similarity
is less consistent, with some datasets like Cardio, Higgs-Small, and Miniboone exhibiting
inferior results compared to the vanilla loss function.

From Table 4 we see that the proposed loss function demonstrates significant improvement over the
vanilla loss function in 15 out of 20 datasets, as indicated by the comprehensive evaluation (Comp.)
in the statistical tests column. Among the remaining datasets, four show no significant difference
(0) and only one shows a statistically significant disadvantage (−).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Results of the Nemenyi post-hoc test and win rate (with standard error in parentheses) com-
paring the proposed against the vanilla loss function across various datasets on all evaluated DGMs.
Evaluations include TSTR, augmentation (Aug.), statistical similarity (Stat.), and a comprehensive
measure (Comp.) combining all three. For details on p-value ranges, refer to Table 1.

Statistical Tests Win Rate

Dataset Stat. TSTR Aug. Comp. Stat. TSTR Aug. Comp.

Abalone 0 ++ −− 0 0.594 (0.059) 0.633 (0.043) 0.375 (0.045) 0.523 (0.027)
Adult 0 ++ 0 ++ 0.538 (0.052) 0.622 (0.025) 0.553 (0.025) 0.582 (0.017)
Buddy 0 ++ 0 ++ 0.500 (0.051) 0.607 (0.022) 0.552 (0.022) 0.570 (0.014)

California 0 0 0 + 0.500 (0.045) 0.583 (0.044) 0.583 (0.043) 0.566 (0.027)
Cardio − ++ ++ ++ 0.387 (0.054) 0.577 (0.027) 0.590 (0.027) 0.560 (0.019)
Churn2 0 ++ 0 + 0.500 (0.059) 0.637 (0.025) 0.460 (0.026) 0.543 (0.018)
Credit 0 0 0 + 0.500 (0.057) 0.544 (0.027) 0.554 (0.030) 0.543 (0.018)

Diabetes 0 ++ 0 ++ 0.413 (0.031) 0.620 (0.027) 0.533 (0.027) 0.557 (0.018)
Diabetes-ML 0 ++ 0 ++ 0.469 (0.057) 0.719 (0.029) 0.479 (0.033) 0.584 (0.020)

Diabetes Bal. 0 ++ 0 ++ 0.438 (0.032) 0.717 (0.022) 0.538 (0.025) 0.605 (0.016)
Gesture 0 0 0 0 0.609 (0.056) 0.562 (0.032) 0.450 (0.029) 0.518 (0.021)

Higgs-Small − + ++ ++ 0.359 (0.055) 0.575 (0.031) 0.635 (0.032) 0.576 (0.021)
House 0 ++ ++ ++ 0.438 (0.049) 0.667 (0.039) 0.667 (0.038) 0.618 (0.025)

House-16h 0 0 0 0 0.500 (0.044) 0.442 (0.044) 0.500 (0.046) 0.477 (0.027)
Insurance 0 ++ ++ ++ 0.494 (0.052) 0.693 (0.037) 0.700 (0.037) 0.654 (0.025)

King 0 ++ 0 ++ 0.519 (0.055) 0.673 (0.039) 0.567 (0.039) 0.599 (0.026)
Miniboone − −− 0 − 0.359 (0.054) 0.402 (0.031) 0.512 (0.026) 0.446 (0.020)

MNIST12 0 ++ ++ ++ 0.484 (0.040) 0.756 (0.023) 0.700 (0.024) 0.699 (0.016)
News + ++ 0 ++ 0.612 (0.052) 0.607 (0.040) 0.553 (0.042) 0.587 (0.024)
Wilt 0 0 0 0 0.469 (0.056) 0.538 (0.025) 0.552 (0.026) 0.536 (0.016)

Table 5: Results of the Nemenyi post-hoc test and win rate (with standard error in parentheses)
comparing the row to column method. For details on p-value ranges, refer to Table 1.

