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Abstract

Federated learning (FL) is a distributed learning paradigm that allows multiple clients to
collaboratively train a shared model via communications to a central server. However, optimal
models of different clients often differ due to heterogeneity of data across clients. In this
paper, we address the dichotomy between heterogeneous models and simultaneous training
in FL via a clustering structure among the clients. The clustering framework is one way to
allow for high heterogeneity level between clients, while clients with similar data can still train
a shared model. We define a new clustering framework for FL based on the (optimal) local
models of the clients: two clients belong to the same cluster if their local models are close. We
propose an algorithm, Successive Refine Federated Clustering Algorithm (SR-FCA), that treats
each client as a singleton cluster as an initialization, and then successively refine the cluster
estimation via exploiting similarity with other clients. In any intermediate step, SR-FCA uses
an error-tolerant federated learning algorithm within each cluster to exploit simultaneous
training and to correct clustering errors. Unlike some prominent prior works SR-FCA does not
require any good initialization (or warm start), both in theory and practice. We show that with
proper choice of learning rate, SR-FCA incurs arbitrarily small clustering error. Additionally,
SR-FCA does not require the knowledge of the number of clusters apriori like some prior works.
We validate the performance of SR-FCA on real-world FL datasets including FEMNIST and
Shakespeare in non-convex problems and show the benefits of SR-FCA over several baselines.

1 Introduction

Federated Learning (FL), introduced in McMahan et al. (2016); Konečnỳ et al. (2016); McMahan & Ramage
(2017) is a large scale distributed learning paradigm aimed to exploit the machine intelligence in users’ local
devices. Owing to its highly decentralized nature, several statistical and computational challenges arise in
FL, and in this paper, we aim to address one such challenge: heterogeneity.

The issue of heterogeneity is crucial for FL, since the data resides in users’ own devices, and naturally no two
devices have identical data distribution. There has been a rich body of literature in FL to address this problem
of non-iid data. We direct the readers to two survey papers (and the references therein), Li et al. (2020a);
Kairouz et al. (2019) for a comprehensive list of papers on heterogeneity in FL. A line of research assumes
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the degree of dissimilarity across users is small, and hence focuses on learning a single global model Zhao et al.
(2018); Li et al. (2020b; 2019); Sattler et al. (2019); Mohri et al. (2019); Karimireddy et al. (2020). Along with
this, a line of research in FL focuses on obtaining models personalized to individual users. For example Li
et al. (2020b; 2021) use a regularization to obtain individual models for users and the regularization ensures
that the local models stay close to the global model. Another set of work poses the heterogeneous FL as a
meta learning problem Chen et al. (2018); Jiang et al. (2019); Fallah et al. (2020b;a). Here, the objective is
to first obtain a single global model, and then each device run some local iterations (fine tune) the global model
to obtain their local models. Furthermore Collins et al. (2021) exploits shared representation across users
by running an alternating minimization algorithm and personalization. Note that all these personalization
algorithms, including meta learning, work only when the local models of the users’ are close to one another
(see bounded heterogeneity terms γH and γG terms in Assumption 5 of Fallah et al. (2020b)).

On the other spectrum, when the local models of the users may not be close to one another, Sattler et al. (2021);
Mansour et al. (2020); Ghosh et al. (2022) propose a framework of Clustered Federated Learning. Here users with
dissimilar data are put into different clusters, and the objective is to obtain individual models for each cluster; i.e.,
a joint training is performed within each cluster. Among these, Sattler et al. (2021) uses a top-down approach
using cosine similarity metric between gradient norm as optimization objective. However, it uses a centralized
clustering scheme, where the center has a significant amount of compute load, which is not desirable for FL.
Also, the theoretical guarantees of Sattler et al. (2021) are limited. Further, in Duan et al. (2021), a data-driven
similarity metric is used extending the cosine similarity and the framework of Sattler et al. (2021). Moreover, in
Mansour et al. (2020), the authors propose algorithms for both clustering and personalization. However, they
provide guarantees only on generalization, not iterate convergence. In Smith et al. (2017) the job of multi-task
learning is framed as clustering where a regularizer in the optimization problem defines clustering objective.

Very recently, in Ghosh et al. (2022), an iterative method in the clustered federated learning framework called Iter-
ative Federated Clustering Algorithm, or IFCA, was proposed and a local convergence guarantee was obtained. The
problem setup for IFCA is somewhat restrictive—it requires the model (or data distribution) of all the users in the
same cluster to be (exactly) identical. In order to converge, IFCA necessarily requires suitable initialization in clus-
tering, which can be impractical. Furthermore, in Ghosh et al. (2022), all the users are partitioned into a fixed and
known number of clusters, and it is discussed in the same paper that the knowledge about the number of clusters is
quite non-trivial to obtain (see Section 6.3 in Ghosh et al. (2022)). There are follow up works, such as Ruan & Joe-
Wong (2021), Xie et al. (2020), that extend IFCA in certain directions, but the crucial shortcomings, namely the re-
quirements on good initialization and identical local models still remain unaddressed to the best of our knowledge.

In this paper, we address the above-mentioned shortcomings. We introduce a new clustering algorithm, Successive
Refinement Federated Clustering Algorithm or SR-FCA, which leverages pairwise distance based clustering and
refines the estimates over multiple rounds. We show that SR-FCA does not require any specific initialization. More-
over, we can allow the same users in a cluster to have non-identical models (or data distributions); in Section 2 we
define a clustering structure (see Definition 2.1) that allows the models of the users in the same cluster to be differ-
ent (we denote this discrepancy by parameter ϵ1(≥0). Furthermore, SR-FCA works with a different set of hyper-
parameters which does not include the number of clusters and SR-FCA iteratively estimates this hyper-parameter.

Clustering Framework and Distance Metric: Classically, clustering is defined in terms of distribution
from which the users sample data. However, in a federated framework, it is common to define a heterogeneous
framework such as clustering in terms of other discrepancy metric; for example in Mansour et al. (2020), a
metric that depends on the local loss is used.

In this paper, we use a distance metric across users’ local model as a discrepancy measure and define a clustering
setup based on this. Our distance metric may in general include non-trivial metric like Wasserstein distance,
ℓq norm (with q ≥ 1) that captures desired practical properties like permutation invariance and sparsity for
(deep) neural-net training. For our theoretical results, we focus on strongly convex and smooth loss for which
ℓ2 norm of iterates turns out to be the natural choice. However, for non-convex neural networks on which we
run most of our experiments, we use a cross-cluster loss metric. For two clients i,j, we define their cross-cluster
loss metric as the average of the loss of one client on the other’s model, i.e., client i’s loss on the model of j and
the other way round. If this metric is low, we can use the model of client i for client j and vice-versa, implying
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that the clients are similar. We explain this in detail in Section 5. With the above discrepancy metric, we
put the users in same cluster if their local models are close – otherwise they are in different clusters.

1.1 Our Contributions

Algorithms and Technical Contribution. We introduce a novel clustering framework based on local
user models and propose an iterative clustering algorithm, SR-FCA. Note that, since the clustering is defined
based on the optimal models of the users, we have no way to know the clustering at the beginning of the
process. To mitigate this, we start with initially assigning a different cluster for each user, and run few local
iterations of SGD/GD in parallel. We then form a clustering based on the pairwise distance between iterates.
This clustering is refined (including merges/splits if necessary) over multiple rounds of our algorithm. We run
federated training on each of the clusters to further improve the models. This step exploits collaboration across
users in the same cluster. However, clustering based on iterates might lead to many mis-clustered clients, as the
iterates might be far from optimal models. The mis-clustered clients might lead to more errors from ordinary
federated training within clusters (error propagation) due to high heterogeneity between the original clusters.

To counter this we run a robust federated training (based on trimmed mean) within each clusters in the
intermediate rounds, instead of straightforward federated learning. In particular, we use the first order gradient
based robust FL algorithm of Yin et al. (2018) to handle the clustering error. Within a cluster, we treat the
wrongly clustered users as outliers. However, instead of throwing the outliers away like Yin et al. (2018), we
reassign them to their closest cluster.

When the loss is strongly convex and smooth, and dist(.,.) is ℓ2 norm, we show that, the mis-clustering error in
the first stage of SR-FCA is given by O(mdexp(−n/

√
d) ( Lemma 4.6), where m, n and d denote the number of

users, the amount of data in each user and the dimensionality of the problem respectively. Moreover, successive
stages of SR-FCA further reduce the mis-clustering error by a factor of O(1/m) (Theorem 4.8), and hence yields
arbitrarily small error. In practice we require very few refinement steps (we refine at most twice in experiments,
see Section 5). Comparing our results with IFCA Ghosh et al. (2022), we notice that the requirement on the
separation of clusters is quite mild for SR-FCA. We only need the separation to be1 Ω̃( 1

n ). On the other hand,
in certain regimes, IFCA requires a separation of Ω̃( 1

n1/5 ), which is a much stronger requirement.

To summarize, a key assumption in any clustering problem (which is non-convex) is suitable initialization.
However, SR-FCA removes this requirement completely by the above technique, and allows the clients to start
arbitrarily. For our results, we crucially leverage (a) sharp generalization guarantees for strongly convex losses
with sub-exponential gradients and (b) robustness property of the trimmed mean estimator (of Yin et al. (2018)).

As a by-product of SR-FCA, we also obtain an appropriate loss minimizer for each cluster ( Theorem 4.14).
We notice that the statistical error we obtain here is Õ(1/

√
n). This statistical rate primarily comes from

the usage of the robust estimator of Yin et al. (2018).

Experiments. We implement SR-FCA on wide variety of simulated heterogeneous datasets (rotated or inverted
MNIST, CIFAR10) and real federated datasets (FEMNIST and Shakespeare Caldas et al. (2018)). With
cross-cluster loss distance metric , we compare the test performance of SR-FCA with five baselines—(a) global
(one model for all users) and (b) local (one model per user), (c)IFCA, (d) CFL Sattler et al. (2021) and (e)
Local-KMeans (local models clustered by KMeans on model weights). On simulated datasets, SR-FCA obtains
test accuracy no worse than the best baseline and is able to recover the correct clustering. For CIFAR10, in
particular, SR-FCA has 5% better test accuracy than IFCA. On real datasets, SR-FCA outperforms all baselines.

2 Federated Clustering and Our Setup

In this section, we formally define the clustering problem. Let, [n]≡{1,2,...,n}. We have m users (or machines)
that are partitioned into disjoint clusters, denoted by the clustering map C⋆ : [m] → [K], where K is the
(unknown) number of clusters. Let C′ : [m] → rg(C′) denote any arbitrary clustering map C′, where rg(C′) is
the range of the clustering. Each user i∈ [m] contains ni ≥n data points {zi,j}ni

j=1 sampled from a distribution
Di. For any clustering map C′, let rg(C′) denote the range of the map. We define f(·;z) : W →R as the loss

1Here, Õ and Ω̃ hide logarithmic dependence.
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Figure 1: The dots represent the population
risk minimizers for two clusters in dist(.,.) space
according to C⋆.

