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Abstract. Deep learning has significantly advanced medical image seg-
mentation, particularly for large-scale datasets. However, deploying these
models on resource-limited devices like laptops presents two new diffi-
culties: (1) Data-level challenges due to the large volume of data, lim-
ited availability of high-quality labels, and varying quality of pseudo-
labels; and (2) Computational constraints, as CPU-only inference re-
quires achieving both speed and performance under limited resources.
To tackle these issues, we propose a novel curriculum-driven lightweight
3D U-Net (CDL-UNet) approach, which integrates a curriculum learn-
ing strategy, a label-based difficulty discriminator, and an adaptive slid-
ing window inference method. Our curriculum learning strategy progres-
sively trains the model with increasingly complex samples to enhance
learning efficiency and accuracy. The label-based difficulty discriminator
refines pseudo-labels and categorizes samples by difficulty, optimizing
the training process. Finally, the adaptive sliding window inference en-
sures fast and accurate segmentation even with CPU-only hardware. Our
method achieved an average score of 88.28% and 93.80% for organ DSC
and NSD on the online validation set, with an average inference time of
38 seconds, demonstrating its effectiveness for high-quality segmentation
on resource-constrained devices.

Keywords: Medical image segmentation · Curriculum learning · Com-
putational efficiency

1 Introduction

Deep learning has revolutionized medical image segmentation through advanced
models and strategies. However, deploying these models on resource-limited de-
vices like laptops introduces significant challenges. Large-scale medical imaging
datasets demand extensive computational power, which directly conflicts with
the limited processing capabilities of such devices. This creates a fundamental
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tension between achieving high precision and maintaining computational effi-
ciency. Therefore, developing models that are both accurate and optimized for
resource-constrained environments is essential for practical deployment.

The MICCAI FLARE 2022 challenge highlighted the potential to balance seg-
mentation accuracy and efficiency on standard consumer-grade GPU hardware.
In contrast, the MICCAI FLARE 2024 challenge introduces two new difficulties:
(1) Data-level challenges: the dataset is characterized by its large volume, limited
availability of high-quality labels, and varying quality of pseudo-labels; and (2)
Computational constraints: the challenge requires model inference on CPU-only
hardware in laptops, demanding even greater efficiency and lightweight design
from the models.

To address these data-level challenges, it’s crucial to consider the inherent
complexity and varying quality of the data, which traditional machine learning
methods often overlook. These methods typically rely on random sampling dur-
ing training, leading to inefficiencies with large, complex datasets like those in
FLARE 2024. As an alternative, curriculum learning(CL) has been proposed.
First introduced by Bengio et al. [1], CL mimics human learning by start-
ing with simpler concepts and gradually progressing to more challenging ones.
This strategy has shown significant benefits in various tasks, including weakly-
supervised object localization [20], object detection [21].Regarding the compu-
tational constraints, while FLARE 2022 [14] demonstrated the effectiveness of
U-Net-based architectures on GPU hardware, these models face performance
bottlenecks when deployed on CPU-only environments, particularly in resource-
limited devices like laptops.

In this work, we propose a novel approach named Curriculum-Driven
Lightweight 3D U-Net (CDL-UNet) to address these issues. To overcome the
data-level challenges, we employ a curriculum learning strategy that progres-
sively introduces the model to samples of increasing complexity. We enhance
pseudo-label quality with a label enhancement module and use a difficulty dis-
criminator to categorize samples into easy, hard, and erroneous groups. This
staged training approach starts with simpler samples and incorporates more
challenging ones over time. To meet the computational constraints, we develop a
lightweight 3D U-Net architecture optimized for CPU inference and implement
an adaptive sliding window inference strategy to further improve efficiency while
maintaining accuracy.

Our contributions are summarized as follows:

– Novel curriculum learning strategy: We propose a difficulty-aware cur-
riculum learning approach that effectively leverages noisy pseudo-labels to
improve segmentation performance.

– Lightweight 3D U-Net architecture: We design a highly efficient 3D
U-Net architecture optimized for CPU inference, capable of handling large-
scale medical images.

– Adaptive sliding window inference: We develop an adaptive sliding win-
dow inference strategy that enables fast and accurate segmentation on CPU
devices.
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2 Method

2.1 Preprocessing

In our approach, we applied several preprocessing strategies to ensure the quality
and consistency of the data used for training:

– Data Cleaning: We identified that some pseudo-labels contained noise, with
label values falling outside the expected range of 0 to 13. To address this,
we standardized these noisy labels by setting them to 0, effectively removing
any erroneous label values and ensuring uniformity across the dataset.