Statistical Tests Win Rate

BO method IORBO SBO-Mean SBO-Median IORBO SBO-Mean SBO-Median

IORBO ++ ++ 0.591 (0.004) 0.561 (0.004)
SBO-Mean −− −− 0.409 (0.004) 0.461 (0.004)

SBO-Median −− ++ 0.439 (0.004) 0.539 (0.004)

Bayesian optimization method. The performance of the IORBO was compared to the SBO using
two aggregation methods (mean and median aggregation). We fine-tuned each DGM on each dataset
across two loss functions, and employed three evaluated BO approaches. Statistical tests were then
conducted to evaluate the three BO methods. Table 5 shows the results of the Nemenyi post-hoc
test and win rate (with standard error in parentheses) comparing methods in the rows to those in the
columns. The Nemenyi post-hoc test indicates that the IORBO is significantly better than the SBO-
Mean and SBO-Median with win rates of 0.591 and 0.561, respectively. The results demonstrate that
the IORBO is robust in handling metrics with different units and its potential as a reliable, broadly
applicable BO method.

Due to space limitations, further details on the ablation studies are presented in Section F. These
studies emphasize the critical role of both the proposed loss function and IORBO in enhancing
model performance, with the combination of the two consistently yielding the best results across
different configurations.

6 CONCLUSION

We have introduced a novel correlation- and distribution-aware loss function designed as a regular-
izer for DGMs in tabular data synthesis, which outperforms the vanilla loss function across most
DGMs. The results suggest that the proposed loss function effectively captures the complexities of
arbitrary DGMs. Future research could focus on addressing potential numerical instability when
incorporating higher-order moments by using an exponential moving average of the moments over
iterations, ensuring the moments match on average rather than for a single mini-batch, as well as on
developing a tailored loss function for the CTAB-GAN family to match the strong performance seen
with other DGMs. Additionally, we introduced a novel IORBO approach that leverages rank-based
aggregation to ensure more meaningful comparisons between multiple objectives with varying units,
providing a more robust optimization process. Finally, we developed a comprehensive benchmark-
ing system evaluating statistical similarity, ML TSTR performance, and ML augmentation perfor-
mance, with robust statistical tests, offering a valuable tool for future research.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International Conference on Machine Learning, 2017.

Karim Armanious, Chenming Jiang, Marc Fischer, Thomas Küstner, Tobias Hepp, Konstantin Niko-
laou, Sergios Gatidis, and Bin Yang. MedGAN: Medical image translation using GANs. Com-
puterized Medical Imaging and Graphics, 79:101684, 2020.

Laura Aviñó, Matteo Ruffini, and Ricard Gavaldà. Generating Synthetic but Plausible Healthcare
Record Datasets. In KDD workshop on Machine Learning for Medicine and Healthcare, 2018.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-Parameter
Optimization. In Advances in Neural Information Processing Systems, pages 2546–2554, 2011.

Ramiro Camino, Christian Hammerschmidt, and Radu State. Generating Multi-Categorical Sam-
ples with Generative Adversarial Networks. In ICML workshop on Theoretical Foundations and
Applications of Deep Generative Models, 2018.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7:1–30, 2006. ISSN 15337928.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. CatBoost: gradient boosting with
categorical features support. arXiv preprint arXiv:1810.11363, 2018.

Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017. URL http://archive.
ics.uci.edu/ml.

RA Fisher. XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance.
Transactions of the Royal Society of Edinburgh, 52(2):399–433, 1919.

Bruce B Frey. The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation.
SAGE Publications, 2018.

M Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of
variance. Journal of the American Statistical Association, 1937.

Milton Friedman. A Comparison of Alternative Tests of Significance for the Problem of m Rankings.
The Annals of Mathematical Statistics, 11(1):86–92, 1940.

Sylvia Frühwirth-Schnatter, Gilles Celeux, and Christian P Robert. Handbook of Mixture Analysis,
2018.