Figure 2: The dots represent the ERM in
dist(.,.) space and the corresponding clustering
C0 obtained after ONE_SHOT

function for the sample z, where W ⊆Rd. Here, W is a closed and convex set with diameter D. We use C to
denote different clustering maps on the set of clients [m] encountered by our algorithm. We use rg(C) to denote
the range of the clustering map, i.e., the cluster indices. We define the population loss, Fi :W →Rd, and its
minimizer, w⋆

i , for each user i ∈ [m]: Fi(w) =Ez∼Di
[f(w,z)], w⋆

i = minw∈W Fi(w). The original clustering
C⋆ is based on the population minimizers of users, w⋆

i . This is defined as:
Definition 2.1 (Clustering Structure). For a distance metric dist(.,.), the local models satisfy

max
i,j∈[m]:C⋆(i)=C⋆(j)

dist(w⋆
i ,w⋆

j )≤ϵ1, min
i,j∈[m]:C⋆(i)̸=C⋆(j)

dist(w⋆
i ,w⋆

j )≥ϵ2. (1)

where ϵ1,ϵ2, are non-negative constants with ϵ2 >ϵ1. This is illustrated in fig. 1.

The above allows the population minimizers inside clusters to be close, but not necessarily equal.

Let Gc ≡ {i : i ∈ [m],C⋆(i)= c} denote the set of users in cluster c according to the original clustering C⋆. We
can then define the population loss and its minimizer, per cluster c∈ [K] as follows,

Fc(w)= 1
|Gc|

∑
i∈Gc

Fi(w), ω∗
c =argmin

w∈W
Fc(w) (2)

We use wi,T for every client i ∈ [m] to denote the local model on client i obtained after T local iterations of
a Our goal is to find a population loss minimizer for each cluster c∈ [K], i.e., ω∗

c . To obtain this, we need to find
the correct clustering C⋆ and recover the minimizer of each cluster’s population loss. Note that we have access
to neither Fi nor w⋆

i , but only the sample mean variant of the loss, the empirical risk, fi(w)= 1
ni

∑ni

j=1f(w,zi,j)
for each user i∈ [m]. There are two major difficulties in this setting: (a) the number of clusters is not known
beforehand. This prevents us from using most clustering algorithms like k-means, and (b) The clustering
depends on w⋆

i which we do not have access to. We can estimate w⋆
i by minimizing fi, however, when n, the

minimum number of data points per user, is small, this estimate may be very far from w⋆
i .

The above difficulties can be overcome by utilizing federation. First, instead of estimating w⋆
i for a single user,

we can estimate ω⋆
c , the population minimizer for each cluster, where users in the cluster collaborate to improve

the estimate. Second, we can use these estimates of ω⋆
c to improve the clustering, according to Definition 3.1.

3 Algorithm : SR-FCA

In this section, we formally present our clustering algorithm, SR-FCA. We first run the subroutine ONE_SHOT
to obtain an appropriate initial clustering, which can be further improved. SR-FCA then successively calls the
REFINE() subroutine to improve this clustering. In each step of REFINE(), we first estimate the cluster models for
each cluster. Then, based on these models we regroup all the users using RECLUSTER() and, if required, we merge
the resulting clusters, using MERGE(). The full algorithm along with its subroutines is provided in Algorithms 1-4.
ONE_SHOT and TrimmedMeanGD can be decomposed into server and client subroutines. For the clustering subrou-
tines, RECLUSTER and MERGE, all steps are performed on the server, barring the computation of dist which might
require communication between the server and the clients. We now explain the different subroutines in detail.
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Algorithm 1: SR-FCA

Input: Threshold λ, Size parameter t
Output: Clustering CR

C0← ONE_SHOT(λ, t)
for r =1 to R do
Cr← REFINE(Cr−1,λ)

end for

ONE_SHOT(λ,t)
Server:
for all i clients in parallel do

Send w0 to client i
Receive wi,T from client i

end for
G← Graph with m nodes (one per user) and no edges
for all pairs of clients i,j∈ [m],i ̸=j do

Add edge (i,j) to the graph G if dist(wi,T ,wj,T )≤λ
end for
C0← Connected components from graph G with size ≥ t
Client(i):
Receive w0 from Server.
wi,T← Perform T training iterations initialized from w0.
Send wi,T to Server.

REFINE(Cr−1,λ)
for all clusters c∈Cr−1 do

ωc,T← TrimmedMeanGD()
end for
C′

r←RECLUSTER( Cr−1)
Cr← MERGE(C′

r,λ,t)

Algorithm 2: RECLUSTER()
Input: Cluster models {ωc,T }c∈rg(Cr), User models
{wi}m

i=1, Clustering Cr

Output: Improved Clustering C′
r

for all users i∈ [m] do
C′

r(i)←argminc∈rg(Cr)dist(wi,ωc,T )
end for
return Clustering C′

r.

Algorithm 3: TrimmedMeanGD()

Input: 0≤β < 1
2 , Clustering Cr

Output: Cluster models {ωc,T }c∈rg(Cr)
Server:
for all clusters c∈rg(Cr) in parallel do
Sc ={i∈ [m] :Cr(i)=c}.
ωc,0←w0
for t=0 to T−1 do

Send ωc,t to all clients i∈Sc.
Receive ∇fi(ωc,t) from all clients i∈Sc.
g(ωc,t)←TrMeanβ({∇fi(wc,t),i∈Sc})
ωc,t+1←projW{ωc,t−ηg(ωc,t)}

end for
end for
Return {ωc,T }c∈rg(Cr)
Client(i):
Receive ωc,T from Server.
Send ∇fi(ωc,T ) to Server.

Algorithm 4: MERGE()
Input: Cluster models {ωc,T }c∈rg(Cr) , Clustering
C′

r, Threshold λ, Size parameter t
Output: Merged Clustering Cr+1, Cluster models
{ωc,T }c∈rg(Cr+1)
G← Graph with nodes rg(C′

r) and no edges
for all pairs of clusters c,c′∈rg(C′

r),c ̸=c′ do
Add edge (c,c′) to the graph G if dist(wc,wc′ )≤λ

end for
Ctemp← Connected components from graph G of
size ≥ t
For each cluster in Ctemp, merge the nodes of its
component clusters to get Cr+1
for c∈rg(Ctemp) do

Gc←{c′∈rg(C′
r) which merged into c}

ωc,T← 1
|Gc|

∑
c′∈Gc

ωc′,T

end for
return Cr+1,{ωc,T }c∈rg(Cr+1).

3.1 ONE_SHOT()

For our initial clustering, we create edges between users based on the distance between their locally trained models
if dist(wi,wj)≤λ, for a threshold λ. We obtain clusters from this graph by simply finding the connected compo-
nents, which can be done in time linear in number of edges. We only keep the clusters which have at least t users.

We use wi,T to denote the model obtained after T local iterations of any optimizer on client i ∈ [m]. If our
locally trained models, wi,T , were close to their population minimizers, w⋆

i , for all users i∈ [m], then choosing
a threshold λ∈ (ϵ1,ϵ2), we obtain edges between only clients which were in the same cluster in C⋆. However,
if n, the number of local datapoints is small, then our estimates of local models wi,T might be far from their
corresponding w⋆

i and we will not be able to recover C⋆.

However, C0 is still a good clustering if it satisfies these requirements: (a) if every cluster in the range of the
clustering map rg(C⋆)= [K] has a good proxy (in the sense of definition 3.1) in rg(C0), and (b) each cluster
in rg(C0) has at most a small fraction (< 1

2 ) of mis-clustered users in it. E.g., fig. 2 provides an example of one
such good clustering when C⋆ is defined according to fig. 1. We can see that even though C0 ̸=C⋆, the two green
clusters and the single orange cluster in C0 are mostly “pure" and are proxies of Cluster 1 and Cluster 2 in fig. 1.
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To formally define the notion of “purity" and “proxy", we introduce the notion of cluster label for any arbitrary
clustering C′, which relates it to the original clustering C⋆.
Definition 3.1 (Cluster label). We define c ∈ [K], as the cluster label of cluster c′ ∈ rg(C′) if the majority
(>1/2 fraction) of users in c′ are originally from c.

This definition allows us to map each cluster c′ ∈rg(C′) to a cluster c in C⋆ and thus define the notion of "proxy".
In fig. 2, the cluster label of green clusters is Cluster 1 and that of orange cluster is Cluster 2. Further, using
the cluster label c, we can define the impurities in cluster c′ as the users that did not come from c′. In fig. 2,
the green node in orange cluster is an impurity. Based on these definitions, we can see that if clusters in C0
are mostly pure and can represent all clusters in C⋆, then C0 is a good clustering.

3.2 REFINE()

We iteratively refine the clustering obtained by ONE_SHOT() using REFINE(). We describe the subroutines
of a single REFINE step below.

Subroutine TrimmedMeanGD(). The main issue with ONE_SHOT(), namely, small n, can be mitigated if
we use federation. Since C0 has atleast t users per cluster, training a single model for each cluster will utilize
≥ tn datapoints, making the estimation more accurate. However, from fig. 2, we can see that the clusters
contain impurities, i.e., users from a different cluster. To handle them, we use a robust training algorithm,
TrimmedMeanYin et al. (2018).

This subroutine is similar to FedAvg McMahan et al. (2016), but instead of taking the average of local models,
we take the coordinate-wise trimmed mean, referred to as TrMeanβ where β ∈(0,1/2) defines the trimming level.
Definition 3.2 (TrMeanβ). For β ∈ [0, 1

2 ), and a set of vectors xj ∈Rd,j ∈ [J ], their coordinate-wise trimmed
mean g =TrMeanβ({x1,x2,...,xJ}) is a vector g ∈Rd, with each coordinate gk = 1

(1−2β)J

∑
x∈Uk

x, for each k ∈ [d],
where Uk is a subset of {x1

k,x2
k,...,xJ

k } obtained by removing the smallest and largest β fraction of its elements.

The full algorithm for TrimmedMeanGD is provided in algorithm 3. Note that TrMeanβ has been used to
handle Byzantine users, achieving optimal statistical rates Yin et al. (2018), when < β fraction of the users
are Byzantine. For our problem setting, there are no Byzantine users as such and we use TrMeanβ to handle
users from different clusters as impurities.

Note the two requirements for good clustering C0 from ONE_SHOT: (a) if every cluster in C⋆ has a proxy in C0,
then the TrimmedMeanGD obtains at least one cluster model for every cluster in C⋆, (b) if every cluster in C0
has a small fraction (β < 1

2 ) of impurities, then we can apply TrMeanβ operation can recover the correct cluster
model for every cluster.

We end up with a trained model for each cluster as an output of this subroutine. Since these models are better
estimates of their population risk minimizers than before, we can use them to improve C0.

Subroutine RECLUSTER(). The full algorithm for this subroutine is provided in algorithm 2. This subroutine
reduces the impurity level of each cluster in C0 by assigning each client i to its nearest cluster c in terms of
dist(ωc,T ,wi,T ). Here, ωc,T refers to the model on cluster c obtained after TrimmedMeanGD with T iterations.
Since ωc,T are better estimates, we hope that the each impure user will go to a cluster with its actual cluster
label. For instance, in fig. 2, the impure green node should go to one of the green clusters. If some clusters
in rg(C⋆) do not have a good proxy in rg(C0), then the users of this cluster will always remain as impurities.