– Image Resampling: Given the anisotropic nature of the imaging data, we
resampled the images to a uniform spacing of [4.0, 1.2, 1.2]. This resampling
step was crucial for normalizing the resolution across different dimensions,
enabling the model to process the data consistently.

2.2 Proposed method

Our proposed method integrates several innovative strategies to enhance the
performance and efficiency of medical image segmentation tasks. The core com-
ponents include Data-level Curriculum Learning, a Label-based Difficulty Dis-
criminator, a CPU-friendly lightweight 3D U-Net architecture, and Adaptive
Efficient Sliding Window Inference.

2.2.1 Data-level Curriculum Learning In the MICCAI FLARE 2024 chal-
lenge, we applied a Data-level Curriculum Learning strategy to optimize our
model’s training. This strategy ranks the dataset by sample difficulty to en-
hance learning efficiency and performance. We categorized samples into three
types based on pseudo-label quality and designed corresponding training stages.

High-quality pseudo-labels: These labels typically originate from simple sam-
ples that the model can predict accurately. Since the model’s prediction ability
is inversely related to the difficulty of the samples, pseudo-labels generated from
simple samples tend to be of higher quality. These high-quality labels form the
foundation of early-stage training, ensuring that the model firmly grasps basic
concepts.

Moderate-quality pseudo-labels: As the model continues to learn, more com-
plex samples are introduced, resulting in pseudo-labels of slightly lower quality.
These challenging samples are crucial for the model to gradually adapt and
overcome, reflecting its ability to handle increasingly complex situations.

Low-quality pseudo-labels: In some cases, even simple samples may produce
very low-quality pseudo-labels due to the model’s limitations rather than issues
with the data itself.

Specifically, in the MICCAI FLARE 2024 challenge, we employed a diffi-
culty discriminator based on label comparison to enhance each image’s labels
and assign a difficulty score. This scoring mechanism further categorizes the
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samples into three groups: simple samples, difficult samples, and erroneous sam-
ples. Simple samples are those for which the model can generate high-quality
pseudo-labels; difficult samples have slightly lower prediction quality, and erro-
neous samples represent cases where the model produces extremely low-quality
pseudo-labels.

As illustrated in Fig. 1, our training strategy followed a two-phase approach:
"Easy-Then-Hard." In the first phase (Easy Course), the model focused on sim-
ple samples, building a robust foundation with high-quality pseudo-labels for
supervision. In the subsequent phase (Hard Course), attention shifted to diffi-
cult samples, enhancing the model’s robustness and generalization. By training
on increasingly complex and anomalous samples, we aimed to improve overall
performance and maintain accuracy across different cases.

By integrating the difficulty discriminator and the customized "Easy-Then-
Hard" dual-stage learning strategy, our method aimed to optimize the learning
path of the model, leading to better performance and shorter training times.
This approach not only improved the model’s performance on the training set
but also ensured stronger generalization on unseen data.

Fig. 1. Data-level Curriculum Learning.

2.2.2 Label-based Difficulty Discriminator The Label-Based Difficulty Dis-
criminator module serves two primary functions: enhancing the pseudo-label
quality for each image and calculating a difficulty score across different images.

Pseudo-Label Enhancement Module In the MICCAI FLARE 2024 chal-
lenge, two sets of pseudo-labels are provided for each image. However, it is chal-
lenging to determine which of the two labels is of higher quality. To address this,
we introduce an additional reference label using the nnU-Net network as a third
pseudo-label.

For any given image, the similarity between these pseudo-labels is considered
a measure of mutual agreement. Specifically, if a pseudo-label has the highest
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average similarity with the other two pseudo-labels, we consider it the most
reliable. This can be formalized by computing the average Dice similarity, which
we term the Reliability Score (RS), as follows:

RSi =
Dice(Li, Lj) + Dice(Li, Lk)

2
, for i, j, k ∈ {1, 2, 3} and i ̸= j ̸= k (1)

Here, RSi represents the Reliability Score for label Li, indicating how closely
it aligns with the other two labels. The label with the highest RS is selected as
the most reliable pseudo-label.

