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Abstract
Relieving the reliance of neural network training
on a global back-propagation (BP) has emerged
as a notable research topic due to the biologi-
cal implausibility and huge memory consumption
caused by BP. Among the existing solutions, local
learning optimizes gradient-isolated modules of
a neural network with local errors and has been
proved to be effective even on large-scale datasets.
However, the reconciliation among local errors
has never been investigated. In this paper, we first
theoretically study non-greedy layer-wise training
and show that the convergence cannot be assured
when the local gradient in a module w.r.t. its in-
put is not reconciled with the local gradient in
the previous module w.r.t. its output. Inspired
by the theoretical result, we further propose a lo-
cal training strategy that successively regularizes
the gradient reconciliation between neighboring
modules without breaking gradient isolation or in-
troducing any learnable parameters. Our method
can be integrated into both local-BP and BP-free
settings. In experiments, we achieve significant
performance improvements compared to previous
methods. Particularly, our method for CNN and
Transformer architectures on ImageNet is able to
attain a competitive performance with global BP,
saving more than 40% memory consumption.

1. Introduction
Back-propagation (BP) has been a crucial ingredient for the
success of deep learning (LeCun et al., 2015). Although
BP is easy to implement and seems indispensable for train-
ing deep neural networks, it has been a concern that BP
is distinct from how the brain learns and updates, known
as biological implausibility (Lillicrap et al., 2020; Bengio
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et al., 2015). First, BP encounters the weight transport prob-
lem (Grossberg, 1987), which means the update of each
layer during backward propagation relies on the symmetric
weight used for forward propagation (Lillicrap et al., 2016;
Liao et al., 2016). Second, compared to the brain that up-
dates neurons instantly using local signals, training neural
networks with BP suffers from update locking because the
gradient descent in a layer can be only performed after the
forward and backward propagations of its subsequent layers
(Jaderberg et al., 2017; Frenkel et al., 2021; Dellaferrera &
Kreiman, 2022; Halvagal & Zenke, 2023). Moreover, due to
update locking, all the activations and gradients of a whole
model need to be stored, which is the dominant cause of
the huge memory consumption for training modern neural
networks whose capacity is continually expanding.

In order to tackle these issues, different approaches are
proposed to relieve the reliance on a global BP (Nøkland,
2016; Clark et al., 2021; Silver et al., 2022; Ren et al., 2023;
Journé et al., 2023; Belilovsky et al., 2019; Wang et al.,
2021; Fournier et al., 2023), among which training with lo-
cal errors is promising due to its less impaired performance.
It divides a neural network into several gradient-isolated
modules and trains each locally. The initial explorations
adopt greedy layer-wise training for a good initialization
before finetuning with BP (Hinton et al., 2006; Bengio et al.,
2006). Later studies show that greedy layer-wise training
can achieve competitive performance on the large scale Im-
ageNet using auxiliary classifiers (Belilovsky et al., 2019).
Since learning sequentially does not enable to optimize the
deep representation simultaneously, recent studies favor the
non-greedy fashion where each layer is updated locally with
a mini-batch data and then passes the output into the next
layer (Belilovsky et al., 2020; Siddiqui et al., 2023; Wang
et al., 2021). However, a performance drop is still inevitable
when increasing the number of local modules, and current
studies have not rigorously pinpointed the inherent limita-
tion of local training compared to global BP.

In this paper, we investigate the defect of non-greedy layer-
wise training from a view of the reconciliation among local
errors and propose a remedy for it. Consider a local layer
xk = f(xk−1, θk), where xk−1 is the input of layer k and
also the output of layer k−1, and θk is the learnable parame-
ters of this layer. Local training optimizes θk independently
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with a classifier head lk = h(xk, wk) that is parameterized
by wk to produce the local error signal lk using a loss func-
tion, e.g. cross entropy loss. Note that the local layer f
is a function with two variables xk−1 and θk. If xk is the
last-layer representation and we use global BP to train the
network, the gradient w.r.t. the first variable, ∂lk

∂xk−1
, can

be back-propagated to prior layers whose update can lead
to a new xk−1 that reduces lk. In layer-wise training, the
optimization regarding xk−1 is achieved by updating θk−1
with the previous local error lk−1. However, there is no
assurance that the update of θk−1 in the previous layer can
cause a change of ∆xk−1 that most satisfies the demand of
the current layer to reduce lk. A previous study (Jaderberg
et al., 2017) deals with the correctness of local gradients
by learning local gradient generators. But it relies on the
global true gradient so breaks gradient isolation. We point
out that the discordant local update, which global BP is nat-
urally immune to, is the fundamental defect in the context
of non-greedy layer-wise training.

To this end, we first theoretically analyze the convergence
of a two-layer model. The two layers are updated with their
respective local errors in a non-greedy manner. Our result
indicates that when the gradient of the second layer w.r.t. its
input, i.e., ∂l2

∂x1
, has a large distance to the gradient of the

first layer w.r.t. its output, i.e., ∂l1∂x1
, the convergence of the

second layer cannot be guaranteed. Inspired by the result,
we propose a simple yet interpretable and effective method,
named successive gradient reconciliation. When training
the (k − 1)-th layer locally, we store the gradient w.r.t. the
output ∂lk−1

∂xk−1
, and make the output require gradient being

the input of the next layer. At the update of the k-th layer,
we calculate the gradient w.r.t. the input ∂lk

∂xk−1
, and add

a regularizer on the local error to minimize the distance
between the two gradients. By doing so, the optimization
of each layer is towards a direction such that the parameters
θk not only decrease the local error lk, but also enable the
change of input ∆xk−1 coming from the previous layer to
decrease lk. The process is performed layer by layer to
successively reconcile local objectives and transmit them
into the last layer for a better final representation without
breaking gradient isolation.

Our method effectively improves the performance of local
training in both local-BP and BP-free cases. In local-BP
training, we successfully enable memory-efficient training
by removing a global BP. In BP-free training, we adopt a
fixed local classifier head borrowing the ideas from (Frenkel
et al., 2021; Yang et al., 2022a), and achieve significantly
better performance than existing BP-free methods. The
contributions of this study can be listed as follows:

• We derive a theoretical convergence bound in the con-
text of non-greedy layer-wise training, and show that

the reconciliation among local errors is crucial to en-
sure the convergence of the last-layer error.

• We propose successive gradient reconciliation, which
successively reconciles the local updates of every two
neighboring layers without breaking gradient isolation
or introducing any learnable parameters. We integrate
our method in both local-BP and BP-free settings.

• We conduct extensive experiments on CIFAR-10,
CIFAR-100, and ImageNet to verify the effectiveness
of our method, and show that our method surpasses
previous methods and is able to attain a competitive
performance with global BP saving over 40% memory
consumption for CNN and Transformer architectures.

2. Related Work
Back-propagation has been important for deep network train-
ing due to its effective credit assignment into hierarchical
representations (Rumelhart et al., 1986). Despite the suc-
cess, the weight transport and the update locking problems
constrain BP from being biologically plausible and mem-
ory efficient (Lillicrap et al., 2020; Crick, 1989; Grossberg,
1987), which has attracted wide research interests from both
neuroscience and machine learning communities to propose
alternatives to a global BP (Bengio et al., 2015; Hinton,
2022; Halvagal & Zenke, 2023; Song et al., 2024).

Gradient estimation. Introducing auxiliary optimization
variables for each layer can spare the need to back propa-
gation a global error (Taylor et al., 2016; Li et al., 2020).
Gradient estimation can be also achieved by forward au-
tomatic differentiation (Baydin et al., 2022; Silver et al.,
2022; Ren et al., 2023) and forward propagation again with
a disturbed input (Hinton, 2022; Dellaferrera & Kreiman,
2022). However, these methods have not been scalable on
large datasets and are not competitive with BP.

Credit assignment. In order to relax the weight transport
problem, different credit assignment strategies are proposed
with only sign symmetry (Liao et al., 2016; Xiao et al., 2019)
or random feedback connection, known as feedback align-
ment (FA) (Lillicrap et al., 2016). Later studies improve
over FA by adjusting the random connection (Akrout et al.,
2019) and directly propagating the global error into each
layer (Nøkland, 2016; Clark et al., 2021). However, most of
these methods cannot achieve satisfactory performance on
large datasets (Bartunov et al., 2018) and local updates still
cannot be performed without waiting. DRTP (Frenkel et al.,
2021) refrains from update locking by assigning local errors
directly from labels instead of the global error, but further
introduces performance deterioration.