Subroutine MERGE(). We provide the full algorithm for this subroutine in algorithm 4. Even after removing
all impurities from each cluster, we can still end up with clusters in C⋆ being split, for instance the green clusters
in fig. 2. In C⋆, these form the same cluster, thus they should be merged. As these were originally from the
same cluster in C⋆, their learned models should also be very close. Similar to ONE_SHOT, we create a graph G but
instead with nodes being the clusters in C′

r. Then, we add edges between clusters based on a threshold λ and
find all the clusters in the resultant graph G by finding all connected components. Then, each of these clusters in
G correspond to a set of clusters in C′

r, so we merge them into a single cluster to obtain the final clustering Cr+1.
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3.3 Discussion

SR-FCA uses a bottom-up approach to construct and refine clusters. The initialization in ONE_SHOT is obtained
by distance-based thresholding on local models. These local models are improper estimates of their population
minimizers due to small n, causing C0 ̸=C⋆. However, if C0 is not very bad, i.e., each cluster has < 1

2 impurity
fraction and all clusters in C⋆ are represented, we can refine it.

REFINE() is an alternating procedure, where we first estimate cluster centers from impure clusters. Then, we
RECLUSTER() to remove the impurities in each cluster and then MERGE() the clusters which should be merged
according to C⋆. Note that as these steps use more accurate cluster estimates, they should have smaller error.
This iterative procedure should recover one cluster for each cluster in C⋆, thus obtaining the number of clusters
and every cluster should be pure so that C⋆ is exactly recovered.

3.4 Computation and Communication Complexity

We now analyze the computation and communication complexity of SR-FCA. Note that the complexity of
the REFINE step is the same as that of IFCA in terms of both computation time and communication since
in each case, we need to find the loss of every cluster model on every client’s data (all pairs). This requires
O(m2) forward passes. Note that performing all pairwise comparisons is unavoidable if an initial clustering
is not known, as we need to know which clients can be clustered together. (eg. see KMeans Lloyd (1982) v/s
DBSCAN Ester et al. (1996) or Ward’s algorithm).

The REFINE step is comparable to IFCA for which we provide a detailed analysis.Assume that we run IFCA
on K clusters for T rounds with E local steps with α fraction of m clients participating in each round. Then, we
require O(αmTE) backward passes and O(αmT ) communication for local training and aggregation. For cluster
identity estimation, in each round, we need to compute the loss of each cluster model on every participating
client. To send cluster models to each client, we need O(αmKT ) communication and to compute losses, we
need O(αmKT ) forward passes.

If we run R REFINE steps with ≤C clusters per step where each TrimmedMeanGD procedure runs for T rounds
with E local steps and α fraction of clients participating in each round. We need O(αmETR) backward passes
and O(αmTR) communication for aggregation and local training. For clustering in REFINE and MERGE steps,
we need to compute the loss of every model on every client, which requires O(mKR) communication and
O(mKR) forward passes. We summarize these results in Table 1.

Algorithm Communication Training Steps Forward Passes
IFCA O(αmTK) O(αmTE) O(αmTK)

SR-FCA O(αmTR+mKR) O(αmTER) O(mKR)

Table 1: Communication, training runtime and forward passes for loss computation in clustering for SR-FCA and IFCA.
E is the number of local steps, T is the number of rounds, R is the number of REFINE steps, K is the number of clusters
and α is the fraction of clients participating per round.

Comparing the two algorithms, where the number of REFINE steps R and the number of clusters C are assumed
to be constants, for a constant α, both algorithms require the same communication and backward passes, but
IFCA needs more forward passes for clustering. If α=Θ( 1

m ), which corresponds to selecting a constant number
of clients per round, then if m = Ω(T ), IFCA is better than SR-FCA in terms of communication and forward
passes, and vice-versa if T =Ω(m).

As for the other baselines, Local-KMeans is the most efficient in terms of computation and communication
complexity as it performs only a single round of communication, at the end of training. CFL, on the other
hand, adopts a top-down approach to split clusters into two parts based on the cosine similarity of gradients.
Each split calls a bipartitioning subroutine with runtime O(m3) making it the slowest baseline.
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4 Theoretical Guarantees

In this section, we obtain the convergence guarantees of SR-FCA. For theoretical tractability, we impose
additional conditions on SR-FCA. First, the dist(.,.) is the Euclidean (ℓ2). However, in experiments (see next
section), we remove this restriction and work with other dist(.,.) functions. Here, we show an example where
ℓ2 norm comes naturally as the dist(.,.) function.
Proposition 4.1. Suppose that there are m users, each with a local model w⋆

i ∈ Rd and its datapoint
(x, yi) ∈ Rd × R is generated according to yi = ⟨w⋆

i ,x⟩ + ϵi. If x ∼ N (0, Id) and ϵi
i.i.d∼ N (0, σ2), then

KL(p(x,yi)||p(x,yj))=Ex[KL(p(yi|x)||p(yj |x))]= d
2σ2 ∥wi−wj∥2.

Hence, we see that minimizing a natural measure (KL divergence) between the distributions for different
users is equivalent to minimizing the ℓ2 distance of the underlying local models. This example only serves as a
motivation, and our theoretical results hold for a strictly larger class of functions, as defined by our assumptions.
Remark 4.2 (λ range). For the guarantees of this section to hold, we require λ∈(ϵ1,ϵ2) and t≤cmin, where cmin
is the minimum size of the cluster. We emphasize that, in practice (as shown in the experiments), we treat λ and
t as hyper-parameters and obtain them by tuning. Hence, we do not require the knowledge of ϵ1,ϵ2 and cmin.

The following assumptions specify the exact class of losses for which our analysis holds. Definitions provided
in appendix E.
Assumption 4.3 (Strong convexity). The loss per sample f(w,.) is µ-strongly convex with respect to w.
Assumption 4.4 (Smoothness). The loss per sample f(w,.) is also L-smooth with respect to w.
Assumption 4.5 (Lipschitz). The loss per sample f(w,.) is Lk-Lipschitz for every coordinate k ∈ [d]. Define
L̂=

√∑d
k=1L2

k.

We want to emphasize that the above assumptions are standard and have appeared in the previous literature.
For example, the strong convexity and smoothness conditions are often required to obtain theoretical guarantees
for clustering models (see Ghosh et al. (2022); Lu & Zhou (2016), including the classical k-means which assume
a quadratic objective. The coordinate-wise Lipschitz assumption is also not new and (equivalent assumptions)
featured in previous works Yin et al. (2018; 2019), with it being necessary to establish convergence of the
trimmed mean procedure. Throughout this section, we require Assumption 4.3, 4.4 and 4.5 to hold.

Misclustering Error Since the goal of SR-FCA is to recover both the clustering and cluster models, we first
quantify the probability of not recovering the original clustering, i.e., Cr ̸= C⋆. Here and subsequently, two
clusters being not equal means they are not equal after relabeling (see definition 3.1). We are now ready to
show the guarantees of several subroutines of SR-FCA. First, we show the probability of misclustering after the
ONE_SHOT step.
Lemma 4.6 (Error after ONE_SHOT). After running ONE_SHOT with η ≤ 1

L for T iterations, for the threshold
λ ∈ (ϵ1,ϵ2) and some constant b2 > 0, the probability of error is Pr[C0 ≠ C⋆] ≤ p ≡ md exp(−n b2∆

L̂
√

d
), provided

n2/3∆4/3

D2/3L̂2/3 ≳d, where ∆= µ
2 ( min{ϵ2−λ,λ−ϵ1}

2 −(1− µ
L )T/2D) and n=mini∈[m]ni.

We would like to emphasize that the probability of error is exponential in n, yielding a reasonable good
clustering after the ONE_SHOT step. Note that the best probability of error is obtained when λ= ϵ1+ϵ2

2 .
Remark 4.7 (Separation). In order to obtain p < 1, we require ∆ = Ω( logm

n ). Since ∆ ≤ µ
2

ϵ2−ϵ1
4 , we require

(ϵ2 −ϵ1) ≥ O( logm
n ) = Õ( 1

n ). Note that we require a condition only on the separation ϵ2 −ϵ1, instead of just
ϵ2 or ϵ1 individually.

Although we obtain an exponentially decreasing probability of error, we would like to improve the dependence
on m, the number of users. REFINE() step does this job.
Theorem 4.8 (One step REFINE()). Let βt=Θ(cmin), and REFINE() is run with TrimmedMeanGD(β). Provided
min{ n2/3∆′4/3

D2/3 , n2∆′2

L̂2log(cmin) } ≳ d, with 0 < β < 1
2 , where ∆′ = ∆ − µB

2 > 0 and B =
√

2L̂ϵ1/µ. Then, for any

8
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constant γ1 ∈(1,2) and γ2 ∈(1,2− µB
2∆ ), such that after running 1 step of REFINE() with η ≤ 1

L , we have

Pr[C1 ̸=C⋆]≤ m

cmin
exp(−a1cmin)+ m

t
exp(−a2m)+(1−β)m( p

m
)γ1 +m( p

m
)γ2 +8d

m

t
exp(−a3n

∆′

2L̂
)

where cmin is the minimum size of the cluster. Further for some small constants ρ1 >0,ρ2 ∈(0,1), we can select
β,γ1 and γ2 such that for large m,n and ∆′, with B << 2∆′

µ , we have Pr[C1 ̸=C⋆]≤ ρ1
m1−ρ2 p.

Remark 4.9 (Misclustering error improvement). Note that ρ2 can be made arbitrarily close to 0 by a proper
choice of γ1 and γ2. So, one step of REFINE() brings down the misclustering error by (almost) a factor of 1/m,
where m is the number of users.
Remark 4.10 (Condition on B). Note that we require B << 2∆′

µ for the above to hold. From the definition of B,
when the intra-cluster separation ϵ1 is small, B is small. So, for a setup like IFCA, where ϵ1 =0, this condition
is automatically satisfied.

Proof Sketch for Theorem 4.8: With the notation, C1 ̸=C⋆, we can identify the main sources of error for
this event as: (1) There exists c∈rg(C⋆) such that no cluster in C0 has cluster label c. (2) Each cluster c∈rg(C0)
should have < α fraction of impurities for some 1

2 > β > α. (3)MERGE() error: Two clusters with same label
are not merged or two clusters with different labels are merged. (4)RECLUSTER() error: A client does not go
to its correct cluster after MERGE() and REFINE().

For the first two sources of error, we utilize the clustering structure obtained by ONE_SHOT, while for the last two
sources of error we leverage strong concentration of coordinate-wise Lipschitz losses to bound the performance
of improved cluster models obtained by TrimmedMeanGD. In appendix C, we upper bound the probabilities of
error for each of the above mentioned cases and apply a union bound on these errors to obtain the final result.

Using single step improvement of REFINE, we obtain the improvement after R steps of REFINE.
Theorem 4.11 (Multi-step REFINE()). If we run R steps of REFINE(), resampling ni points from Di and
recompute wi as in ONE_SHOT for every step of REFINE(), then the probability of error for SR-FCA with R steps
of REFINE() is Pr[CR ̸=C⋆]≤

(
ρ2

m(1−ρ1) p
)R.