Difficulty Discriminator After calculating the Reliability Scores using
Equation 1, we can generate a Difficulty Score (DS) for each image to guide
the curriculum learning process, as shown in Equation 2:

DS =
Dice(Lreal, L1) + Dice(Lreal, L2)

2
(2)

In this equation, Lreal refers to the most reliable label selected from Equation
1. The Difficulty Score (DS) provides an estimate of the segmentation challenge
for each image. A high DS implies that different models produce similar segmen-
tation results, indicating an easier task. Conversely, a low DS suggests significant
disagreement between the models, indicating a more difficult task. In extreme
cases, where the DS is very low, it is likely that the segmentation contains sig-
nificant errors, and such samples are excluded from training due to the absence
of a reliable ground truth.

In summary, this method not only enhances the quality of pseudo-labels but
also categorizes the data into different difficulty levels, facilitating a structured
approach to curriculum learning.

Fig. 2. Network architecture of Light 3D U-Net.

2.2.3 CPU-Friendly Lightweight 3D U-Net Architecture While 3D U-
Net has demonstrated state-of-the-art performance in various medical image
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segmentation tasks, deploying such a model for 3D medical image segmentation
on a CPU poses significant challenges. To address this, we designed a CPU-
friendly lightweight 3D U-Net architecture with the following key modifications,
as illustrated in Fig. 2:

– Smaller Patch Input: We utilize a patch size of 32×128×192, which is
more suitable for CPU inference. Smaller patches reduce the computational
load by limiting the number of voxels processed at once, allowing for more
efficient memory management and faster processing times, crucial for CPU-
based environments where memory and computational resources are limited.

– Reduced Channel Count: The initial number of channels is set to 16,
which significantly lowers the model’s complexity. By reducing the number
of channels, we decrease the number of parameters and computational oper-
ations required during both training and inference, making the model more
efficient without sacrificing segmentation accuracy.

– Fewer Downsampling Layers: Given the smaller patch size, we found that
excessive downsampling was unnecessary. Therefore, we limited the model to
three downsampling layers. This choice strikes a balance between maintain-
ing spatial resolution and reducing computational complexity, ensuring that
the model remains lightweight and effective for CPU-based segmentation
tasks.

2.2.4 Adaptive Efficient Sliding Window Inference While the sliding win-
dow strategy provided by nnU-Net significantly improves prediction accuracy, it
also introduces a substantial computational burden, particularly in CPU-limited
environments. To address this issue, we propose an adaptive efficient sliding win-
dow inference method that leverages prior knowledge from Abdominal Organ CT
images to greatly enhance inference efficiency.

– Adaptive Window Sliding Strategy: We observed that the dataset for
MICCAI FLARE 2024 exhibits a considerable variation in image shape along
the vertical axis (z-direction). For instance, some images have a very short
z-axis length, such as Case_01300 (1, 24, 512, 512), while others have a
significantly longer z-axis, such as Case_00947 (1, 997, 512, 512). Clearly,
images with a shorter z-axis require fewer sliding window operations and
impose a minimal computational load, allowing for a finer sliding window
strategy to improve accuracy. Conversely, images with a longer z-axis require
numerous sliding window operations, leading to a much higher computational
load. Therefore, a coarser sliding window strategy can be adopted to enhance
efficiency.
The specific design is illustrated in Fig. 3. During inference, we first estimate
the number of sliding windows using a fine-grained approach. If the number
of sliding windows is below a threshold, we apply the fine-grained sliding
window method. Otherwise, we switch to a coarser sliding window strategy
to balance accuracy and computational efficiency.
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– Efficient Sliding Window: Observations reveal that some Abdominal Or-
gan CT images with a long z-axis only have a limited annotated region, with
the majority being non-segmentation areas. Leveraging prior knowledge of
human anatomy, the abdominal organs are expected to occupy a relatively
small volume and are generally located in the central part of each transverse
section.
Following the strategy proposed by [9], we first perform inference within the
central window, as shown in Fig. 3 (highlighted in green). If this central
window contains no foreground area, we can skip the surrounding windows,
thus reducing unnecessary computations.

Fig. 3. Adaptive window sliding.

2.3 Post-processing

In our study, post-processing is employed to minimize false positives by elimi-
nating small connected regions. This approach helps in refining the segmentation
results by focusing on the most significant structures and reducing noise from
minor isolated areas.