A Goncalves, P Ray, B Soper, J Stevens, L Coyle, and AP Sales. Generation and evaluation of
synthetic patient data. BMC Medical Research Methodology, 20(1):108–108, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems, volume 2, page 2672–2680. Curran Associates, Inc., 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. In Advances in Neural Information Processing Systems,
2017.

John R Hershey and Peder A Olsen. Approximating the Kullback Leibler divergence between Gaus-
sian mixture models. In 2007 IEEE International Conference on Acoustics, Speech and Signal
Processing-ICASSP’07, volume 4, pages IV–317. IEEE, 2007.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 8107–8116, 2020.

11

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Alias-Free Generative Adversarial Networks. Advances in Neural Information Pro-
cessing Systems, 34:852–863, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In 7th Interna-
tional Conference on Learning Representations (ICLR), 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2013.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. In International Conference on Machine Learning, pages
17564–17579. PMLR, 2023.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database, 2010. URL http://yann.
lecun.com/exdb/mnist/.

Yingzhou Lu, Minjie Shen, Huazheng Wang, Xiao Wang, Capucine van Rechem, and Wenqi Wei.
Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062, 2023.

Frank J Massey Jr. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American
Statistical Association, 1951.

Peter Bjorn Nemenyi. Distribution-free multiple comparisons. Princeton University, 1963.

Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The Synthetic Data Vault. In International
Conference on Data Science and Advanced Analytics. IEEE, 2016.

Karl Pearson. Method of moments and method of maximum likelihood. Biometrika, 28(1/2):34–59,
1936.

Karl Pearson. On the Criterion that a Given System of Deviations from the Probable in the Case of a
Correlated System of Variables is Such that it Can be Reasonably Supposed to have Arisen from
Random Sampling. Breakthroughs in Statistics: Methodology and Distribution, pages 11–28,
1992.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

Sebastian Raschka, Joshua Patterson, and Corey Nolet. Machine Learning in Python: Main develop-
ments and technology trends in data science, machine learning, and artificial intelligence. arXiv
preprint arXiv:2002.04803, 2020.

John A Rice. Mathematical statistics and data analysis, volume 371. Thomson/Brooks/Cole Bel-
mont, CA, 2007.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsuper-
vised Learning using Nonequilibrium Thermodynamics. In International Conference on Machine
Learning, pages 2256–2265. PMLR, 2015.

Chang Sun, Johan van Soest, and Michel Dumontier. Generating synthetic personal health data
using conditional generative adversarial networks combining with differential privacy. Journal of
Biomedical Informatics, page 104404, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Minh H Vu, Tommy Löfstedt, Tufve Nyholm, and Raphael Sznitman. A Question-Centric Model
for Visual Question Answering in Medical Imaging. IEEE Transactions on Medical Imaging, 39
(9):2856–2868, 2020.

12

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Minh H Vu, Gabriella Norman, Tufve Nyholm, and Tommy Löfstedt. A Data-Adaptive Loss Func-
tion for Incomplete Data and Incremental Learning in Semantic Image Segmentation. IEEE
Transactions on Medical Imaging, 41(6):1320–1330, 2021.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional GAN. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, pages 7335–7345, 2019.

Alexandre Yahi, Rami Vanguri, Noémie Elhadad, and Nicholas P Tatonetti. Generative Adversarial
Networks for Electronic Health Records: A Framework for Exploring and Evaluating Methods for
Predicting Drug-Induced Laboratory Test Trajectories. In NIPS workshop on machine learning
for health care, 2017.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. In AAAI Conference on Artificial Intelligence, 2017.

Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xiaokui Xiao.
Privbayes: Private data release via bayesian networks. ACM Transactions on Database Systems,
42(4):25, 2017.

Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y Chen. CTAB-GAN: Effective Table Data
Synthesizing. In Asian Conference on Machine Learning, pages 97–112. PMLR, 2021.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired Image-to-Image Transla-
tion Using Cycle-Consistent Adversarial Networks. In 2017 IEEE International Conference on
Computer Vision (ICCV), pages 2242–2251, 2017.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A EVALUATION

Statistical similarity evaluation. We employed four key metrics to quantify how closely the real
and synthetic data distributions resemble each other. (1) The KL divergence (Hershey and Olsen,
2007): This method quantifies the information loss incurred when approximating a true probability
distribution with another one. (2) The Pearson’s CS test (Pearson, 1992): This test focuses on cate-
gorical variables and assesses whether the distribution of categories in the synthetic data matches the
distribution in the real data. (3) The KS test (Massey Jr, 1951): This test is designed for continuous
variables and measures the distance between the cumulative distribution functions (CDFs) of the real
and synthetic data. (4) The DWP: We leveraged the DWP (Armanious et al., 2020) to quantitatively
assess the quality of the generated data. This metric evaluates how well the model captures the dis-
tribution of each individual class or variable. To calculate the DWP metric, we compute the average
distance between scatter points and a perfect diagonal line (y = x). Each scatter point represents
either a class within a categorical variable or the mean value of a continuous variable.

To assess how effectively the synthetic data captures the inherent relationships between variables
observed in the real data, we compare correlation coefficients between variable pairs. For continuous
variables, we employ the widely-used Pearson correlation coefficient, calculated from both the real
and synthetic data matrices. In the case of categorical variables, we leverage Cramer’s V coefficient
to quantify the association strength between each pair in both datasets (Frey, 2018).

To assess the ML performance in both the TSTR and augmentation tasks, we split the experimental
datasets into 80% training and 20% testing sets. First, we trained the DGMs on the real training data
to produce synthetic data. The real testing set served a critical role in assessing the generalizability
of trained ML models on unseen data. Subsequently, for TSTR, we trained various ML methods
including logistic regression (LG), support vector machine (SVM), random forest (RF), bagging
(bootstrap aggregating), and XGBoost independently on both the real and synthetic training sets. In
the augmentation task, we trained the same ML models independently on both the real training set
and a combined set consisting of real training and synthetic data.

B DATASETS

Two datasets come from the UCI Machine Learning Repository (Dua and Graff, 2017) (Adult and
News) and feature tabular structures with separate columns for attributes and labels. Thirteen ad-
ditional datasets were preprocessed and shared by Kotelnikov et al. (2023) including Abalone,
Buddy, California, Cardio, Churn2, Diabetes-ML, Gesture, Higgs-Small,
House-16h, Insurance, King, Miniboone, and Wilt. We sourced the remaining datasets
from Kaggle2 (Credit, Diabetes, Balanced Diabetes, and House). To investigate the
method’s behavior on high-dimensional binary data as in (Xu et al., 2019), we transformed the
Modified National Institute of Standards and Technology database (MNIST) dataset (LeCun and
Cortes, 2010). Specifically, we binarized the original 28 × 28 images, converted each sample into
a 784-dimensional vector, and added a label column. The images were then resized to 12 × 12,
reducing them to 144-dimensional vectors. We refer to this dataset as MNIST12.

Table 6 provides a comprehensive overview of the datasets evaluated in our study. It includes a
diverse set of datasets, encompassing various data types and tasks to thoroughly test the proposed
methods. The datasets range from small, specialized datasets like Diabetes-ML with 768 rows
and 8 continuous variables, to large, extensive datasets such as Credit with 277 640 rows and
29 continuous variables. Tasks represented include regression, binary classification, and multiclass
classification, showcasing the breadth of application scenarios covered. For instance, Abalone and
California are used for regression tasks, while Adult, Cardio, and Churn2 are employed
for binary classification tasks. Multiclass classification tasks are represented by datasets such as
Buddy and MNIST12.

Additionally, the datasets exhibit a range of characteristics in terms of the number of continuous and
discrete variables. For example, Gesture has a high number of continuous variables (32) with no

2https://www.kaggle.com/datasets

14

https://www.kaggle.com/datasets


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: Description of experimented datasets. “Cat.” and “Cont.” stand for categorical and contin-
uous variables, respectively. “Classif.” denotes classification, while “Reg.” is regression.