Remark 4.12 (Re-sampling). Although the theoretical convergence of Multi-step REFINE() requires resampling of
data points in each iteration of REFINE(), we experimentally validate (see section 5, that this is not required at all.
Remark 4.13. Since each step of REFINE() reduces the probability of misclusteing by (almost) a factor of 1/m,
very few steps of REFINE() is often sufficient. In our experiments ( section 5), we need 1−2 REFINE() steps.

Convergence of cluster models: SR-FCA also obtain an appropriate loss minimizer for each cluster.
Theorem 4.14 (Cluster models). Under the conditions described in theorem 4.8, after running SR-FCA for
(R+1) steps of REFINE(), we have CR+1 =C⋆ and

∥ωc,T −ω⋆
c ∥≤(1−κ−1)T/2D+Λ+2B,where, Λ=O

( L̂d

1−2β

( β√
n

+ 1
√

ncmin

)√
log(nmL̂D)

)
∀c∈rg(C⋆), with probability 1−

(
ρ2

m(1−ρ1) p
)R− m

cmin
4du′′

(1+ncminL̂D)d
, for some constant u′′ >0.

Remark 4.15 (Convergence rate matches IFCA). Note that the models converge exponentially fast to the true
cluster parameter ω⋆

c , which matches the convergence speed of IFCA.
Remark 4.16 (Comparison with IFCA in statistical error). Note that for IFCA, ϵ1 =0 and the statistical error
rate of IFCA is Õ(1/n) (see Theorem 2 in Ghosh et al. (2022)). Looking at theorem 4.14, we see that under
similar condition (ϵ1 = 0 and hence B = 0), SR-FCA obtains an error rate of Õ(1/

√
n), which is weaker than

IFCA. This can be thought of as the price of initialization. In fact for IFCA, a good initialization implies that
only a very few users will be mis-clustered, which was crucially required to obtain the Õ(1/n) rate. But, for
SR-FCA, we do not have such guarantees which results in a weaker statistical error.

5 Experiments

We compare the performance of SR-FCA against several baselines on simulated and real datasets.
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Table 2: Test Accuracy and standard deviations across 5 random seeds on simulated datasets. The highest accuracy
is bold. SR-FCA is competitve with IFCA for MNIST and beats it for CIFAR10.

Baseline MNIST
(inverted)

MNIST
(rotated)

CIFAR
(rotated)

CIFAR
(Label)

SR-FCA 92.03 ±0.30 91.66 ± 0.13 91.38 ± 0.27 93.06 ± 0.20
Local 76.52 ±0.54 85.55 ± 0.19 75.87± 0.33 80.09 ± 0.53

Global 88.61 ± 0.77 80.88 ±1.55 88.75± 0.52 81.48 ± 3.55
CFL Sattler et al. (2021) 88.30 ± 1.12 80.47 ±0.44 87.59 ± 0.42 82.16 ± 1.73

LOCAL-KMeans Ghosh et al. (2019) 10.56 ± 1.31 10.35 ± 0.71 10.00 ±0.20 72.89 ± 0.61
IFCA Ghosh et al. (2022) 91.55± 0.81 91.80 ± 0.25 86.05 ± 0.43 85.19 ± 2.01

Simulated Datasets: We generate clustered FL datasets from MNIST LeCun & Cortes (2010) and
CIFAR10 Krizhevsky et al. by splitting them into disjoint sets, one per client. For MNIST, by inverting pixel
value, we create 2 clusters (referred to as inverted in table 2) and by rotating the image by 90,180,270 degrees
we get 4 clusters. Note that this is a common practice in continual learning Lopez-Paz & Ranzato (2017) and
FL Ghosh et al. (2022). We set m=100,n=600. We obtain Rotated CIFAR10 by creating 2 clusters with the
images rotated by 180 degrees. To test with label heterogeneity, we create Label CIFAR10 with 2 clusters. The
first cluster contains the first 7 of the 10 labels and the second cluster contains the last 7 of the 10 labels. We
set m=32 for both CIFAR10 datasets and n=3125 and n=4375 for Rotated and Label CIFAR10 respectively.
To emulate practical FL scenarios, we assume that only a fraction of the nodes participate in the learning
procedure. For Rotated and Inverted MNIST, we assume that all the nodes participate, while for Rotated
and Label CIFAR10, 50% of the nodes participate. For MNIST, we train a 2-layer feedforward NN, while
for CIFAR10, we train a ResNet9 Page (2019). We train Rotated MNIST, Inverted MNIST, Rotated CIFAR10,
and Label CIFAR10 for 250, 280, 2400 and 2400 iterations respectively with 2 refine steps for SR-FCA.

Real Datasets: We use two real federated datasets from leaf database Caldas et al. (2018). We sample m=50
machines from FEMNIST and Shakespeare. FEMNIST is a Federated version of EMNIST with data on each
client being handwritten symbols from a different person. Shakespeare is a NLP dataset where the task is
next character prediction. For FEMNIST, train a CNN for while for Shakespeare we train a 2-layer stacked
LSTM. For clustered FL baselines, we tune K, the number of clusters, with K ∈{2,3,4,5} for FEMNIST and
K ∈{1,2,3,4} . We run FEMNIST and Shakespeare for 1000 and 2400 iterations respectively and set number
of refine steps to be 1 for SR-FCA.

We compare with standard FL baselines – Local (every client trains its own local model) and Global (a single
model trained via FedAvg McMahan & Ramage (2017) on all clients). The main baseline we compare to is
IFCA. Among clustered FL baselines, we consider CFL Sattler et al. (2021), which uses a top-down approach
with cosine distance metric, and Local-KMeans Ghosh et al. (2019), which performs KMeans on the model
weights of each client’s local model. For real datasets, we compare with two additional baselines – FedSoft Ruan
& Joe-Wong (2021) and ONE_SHOT-IFCA (initial clustering of IFCA obtained by ONE_SHOT), to assess if these
variants can fix the issues of initialization in IFCA.

For SR-FCA, we tune the parameters λ and β for trimmed mean and set t = 2 and require at most 2 REFINE
steps. We utilize the following metric based on cross-cluster loss which is better suited to measure distances
between clients’ models as these are neural networks.
Definition 5.1 (Cross-Cluster distance). For any two clients i, j ∈ [m], with corresponding local
models wi and wj and local empirical losses fi and fj , we define the cross-cluster loss metric as
distcross-cluster(wi,wj)= 1

2 (fi(wj)+fj(wi)).

To extend this definition to distances between cluster c and client j, such as those required by REFINE, we
replace the client model wi and client loss fi by the cluster model wc and empirical cluster loss fc respectively.
Similarly, to obtain distances between clusters c and c′, which are required by MERGE, we replace the client
models and losses with cluster models and losses respectively.

Note that no data is shared between clients to compute the cross-cluster distances, rather the models are shared
between clients via the server. To compute the cross-cluster distance between two clients i and j, we need to
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Table 3: Average Misclustering error of clustered FL
algorithms on test set across 5 random seeds for simulated
datasets. The lowest error is bold. SR-FCA is competitve
with IFCA and beats it for Rotated CIFAR10.

Baseline MNIST
(inverted)

MNIST
(rotated)

CIFAR
(rotated)

CIFAR
(Label)

SR-FCA 0.0 0.0 0.0 0.0
CFL 0.08 0.14 0.18 0.38

LOCAL-
KMeans 0.36 0.28 0.38 0.26

IFCA 0.0 0.0 0.50 0.5

Table 4: Test Accuracy and standard deviations across 5
seeds on Real datasets. Highest accuracy is bold. SR-FCA
consistently outperforms IFCA.

Baseline FEMNIST Shakespeare

SR-FCA 83.83± 1.49 48.54 ± 0.69
Local 66.18 ± 2.14 33.86 ±1.22

Global 80.00± 3.02 45.28 ± 0.78
CFL 79.48 ± 3.48 44.14 ± 1.03
IFCA 81.93± 1.56 46.12 ± 1.22

FedSoft 78.74 ± 2.61 46.98 ± 1.25
ONE_SHOT

-IFCA
81.62 ± 2.29 45.56 ± 1.15

compute fj(wi) and fi(wj). To compute fj(wi), the server sends the model of client i, wi, to client j and client
j computes its loss on the model wi and reports it back to the server. fi(wj) is computed similarly. To compute
the cross-cluster distance between client i and cluster c, we need to compute fi(wc) and fc(wi). fi(wc) can be
computed by sending the model wc to client i. To compute the quantity fc(wi), the server sends the model wi

to each of the clients in cluster c to compute client losses on model wi. The cluster loss is simply the average of
the losses of all clients in cluster c. We use the same procedure to compute cluster loss, but instead of computing
it on a client model, we compute it on the cluster model, to obtain cross-cluster distances between two clusters.

Further, for clustered FL baselines (IFCA, CFL, Local-KMeans, FedSoft, ONE_SHOT-IFCA) on real datasets,
we tune the number of clusters. This is not required in SR-FCA. Note that for each baseline and dataset pair,
we perform 20 trials of random search for hyperparameter tuning.

As our global model corresponds to FedAvg, for a fair comparison, we use FedAvg McMahan & Ramage (2017)
inside the TrimmedMeanGD subroutine, bt applying TrMeanβ operation to the model updates after local steps
from different clients. Note that we could have used a different base federated optimization algorithm for global
model, for instance, FedProx Li et al. (2020b) or SCAFFOLD Karimireddy et al. (2020). In that case, we would
have to modify all our clustered FL algorithms baselines and SR-FCA, to use this base federated optimization
algorithm for training cluster models.

Test Metrics: The test performance of any baseline is obtained by averaging over the clients, the test perfor-
mance of each client on its model trained by the baseline. For the local baseline, it is the client’s local model and for
the global baseline it is the single global model. For SR-FCA and clustered FL baselines, it is the cluster model for
the client. Note that we do not present convergence plots as different algorithms run in different number of stages.

For simulated datasets, the true clustering C⋆ is known, so we report both the test accuracy and misclustering
error in table 2 and 3 respectively. For real datasets, the true clustering is not known, therefore, we report
only the final test accuracy in table 4. Further, we provide the test accuracy after ONE_SHOT and every
REFINE step in table 5. The total time to run all experiments including hyperparameter tuning on a single
NVIDIA-GeForce-RTX-3090 is 2.5 weeks and the code is provid ed here.

5.1 Results

Across all datasets, we find that SR-FCA is competitive with or outperforms all other algorithms in terms of
both misclustering error and test accuracy.

Comparison with Local and Global: The Local algorithm has access to little data, while the Global model
cannot handle the heterogeneity. Hence, as seen in tables 2 and 4, SR-FCA and other clustered FL baselines
perform better as they find correct clusters with low heterogeneity inside each cluster.

Comparison with CFL and Local-KMeans: CFL and Local-KMeans use the cosine distance between
gradients and l2 distance between model weights which are not suitable for NN models. Local-KMeans performs
the worst with ≈10% test accuracy for simulated datasets. For real datasets, it’s accuracy is ≤5% so we do
not report it. SR-FCA and IFCA use cross-cluster loss and client loss respectively, which are better suited to
NN models, thus outperforming these baselines (see tables 2 and 4)
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Figure 3: Histogram of pairwise distances after ONE_SHOT and λ in SR-FCA for Inverted MNIST (Left) and
FEMNIST(Right).