Local learning. Another promising solution, which our
method can be categorized as, is to look for a local update
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rule such that layers are optimized independently to satisfy
both weight-transport free and update unlocking. Hebbian
plastic rule based on synaptic plasticity has been leveraged
for local update in an unsupervised or self-supervised man-
ner (Illing et al., 2021; Journé et al., 2023; Halvagal &
Zenke, 2023). Greedy layer-wise training is initially proved
to be effective in producing a good initialization (Yang et al.,
2022b) for the subsequent finetuning with BP (Hinton et al.,
2006; Bengio et al., 2006). Later studies adopt auxiliary
heads to train layers locally for supervised learning (Mostafa
et al., 2018; Nøkland & Eidnes, 2019; Belilovsky et al.,
2019; 2020; You et al., 2020) and self-supervised learning
(Löwe et al., 2019; Xiong et al., 2020; Siddiqui et al., 2023).
Although there is still back-propagation within the auxiliary
head composed of multiple layers, it helps to attain a compa-
rable performance with global BP on ImageNet (Belilovsky
et al., 2019). The recent well-performing methods favor
non-greedy layer-wise training (Wang et al., 2021; Siddiqui
et al., 2023). However, the fundamental defect of layer-wise
training over global BP has not been unveiled to be clear. In
(Jaderberg et al., 2017), a gradient generator is proposed to
correct local errors with the global BP signal, but it breaks
the gradient isolation among local modules. In (Wang et al.,
2021), a reconstruction loss is added to each local error, but
the decoder increases the length of local BP and incurs more
local parameters and memory cost. Different from these
studies, our method reconciles the local errors successively
without breaking gradient isolation or introducing learnable
parameters, and can be applied in BP-free training. A pre-
vious work studies the convergence of layer-wise training
(Shin, 2022), but the analysis is conducted in a linear model
with global BP instead of local learning. Memory reduction
can be also achieved by gradient checkpoint or reversible
architecture (Chen et al., 2016; Gomez et al., 2017), but
these strategies rely on the tradeoff between computation
and memory. As a comparison, local learning can detach
each layer so naturally brings memory efficiency.

3. Method
In Sec. 3.1, we analyze local learning and derive a conver-
gence bound that shows its defect. Based on the result, we
propose a method to remedy in Sec. 3.2, and show how to
apply our method in local-BP training and BP-free train-
ing in Sec. 3.3. Finally, in Sec. 3.4, we use a simplified
two-layer model to empirically showcase how our method
facilitates the loss reduction of the output layer.

3.1. Theoretical Result

We consider a two-layer model composed of x1 =
f(x0,θ1) and x2 = f(x1,θ2), where θ1 and θ2 are the
parameters of the two layers, respectively, x0 is the input
data, x1 is the output of the first layer and also the input

of the second layer, x2 is the output of the second layer,
and f can be a composite function including linear and non-
linear transformations. In layer-wise training, we have two
local heads that produce local errors L1(x1) and L2(x2)
to update the first layer and the second layer, respectively.
Different from a global BP, the gradient of L2 does not back
propagate into the first layer. Accordingly, the training in
the i-th iteration can be formulated as:

θ
(i+1)
1 ← θ

(i)
1 − η

(i)
1 ∇θ1L1(θ

(i)
1 ), (1)

θ
(i+1)
2 ← θ

(i)
2 − η

(i)
2 ∇θ2L2(θ

(i+1)
1 ,θ

(i)
2 ), (2)

where η1, η2 are the learning rates of the two layers. We
analyze the convergence of the above local learning based on
the PL condition (Karimi et al., 2016) and gradient Lipschitz.
The assumptions and results are stated as following.
Assumption 3.1 (PL Condition). Let L∗2 be the optimal
function value of the second layer loss L2. There exists a µ
such that ∀θ1,θ2, we have

‖∇L2(θ1,θ2)‖2 = ‖∇θ1L2(θ1,θ2)‖2 + ‖∇θ2L2(θ1,θ2)‖2

≥ µ (L2(θ1,θ2)− L∗2) ,

where∇L2 = [∇θ1L2;∇θ2L2].
Assumption 3.2 (Layer-wise Lipschitz and global Lips-
chitz). There exists L1, L2, and L > 0 such that for all
θ1,a,θ1,b,θ1,θ2,a,θ2,b,θ2, we have

‖∇θ1L2(θ1,a,θ2)−∇θ1L2(θ1,b,θ2)‖ ≤ L1 ‖θ1,a − θ1,b‖ ,
‖∇θ2L2(θ1,θ2,a)−∇θ2L2(θ1,θ2,b)‖ ≤ L2 ‖θ2,a − θ2,b‖ ,

and

‖∇L2(θ1,a,θ2,a)−∇L2(θ1,b,θ2,b)‖ ≤ L
∥∥∥∥[θ1,a − θ1,bθ2,a − θ2,b

]∥∥∥∥ .
Theorem 3.3. Based on Assumptions 3.1 and 3.2, if the
learning rates are set as η(i)1 = η1 and η(i)2 = η2, where 0 < η1 ≤ min

(√
L2

1+8L2−L1

4L2 , 2
µ ,

1
2L2

)
max

(
0, 1−

√
1−2L2η1
L2

)
< η2 ≤ 1+

√
1−2L2η1
L2

,

we have the following convergence

L(i+1,i+1)
2 − L∗2 ≤ (1− αµ)

(
L(i,i)
2 − L∗2

)
+ α

∥∥∥ε(i)∥∥∥2 ,
(3)

and recursively applying Eq. (3) we have

L(i+1,i+1)
2 − L∗2 ≤ (1− αµ)

i+1
(
L(0,0)
2 − L∗2

)
+ α

i∑
k=0

(1− αµ)k
∥∥∥ε(i−k)∥∥∥2 , (4)

where L(i,i)
2 denotes L2(θ

(i)
1 ,θ

(i)
2 ), i.e., the second layer

loss value with parameters θ(i)1 and θ(i)2 in the i-th iteration,
α = η1

2 , and ε(i) , ∇θ1L
(i,i)
2 −∇θ1L

(i)
1 .
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Figure 1. An illustration to compare our method with non-greedy local learning and global BP. The blue arrows indicate forward
propagation, while the red solid arrows and red dashed arrows denote the backward gradient w.r.t. the output feature and the input feature
of each block, respectively. In global BP, gradients are passed into prior blocks to update the parameters, but the updates in local learning
may be deviated by local errors. Our method successively reconciles local updates in a forward mode without breaking gradient isolation.

We care more about L2 because it is the loss of the last
layer that is used to produce the representation for inference.
Note that in local learning, the update of θ1 in Eq. (1) is
only dependent on L1 due to gradient isolation. The result
in Eq. (3) indicates that when the local gradient ∇θ1L

(i)
1

has a large distance with ∇θ1L
(i,i)
2 , i.e.,

∥∥ε(i)∥∥ is large,
the optimization of the i-th iteration does not ensure a loss
reduction of L2. Moreover, ε has an accumulative effect
during training, as shown in Eq. (4). As a result, only when
‖ε‖ in every iteration keeps small, can we ensure that L2 is
converged towards its optimality.

3.2. Successive Gradient Reconciliation

Even though learning by local update rules has been widely
adopted in prior studies (Ren et al., 2023; Siddiqui et al.,
2023; Frenkel et al., 2021; Belilovsky et al., 2020), our
theoretical result in Theorem 3.3 implies that a defect of
local learning, which may impede its convergence, lies in
the reconciliation between local gradient and the global
one. As a comparison, when training with global BP, the
local gradient in Eq. (1), ∇θ1L

(i)
1 , is replaced by the global

gradient, ∇θ1L
(i,i)
2 , via back propagation, which means

‖ε‖ = 0. Therefore, global BP is inherently spared from
discordant updates. In (Jaderberg et al., 2017), a generator
is learned to produce a synthetic local gradient close to the
global one. But it relies on the global BP to provide the true
gradient, so breaks gradient isolation.