3 Experiments

3.1 Dataset and evaluation measures

The dataset is curated from more than 40 medical centers under the license
permission, including TCIA [3], LiTS [2], MSD [19], KiTS [7,8], autoPET [6,5],
AMOS [11], AbdomenCT-1K [18], TotalSegmentator [22], and past FLARE chal-
lenges [15,16,17]. The training set includes 2050 abdomen CT scans where 50 CT
scans with complete labels and 2000 CT scans without labels. The validation and
testing sets include 250 and 300 CT scans, respectively. The annotation process
used ITK-SNAP [24], nnU-Net [10], MedSAM [12], and Slicer Plugins [4,13].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside one efficiency
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measures—runtime. These metrics collectively contribute to the ranking com-
putation. During inference, GPU is not available where the algorithm can only
rely on CPU.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 20.04.4 LTS
CPU Intel(R) Xeon(R) Gold 6143 CPU @ 2.80GHz
RAM 8 × 32GB
Programming language Python 3.9
Deep learning framework Torch 2.3.1
Specific dependencies NVIDIA GeForce RTX 3090 (24G, ×1)
Code https://github.com/iam-nacl/FLARE2024

Training Protocols In our approach, we adopted the default training proto-
cols provided by the nnU-Net framework, which have been shown to be highly
effective in medical image segmentation tasks.

– Data Augmentation: Extensive data augmentation was applied during the
training process to improve the model’s generalization capabilities. This in-
cludes operations such as elastic deformations, and intensity augmentations.

– Patch Sampling Strategy: We utilizes a sophisticated patch sampling
strategy that balances between foreground and background regions. During
training, patches are extracted from the images with a higher probability of
containing foreground regions, ensuring that the model learns to accurately
segment the structures of interest.

– Optimal Model Selection Criteria: The model used for inference is se-
lected based on the final checkpoint after all training epochs

Further details are provided in Table 2

4 Results and discussion

4.1 Quantitative results on validation set

The results presented in Table 3 showcase the performance of our segmentation
model across various abdominal organs. The high Dice Similarity Coefficient
(DSC) and Normalized Surface Dice (NSD) values indicate the model’s effec-
tiveness in accurately segmenting most organs. Notably, the liver and spleen

https://github.com/iam-nacl/FLARE2024
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Table 2. Training protocols.

Network initialization
Batch size 2
Patch size 32×128×192
Total epochs 1000(Course easy)+1500(Course hard)
Optimizer SGD
Initial learning rate (lr) 0.01
Lr decay schedule 0.9
Training time 5h(Course easy)+8h(Course hard)
Loss function Dice loss and cross entropy loss
Number of model parameters 1.39M1

Number of flops 64.02G2

CO2eq 2.19Kg3

exhibited DSCs of 97.10% and 96.39%, respectively, demonstrating the model’s
proficiency in handling large, well-defined organs.

However, the performance on smaller and more complex structures, such
as the right adrenal gland and gallbladder, was relatively lower, with DSCs of
82.25% and 80.75%, respectively. This discrepancy suggests that while the model
performs exceptionally well on larger organs, there is room for improvement in
segmenting smaller, more intricate structures.

On the online validation set, the model maintained robust performance, with
an average DSC of 88.28%, highlighting its generalization capability across dif-
ferent datasets.

Table 3. Quantitative evaluation results on validation set.

Target Public Validation Online Validation
DSC(%) NSD(%) DSC(%) NSD(%)

Liver 97.10 ± 1.36 91.91 ± 5.42 96.92 97.32
Right Kidney 94.51 ± 13.70 93.84 ± 14.63 92.19 93.84
Spleen 96.39 ± 1.80 95.80 ± 5.18 94.06 95.16
Pancreas 89.99 ± 2.37 90.01 ± 5.12 85.95 96.08
Aorta 95.30 ± 1.90 98.49 ± 3.32 95.54 98.51
Inferior vena cava 91.91 ± 2.94 93.07 ± 4.61 90.75 92.93
Right adrenal gland 82.25 ± 7.54 95.93 ± 5.54 83.41 95.92
Left adrenal gland 83.17 ± 11.19 95.63 ± 9.64 82.36 94.49
Gallbladder 80.75 ± 30.51 83.14 ± 31.45 79.25 80.38
Esophagus 85.17 ± 5.61 90.71 ± 7.61 81.34 92.22
Stomach 93.34 ± 3.19 88.62 ± 7.41 92.13 94.76
Duodenum 86.92 ± 5.14 87.55 ± 6.09 80.12 92.88
Left kidney 93.34 ± 14.75 92.69 ± 16.08 93.61 94.95
Average 90.01 ± 7.19 92.11 ± 9.39 88.28 93.80
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Table 4. Quantitative evaluation results on test set.