Dataset #Rows #Cont. #Dis. Task

Abalone 4 177 7 1 Regression
Adult 48 813 6 8 Binclass
Buddy 18 834 4 5 Multiclass
California 20 640 8 0 Regression
Cardio 70 000 5 6 Binclass
Churn2 10 000 7 4 Binclass
Credit 277 640 29 0 Binclass
Diabetes 234 245 0 21 Binclass
Diabetes-ML 768 8 0 Binclass
Diabetes Bal. 69 515 0 21 Binclass
Gesture 9 873 32 0 Multiclass
Higgs-Small 98 049 28 0 Binclass
House 21 613 10 8 Regression
House-16h 22 784 16 0 Regression
Insurance 1 338 3 3 Regression
King 21 613 17 3 Regression
Miniboone 130 064 50 0 Binclass
MNIST12 70 000 0 144 Multiclass
News 39 644 45 14 Regression
Wilt 4 839 5 0 Binclass

discrete variables, whereas Diabetes features a substantial number of discrete variables (21) with
no continuous variables. The varied nature of these datasets allows for a robust evaluation of the pro-
posed methods across different types of data and tasks, providing insights into their generalizability
and effectiveness. The inclusion of datasets with different characteristics, such as Higgs-Small
with 28 continuous variables and MNIST12 with 144 discrete variables, ensures a comprehensive
assessment of performance and applicability.

C STATISTICAL TESTS

In Table 1, the specifications are based on the commonly accepted interpretation of p-values in hy-
pothesis testing. A p-value less than or equal to 0.01 (p ≤ 0.01) indicates that the result is highly sig-
nificant, meaning that the null hypothesis can be rejected with high confidence. A p-value between
0.01 and 0.05 (0.01 < p ≤ 0.05) indicates significant results, where there is still a reasonable level
of evidence against the null hypothesis, though not as strong as for the highly significant results.
For p-values greater than 0.05, we consider the result not to be significant, indicating insufficient
evidence to reject the null hypothesis.

Regarding the two-sided test, the Nemenyi post-hoc test used in our analysis is based on the Fried-
man test, which is a non-parametric test for repeated measures. The Nemenyi test performs pairwise
comparisons between the groups following the Friedman test and is a two-sided test. This means
that the test evaluates whether the differences between the groups are statistically significant in both
directions, i.e.., it considers whether one group is significantly better or worse than another group.

D IMPLEMENTATION DETAILS AND TRAINING

The experiments ran on a high-performance computing cluster equipped with NVIDIA A100 Tensor
Core graphical processing units (GPUs) (40GB RAM each) and Intel(R) Xeon(R) Gold 6338 CPUs
(256GB DDR4 RAM). Training time per model varied significantly by dataset and DGM, ranging
from one hour to two weeks.

To accelerate the ML performance evaluation, we used the cuML library (Raschka et al., 2020).
This library provides a Python API largely compatible with scikit-learn (Pedregosa et al.,
2011) and allows seamless execution of traditional tabular ML tasks on GPUs. We used
scikit-learn for classification and regression metrics, scipy for statistical evaluation metrics,
and scikit-posthocs for the statistical tests, ensuring consistency throughout the evaluation
process.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

E ILLUSTRATIVE EXAMPLE: SBO AND IORBO IN PRACTICE COMPARISON

Table 7 and Table 8 illustrate three iterations of SBO and IORBO, respectively. Evaluated metrics
are y = {a, b, c, d}. In Table 7, we see that r1 = r2 = r3. However, Table 8 shows that in the
IORBO objective functions differ after three iterations: r(3)1 ̸= r

(3)
2 ̸= r

(3)
3 and r

(1)
1 ̸= r

(2)
1 ̸= r

(3)
1 .

Table 7: Example of SBO where the objective function is computed as the mean of all evaluated
metrics.