We propose successive gradient reconciliation (SGR) for
local learning. It is able to reconcile local updates without
relying on the true global gradient or breaking gradient
isolation. For any two neighboring layers, we have

‖∇θkLk+1 −∇θkLk‖ ≤
∥∥Jf (θk)T

∥∥∥∥∥δ(Lk+1)
xk − δ(Lk)

xk

∥∥∥ ,

where Jf (θk) is the Jacobian matrix of the output feature
xk w.r.t. the parameters θk in this layer, and δ(Lk+1)

xk is the
abbreviation for ∂Lk+1

∂xk
, i.e., the gradient w.r.t. xk from the

next layer’s loss Lk+1. Instead of directly minimizing the
left side of the above equation, which needs to perform back
propagation through two layers, we minimize the gradient
distance from two neighboring local errors. After the update
of the (k − 1)-th layer, we store the gradient δ(Lk−1)

xk−1 , and
make the output feature xk−1 detached but require gradient
being the input of the k-th layer. At the update of k-th layer
(k ≥ 2), we optimize with the following objective:

min
θk

Lk + λ · LSGRk , (5)

LSGRk =
∥∥∥δ(Lk)
xk−1

− δ(Lk−1)
xk−1

∥∥∥2
2
, (6)

where Lk is the local error for the k-th layer, e.g. the cross
entropy loss, λ is a hyper-parameter, and LSGRk is an MSE
between the two gradient terms. As shown in Figure 1,
LSGRk is added on each layer (except the first layer) to
successively reconcile neighboring local updates. The im-
plementation is outlined in Algorithm 1 in the Appendix.

For each layer, it is a function with two dependent variables,
the input xk−1 and the parameter θk. In local learning, the
gradient δ(Lk)

xk−1 cannot be passed into prior layers, and its
change is decided by prior local errors, which is the cause of
the discordant local updates. Our method can be interpreted
as optimizing θk such that it not only reduces the local
error Lk, but also enables the change of input caused by the
previous layer, i.e., δ(Lk−1)

xk−1 , to reduce Lk. By doing so, the
local objectives are successively delivered into the last layer
for a better output representation without breaking gradient
isolation. Although the reconciliation concerned by our
Theorem 3.3 is between the local gradient and the global

4



Towards Interpretable Deep Local Learning with Successive Gradient Reconciliation

Table 1. Attribute comparison between our method (BP-free ver-
sion) and the prior studies that also focus on the evils of BP.

Method transport free update unlocking BP-free

Globap BP 7 7 7
FA (Lillicrap et al., 2016) X 7 7
DFA (Nøkland, 2016) X partially X
PEPITA (Dellaferrera & Kreiman, 2022) X partially X
DRTP (Frenkel et al., 2021) X X X
Ours (BP-free) X X X

true gradient, while our method only deals with neighboring
local gradients, the following proposition indicates that both
‖ε‖ → 0 for all local layers and LSGRk → 0,∀k ≥ 2, lead
to an equivalence to global BP.

Proposition 3.4. For a model composed of L local layers
parameterized by θk with their local errors Lk, k = 1, ..., L,
when LSGRk = 0 for all layers 2 ≤ k ≤ L for a batch of
data, we have

∇θkLL = ∇θkLk, ∀1 ≤ k ≤ L− 1,

which implies that all local updates are equivalent to learn-
ing with the global true gradient back propagated from the
last-layer error LL.

3.3. Local-BP Training and BP-free Training

We apply our method in both local-BP and BP-free setups.
In local-BP training, a model is divided into multiple layers
and each layer can be a stack of multiple blocks. Besides,
the local classifier head can also have more than one layer,
which is proved to be effective in improving the performance
of layer-wise training (Belilovsky et al., 2019). Therefore,
there is still back propagation within the classifier head and
the backbone. We adopt the auxiliary classifier head design
following (Belilovsky et al., 2019; Wang et al., 2021), and
add our L(SGR)

k on all the layers k ≥ 2. The local error Lk
can be both the loss functions for supervised learning and
self-supervised learning.

In BP-free training, the gradient to each layer’s output, δxk,
is based on an analytical update rule, and each layer is only
a basic block composed of a linear transformation and a non-
linear activation. Therefore, there is no back propagation
through multiple layers. A comparison between several BP-
free methods for supervised learning is shown in Table 1.
FA (Lillicrap et al., 2016) uses a random matrix to replace
the transport of weight matrix but still relies on BP. DFA
(Nøkland, 2016) directly projects the last-layer gradient
into each layer via random matrices, so spares the need
of BP. But local updates cannot be performed until a full
forward propagation is finished, which means that update
unlocking is only partially solved. PEPITA (Dellaferrera
& Kreiman, 2022) improves over forward-forward learning

(Hinton, 2022) and needs a second forward propagation. As
a result, update unlocking is also partially solved.

DRTP directly acquires δxk by projecting labels with a ran-
dom matrix. Our method in the BP-free setup also adopts a
fixed matrix but with a particular structure named equiangu-
lar tight frame (ETF), which has the maximal equiangular
separation (Papyan et al., 2020), and can be formulated as,

mT
k1mk2 =

{
1, k1 = k2
− 1
K−1 , k1 6= k2

(7)

wheremk1 is the classifier vector for class k1 and K is the
number of total classes. It has been observed that the inter-
mediate layers in a neural network gradually increase the
separability among different classes (He & Su, 2023), and
using an ETF structure as the last-layer classifier head does
not harm representation learning (Zhu et al., 2021; Yang
et al., 2022a; 2023; Zhong et al., 2023; Du et al., 2023).
Inspired by these studies, we initialize and fix an ETF clas-
sifier for each local layer to calculate the cross entropy error.
It enables the gradient δxk to better induce separability,
and our LSGRk helps to carry the local separability into the
last layer. In this way, our method keeps the benefits of
DRTP but achieves significantly better performance than the
methods in Table 1, as will be shown in experiments.

3.4. Justification

Although our method adds a regularization on the classifi-
cation loss Lk, which may degrade the original optimality
of Lk if there is only one layer, the following proposition
based on a linear two-layer model shows that training with
our LSGR2 loss on the second layer helps to induce a larger
reduction of the classification loss L2 in inference.

Proposition 3.5. Consider a two-layer linear model com-
posed of x1 = θ1x0 and x2 = θ2x1, where θ1 and θ2 are
the learnable linear matrices, and x0 and x2 are the in-
put and output of the model, respectively. We use fixed ETF
structuresM1 andM2 for the local classifier heads and the
cross entropy (CE) loss for local errors L1(M1x1, y) and
L2(M2x2, y). Denote L′2 as the CE loss value in inference
after performing one step of gradient descent of L1 and L2

by Eq. (1) and (2), and denote L̂′2 as the one with our LSGR2

on the second layer. Assume that the prediction logit for the
ground truth label in the second layer is larger than the one
in the first layer, we have L̂′2 ≤ L′2, when LSGR2 is small.

The result empirically supports that although training with
our regularization LSGR2 will shift the update direction of
θ2 from the steepest descent of L2, it helps to look for a
position of θ2 such that the change of x1 caused by the
previous local error also enables to minimize L2, which can
lead to a larger loss reduction than only optimizing θ2.
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Table 2. The results (top-1 accuracy) of local training with ResNet-18 on ImageNet. The “Greedy” result is our implementation following
(Belilovsky et al., 2019). All models are divided into 4 local modules according to feature spatial resolution in ResNet-18.

Greedy non-greedy w/ SGR
(Belilovsky et al., 2019) λ = 1000 λ = 2000 λ = 3000 λ = 5000 λ = 7000

63.65 69.44 70.32 70.53 70.62 70.73 70.69

Table 3. The results of local training with ResNet-32 and PlainNet
on CIFAR-10. Each residual or PlainNet block is a local module.
The local classifier is composed of a convolution layer and a linear
layer. “reforward” denotes forward again for each local update to
use the updated output as the input of the next layer.

Method ResNet PlainNet

layer-wise 84.49±0.36 80.66±0.42
w/ reforward 84.38±0.52 80.74±0.44
w/ SGR (ours) 85.65±0.38 81.67±0.29

Table 4. BP-free training with PlainNet on CIFAR-10 and CIFAR-
100. Each linear-nonlinear transformation in PlainNet is a local
module. The local classifier is a fixed matrix as Eq. (7). The 2nd
row results are derived from (Dellaferrera & Kreiman, 2022).

Method BP-free CIFAR-10 CIFAR100

FA 7 57.51±0.57 27.15±0.53
DRTP X 50.53±0.81 20.14±0.68
PEPITA X 56.33±1.35 27.56±0.60

layer-wise X 69.17±0.91 48.30±0.64
w/ reforward X 69.05±0.63 47.12±0.55
w/ SGR (ours) X 72.40±0.75 49.41±0.44

4. Experiments
In experiments, we test the effectiveness of our proposed
successive gradient reconciliation (SGR), and demonstrate
that it is able to significantly save memory consumption of
CNN and Transformer architectures, and surpass previous
studies on CIFAR-10, CIFAR-100, and ImageNet datasets.
The implementation details are provided in Appendix E.