Comparison with IFCA: On simulated datasets (tables 2 and 3), we find that IFCA recovers C⋆ and
outperforms SR-FCA marginally for MNIST datasets. This is due to MNIST being a simpler and easier to learn
dataset, even after adding heterogeneity via rotations or inversions. In contrast, for CIFAR10, the learning task
is much more difficult, and IFCA, without proper initialization, ends up with all clients in only a single cluster
after a few rounds resulting in a misclustering of 0.5, as seen in table 3. Thus it’s performance is comparable
to the global baseline in terms of test accuracy as seen in table 2. From table 3, we see that SR-FCA correctly
identifies C⋆ and comprehensively beats IFCA in terms of test accuracy in table 2.

On real datasets, for IFCA, we need to find the correct number of clusters by tuning. For a random sample
of clients, the true number of clusters might not be the same. SR-FCA can compute both the correct clustering
and cluster models for every random sample, allowing it to beat IFCA, which fits the same number of clusters
to every random sample. The difference is more pronounced for the more difficult Shakespeare dataset than the
easier FEMNIST dataset. Further, the variants of FedSoft and ONE_SHOT-IFCA, have similar test performance
to IFCA on real datasets. For FedSoft, which is a soft-clustering version of IFCA, the issue of initialization
remains unresolved. Running IFCA after ONE_SHOT can only re-cluster the clients thus results in a similar
performance. In short, SR-FCA outperforms IFCA as well as its variants.

Intermediate Steps of SR-FCA: For MNIST, multiple REFINE steps are necessary for best performance,
however, for CIFAR10 and real datasets, only a single REFINE step achieves best performance (see table 5).

Distribution of pairwise distances Note that λ is an important hyperparameter for our algorithm and
its choice depends on the distribution of pairwise distances. In Figure 3, we provide the histogram of the
pairwise distances after ONE_SHOT for Inverted MNIST and FEMNIST respectively. For simulated datasets,
there is a clear separation between the pairwise distances – clients in the same clusters have very low pairwise
distance and clients in different clusters have very high pairwise distances. Therefore, any choice of λ in the
middle suffices. However, for real datasets, there isn’t a clear separation between clusters. Therefore, we use
hyperparameter tuning to choose the which maximizes test accuracy.

6 Conclusion

We conclude with a potential scope of improvement in SR-FCA. SR-FCA trains models obtained via
TrimmedMeanGD() which assumes β fraction of users inside each cluster are corrupted. Instead, if we run any
federated optimization algorithm which can accommodate low heterogeneity, for instance FedProx Li et al.
(2020b), inside each cluster in the final clustering CR, then we may obtain an improved error in theory (Λ in
theorem 4.14). We leave this as a future work.

Acknowledgements. This research is supported in part by NSF awards 2112665, 2217058, and 2133484.
Table 5: Test Accuracies of intermediate steps of SR-FCA for all datasets

Baseline MNIST
(INVERTED)

MNIST
(ROTATED)

CIFAR10
(ROTATED)

CIFAR10
(LABEL) FEMNIST Shakespeare

After ONE_SHOT 76.52 ± 0.54 85.55 ± 0.19 75.87 ± 0.33 80.09 ± 0.53 66.18 ± 2.14 33.86 ± 1.22
After 1st REFINE 91.88 ± 0.39 91.63 ± 0.12 91.38 ± 0.27 93.06 ± 0.20 83.83 ± 1.49 48.54 ± 0.69
After 2nd REFINE 92.03 ± 0.30 91.66 ± 0.13 91.38 ± 0.27 93.06 ± 0.20 83.83 ± 1.49 48.54 ± 0.69
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Appendix for "An Improved Federated Clustering Algorithm
with Model-based Clustering"

A Proof of proposition 4.1

According to the proposition, for two users i and j, the data is generated by first sampling each coordinate
of x∈Rd from N (0,1) iid and then computing y as –

yi =⟨x,w⋆
i ⟩+ϵi

where ϵi
iid∼ N (0,σ2). Then, the distribution of yi|x is N (⟨x,w⋆

i ⟩,σ2). Therefore, the KL divergence between
yi|x and yj |x is given by

KL(p(yi|x)||p(yj |x))=
〈
w⋆

i −w⋆
j ,x

〉2

2σ2

Therefore, if we take expectation wrt x, we have

Ex[KL(p(yi|x)||p(yj |x))]=
d
∥∥w⋆

i −w⋆
j

∥∥2

2σ2

B Proof of lemma 4.6

In ONE_SHOT(), C0 =C⋆, if all the edges formed in the graph are correct. This means that if i,j are in the same
cluster in C⋆, then ∥wi,T −wj,T ∥≤λ and if i,j are in different clusters, ∥wi,T −wj,T ∥>λ.

Note that,

wi,T −wj,T =(w⋆
i −w⋆

j )+(wi,T −w⋆
i )−(wj,T −w⋆

j )

Now, if we apply triangle inequality, we obtain

dist(wi,T ,wj,T )≥dist(w⋆
i ,w⋆

j )−Ξi,j , dist(wi,T ,wj,T )≤dist(w⋆
i ,w⋆

j )+Ξi,j

where Ξi,j =
∑

k=i,jdist(wk,T ,w⋆
k). This decomposition forms the key motivation for our algorithm.

Therefore, if i,j are in the same cluster, then a sufficient condition for edge (i,j) to be incorrect is

λ≤dist(w⋆
i ,w⋆

j )+Ξi,j =⇒ Ξi,j ≥λ−ϵ1

Similarly, if i,j are in different clusters, then a sufficient condition for edge (i,j) to be incorrect is

λ≥dist(w⋆
i ,w⋆

j )−Ξi,j =⇒ Ξi,j ≥ϵ2−λ

Therefore, we can set ∆λ =min{ϵ2 −λ,λ−ϵ1}, and then a sufficient condition for any edge to be incorrect is
maxi,jΞi,j ≥∆λ.

Thus,

Pr[C⋆ ̸=C0]≤Pr[at least 1 edge is incorrect]
≤Pr[max

i,j
Ξi,j ≥∆λ]

≤Pr[max
i,j

∑
k=i,j

∥wk,T −w⋆
k∥≥∆λ]

≤Pr[max
i,j

max
k=i,j

(∥wk,T −w⋆
k∥≥ ∆λ

2 ]

≤Pr[max
i∈[m]

∥wi,T −w⋆
i ∥≥ ∆λ

2 ] (3)
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The second and third inequalities are obtained by expanding the terms. The fourth inequality is obtained
by Pr[a+b ≥ c] ≤ Pr[max{a,b} ≥ c/2]. For the fifth inequality, we merge maxi,j maxk=i,j into maxi∈[m]. As
we can see in Equation equation 3, we need to bound ∥wi,T −w⋆

i ∥ for each node i. The subsequent Lemma
allow us to bound this quantities.
Lemma B.1 (Convergence of wi,T ). Let n2/3∆4/3

D2/3L̂2/3 ≲ b1d, for some constant b1 > 0. Then, after running
ONE_SHOT() with η ≤ 1

L , for some constant b2 >0, under assumption 4.3 ,assumption 4.4 and assumption 4.5,
we have

Pr[∥wi,T −w⋆
i ∥≥ ϵ2−ϵ1

4 ]≤d exp(−n
b2∆
L̂

√
d

),

where ∆= µ
2 ( ∆λ

2 −(1− µ
L )T/2D) and n=mini∈[m]ni.

This lemma follows from Yin et al. (2018). The complete proof of this Lemma is present in appendix B.1.

Now, we can apply lemma B.1 in Eq equation 3.

Pr[C0 ̸=C⋆]≤Pr[max
i∈[m]

∥wi,T −w⋆
i ∥≥ ∆λ

2 ]

≤mmax
i∈[m]

Pr[∥wi,T −w⋆
i ∥≥ ∆λ

2 ]

≤md exp(−n
b2∆
L̂

√
d

)

For the second inequality, we use Pr[maxi∈[m]ai ≥c]≤
∑

i∈[m]Pr[ai ≥c]≤mmaxi∈[m]Pr[ai ≥c], which follows
from union bound.

Note that for p<1, we need the separation to be order of Θ(
√

logm
n ).

B.1 Proof of lemma B.1

We utilize results from Yin et al. (2018), which hold for TrimmedMeanGD to analyze convergence for a single
node as they yield stronger guarantees under the given assumptions.
Lemma B.2 (Convergence of wi,T ). If assumption 4.3,assumption 4.4,and assumption 4.5 hold, and η ≤ 1

L , then

∥wi,T −w⋆
i ∥≤(1−κ−1)T/2D+ 2

µ
Λi ∀i∈ [m] (4)

where κ= L
µ and Λi is a positive random variable with

Pr[Λi ≥
√

2dr+2
√

2δL̂]≤2d(1+ D

δ
)dexp(−nmin{ r

2L̂
,

r2

2L̂2
}) (5)

for some r,δ >0.

We provide the proof of this lemma in appendix C.8.

Using the above Lemma, we can bound the probability Pr[∥wi,T −w⋆
i ∥≥ ∆λ

2 ]

Pr[∥wi,T −w⋆
i ∥≥ ∆λ

2 ]≤Pr[2(1−κ−1)T/2D+ 2
µ

Λi+≥ ∆λ

2 ]

≤Pr[Λi ≥∆], where ∆= µ

2 (∆λ

2 −(1−κ−1)T/2D)

≤Pr[
√

2dr+2
√

2δL̂≥∆]

≤dexp(−nb2
∆

L̂
√

d
)

for some constants b1,b2,b3,b4 >0, where we set r=b3L̂max{ ∆
L̂

√
d
,
√

∆
L̂

√
d
} and δ =b4

∆
L̂

, and for b1d≤ n2/3∆4/3

D2/3L̂4/3 ,

such that
√

2dr+2
√

2δL̂≥∆ and nmin{ r
2L̂

, r2

2L̂2 }> Dd
δ in lemma B.2.
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C Proof of theorem 4.8

C.1 Preliminaries

First, we define certain random variables and their respective probabilities which we will use throughout this
proof. Since the edge based analysis and corresponding clique identification involves a lot of dependent events,
we try to decompose the absence/presence of edge into a combination of independent events.

Define,

Xij =
{

1 If the edge (i,j) in C0 is incorrect in C⋆

0 Otherwise
(6)

An edge (i,j) in C0 is incorrect in C⋆ if either it is present in C⋆ and absent in C0 or vice versa. We analyze
the probability of this event for the case when C⋆ contains the edge (i,j). The case when C⋆ doesn’t contain
edge (i,j) and it is present in C0 has exaclty same probability. When

∥∥w⋆
i −w⋆

j

∥∥ ≤ ϵ1, then edge is present is
C⋆. If it is absent in C0, then

Pr[Xij =1]≤Pr[Ξi,j ≥∆λ]
≤Pr[Λi+Λj ≥2∆]

The analysis is similar to the proof of ONE_SHOT() in appendix B.

Note that the random variables {Xij} are not independent. We now define independent random variables
Xi such that

Xi =
{

1 If Λi ≥∆
0 Otherwise

(7)

Thus, we can see that Xij ≤Xi+Xj . Additionally,

Pr[Xi =1]≤Pr[Λi ≥∆]≤ p

m
(8)

This follows from analysis of ONE_SHOT() in appendix B.