Iteration 1 Iteration 2 Iteration 3

Metric / Sample 1 1 2 1 2 3

a 1 1 0.5 1 0.5 2.4
b 1 1 2.5 1 2.5 0.2
c 1 1 0.5 1 0.5 0.8
d 1 1 0.5 1 0.5 0.6

Objective function r1 = 1 r1 = 1 r2 = 1 r1 = 1 r2 = 1 r3 = 1

Table 8: Example of IORBO.
Iteration 1 Iteration 2 Iteration 3

Metric / Sample 1 1 2 1 2 3

a 1 1 0.5 1 0.5 2.4
b 1 1 2.5 1 2.5 0.2
c 1 1 0.5 1 0.5 0.8
d 1 1 0.5 1 0.5 0.6

Metric ranking / Sample 1 1 2 1 2 3

a 1 2 1 2 1 3
b 1 1 2 2 3 1
c 1 2 1 3 1 2
d 1 2 1 3 1 2

Objective function r
(1)
1 = 1 r

(2)
1 = 1.75 r

(2)
2 = 1.25 r

(3)
1 = 2.5 r

(3)
2 = 1.5 r

(3)
3 = 2

F ABLATION STUDIES

The ablation studies presented in Table 9 and Table 10 investigate the impact of combining vanilla
and proposed loss functions with two optimization strategies: SBO and IORBO, across all evaluated
DGMs and datasets. Table 9 focuses on evaluating SBO-Mean and IORBO with both loss functions,
while Table 10 examines similar combinations for SBO-Median and IORBO. These analyses aim
to isolate the contributions of each component—optimization method and loss function—to overall
model performance.

The results from both tables, supported by the Nemenyi post-hoc tests, consistently show that the
IORBO + Proposed configuration outperforms the others across both mean and median evaluations.
Specifically, in Table 9, IORBO + Proposed achieves win rates of 0.644 (vs. SBO-Mean + Vanilla),
0.582 (vs. IORBO + Vanilla), and 0.601 (vs. SBO-Mean + Proposed), significantly outperforming
all other configurations. Likewise, in Table 10, IORBO + Proposed also leads with win rates of
0.600, 0.582, and 0.577, further demonstrating the synergy between the proposed loss function and
IORBO optimization. These results suggest that the proposed loss function significantly enhances
the model’s capacity to adapt to the data distribution when combined with IORBO.

In Table 9, comparing SBO-Mean + Vanilla to SBO-Mean + Proposed shows the contribution of
the proposed loss function to performance improvement. The win rate for SBO-Mean + Proposed
(0.581) against SBO-Mean + Vanilla underlines the importance of the loss function in enhancing
quality of synthetic data. Similarly, comparing SBO-Mean + Vanilla to IORBO + Vanilla reveals
that the incorporation of IORBO optimization improves performance significantly. This indicates
that the proposed IORBO contributes effectively to better results.

The same trend is observed in Table 10, where comparisons between SBO-Median + Vanilla and
SBO-Median + Proposed, as well as between SBO-Median + Vanilla and IORBO + Vanilla, demon-
strate similar performance gains.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

In conclusion, these findings underline the critical roles of both the proposed loss function and the
IORBO optimization method in enhancing model performance. The combination of these elements
in IORBO + Proposed consistently leads to the best outcomes, validating the effectiveness of inte-
grating both components for superior performance in optimization tasks.

Table 9: Results of the Nemenyi post-hoc test and win rate (with standard error in parentheses)
comparing row and column methods. The table presents performance across different configura-
tions, including the baseline with SBO and mean aggregation with the vanilla loss function, and
comparisons with the proposed loss function and IORBO optimization method. For details on p-
value ranges, refer to Table 1. “Van.” and “Prop.” denote the vanilla and proposed loss functions,
respectively.

Statistical Tests Win Rate

Method SBO-Mean +
Van.

IORBO +
Van.

SBO-Mean +
Prop.

IORBO +
Prop.

SBO-Mean +
Van.

IORBO +
Van.

SBO-Mean +
Prop.

IORBO +
Prop.