4.1. Ablation Studies

We ablate the hyper-parameter λ in Eq. (5) and integrate our
SGR on non-greedy layer-wise training to show its ability
to improve performance in both local-BP and BP-free cases.

We add our L(SGR) as defined in Eq. (6) with different
λ in layer-wise training of ResNet-18 (He et al., 2016) on
ImageNet. As shown in Table 2, most choices of λ achieve
more than 1% performance improvement over non-greedy
layer-wise training. These results with different λ do not
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Figure 2. The training curves of average L(SGR) of all neighboring
layers and accuracy on test set.

have a large deviation, which indicates that our method has
stable performance and is not sensitive to the choice of λ.
As λ increases from 1000 to 5000, the accuracy slightly gets
better, showing that a stronger reconciliation of local updates
within a proper range can lead to a better performance.

In local-BP training, we use ResNet-32 and PlainNet that
removes the identity connection of ResNet. Each local
module may contain multiple layers and the local classifier
is composed of a convolution layer and a linear layer, so
there is still BP within each local update. As shown in Table
3, when armed with our method, layer-wise training attains
more than 1% accuracy improvement with both ResNet and
PlainNet. The reconciliation of local updates can be also
naively achieved by a second forward propagation after the
local update of each layer such that the input of the next
layer is based on the updated output. As shown in Tables
3 and 4, this practice does not bring obvious performance
gain because it performs too many steps of optimization for
each batch of data and thus overfits in each iteration.

In BP-free training, we use PlainNet where each block is
only a linear-nonlinear transformation and the local classi-
fier is a fixed ETF structure as defined in Eq. (7). Therefore,
the gradient w.r.t. output feature of each block can be analyt-
ically derived and there is no BP within each local module.
As shown in Table 4, our method improves by more than
3% on CIFAR-10 and more than 1% on CIFAR-100. As
shown in Figure 2, when our method is adopted, the average
loss value of L(SGR) is significantly lower than the baseline
without our method, and accordingly, the test accuracy is
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Table 5. Results on ImageNet with different architectures. Experiments are conducted on 8 NVIDIA A100 GPUs. “Train time” is the
whole training time of each experiment. “Memory” is the memory consumption per GPU for training tested with a batchsize of 256.
Experiments of the same row are conducted with the same training setting for fair comparison. K is the number of local modules.

Network Method K
top-1 Acc. top-5 Acc. Train time Memory

(%) (%) (hour) (GB)

ResNet-50

Global BP - 76.55 93.06 7.0 21.49
InfoPro (Wang et al., 2021) 2 76.23 92.92 10.8 21.59 (↑0.4%)

SGR (ours) 2 76.35 93.03 17.1 17.91 (↓16.6%)
InfoPro (Wang et al., 2021) 3 75.33 92.57 21.2 18.73 (↓12.8%)

SGR (ours) 3 75.42 92.57 15.1 15.34 (↓28.6%)

ResNet-50 Global BP - 71.50 - 73.0 45.09

(self-supervised) (Siddiqui et al., 2023) 4 70.48 - 140.9 70.53 (↑56.4%)
SGR (ours) 2 70.30 89.22 98.6 34.86 (↓22.7%)

ResNet-101

Global BP - 77.97 94.06 11.0 31.70
InfoPro (Wang et al., 2021) 2 77.61 93.78 18.6 26.14 (↓17.6%)

SGR (ours) 2 77.69 93.84 28.5 22.99 (↓27.5%)
InfoPro (Wang et al., 2021) 3 77.02 93.47 24.3 21.87 (↓31.0%)

SGR (ours) 3 77.02 93.24 22.9 18.18 (↓42.6%)

VIT-small
Global BP - 79.40 94.11 52.2 20.70

InfoPro (Wang et al., 2021) 3 78.15 94.00 61.8 14.96 (↓27.7%)
SGR (ours) 3 78.65 94.03 62.5 11.73 (↓43.3%)

Swin-tiny
Global BP - 81.18 95.61 43.8 26.78

InfoPro (Wang et al., 2021) 2 79.38 94.14 53.2 23.34 (↓12.9%)
SGR (ours) 3 80.05 94.95 56.3 15.83 (↓40.9%)

Swin-small
Global BP - 83.02 96.29 75.9 42.60

InfoPro (Wang et al., 2021) 2 81.19 95.00 86.6 33.08 (↓22.4%)
SGR (ours) 3 81.64 95.45 90.8 22.83 (↓46.4%)

better throughout training. It reveals that gradient reconcil-
iation among local updates, which our method targets, is
correlated with the performance of local learning.

4.2. Results on ImageNet

Our method is able to help CNN and Transformer (Doso-
vitskiy et al., 2021; Liu et al., 2021) architectures save a
significant proportion of memory consumption on ImageNet,
while achieving competitive performance with global BP.
As shown in Table 5, our method on ResNet-50 has better
performances than (Wang et al., 2021) and a similar perfor-
mance to (Siddiqui et al., 2023) with larger memory conser-
vation than both methods in supervised and self-supervised
learning, respectively. When K = 3, our method trains
faster with lower memory consumption than InfoPro on
both ResNet-50 and ResNet-101. On the three Transformer-
based architectures, our method saves more than 40% mem-
ory without inducing a large increment of train time or un-
bearable performance loss (more than 1.5%) compared with
global BP, and achieves better performances than InfoPro
with close train time overhead.

4.3. Results on CIFAR

We verify the performance of our method using ResNet-
32 on CIFAR-10 and CIFAR-100 and compare with
greedy layer-wise training (Belilovsky et al., 2019), DGL
(Belilovsky et al., 2020), and InfoPro (Wang et al., 2021).
Following (Belilovsky et al., 2019), we adopt a local classi-
fier composed of a convolution layer and a linear layer for
classification. As shown in Table 6, our SGR surpasses all
compared methods in most cases. Especially when K=2,
we achieve a competitive performance with global BP (our
92.91% v.s. BP 92.82% on CIFAR-10, and our 74.63% v.s.
BP 74.78% on CIFAR-100).

Since local learning spares the effort of a global BP, it will
not suffer from the notorious gradient vanishing and ex-
plosion problems that are easy to emerge in training deep
neural networks such as the VGG architecture (Simonyan
& Zisserman, 2015). As shown in Table 7, we compare the
performances of our method and training with global BP in
VGG-Net of different depth. As the depth goes larger, the
performance of global BP decreases sharply until a failed
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Table 6. Local learning results with ResNet-32 on CIFAR-10 and CIFAR-100 and comparison with prior studies. K is the number of local
modules divided from ResNet-32. K=16 refers to the case where each residual block including the stem layer correspond to one local
module. K=3 divides the model according to feature spatial resolution. K = 2 leaves the last 5 blocks as the second local module.

Method CIFAR-10 (BP: 92.82±0.22) CIFAR-100 (BP: 74.78±0.31)
K=16 K=3 K=2 K=16 K=3 K=2

Greedy (Belilovsky et al., 2019) 76.96±0.54 85.12±0.35 90.06±0.43 48.77±0.41 63.55±0.32 70,68±0.38
DGL (Belilovsky et al., 2020) 84.01±0.40 87.61±0.51 91.05±0.27 63.31±0.28 70,59±0.39 72.34±0.31
InfoPro (Wang et al., 2021) 85.69±0.47 90.43±0.36 91.74±0.29 66.27±0.44 71.44±0.24 73.59±0.25
SGR (ours) 85.65±0.38 91.34±0.45 92.91±0.36 66.61±0.31 72.15±0.27 74.63±0.20
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Figure 3. We measure the change of classification loss in each layer caused by the input update from prior layers using a 4-layer PlainNet.
The black dashed line denotes the zero baseline such that the area below it means that the updates of prior layers can produce a new output
feature enabling to reduce the loss value of the current layer as its input.

Table 7. Results of VGG-Net with different depth on CIFAR-10.

Method d=12 d=17 d=27 d=37 d=47 d=57

Global BP 90.76 90.95 90.46 78.47 37.68 fail
SGR (ours) 84.81 86.38 86.95 86.09 85.30 85.51

convergence. In contrast, our SGR is able to keep a stable
performance even in a very deep network.

4.4. Analysis

In traditional local learning, local updates are not reconciled,
so the updates of prior layers do not necessarily change
the output feature towards a direction that minimizes the
current local loss. In this subsection, we investigate whether
our SGR helps to remedy this defect. We measure the
classification loss change in one layer caused by the update
of its input feature, i.e., ∆Lk = Lk(x

(t+1)
k−1 ) − Lk(x

(t)
k−1),

where x(t)
k−1 is the input feature of this local layer in the t-th

iteration and x(t+1)
k−1 is the new one after the update of all its

previous layers 1, .., k − 1.