We can further generalize this notion to the random variables defined as Yi,γ .

Yi,γ =
{

1 If Λi ≥γ∆,γ ∈(0,2)
0 Otherwise

(9)

Then,

Pr[Yi,γ =1]≤Pr[Λi ≥γ∆]≤dexp(−nb2
γ∆

L̂
√

d
)=( p

m
)γ

Note that the set of random variables {Yi,γ}m
i=1 are mutually independent random variables.

Further, we define the ω⋆
c for every cluster c ∈ rg(C0). Let c′ ∈ C⋆ be the cluster label of node c. If

Gc = {i : i ∈ [m],C⋆(i) = c′}, which is the set of nodes in c which were from c′ in the original clustering, then
we can define ω⋆

c and Fc(w) as

ω⋆
c =argmin

w∈W
E[ 1

|Gc′ |
∑

i∈Gc′

fi(w)] (10)

=argmin
w∈W

1
|Gc′ |

∑
i∈Gc′

Fi(w)=argmin
w∈W

Fc(w) (11)

We use this definition of ω⋆
c in the appendices C.5 and C.6.

18



Published in Transactions on Machine Learning Research (02/2024)

C.2 Analysis of REFINE()

Our goal is to compute total probability of error for REFINE() to fail. If we define this error as C1 ̸=C⋆, then
we can define the main sources of error for this event.

1. ∃c ∈ rg(C⋆) such that no cluster in C0 has cluster label c : If the a cluster c ∈ rg(C⋆) is absent
in C0, then subsequent steps of REFINE() will never be able to recover it, as they only involve node
reclustering and merging existing clusters. The lemma presented below gives an upper bound on the
probability of this event.

Lemma C.1. Under the conditions of lemma 4.6 and if t=Θ(cmin), then there exists constant a1 >0
such that

Pr[∃c∈rg(C⋆) such that no cluster in C0 has cluster label c]

≤ m

cmin
exp(−a1cmin)

The proof of this Lemma is presented in appendix C.3

2. Each cluster c ∈ rg(C)0 should have < α fraction of impurities for some 1
2 > β > α: If some

cluster has more than α-fraction of impure nodes, then we cannot expect convergence guarantees for
TrimmedMeanGDβ .
The below lemma bounds the probability of this error as

Lemma C.2. . For some constants 0<α<β < 1
2 ,a2 ≥0,γ1 ∈(1,2) and αt=Θ(m), under the conditions

in lemma 4.6, we have

Pr[∃c∈rg(C0) which has >α fraction of impurities ]

≤ m

t
exp(−a2m)+(1−α)m( p

m
)γ1

The proof of this Lemma is presented in appendix C.4.

3. MERGE() error: We define this as the error for the MERGE() to fail. Even though MERGE() operates
after RECLUSTER(), RECLUSTER() does not change the cluster iterates. The goal of MERGE() is to
ensure that all clusters in C0 with the same cluster labels are merged. Therefore, we define MERGE()
error as the event when either two clusters with same cluster label are not merged or two clusters
with different cluster labels are merged. The below lemma bounds this probability.

Lemma C.3. If min{ n2/3∆4/3

D2/3L̂2/3 , n2∆′2

L̂2log(cmin) }≥ u1d for some constants u1 >0, then for some constant

a′
3 >0, where ∆′ =∆− µB

2 >0, where B =
√

2L̂ϵ1
µ , we have

Pr[MERGE() Error]≤ 4dm

t
exp(−a′

3n
∆′

2L̂
)

The proof of this Lemma is presented in appendix C.5.

4. RECLUSTER() error: This event is defined as a node going to the wrong cluster after both MERGE() and
REFINE() operations. After MERGE(), each cluster in C0 corresponds to a single cluster in C1. Therefore,
we incur an error due to the RECLUSTER() operation if any node i does not go to the cluster c∈C1 which
has cluster label C⋆(i). The below lemma provides an upper bound on the probability of this error.

Lemma C.4. If min{ n2/3∆4/3

D2/3L̂2/3 , n2∆′2

L̂2log(cmin) }≥u2d for some constants u2 >0, then for some constants
a′′

3 >0 and γ2 ∈(1,2− µB
2∆ ), we have

Pr[RECLUSTER()error]≤4d
m

t
exp(−a′′

3n
∆′

2L̂
)+m( p

m
)γ2 (12)
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The proof of this Lemma is presented in appendix C.6.

The total probability of error after for a single step of REFINE() is the sum of probability of errors for these
4 events by the union bound. Therefore,

Pr[C1 ̸=C⋆]≤ m

cmin
exp(−a1cmin)+ m

t
exp(−a2m)

+(1−β)m( p

m
)γ1 +8d

m

t
exp(−a3n

∆′

2L̂
)+m( p

m
)γ2

where we set a3 =min{a′
3,a′′

3} .

For some small constants ρ1 > 0, ρ2 ∈ (0, 1), we can choose γ1 ∈ (1, 2), β ∈ (0, 1
2 ) and

γ2 ∈ (1, 2 − µB
2∆ ) such that (1 − β)( p

m )γ1−1 + ( p
m )γ2−1 ≤ ρ1

2m1−ρ2 and for large enough m, ∆′ and n,
m

cmin
exp(−a1cmin) + m

t exp(−a2m) + 8d m
t exp(−a3n ∆′

2L̂
) ≤ ρ1

2m1−ρ2 p. This happens because we have terms of
exp(−m),exp(−cmin) and exp(−n∆′), which decrease much faster than p

m which has terms of O(mexp(−n∆)),
where ∆ and ∆′ are of the same order. Therefore, the total probability of error can be bounded by

Pr[C1 ̸=C⋆]≤ ρ1

m1−ρ2
p (13)

C.3 Proof of lemma C.1

Pr[∃c∈rg(C⋆) such that no cluster in C0 has cluster label c]

≤
∑
c∈C⋆

Pr[No cluster in C0 has cluster label c] (14)

Here, we use union bound over the clusters for the second inequality. Now, we analyze the probability that no
cluster in rg(C0) has cluster label c for some c∈ rg(C⋆). Consider a cluster in rg(C0). This cluster has cluster
label c if a majority of its nodes are from cluster c∈rg(C⋆). Since the size of each cluster in rg(C0) is atleast t
and there are K clusters in rg(C⋆), if all clusters in rg(C0) have ≤ t

K nodes from cluster c, then no cluster will
have cluster label c.

Assume that the clique formed by nodes from cluster c has r nodes. Then, every node i in cluster c, must have Sc−r
edges absent, which correspond to the edges between a node of the clique and those outside it. Thus, we obtain,

Pr[No cluster in C0 has cluster label c]≤Pr[ ∩
C⋆(i)=c

{
∑

j ̸=i,C⋆(i)=c

Xij >Sc− t

K
}]

≤Pr[
∑∑

C⋆(i)=C⋆(j)=c

Xij >Sc(Sc− t

K
)]

≤Pr[
∑∑

C⋆(i)=C⋆(j)=c

(Xi+Xj)>Sc(Sc− t

K
)]

≤Pr[ 1
Sc

∑
C⋆(i)=c

Xi >1− t

KSc
)]

≤exp(−
(

1− t

KSc
− p

m

)2
Sc)

≤exp(−a1cmin)

In the first step, we require each node i to have Sc − t
K wrong edges. For the second inequality, we remove

the intersection and thus, the total number of incorrect edges has to be Sc(Sc− t
K ), since each node has Sc− t

K
incorrect edges. For the third inequality, we use Xij ≤ Xi + Xj and collect the terms of Xi for the fourth
inequality. In the fifth inequality, we obtain a condition on the sum of independent Bernoulli random variables
each with mean p

m . Therefore, we can apply Chernoff bound for their sum to obtain the fifth inequality.
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A necessary condition for us is 1− t
KSc

− p
m >0 which translates to t<KSc(1− p

m ). If we select t≤cmin−1, this

inequality is always satisfied. Note that we want the term
(

1− t
KSc

− p
m

)2
>a1, for some positive constant a1. If

we choose t=Θ(m), which is possible if t=Θ(cmin) as we assume cmin =Θ(m), then this is satisfied. We use the
lower bound a1 and Sc ≥cmin to obtain the final inequality. Plugging this in Eq equation 14, we obtain our result.

C.4 Proof of lemma C.2

Pr[∃c∈rg(C0) which has ≥α fraction of impurities]

≤
∑

c∈rg(C0)

Pr[cluster c has ≥α fraction of wrong nodes] (15)

We use a simple union bound on clusters in C0 for the above inequality. Let the set of nodes in the cluster
c which are from same cluster of C⋆ as the cluster label of c, i.e., which are not impurities, be Rc. Then let
Qc = |Rc|. Let Q′

c denote the number of impurities in cluster c.

Pr[cluster c has ≥α fraction of wrong nodes]≤Pr[Q′
c ≥ α

1−α
Qc]

Pr[Q′
c ≥αt]

We use the fact that Qc+Q′
c ≥ t, which is the minimum size of any cluster, for the second inequality.

Now, we analyze the probability of a single node to be incorrect. A node is an impurity in cluster c if it has
an edge to each of nodes in Rc.

Pr[Node i is an impurity in cluster c]≤Pr[min
j∈Rc

∥wi,T −wj,T ∥≤λ] (16)

≤Pr[min
j∈Rc

(
∥∥w⋆

i −w⋆
j

∥∥−Ξi,j)≤λ]

≤Pr[Λi+max
j∈Rc

Λj ≥2∆]

Now, if maxj∈Rc
Λj ≤γ1∆, for γ1 ∈(1,2), then we need Λi ≥(2−γ1)∆ for error.

Using the definition of random variables in appendix C.1

Pr[Q′
c ≥αt]≤Pr[Q′

c ≥αt|max
j∈Rc

Λj ≤γ1∆]+Pr[max
j∈Rc

Λj ≥γ1∆]

≤Pr[
m∑

i=1
Yi,2−γ1 ≥αt]+Pr[max

j∈Rc

Λj ≥γ1∆]

For the first inequality, we use union bound over the value of maxj∈Rc Λj and for the second inequality, we
need atleast αt impurities, so atleast αt of all Yi,2−γ1 should be 1.

We now bound the two terms in the final inequality separately.

For the second term, if maxj∈Rc
Λj ≥γ1∆.

Pr[max
j∈Rc

Λj ≥γ1∆]≤QcPr[Yj,γ1 =1]≤Qc( p

m
)γ1

Here, we use union bound over all elements in Rc for the first inequality and the second inequality is plugging in
the value of Pr[Yj,γ1 =1], which we have already computed.

Now, we need to provide a bound on Qc. Note that if Qc denotes the correct number of nodes, which corresponds
to the majority of nodes, then Qc ≤(1−α)Sc, where Sc is the size of the cluster c.