SBO-Mean + Van. −− −− −− 0.420 (0.004) 0.419 (0.004) 0.356 (0.003)
IORBO + Van. ++ ++ −− 0.580 (0.004) 0.525 (0.004) 0.418 (0.004)

SBO-Mean + Prop. ++ −− −− 0.581 (0.004) 0.475 (0.004) 0.399 (0.004)
IORBO + Prop. ++ ++ ++ 0.644 (0.003) 0.582 (0.004) 0.601 (0.004)

Table 10: Results of the Nemenyi post-hoc test and win rate (with standard error in parentheses)
comparing row and column methods. The table presents performance across different configura-
tions, including the baseline with SBO and median aggregation with the vanilla loss function, and
comparisons with the proposed loss function and IORBO optimization method. For details on p-
value ranges, refer to Table 1. “Van.” and “Prop.” denote the vanilla and proposed loss functions,
respectively.

Statistical Tests Win Rate

Method SBO-Med. +
Van.

IORBO +
Van.

SBO-Med. +
Prop.

IORBO +
Prop.

SBO-Med. +
Van.

IORBO +
Van.

SBO-Med. +
Prop.

IORBO +
Prop.

SBO-Med. + Van. −− −− −− 0.454 (0.004) 0.458 (0.004) 0.400 (0.003)
IORBO + Van. ++ 0 −− 0.546 (0.004) 0.503 (0.004) 0.418 (0.004)

SBO-Med. + Prop. ++ 0 −− 0.542 (0.004) 0.497 (0.004) 0.423 (0.004)
IORBO + Prop. ++ ++ ++ 0.600 (0.004) 0.582 (0.004) 0.577 (0.004)

G HYPER-PARAMETER SEARCH FOR ML ALGORITHMS

Figure 4 shows the hyper-parameter search process for an ML algorithm Mp on dataset Dj . The
optimal hyper-parameters, Θ∗

Mp,Dj
, were determined using five-fold cross-validation based on ML

evaluation metrics.

H HYPER-PARAMETER SEARCH SPACES

Table 11: Logistic Regression search space for classification dataset.
Parameter Distribution

C LogUniform (−4, 4)
max iter IntUniform (50, 200)
l1 ratio Uniform (0, 1)
algorithm {“svd”, “eig”, “qr”, “svd-qr”, “svd-jacobi”}
solver {“newton-cg”, “lbfgs”, “liblinear”, “sag”, “saga”}
class weight {“balanced”, None}
number of tuning iterations 30

For hyper-parameter search related to TabDDPM, please refer to the work by Kotelnikov et al.
(2023).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Mp and Dj

Suggest
hyper-parameters

Hyper-parameters
ΘMi,Dj

Build Mp
Train Mp

on 5-fold CV

ML algorithm

Evaluation
on 5-fold CV

Iterative objective
refinement

Update
Gaussian model

Bayesian optimization

Θ∗
Mp,Dj

Sufficient # trials

Input – ML algorithm: Mp, dataset: Dj

Output – optimal hyper-parameters for Mp and Dj

Figure 4: Hyper-parameter search for an ML algorithm.

Table 12: ElasticNet search space for regression dataset.
Parameter Distribution

alpha Uniform (1, 10)
max iter IntUniform (100, 2000)
l1 ratio Uniform (0, 1)
tol LogUniform (10−5, 10−1)
fit intercept {True, False}
normalize {True, False}
number of tuning iterations 30

Table 13: Bagging for Logistic Regression search space for classification dataset.
Parameter Distribution

C LogUniform (−4, 4)
max iter IntUniform (50, 200)
l1 ratio Uniform (0, 1)
algorithm {“svd”, “eig”, “qr”, “svd-qr”, “svd-jacobi”}
solver {“qn”}
class weight {“balanced”, None}
number of tuning iterations 30

Table 14: Bagging for ElasticNet search space for regression dataset.
Parameter Distribution

alpha Uniform (1, 10)
max iter IntUniform (100, 2000)
l1 ratio Uniform (0, 1)
tol LogUniform (10−5, 10−1)
fit intercept {True, False}
normalize {True, False}
number of tuning iterations 30