As shown in Figure 3, for a 4-layer PlainNet, ∆L2 in the
2nd layer with and without our method are both surrounding
zero. In deeper layers, the scale of ∆L without our method
(the blue one) is growing larger, which indicates that the
discordant local updates have an accumulative effect on

deep layers. Besides, the curves without our method in
the 3-rd and 4-th layers are above zero most of the time,
implying that the prior local updates contribute little to the
deep layers’ learning. As a comparison, our method does not
grow the scale of ∆L apparently in deep layers. Particularly
in the 4-th layer, the curve with our method is below zero in
most epochs, which means the first 3 layers help to produce
a better feature as the input of the last layer, and is in line
with our better performance observed in Figure 2.

5. Conclusion
In this paper, we point out a fundamental defect of local
learning that global BP is naturally immune to. Our theoret-
ical result indicates that the convergence of local learning
cannot be assured when the local updates are not reconciled.
Based on the result, we propose a method, named successive
gradient reconciliation, to successively reconcile local up-
dates without breaking gradient isolation or introducing any
learnable parameters. Our method can be applied to both
local-BP and BP-free local learning. Experimental results
demonstrate that our method surpasses previous methods
and is able to achieve a comparable performance with global
BP saving more than 40% memory consumption for CNN
and Transformer architectures. Future studies may explore
applying our method to large model finetuning.
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Impact Statement
Our method reduces memory consumption in training neural
network, making machine learning models more friendly in
resource-limited environments. Furthermore, by aligning
more closely with biological learning processes, our method
may contribute to the intersection of AI and neuroscience,
potentially leading to developments of more biologically
plausible AI systems. The main goal of this paper is to
advance the field of machine learning. There is no ethic
impact that we feel must be specifically highlighted here.
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A. Proof of Theorem 3.3
We restate the assumptions and results, and then provide the proof.

Assumption A.1 (PL Condition). Let L∗2 be the optimal function value of the second layer loss L2. There exists a µ such
that ∀θ1,θ2, we have:

‖∇L2(θ1,θ2)‖2 = ‖∇θ1L2(θ1,θ2)‖2 + ‖∇θ2L2(θ1,θ2)‖2

≥ µ (L2(θ1,θ2)− L∗2) ,

where∇L2 = [∇θ1L2;∇θ2L2].

Assumption A.2 (Layer-wise Lipschitz and global Lipschitz). There exists L1, L2, and L > 0 such that for all
θ1,a,θ1,b,θ1,θ2,a,θ2,b,θ2, we have:

‖∇θ1L2(θ1,a,θ2)−∇θ1L2(θ1,b,θ2)‖ ≤ L1 ‖θ1,a − θ1,b‖ ,
‖∇θ2L2(θ1,θ2,a)−∇θ2L2(θ1,θ2,b)‖ ≤ L2 ‖θ2,a − θ2,b‖ ,

and

‖∇L2(θ1,a,θ2,a)−∇L2(θ1,b,θ2,b)‖ ≤ L
∥∥∥∥[θ1,a − θ1,bθ2,a − θ2,b

]∥∥∥∥ .
Theorem A.3. Based on Assumptions 3.1 and 3.2, if the learning rates are set as η(i)1 = η1 and η(i)2 = η2, where 0 < η1 ≤ min

(√
L2

1+8L2−L1

4L2 , 2
µ ,

1
2L2

)
max

(
0, 1−

√
1−2L2η1
L2

)
< η2 ≤ 1+

√
1−2L2η1
L2

,

we have the following convergence

L(i+1,i+1)
2 − L∗2 ≤ (1− αµ)

(
L(i,i)
2 − L∗2

)
+ α

∥∥∥ε(i)∥∥∥2 , (8)

and recursively applying Eq. (8) we have

L(i+1,i+1)
2 − L∗2 ≤ (1− αµ)

i+1
(
L(0,0)
2 − L∗2

)
+ α

i∑
k=0

(1− αµ)k
∥∥∥ε(i−k)∥∥∥2 , (9)

where L(i,i)
2 denotes L2(θ

(i)
1 ,θ

(i)
2 ), i.e., the second layer loss value with parameters θ(i)1 and θ(i)2 in the i-th iteration,

α = η1
2 , and ε(i) , ∇θ1L

(i,i)
2 −∇θ1L

(i)
1 .

Lemma A.4. With assumption A.1, we have

L(i,i)
2 − L(i+1,i+1)

2 ≥ η(i)2

(
1− L2

2
η
(i)
2

)∥∥∥∇2L(i+1,i)
2

∥∥∥2 + η
(i)
1 ∇T1 L

(i)
1 ε

(i) + η
(i)
1

(
1− L1

2
η
(i)
1

)∥∥∥∇1L(i)
1

∥∥∥2 , (10)

where ε(i) = ∇1L(i,i)
2 −∇1L(i)

1 , ∇1L(i,i)
2 is the abbreviation of∇θ1L2(θ

(i)
1 ,θ

(i)
2 ), and ∇1L(i)

1 refers to∇θ1L1(θ
(i)
1 ).

Lemma A.5. With assumption A.1, we have∥∥∥∇L(i,i)
2

∥∥∥2 − ∥∥∥ε(i)∥∥∥2 ≤ (2
(
Lη

(i)
1

)2
+ 1

)∥∥∥∇1L(i)
1

∥∥∥2 + 2
∥∥∥∇2L(i+1,i)

2

∥∥∥2 + 2∇T1 L
(i)
1 ε

(i), (11)

where ε(i) = ∇1L(i,i)
2 −∇1L(i)

1 , and ∇L(i,i)
2 = [∇θ1L

(i,i)
2 ;∇θ2L

(i,i)
2 ].
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Proof of Lemma A.4. The layer wise training based on Eq. (1) and (2) is restated as follows:

θ
(i+1)
1 ← θ

(i)
1 − η

(i)
1 ∇θ1L1(θ

(i)
1 ),

θ
(i+1)
2 ← θ

(i)
2 − η

(i)
2 ∇θ2L2(θ

(i+1)
1 ,θ

(i)
2 ).

Based on descent lemma (Beck & Tetruashvili, 2013) and Assumption A.2, we have

L(i+1,i+1)
2 ≤ L(i+1,i)

2 +∇T2 L
(i+1,i)
2

(
θ
(i+1)
2 − θ(i)2

)
+
L2

2

∥∥∥θ(i+1)
2 − θ(i)2

∥∥∥2
= L(i+1,i)

2 − η(i)2

(
1− L2

2
η
(i)
2

)∥∥∥∇2L(i+1,i)
2

∥∥∥2, (12)

and
L(i+1,i)
2 ≤ L(i,i)

2 +∇T1 L
(i,i)
2

(
θ
(i+1)
1 − θ(i)1

)
+
L1

2

∥∥∥θ(i+1)
1 − θ(i)1

∥∥∥2
= L(i,i)

2 − η(i)1 ∇T1 L
(i,i)
2 ∇1L(i)

1 +
L1

2
(η

(i)
1 )2

∥∥∥∇1L(i)
1

∥∥∥2. (13)

Sum up (12) and (13) to obtain

L(i,i)
2 − L(i+1,i+1)

2 ≥ η(i)2

(
1− L2

2
η
(i)
2

)∥∥∥∇2L(i+1,i)
2

∥∥∥2 + η
(i)
1 ∇T1 L

(i,i)
2 ∇1L(i)

1 −
L1

2
(η

(i)
1 )2

∥∥∥∇1L(i)
1

∥∥∥2.
Then let ∇1L(i,i)

2 = εi +∇1L(i)
1 :

L(i,i)
2 − L(i+1,i+1)

2 ≥ η(i)2

(
1− L2

2
η
(i)
2

)∥∥∥∇2L(i+1,i)
2

∥∥∥2 + η
(i)
1 ∇T1 L

(i)
1 ε

i + η
(i)
1

(
1− L1

2
(η

(i)
1 )

)∥∥∥∇1L(i)
1

∥∥∥2,
which concludes the proof of Lemma A.4.