For the first term, we can use Chernoff bound as Yi,2−γ1 are independent random variables with expectation p
m

Pr[ 1
m

m∑
i=1

Yi,2−γ1 ≥α
t

m
]≤exp(−(α t

m
−E[Yi,2−γ1 ])2m)≤exp(−a2m)
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We need α t
m ≥ E[Yi,2−γ1 ],which implies αt ≥ 1, since Yi,2−γ1 is a bernoulli random variable. Further, we

require αt=Θ(m), so that we can bound the probability using a constant a2 ≥0. If we choose γ1 as a constant
independent of m, then we are done.

Now, plugging all these inequalities into Eq equation 15, we get

Pr[∃c∈rg(C0) which has ≥α fraction of wrong nodes]

≤rg(C0)exp(−a2m)+
∑

c∈rg(C0)

(1−α)Sc( p

m
)γ1

≤|rg(C0)|exp(−a2m)+(1−α)m( p

m
)γ1

≤ m

t
exp(−a2m)+(1−α)m( p

m
)γ1

For the second inequality, we use
∑

c∈C0
Sc =m and for the third inequality, we use |rg(C0)|t≤m.

C.5 Proof of lemma C.3

First, let i,j ∈ [m] be a node in cluster c,c′ ∈rg(C0) respectively such that C⋆(j) and C⋆(i) are the cluster labels
of clusters c and c′ respectively. Then, if we repeat our thresholding analysis for MERGE() operation, we obtain

dist(w⋆
i ,w⋆

j )−Ψc,c′ ≤dist(ωc,T ,ωc′,T )≤dist(w⋆
i ,w⋆

j )+Ψc,c′

where Ψc,c′ =dist(ω⋆
c ,w⋆

i )+dist(ω⋆
c′ ,w⋆

j )+
∑

k=c,c′

dist(wk,T ,w⋆
k)

We obtain the above equations by a simple application of triangle inequality. Here, ω⋆
c is as defined in

appendix C.1.

To analyze the above quantities, we need to bound ∥ω⋆
c −ωc,T ∥ and

∥∥ω⋆
c −w⋆

j

∥∥ for some j ∈Gc. The following
Lemmas provide these bounds.
Lemma C.5 (Convergence of ωc,T ). If assumption 4.3,assumption 4.4 and assumption 4.5 hold, and η ≤ 1

L , then

∥ωc,T −ω⋆
c ∥≤(1−κ−1)T/2D+ 2

µ
Λc ∀c∈rg(C0) (17)

where κ= L
µ and Λc is a positive random variable with

Pr[Λc ≥
√

2d
r+3βs

1−2β
+

√
22(1+3β)

1−2β
δL̂]

≤2d(1+ D

δ
)d(exp(−(1−α)Scnmin{ r

2L̂
,

r2

2L̂2
})

+(1−α)Scexp(−nmin{ s

2L̂
,

s2

2L̂2
}))

(18)

for some r,s,δ >0 where Sc is the size of cluster c.

Proof is presented in appendix C.7
Lemma C.6 (Distance between cluster minima and node minima). If assumption 4.3 and assumption 4.5 are
satisfied then, for all j ∈ [m], where j is a node in cluster c∈C0 where C⋆(j) is the cluster label of node c, we have

∥∥ω⋆
c −w⋆

j

∥∥≤

√
2L̂ϵ1

µ
:=B (19)
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Proof is presented in appendix C.9.

Now, that we have our required quantities, we are ready to analyze the probability of error after the merge
and reclustering operations.

First, we analyze the probabilty of MERGE() operation. Note that if correct nodes of c and c′ were from the
same cluster C⋆ then,

∥∥w⋆
i −w⋆

j

∥∥≤ ϵ1,∀i∈Gc,j ∈Gc′ . If correct nodes of c′ and c were from different clusters
in C⋆, then,

∥∥w⋆
i −w⋆

j

∥∥≥ϵ2,∀i∈Gc,j ∈Gc′ . Therefore, the probability of MERGE() error is upper bounded by

Pr[MERGE() Error]≤Pr[at least 1 edge is incorrect]
≤Pr[max

c,c′
Ψc,c′ ≥∆λ]

≤Pr[max
c,c′

∑
k=c,c′

2Λk

µ
≥∆λ−2(1−κ−1)T/2D−2B]

≤ max
c∈rg(C0)

Pr[Λc ≥ µ

2 (∆λ

2 −(1−κ−1)T/2D−B)]

≤ max
c∈rg(C0)

Pr[Λc ≥∆′] (20)

≤ max
c∈rg(C0)

4dexp(−a′
3n

∆′

2L̂
)

≤
∑

c∈rg(C0)

4dexp(−a′
3n

∆′

2L̂
)≤ 4dm

t
exp(−a′

3n
∆′

2L̂
) (21)

For the second inequality, we expand all the terms of Φc,c′ . We set ∆′ = µ
2 ( ∆λ

2 −(1−κ−1)T/2D−B). Then, we set
r=Θ(L̂max{ ∆′

Sc

√
dL̂

,
√

∆′

Sc

√
dL̂

}),s=Θ(L̂max{ ∆′

Sc

√
dL̂

+ 2log(Sc)
n ,

√
∆′

Sc

√
dL̂

+ 2log(Sc)
n }) and δ =Θ( Dd3/2L̂

n∆′ ). Now, if

d=Ω(min{ n2/3∆4/3

D2/3L̂2/3 , n2∆′2

L̂2log(cmin) }), such that
√

2d r+3βs
1−2β +

√
2 2(1+3β)

1−2β δL̂≥∆′, then there exist some constant a′
3 >0

such that the second inequality is satisfied by lemma C.5. We then use the union bound, followed by |rg(C0)|≤ m
t .

C.6 Proof of lemma C.4

We can apply our thresholding analysis to

∥ωc,T −wi,T ∥ for c∈rg(C0). First, let j be a node in cluster c such that C⋆(j) is the cluster label of c.

dist(w⋆
j ,w⋆

i )+Φc,i ≤dist(ωc,T ,wi,T )≤dist(w⋆
j ,w⋆

i )+Φc,i

where Φc,i =dist(ωc,T ,ω⋆
c )+dist(ω⋆

c ,w⋆
j )+dist(wi,T ,w⋆

i )

From appendix B and appendix C.5, we have bounds for all the terms involved. Note that after merging,
each cluster in C⋆ should have only 1 cluster in C1. Therefore, after we recluster according to ∥ωc,T −wi,T ∥,
we incur an error if i goes to the wrong cluster. Suppose that the c corresponds to the correct cluster for i
and c′ is the cluster to which it is assigned , with c,c′ ∈rg(C1),c ̸=c′. Then,

Pr[Reclustering Error]≤Pr[max
i∈[m]

max
c′ ̸=c

∥ωc′,T −wi,T ∥≤∥ωc,T −wi,T ∥]

≤Pr[max
i∈[m]

max
c′ ̸=c

ϵ2−Φc′,i ≤ϵ1+Φc,i]

≤Pr[max
i∈[m]

max
c′∈C′

0

Φc,i ≥ ϵ2−ϵ1

2 ]

≤Pr[max
i∈[m]

max
c′∈C′

0

(Λc+Λi)≥∆+∆′] (22)

≤Pr[max
c∈C′

0

Λc ≥∆′−(γ2−1)∆]+Pr[max
i∈[m]

Λi ≥γ2∆]

≤ max
c∈rg(C0)′

Pr[Λc ≥∆′′]+max
i∈m

Pr[Λi ≥γ2∆] (23)
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For the second inequality, we use the thresholding analysis on ∥ωc,T −wi,T ∥. For the third inequality, we
rearrange the terms and combine max over c′ ̸= c with c, and use. For the fourth inequality, we expand the
terms of Φc,T and substitute the values of ∆ and ∆′, using the inequality ∆λ ≤ ϵ2−ϵ1

2 . For the fifth inequality,
we use consider some γ2 ∈(1,2− µB

2∆ ) and break the terms using union bound such that ∆′′ =∆′−(γ2−1)∆≥0.
Finally, we use the union bound on c∈rg(C0)′ and i∈ [m].

Now, we bound the two terms in Eq equation 23 separately. The second term can be bounded in terms of
Yi,γ2 . Thus,

max
i∈[m]

Pr[Λi ≥γ2∆]= max
i∈[m]

Pr[Yi,γ2 =1]≤m( p

m
)γ2 (24)

We use expectation of Yi,γ2 calculated in appendix C.4 and then bound max by sum.

For the first term, our analysis is similar to that of MERGE() error. Assume that there is some
constant u2 > 1 such that ∆′′ ≥ u2∆′. We set δ = Θ(Dd3/2L̂

n∆′ ), r = Θ(L̂ max{ ∆′

Sc

√
dL̂

,
√

∆′

Sc

√
dL̂

}),

s = Θ(L̂ max{ ∆′

Sc

√
dL̂

+ 2log(Sc)
n ,

√
∆′

Sc

√
dL̂

+ 2log(Sc)
n }), and if d = Ω(min{ n2/3∆4/3

D2/3L̂2/3 , n2∆′2

L̂2log(cmin) }), such that
√

2d r+3βs
1−2β +

√
2 2(1+3β)

1−2β δL̂≥∆′, then there exist some constant a′′
3 >0 such that the second inequality is satisfied

by lemma C.5. We then use the union bound, followed by |rg(C0)|≤ m
t .

max
c∈rg(C0)′

Pr[Λc ≥∆′′]≤ max
c∈rg(C0)′

4dexp(−a′′
3n

∆′

2L̂
) (25)

≤
∑

c∈rg(C0)′

4dexp(−a′′
3n

∆′

2L̂
) (26)

≤4dm

t
exp(−a′′

3n
∆′

2L̂
) (27)

C.7 Proof of lemma C.5

First, we use an intermediate Lemma from Yin et al. (2018). This characterizes the behavior of TrimmedMeanβ

gradient estimator.
Lemma C.7 (TrimmedMean Estimator Variance). Let gc(w) be the output of TrMeanβ estimator for cluster
c∈C0 with size of cluster Sc. If assumption 4.5 holds, then

∥gc(w)−∇Fc(w)∥≤Λ

where Pr[Λ≥
√

2d
r+3βs

1−2β
+

√
22(1+3β)

1−2β
δL̂]

≤2d(1+ D

δ
)d

(
exp(−(1−α)Scnmin{ r

2L̂
,

r2

2L̂2
})

+(1−α)Scexp(−nmin{ s

2L̂
,

s2

2L̂2
})

)
(28)

for some r,s,δ >0.

Proof. The proof of this Lemma follows from coordinate-wise sub-exponential distribution of ∇Fc. Since loss
per sample f(w,z) is Lipschitz in each of its coordinates with Lipschitz constant Lk for k ∈ [d]. Thus, Fc(w) is
also Lk-Lipschitz for each coordinate k ∈ [d] from corollary E.6. Now, every subgaussian variable with variance
σ2 is σ-sub exponential. Thus, each coordinate of ∇wf(w,z) is L̂-sub-exponential, since L̂>Lk,∀k ∈ [d]. The
remainder of proof can be found in Appendix E.1 in Yin et al. (2018).
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Now, using the above Lemma, we can bound the iterate error for a cluster c∈C0. Consider ∥ωc,t+1−ω⋆
c ∥2,

∥ωc,t+1−ω⋆
c ∥≤∥projW{ωc,t−η∇g(ωc,t)}−ω⋆

c ∥
≤∥ωc,t−η∇g(ωc,t)−ω⋆

c ∥
≤∥ωc,t−η∇F (ωc,t)−ω⋆

c ∥+η∥g(ωc,t)−∇F (ωc,t)∥
≤∥ωc,t−η∇F (ωc,t)−ω⋆

c ∥+ηΛ

Now, we bound ∥ωc,t−η∇F (ωc,t)−ω⋆
c ∥2 using µ-strong convexity and L-smoothness of Fc. The analysis is

similar to the convergence analysis in appendix B.1. Thus, for η ≤ 1
L

∥ωc,t−η∇F (ωc,t)−ω⋆
c ∥2 ≤(1−ηµ)∥ωc,t−ω⋆

c ∥2

Using this bound we can analyze the original term with ∥ωc,t+1−ω⋆
c ∥.