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 15: SVM search space for classification dataset (LinearSVC).
Parameter Distribution

C LogUniform (0.1, 10)
max iter IntUniform (100, 1500)
tol LogUniform (−5,−1)
penalty {“hinge”, “squared hinge”}
loss {True, False}
fit intercept {True, False}
penalized intercept {True, False}
class weight {“balanced”, None}
number of tuning iterations 30

Table 16: SVM search space for regression dataset (LinearSVR).
Parameter Distribution

C LogUniform (0.1, 10)
max iter IntUniform (100, 1500)
tol LogUniform (−5,−1)
epsilon Uniform (0, 1)
fit intercept {True, False}
penalized intercept {True, False}
number of tuning iterations 30

Table 17: RF search space for classification and regression dataset (RandomForestClassifier and
RandomForestRegressor).

Parameter Distribution

n estimators IntUniform (50, 500)
max depth IntUniform (10, 100)
min samples split IntUniform (2, 20)
min samples leaf IntUniform (1, 20)
max features {“sqrt”, “log2”}
number of tuning iterations 30

Table 18: XGBoost search space for classification and regression dataset (XGBClassifier and XG-
BRegressor).

Parameter Distribution

n estimators IntUniform (50, 500)
max depth IntUniform (3, 15)
learning rate Uniform (0.01, 0.3)
subsample Uniform (0.5, 1)
colsample bytree Uniform (0.5, 1)
gamma Uniform (0, 5)
reg alpha Uniform (0, 1)
reg lambda Uniform (0, 1)
scale pos weight Uniform (1, 10)

number of tuning iterations 30

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 19: CTGAN, CopulaGAN and DP-CGANS search space.
Parameter Distribution

epochs IntUniform (100, 2 000, 100)
batch size IntUniform (500, 30 000, 100)
embedding dim {32, 64, 128, 256}
generator dim {32, 64, 128, 256}
discriminator dim {32, 64, 128, 256}
generator learning rate Uniform (10−5, 10−3)
generator decay Uniform (10−7, 10−5)
discriminator learning rate Uniform (10−5, 10−3)
discriminator decay Uniform (10−7, 10−5)

α Uniform (10−2, 104)
β Uniform (10−10, 101)
number of moments {1,2,3,4}
number of tuning iterations 30

Table 20: TVAE search space.
Parameter Distribution

epochs IntUniform (100, 2 000, 100)
batch size IntUniform (500, 30 000, 100)
embedding dim {32, 64, 128, 256}
compress dims {32, 64, 128, 256}
decompress dim {32, 64, 128, 256}
loss factor {0.25, 0.5, 1, 2, 4}
l2scale Uniform (10−6, 10−4)

α Uniform (10−2, 104)
β Uniform (10−10, 101)
number of moments {1,2,3,4}
number of tuning iterations 30

Table 21: CTAB-GAN search space.
Parameter Distribution

epochs IntUniform (100, 2 000, 100)
batch size IntUniform (500, 4 000, 100)
test ratio {0.1, 0.2, 0.3, 0.4, 0.5}
n class layer {1, 2, 3, 4}
class dim {32, 64, 128, 256}
random dim {16, 32, 64, 128}
num channels {16, 32, 64}

α Uniform (10−2, 104)
β Uniform (10−10, 101)
number of moments {1,2,3,4}
number of tuning iterations 30

20


	Introduction
	Related Work
	Methods
	A Correlation- and Distribution-Aware Loss Function
	Evaluation
	Hyper-parameter Search
	Iterative Objective Refinement Bayesian Optimization
	Statistical Tests
	Benchmarking Framework

	Experiments
	Results and Discussion
	Conclusion
	Evaluation
	Datasets
	Statistical Tests
	Implementation Details and Training
	Illustrative Example: sbo and ior in Practice Comparison
	Ablation Studies
	Hyper-Parameter Search for ml Algorithms
	Hyper-Parameter Search Spaces