Proof of Lemma A.5.∥∥∥∇L(i,i)
2

∥∥∥2 =
∥∥∥∇2L(i,i)

2

∥∥∥2 +
∥∥∥∇1L(i,i)

2

∥∥∥2
≤
(∥∥∥∇2L(i,i)

2 −∇2L(i+1,i)
2

∥∥∥+
∥∥∥∇2L(i+1,i)

2

∥∥∥)2 +
∥∥∥∇1L(i,i)

2

∥∥∥2
=
∥∥∥∇2L(i,i)

2 −∇2L(i+1,i)
2

∥∥∥2 +
∥∥∥∇2L(i+1,i)

2

∥∥∥2 + 2
∥∥∥∇2L(i,i)

2 −∇2L(i+1,i)
2

∥∥∥∥∥∥∇2L(i+1,i)
2

∥∥∥2 +
∥∥∥∇1L(i,i)

2

∥∥∥2
≤ 2

(∥∥∥∇2L(i,i)
2 −∇2L(i+1,i)

2

∥∥∥2 +
∥∥∥∇2L(i+1,i)

2

∥∥∥2)+
∥∥∥∇1L(i,i)

2

∥∥∥2
≤ 2

(∥∥∥∇2L(i,i)
2 −∇2L(i+1,i)

2

∥∥∥2 +
∥∥∥∇1L(i,i)

2 −∇1L(i+1,i)
2

∥∥∥2 +
∥∥∥∇2L(i+1,i)

2

∥∥∥2)+
∥∥∥∇1L(i,i)

2

∥∥∥2
= 2

(∥∥∥∇L(i,i)
2 −∇L(i+1,i)

2

∥∥∥2 +
∥∥∥∇2L(i+1,i)

2

∥∥∥2)+
∥∥∥∇1L(i,i)

2

∥∥∥2
≤ 2L2

∥∥∥θ(i)1 − θ
(i+1)
1

∥∥∥2 + 2
∥∥∥∇2L(i+1,i)

2

∥∥∥2 +
∥∥∥∇1L(i,i)

2

∥∥∥2
≤ 2

(
Lη

(i)
1

)2 ∥∥∥∇1L(i)
1

∥∥∥2 + 2
∥∥∥∇2L(i+1,i)

2

∥∥∥2 +
∥∥∥∇1L(i,i)

2

∥∥∥2.
Since∇1L(i,i)

2 = ε(i) +∇1L(i)
1 , we have∥∥∥∇L(i,i)

2

∥∥∥2
≤2
(
Lη

(i)
1

)2 ∥∥∥∇1L(i)
1

∥∥∥2 + 2
∥∥∥∇2L(i+1,i)

2

∥∥∥2 +
∥∥∥∇1L(i,i)

2 −∇1L(i)
1 +∇1L(i)

1

∥∥∥2
=2
(
Lη

(i)
1

)2 ∥∥∥∇1L(i)
1

∥∥∥2 + 2
∥∥∥∇2L(i+1,i)

2

∥∥∥2 +
∥∥∥∇1L(i,i)

2 −∇1L(i)
1

∥∥∥2 +
∥∥∥∇1L(i)

1

∥∥∥2 + 2
(
∇1Li,i2 −∇1L(i)

1

)T
∇1L(i)

1

=

(
2
(
Lη

(i)
1

)2
+ 1

)∥∥∥∇1L(i)
1

∥∥∥2 + 2
∥∥∥∇2L(i+1,i)

2

∥∥∥2 +
∥∥∥ε(i)∥∥∥2 + 2∇T1 L

(i)
1 ε

(i).
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Therefore, we have,∥∥∥∇L(i,i)
2

∥∥∥2 − ∥∥∥ε(i)∥∥∥2 ≤ (2
(
Lη

(i)
1

)2
+ 1

)∥∥∥∇1L(i)
1

∥∥∥2 + 2
∥∥∥∇2L(i+1,i)

2

∥∥∥2 + 2∇T1 L
(i)
1 ε

(i), (14)

which concludes the proof of Lemma A.5.

Proof of Theorem A.3. We let η(i)1 = η1 and η(i)2 = η2. Recall Lemma (A.4) and (A.5), we could calculate a factor α such
that

L(i,i)
2 − L(i+1,i+1)

2 ≥

 η2
(
1− L2

2 η2
)

η1
(
1− L1

2 (η1)
)

η1

T

∥∥∥∇2L(i+1,i)

2

∥∥∥2∥∥∥∇1L(i)
1

∥∥∥2
∇T1 L

(i)
1 ε

i


(A)
≥ α

 2

2 (Lη1)
2

+ 1
2

T

∥∥∥∇2L(i+1,i)

2

∥∥∥2∥∥∥∇1L(i)
1

∥∥∥2
∇T1 L

(i)
1 ε

i


(B)
≥ α

(∥∥∥∇L(i,i)
2

∥∥∥2 − ‖ε(i)‖2) ,

(15)

where (B) holds because of the conclusion of Lemma A.5, and to ensure the correctness of (A), we solve the following
inequalities 

η2

(
1− L2

2
η2

)
≥ 2α

η1

(
1− L1

2
(η1)

)
≥ 2α (Lη1)

2
+ α

η1 = 2α.

(16)

The third of Eq.(16) implies α = η1
2 . Plug it into the second to obtain −

√
L2

1+8L2+L1

4L2 < η1 ≤
√
L2

1+8L2−L1

4L2 . Plug it into
the first one to obtain 1−

√
1−2L2η1
L2

≤ η2 ≤ 1+
√
1−2L2η1
L2

. Because the learning rate cannot be negative, its value range is
truncated by zero. And in the interval of η2, to avoid the square

√
1− 2L2η1 from being negative, we let η1 ≤ 1

2L2
. All

above conditions imply 
0 < η1 ≤ min

(√
L2

1+8L2−L1

4L2 , 1
2L2

)
max

(
0, 1−

√
1−2L2η1
L2

)
< η2 ≤ 1+

√
1−2L2η1
L2

α = η1
2

, (17)

Then, by Assumption A.1 (PL condition) and Eq. (15), we have

L(i,i)
2 − L(i+1,i+1)

2 ≥ α
(∥∥∥∇L(i,i)

2

∥∥∥2 − ‖ε(i)‖2) ≥ αµ
(
L(i,i)
2 − L?2

)
− α‖ε(i)‖2.

Re-arranging both sides, we have

L(i+1,i+1)
2 − L∗2 ≤ α‖ε(i)‖2 − αµ

(
L(i,i)
2 − L∗2

)
+ L(i,i)

2 − L∗2

= α‖ε(i)‖2 + (1− αµ)
(
L(i,i)
2 − L∗2

)
.

(18)

Recusively performing Eq. (18), we have

L(i+1,i+1)
2 − L∗2 ≤ (1− αµ)

i+1
(
L(0,0)
2 − L∗2

)
+ α

i∑
k=0

(1− αµ)
k ‖ε(i−k)‖2 .

To ensure the convergence, 1− αµ should be in (0, 1), which implies 0 < α < 1
µ and accordingly η1 < 2

µ . Combining the
learning rate conditions Eq. (17), we conclude the proof.
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B. Proof of Proposition 3.4
Proposition B.1. For a model composed of L local layers parameterized by θk with their local errors Lk, k = 1, ..., L,
when LSGRk = 0 for all layers 2 ≤ k ≤ L for a batch of data, we have

∇θkLL = ∇θkLk, ∀1 ≤ k ≤ L− 1,

which implies that all local updates are equivalent to learning with the global true gradient back propagated from the
last-layer error LL.

Proof of Proposition B.1. Since LSGRL = 0, we have

∂LL
∂xL−1

=
∂LL−1
∂xL−1

. (19)

Multiplying both sides of Eq. (19) by Jf (θL−1) = ∂xL−1

∂θL−1
, we have

∇θL−1
LL = ∇θL−1

LL−1.