∥ωc,t+1−ω⋆
c ∥≤

√
1−ηµ∥ωc,t−ω⋆

c ∥+ηΛ

∥ωc,T −ω⋆
c ∥≤(1−ηµ)T/2∥ωc,0−ω⋆

c ∥+ηΛ(
T −1∑
t=0

(1−ηµ)t/2)

≤(1−κ−1)T/2∥ωc,0−ω⋆
c ∥+ηΛ(

∞∑
t=0

(1− ηµ

2 )t)

≤(1−κ−1)T/2D+ 2
µ

Λ

For the second inequality, we use κ = L
µ and unroll the recursion for T steps. For the third inequality, we

use
√

1−x ≤ 1− x
2 and upper bound the finite geometric sum by its infinite counterpart. Finally we use the

boundedness of W and the sum of the geometric series to get our result.

C.8 Proof of lemma B.2

We present the proof for this lemma here as it is a corollary of lemma C.5.

We utilize the intermediate lemma C.7. Now, if we set α = β = 0 and Sc = 1, we obtain the generalization
guarantee for GD on a single node i∈ [m]. Further, we do not need the terms of s as they appear with β, and
thus, we can choose s very large, so that we can ignore its contribution to error probability. The remainder
of the proof follows that of lemma C.5.
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C.9 Proof of lemma C.6

Since Fc is L̂-Lipshchitz and µ-strongly convex with minima ω⋆
c ,

Fc(w⋆
i )−Fc(ω⋆

c )=Fi(w⋆
i )−Fi(ω⋆

c )
Qc

+
∑

j ̸=i,C0(j)=c

Fj(w⋆
i )−Fj(ω⋆

c )
Qc

≤Fi(w⋆
i )−Fi(ω⋆

c )
Qc

+
∑

j ̸=i,C0(j)=c

Fj(w⋆
i )−Fj(w⋆

j )
Qc

≤− µ∥w⋆
i −ω⋆

c ∥2

2Qc
+

∑
j ̸=i,C0(j)=c

L̂
∥∥w⋆

i −w⋆
j

∥∥
Qc

µ

2 ∥w⋆
i −ω⋆

c ∥2 ≤− µ∥w⋆
i −ω⋆

c ∥2

2Qc
+ (Qc−1)L̂ϵ1

Qc

µ

2 ∥w⋆
i −ω⋆

c ∥2 ≤− µ∥w⋆
i −ω⋆

c ∥2

2Qc
+ (Qc−1)L̂ϵ1

Qc

∥w⋆
i −ω⋆

c ∥2 ≤2L̂ϵ1

µ

∥w⋆
i −ω⋆

c ∥≤

√
2L̂ϵ1

µ

For the first equation, we expand Fc into its component terms, where Qc denotes the number of correct nodes
in cluster c. For the second inequality, we use the fact that w⋆

j =argminw∈WFj(w). For the third inequality,
we use strong-convexity of Fi and L̂-Lipschitzness for Fj ,j ̸= i. For the fourth inequality, we use a lower bound
on Fc(w⋆

i )−Fc(ω⋆
c ) using µ-strong convexity of Fc. Finally, we manipulate the remaining terms to obtain the

final bound.

D Proof of theorem 4.14

By theorem 4.8, CR ̸=C⋆, with probability
(

ρ2
m(1−ρ1) p

)R. For the (R+1)th step, we bound probability of error
by 1. Therefore, with probability 1−exp(− 5

8 R)p. For the (R+1)th step, we optimize the cluster iterates from
TrimmedMeanGD() to improve convergence instead of clustering error. Since CR+1 =CR, each cluster in CR+1
maps to some cluster in C⋆. Without loss of generality, assume that cluster c∈rg(CR+1) maps to the same cluster
c∈C. Now, if {c1,c2,...,cl} are the clusters in CR which merged to form cluster c∈rg(CR+1). Then, we can write

∥ωc,T −ω⋆
c ∥=

∥∥∥∥∥∥1
l

l∑
j=1

(ωcj ,T −ω⋆
c )

∥∥∥∥∥∥
≤1

l

l∑
j=1

∥∥ωcj ,T −ω⋆
c

∥∥
≤1

l

l∑
j=1

(
∥∥∥ωcj ,T −ω⋆

cj

∥∥∥+
∥∥∥ω⋆

cj
−ω⋆

c

∥∥∥)

For the first inequality, we used the definition of ωc,T from MERGE(). For the second inequality, we used the
triangle inequality for the l elements. The third inequality is obtained by using triangle inequality and adding
and subtracting ω⋆

cj
as defined in appendix C.1.
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Now, consider the set of nodes {i1,i2,...,il}⊆ [m], such that ij ∈cj∀j ∈ [l] and C⋆(ij)=c∀j ∈ [l]. Therefore, we
can split each term of

∥∥∥ω⋆
cj

−ω⋆
c

∥∥∥ as –

∥ωc,T −ω⋆
c ∥≤1

l

l∑
j=1

(
∥∥∥ωcj ,T −ω⋆

cj

∥∥∥+
∥∥∥ω⋆

cj
−wij

∥∥∥+
∥∥wij

−ω⋆
c

∥∥)

≤1
l

l∑
j=1

∥∥∥ωcj ,T −ω⋆
cj

∥∥∥+2B

From lemma C.6, since ij contributes to both clusters cj and c⋆, we can bound the difference from their minima
by B. Further, we can use lemma C.5 and the lemma C.7, which is adapted from Theorem 4 in Yin et al.
(2018),to bound the convergence of

∥∥∥ωcj ,T −ω⋆
cj

∥∥∥. If we set δ = 1
nScj

L̂D
and

r= L̂max{ 8d

nScj

log(1+nScL̂D),
√

8d

nScj

log(1+nScL̂D)}

s= L̂max{4d

n
(dlog(1+nScj

L̂D)+logm),
√

4d

n
(dlog(1+nScj

L̂D)+logm)}

where Scj
is the size of cluster cj , we obtain

∥ωc,T −ω⋆
c ∥≤(1−κ−1)T/2D+Λ′+2B

where

Λ′ =O
(

L̂d

1−2β

(
β√
n

+ 1
√

ncmin

)√
log(nmax

j∈[l]
Scj L̂D)

)
We can further upper bound maxj∈[l]Scj

by m. Now, the probability of error for each cluster c ∈ rg(CR) for
given values of r and s is 4d

(1+ncminL̂D)d
, therefore, we can use union bound and multiply this probability of

error by rg(CR)≤ m
t . Since t=Θ(cmin), we can upper bound this by mu′′

cmin
for some positive constant cmin.

E Additional Definitions and Lemmas

We start with reviewing the standard definitions of strongly convex and smooth functions f :Rd 7→R.
Definition E.1. f is µ-strongly convex if ∀w,w′, f(w′)≥f(w)+⟨∇f(w),w′−w⟩+ µ

2 ∥w′−w∥2.
Definition E.2. f is L-smooth if ∀w,w′, ∥∇f(w)−∇f(w′)∥≤L∥w−w′∥.
Definition E.3. f is Lk Lipschitz for every coordinate k ∈ [d] if, |∂kf(w)| ≤ Lk, where ∂kf(w) denotes the
k-th coordinate of ∇f(w).
Lemma E.4. If f,g :Rd →R are two µ-strongly convex functions on a domain W. Then, f+g

2 is also µ-strongly
convex on the same domain.

Proof. If f and g are µ-strongly convex on a domain W, then for any w1,w0 ∈W

f(w1)≥f(w0)+⟨∇f(w0),w1−w0⟩+ µ

2 ∥w1−w0∥2

g(w1)≥g(w0)+⟨∇g(w0),w1−w0⟩+ µ

2 ∥w1−w0∥2

Adding the above equations, we get

f(w1)+g(w1)
2 ≥ f(w0)+g(w0)

2 +
〈

∇f(w0)+∇g(w0)
2 ,w1−w0

〉
+ µ

2 ∥w1−w0∥2

Thus, f+g
2 is also µ-strongly convex.
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Lemma E.5. If f,g :Rd →R are two L-smooth functions on a domain W. Then, f+g
2 is also L-smooth on

the same domain.
Corollary E.6. If f,g :Rd →R are two L-Lipschitz functions on a domain W. Then, f+g

2 is also L-Lipschitz
on the same domain.

Proof. Consider the following term for any w1,w0 ∈W∥∥∥∥∇f(w1)+∇g(w1)
2 − ∇f(w0)+∇g(w0)

2

∥∥∥∥
≤ 1

2∥(∇f(w1)−∇f(w0))+(∇g(w1)−∇g(w0))∥

≤ 1
2(∥∇f(w1)−∇f(w0)∥+∥∇g(w1)−∇g(w0)∥)

≤ 1
2(L∥w1−w0∥+L∥w1−w0∥)

≤L∥w1−w0∥

In the second inequality, we use the triangle inequality of norms. For the third inequality, we use the
L-smoothness of f and g. Thus, f+g

2 is also L-smooth The proof of the corollary is same as above, by replacing
terms of ∇f and ∇g by f and g respectively.

Lemma E.7. If each coordinate of a function f :Rd →R is Lk-Lipschitz for k ∈ [d] on the domain W, then
f is L̂=

√∑d
k=1L2

k-Lipschitz on the same domain W.

Proof. Consider w1,w0 ∈W.Define a sequence of variables

{w[k]=((w1)1,(w1)2...,(w1)k,(w0)k+1,...(w0)d)⊺}d
k=0. Then, w1 =w[d] and w0 =w[0]

|f(w1)−f(w0)|=
∣∣∣∣∣

d∑
k=1

(f(w[k])−f(w[k−1]))
∣∣∣∣∣

=
d∑

k=1
Lk|(w1)k −(w0)k|

The second inequality follows by using triangle rule. Then, f(w[k]) and f(w[k − 1]) differ only in the kth

coordinate, so we apply Lk coordinate-wise Lipschitzness. Now, consider a random variable v ∈Rd such that
vk =Lk

|(w1)k−(w0)k|
(w1)k−(w0)k

if (w1)k −(w0)k ̸=0, else 0. Then,

d∑
k=1

Lk|(w1)k −(w0)k|=⟨v,w1−w0⟩

≤∥v∥∥w1−w0∥

≤

√√√√ d∑
k=1

L2
k∥w1−w0∥

Here, we use the Cauchy-Schwartz inequality for the second step. Then, note that each coordinate of v is
bounded by Lk.
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