Multiplying both sides of Eq. (19) by Jf (xL−2) = ∂xL−1

∂xL−2
, and considering LSGRL−1 = 0, we have

∂LL
∂xL−2

=
∂LL−1
∂xL−2

=
∂LL−2
∂xL−2

. (20)

Similarly multiplying Eq. (20) the Jacobian matrix of feature xL−2 w.r.t. θL−2, we have ∇θL−2
LL = ∇θL−2

LL−2.
Recursively performing this process until the first layer, we have

∇θkLL = ∇θkLk, 1 ≤ k ≤ L− 1. (21)

C. Proof of Proposition 3.5
Proposition C.1. Consider a two-layer linear model composed of x1 = θ1x0 and x2 = θ2x1, where θ1 and θ2 are the
learnable linear matrices, and x0 and x2 are the input and output of the model, respectively. We use fixed ETF structures
M1 andM2 for the local classifier heads and the cross entropy (CE) loss for local errors L1(M1x1, y) and L2(M2x2, y).
Denote L′2 as the CE loss value in inference after performing one step of gradient descent of L1 and L2 by Eq. (1) and (2),
and denote L̂′2 as the one with our LSGR2 on the second layer. Assume that the prediction logit for the ground truth label in
the second layer is larger than the one in the first layer, we have L̂′2 ≤ L′2, when LSGR2 is small.
Lemma C.2. For a fixed ETF classifierM defined in Eq. (7), consider two features x and x̂ belonging to the same class y,
such that x̂ = x− η δx, where η > 0, δx = −(1− py)my +

∑
k 6=y pkmk,mk is the classifier vector ofM for class k,

and py +
∑
k 6=y pk = 1, py, pk > 0. When using cross entropy loss L(Mx, y) = − log

exp(xTmy)∑
exp(xTmk)

, we have

L(Mx̂, y) < L(Mx, y). (22)

Proof of Lemma C.2. Based on Eq. (7), we have

x̂Tmy = xTmy + η(1− py) +
η

K − 1

∑
k 6=y

pk

= xTmy +
K

K − 1
(1− py)η,

where K > 0 is the number of total classes. For k 6= y, we have

x̂Tmk = xTmk − η(1− py)
1

K − 1
− ηpk + η

1

K − 1

∑
k′ 6=y,k′ 6=k

pk (23)

= xTmk −
K

K − 1
pkη. (24)
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Since 0 < pi < 1,∀1 ≤ i ≤ K, we have

L(Mx̂, y) = − log
exp(x̂Tmy)∑

exp(x̂Tmk)

= − log
exp

(
xTmy + K

K−1 (1− py)η
)

exp
(
xTmy + K

K−1 (1− py)η
)

+
∑
k 6=y exp(xTmk − K

K−1pkη)

< − log
exp

(
xTmy

)
exp (xTmy) +

∑
k 6=y exp(xTmk)

= L(Mx, y),

which concludes the proof of Lemma C.2.

Proof of Proposition C.1. In the first linear layer x1 = θ1x0, we have the gradient of L1(M1x1, y) w.r.t. θ1 as

∇θ1L1 =

x
T
0
...
xT0

⊗ δx1, (25)

where ⊗ performs multiplication for each row vector xT0 and each element of δx1 and δx1 is the gradient from L1 w.r.t. x1:

δx1 = −(1− p(1)y )m(1)
y +

∑
k 6=y

p
(1)
k m

(1)
k , (26)

wherem(1)
k is the classifier vector ofM1 for class k, and p(1)k is the probability predicted by the first layer for class k. Then

we have x′1 after the update of θ1 as:

x′1 = θ′1x0 = (θ1 − η∇θ1L1)x0 = x1 − η ‖x0‖2 δx1, (27)

where η is the learning rate.

Similarly, in the second layer x2 = θ2x1, when our method is not adopted, we have

θ′2 = θ2 − η

x
T
1
...
xT1

⊗ δx2, (28)

where δx2 is the gradient from L2 w.r.t. x2. In inference, we have the new output as

x′2 = θ′2x
′
1 = x2 − η ‖x0‖2 θ2δx1 − η ‖x1‖2 δx2 + η2 ‖x0‖2

x
T
1
...
xT1

⊗ δx2 · δx1. (29)

When our SGR is adopted, we have

L(SGR)
2 =

1

2

∥∥∥∥∂L1

∂x1
− ∂L2

∂x1

∥∥∥∥2 =
1

2

∥∥δx1 − θT2 δx2

∥∥2 .
In our case, we denote the updated second layer parameter as θ̂′2, which can be formulated as

θ̂′2 = θ2 − η

x
T
1
...
xT1

⊗ δx2 − ηδx2

(
δx1 − θT2 δx2

)T
. (30)
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Accordingly, we denote the new output in inference in our case as x̂′2, which can be formulated as

x̂′2 = θ̂′2x
′
1 = x′2 − ηδx2

(
δx1 − θT2 δx2

)T (
x1 − η ‖x0‖2 δx1

)
(31)

= x′2 − ηδx2

(
δxT1 x1 − η ‖x0‖2 ‖δx1‖2 − (θT2 δx2)Tx1 + η ‖x0‖2 (θT2 δx2)T δx1

)
. (32)

We assume that L(SGR)
2 is small, which indicates that ‖δx1‖2 ≈ (θT2 δx2)T δx1, and thus we have

x̂′2 ≈ x′2 − ηδx2

(
δxT1 x1 − (θT2 δx2)Tx1

)
= x′2 − ηδx2

(
δxT1 x1 − δxT2 x2

)
. (33)

Because we assume that the prediction logit for the label class in the second layer is larger than the one in the first layer,
based on the definition of ETF classifier, we have δxT2 x2 ≤ δxT1 x1. Consequently, the output feature in inference using our
method is in a form of x̂′2 = x′2 − βδx2 where β ≥ 0. Considering the conclusion of Lemma C.2, we have

L̂′2(x̂′2) ≤ L′2(x′2), (34)

which concludes the proof of Proposition C.1.

D. Analysis of Computation Cost of SGR
Eq. (6) introduced by our method requires calculating the gradient of δx, which is the gradient of the local error w.r.t.
the input x of this block. However, compared with InfoPro, our method is not obviously slower, and in some cases even
faster (ResNet 50 and 101 when K=3) while being more efficient in memory consumption. That is because InfoPro extra
introduces heavy reconstruction heads composed of multiple layers (e.g. 4 convolution layers on ImageNet) other than the
local classification heads, while our method only uses light local classifiers.

Although our method concerns the gradient calculation of Eq. (6), which includes a second-order derivative, here we provide
its analytical computation cost in a block to show that the introduced cost is bearable.

Consider a local block y = σ(Wx), where x ∈ Rn is the input of this block, y ∈ Rm is the output of this block,
W ∈ Rm×n is the parameter, and σ is the ReLU nonlinear activation. Its local error is given by L(y,Y), where L is the
loss function and Y is the ground truth. Our SGR loss term is in the form of LSGR = 1

2‖
∂L
∂x − g‖

2
2, where g is the gradient

from the previous local error towards x and thus is a constant vector here. We have ∂L
∂x = WT

[
∂L
∂y ⊗ σ

′(Wx)
]
, where ⊗

is the element-wise multiplication between two vectors, σ′ is the function of the first-order derivative of σ. Because the
second-order derivative of ReLU, i.e. σ′′ would be zero, we have

∂

∂W

(
∂L
∂x

)
i

=

[
0m, . . . ,

∂L
∂y
⊗ σ′(Wx), . . . ,0m

]
∈ Rm×n,

where i denotes the i-th element of ∂L∂x , and ∂L
∂y ⊗ σ

′(Wx) lies in the i-th column of the gradient matrix above with all the
other columns as 0m.

Then we have the gradient of our SGR loss w.r.t. W as:

∂LSGR

∂W
=

[
∂L
∂y
⊗ σ′(Wx)

](
∂L
∂x
− g
)T

=

[
∂L
∂y
⊗ σ′(Wx)

](
WT

[
∂L
∂y
⊗ σ′(Wx)

]
− g
)T

. (35)

From the equation above we can see that although our method concerns second-order derivatives, the gradient calculation of
our LSGR is simply matrix multiplications with ∂L

∂y ∈ R
m, σ′(Wx) ∈ Rm, and W ∈ Rm×n. The FLOPS of the equation

above is listed in Table 8.

Therefore, the theoretical computational cost is O(3mn+m), which is only in a similar scale of linear layer computation.
That is why training with our method will not be severely slowed down compared with global BP training. Additionally, we
provide the following two strategies that can further accelerate training by leveraging the advantages brought by our method.

(1) Due to the high memory efficiency of our method, we can use a larger batchsize to speedup training from improved GPU
parallelism utilization. (2) Because our method detaches all the other blocks when training each block locally, we support
asynchronous training for all the blocks. Suppose we have 3 local blocks, f1, f2, f3, for a neural network, the forward
propagation and local training of f1(x(t+2)), f2(x(t+1)), f3(x(t)) can be performed asynchronously, where x(t) denotes the
batch of train data in iteration t. This strategy can also speedup training.
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Table 8. Computation analysis in Eq. (35)

term FLOPs

A =
[
∂L
∂y ⊗ σ

′(Wx)
]

O(m)

B =
(
WTA− g

)T
O((2m− 1)n+ n)

A ·B O(mn)
total O(3mn+m)

E. Implementation Details
Training details

We train all models following the common practices. To train ResNet models, we use the SGD optimizer with a learning
rate of 0.1, a momentum of 0.9, and weight decay of 0.0001. We train these networks for 100 epochs with a batch size of
1024. The initial learning rate is set to 0.1 and decreases by a factor of 0.1 at epochs 30, 60, and 90. Data preprocessing
includes random resizing, flipping, and cropping. For ViT-S/16 training on ImageNet, we use a batch size of 4096. We use
the AdamW optimizer with a learning rate of 0.0016, and we apply a cosine learning rate annealing schedule after a linear
warm-up for the first 20 epochs. The training process lasts for 300 epochs, and we apply data augmentations like random
resized cropping, horizontal flipping, RandAugment, and Random Erasing. Training Swin Transformers on ImageNet uses a
batch size of 1024. We use the AdamW optimizer with a learning rate of 0.001, along with betas (0.9, 0.999), epsilon 1e-08,
and a weight decay of 0.05. Learning rate scheduling includes a linear warm-up for the first 20 epochs, followed by a cosine
annealing schedule with a minimum learning rate of 1e-05. For Swin Transformer models, including “tiny” and “small”
versions, we have a dropout rate of 0.2, an input image size of 224× 224, and a patch size of 16× 16. Training runs for
300 epochs, and we incorporate data augmentations like random resized cropping, horizontal flipping, RandAugment, and
Random Erasing. The coefficient of our SGR loss λ is set as 10k in these supervised learning experiments on ImageNet.

In our self-supervised experiments, we follow the Barlow Twins training procedure (Zbontar et al., 2021). We use a
ResNet-50 model and train it for 300 epochs. We optimize it using LARS with a learning rate of 1.6, a momentum of
0.9, and a weight decay of 1e-06. The batch size is 2048, and the learning rate schedule includes a linear warm-up for the
first 10 epochs, followed by cosine annealing until the 300th epoch, maintaining a minimum learning rate of 0.0016. We
use a three-layer MLP projector with 8192 hidden units and 8192 output units. To evaluate the transferability of feature
representations on the ImageNet dataset through linear classification, we employ the SGD optimizer with a learning rate of
0.3, a momentum of 0.9, and a weight decay of 1e-06. We train the model using a cosine annealing learning rate schedule
over 100 epochs, with a batch size of 256. Data augmentation techniques include random resizing and flipping. The model
architecture is based on a ResNet-50 backbone with specific stages frozen, along with a linear classification head.

On CIFAR, we train all models for 200 epochs with an initial learning of 0.1 and a cosine annealing learning rate scheduler.
We use a batchsize of 128 and adopt the SGD optimizer with a momentum of 0.9 and a weight decay of 5e-4. Standard data
pre-processing and augmentations are adopted. The coefficient of our SGR loss λ is set as 1 as default.

Local classifier setups

For experiments on ImageNet, we divide a model into 2 or 3 local modules such that the training memory consumption
reaches its minimum. We adopt the same local classifier following (Wang et al., 2021) for fair comparison. For experiments
on CIFAR, when K = 16, each residual block and the initial stem layer is a local module. When K = 3, the model is
divided according to the feature spatial resolution. When K = 2, we keep the last stage (feature size of 8× 8) as one local
module, and all the other blocks as another local layer. We adopt the same local classifier following (Belilovsky et al., 2019)
(k = 2 in their paper) for fair comparison. There are two layers in the classifier including one convolution layer and one
linear layer for classification.

F. Others
We provide more discussions and results, some of which are suggested by reviewers in the review process.

The limitations of our work include: 1) The method helps local training to better approach to global BP training by
mitigating the discordant local updates successively. But there is still a gap with global BP training because the regularization
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Figure 4. Train loss (left), train accuracy (middle), and test loss (right) curves with and without our method. The corresponding SGR loss
value and test accuracy curves are shown in Figure 2.

term could not be optimized to 0 in real implementation. 2) The analysis and method in this study mainly deal with local
training from scratch. How to apply our method into finetuning a pretrained model locally, especially for large models,
deserves future exploration. 3) The train time of our method is on par with InfoPro, but is still longer than global BP training
due to the introduced regularization term.

Further insights into how this regularization affects the convergence behavior and final performance. Our method
adds a regularization onto the classification loss. It seems that the regularization will impede the original optimality of the
classification loss and deteriorate the final performance. This is true for one-layer network. After all the local training of one
layer is just the global BP training of this network. However, our method is applied in the local training of multiple-layer
networks. For the last layer that outputs the final representation, its classification loss is dependent on two variables, the
parameters of the last layer, and the input of the last layer. In global BP training, the chain rule can pass the gradient of the
last-layer loss w.r.t. the input of the last layer into prior layers to change their parameters and produce a better input feature
that decreases the last-layer loss. But in local training, gradients of all layers are isolated. We have no way to ensure that the
input of the last layer, i.e. the output of its previous layer optimized by the previous local error, most satisfies the demand of
minimizing the last-layer loss. In this case, from a perspective of optimization, our method does not solely optimize the
last-layer parameters with its classification loss, but moves the parameters to a direction, such that the change of its input
feature caused by the previous local error also enables to minimize the last-layer classification loss. That is to say training
with our regularization LSGR simultaneously optimizes the parameter variable and the input variable, to induce a larger
reduction of the classification loss, and a better model performance finally. The input variable is optimized in an implicit
manner, by mitigating the discordant local updates from the top to the end of a deep network successively. As shown in
Proposition 3.4, when LSGR = 0 for all layers, each local update will be equivalent to the true gradient directly from the
last-layer classification loss, in which situation, the input change of each local layer most satisfies the demand to minimize
the last-layer classification loss.

Discussion of the comparison to other memory-saving techniques. Other memory-saving techniques, including gradient
checkpointing and reversible architectures, are based on the trade-off between memory cost and computation cost. These
methods still rely on global BP training, which means the activations of all layers are required when performing backpropa-
gation of the last-layer error. In gradient checkpointing, during the forward propagation, the prior activations are removed
once it is propagated into the next layer to save memory cost. In the backward propagation, however, the activations are
recovered by performing forward propagation once again for each layer. Similarly, reversible architectures recover input
activations of each layer in the backward propagation by re-performing these layers with their output activations using
a dual path. Therefore, both gradient checkpointing and reversible architecture require to re-calculate each layer, which
heavily increases their computational burden. In contrast, our method belongs to local training. It naturally enjoys memory
efficiency because the forward and backward propagations of each layer are performed locally. After the local update of
one layer, the activations of this layer can be detached in this iteration without performing the operations inside this layer
again. Therefore, we only need to consume the memory for one layer’s update while performing the forward and backward
propagations of each layer only once.

More results. A PyTorch-like pseudocode for the implementation of our SGR is shown in Algorithm 1. The training curves,
including train loss, train accuracy, and test loss, are shown in Figure 4. The corresponding SGR loss value and test accuracy
curves are shown in Figure 2.
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Algorithm 1 A PyTorch-like pseudocode for local training with SGR

Given: a model divided into a module list [Mk] parameterized by θk with local heads Lk(·, Y ), 1 ≤ k ≤ L; train data
S ∈ {(xt0, Y t)}t≤T of samples or mini-batches; hyper-parameter lambda;
optimizer_list = [torch.optim.SGD(θk) for k in range(1,L+1)]
SGR_criterion = nn.MSELoss()
for (xt0, Y

t) ∈ S do
input = xt0
for k = 1 to L do
optimizer = optimizer_list[k]
input.requires_grad_()
output = Mk(input)
loss_cls = Lk(output, Y )
if k >= 2 then
delta_now = torch.autograd.grad(

loss_cls, input, retain_graph=True, create_graph=True)[0]
delta_pre_norm = torch.flatten(delta_pre, 1)
delta_pre_norm = delta_pre_norm / torch.sqrt(

torch.sum(delta_pre_norm ** 2, dim=1, keepdims=True))
delta_now_norm = torch.flatten(delta_now, 1)
delta_now_norm = delta_now_norm / torch.sqrt(

torch.sum(delta_now_norm ** 2, dim=1, keepdims=True))
loss_SGR = SGR_criterion(delta_now_norm, delta_pre_norm)
loss = loss_cls + lambda * loss_SGR
optimizer.zero_grad()
loss.backward()
optimizer.step()

else
delta_pre = torch.autograd.grad(

loss_cls, output, retrain_graph=True)[0].detach()
optimizer.zero_grad()
loss_cls.backward()
optimizer.step()

end if
input = output.detach()

end for
end for
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