Metric Asian European North American
Mean Median Mean Median Mean Median

DSC (%) 86.2 ± 6.9 89.1 87.0 ± 8.4 89.6 87.4 ± 4.4 88.9
NSD (%) 92.0 ± 6.2 94.6 91.8 ± 8.6 95.3 92.5 ± 4.9 94.1
Time (s) 31.4 ± 5.3 30.6 30.6 ± 8.1 29.5 30.1 ± 7.8 29.3

Table 5 presents the results of the ablation study comparing the "Only
Easy Course" training strategy with our final model, which integrates data-
level curriculum learning. The final model consistently outperforms the "Only
Easy Course" across most organs, particularly in challenging structures such as
the right adrenal gland, where DSC improved from 78.64% to 82.25%, and NSD
from 92.29% to 95.93%.

This demonstrates the effectiveness of our curriculum learning approach in
enhancing model performance, especially for difficult-to-segment organs. The av-
erage DSC improvement from 88.67% to 90.01% and NSD from 90.34% to 92.11%
further underscores the advantages of our comprehensive training strategy.

Table 5. Ablation studies on Public Validation: Performance Comparison of Only Easy
Course vs. Final Model

Target Only Easy Course Final Results
DSC(%) NSD(%) DSC(%) NSD(%)

Liver 97.12 91.80 97.10 91.91
Right Kidney 93.65 92.49 94.51 93.84
Spleen 96.22 95.24 96.39 95.80
Pancreas 88.64 87.79 89.99 90.01
Aorta 95.08 98.17 95.30 98.49
Inferior vena cava 90.42 91.08 91.91 93.07
Right adrenal gland 78.64 92.29 82.25 95.93
Left adrenal gland 82.52 94.87 83.17 95.63
Gallbladder 76.17 78.16 80.75 83.14
Esophagus 83.39 88.39 85.17 90.71
Stomach 92.22 87.22 93.34 88.62
Duodenum 84.34 84.58 86.92 87.55
Left kidney 93.03 92.26 93.34 92.69
Average 88.67 90.34 90.01 92.11

4.2 Qualitative results on validation set

The qualitative results in Table 4 highlight both successful and challenging seg-
mentation cases. In cases like FLARETs_0037 (slice 72) and FLARETs_0041
(slice 114), the final model successfully corrected misclassifications and improved
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boundary precision compared to the initial "Easy Course" model. For instance,
the final model accurately segmented the Right adrenal gland and Duodenum
in Case FLARETs_0037, which the "Easy Course" model initially struggled
with. However, in more challenging cases such as FLARETs_0048 (slice 76) and
FLARETs_0032 (slice 172), both models faced difficulties, particularly with
small or partially visible organs like the Right Kidney. Despite these challenges,
the final model consistently demonstrated better overall segmentation, particu-
larly in refining organ boundaries and reducing errors, underscoring the effec-
tiveness of the curriculum learning approach.

4.3 Segmentation efficiency results on validation set

In Table 6, we report the efficiency evaluation results for segmentation on the
validation set. The table presents the running time for various image sizes, illus-
trating the time required to process images of different dimensions. The results
show that running time varies with image size. This evaluation highlights the
impact of image complexity on processing time.

Table 6. Quantitative evaluation of segmentation efficiency in terms of the running
time.

Case ID Image Size Running Time (s)
0059 (512, 512, 55) 36.25
0005 (512, 512, 124) 39.11
0159 (512, 512, 152) 33.27
0176 (512, 512, 218) 31.92
0112 (512, 512, 299) 45.49
0135 (512, 512, 316) 46.21
0150 (512, 512, 457) 48.67
0134 (512, 512, 597) 54.97

4.4 Results on final testing set

The qualitative results in Table 4 The model demonstrated consistent perfor-
mance across regions (Asia/Europe/North America) with high segmentation ac-
curacy (DSC: 86.2-87.4%, NSD: 91.8-92.5%) and efficient inference times (29.3-
31.4s), showing minimal regional variability.

4.5 Limitation and future work

While our approach performed well overall, it faced challenges in segmenting
smaller or less distinct structures like the adrenal glands and gallbladder. Ad-
ditionally, cases with atypical anatomy or low-contrast boundaries led to minor
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inaccuracies. Future work will aim to improve the model’s handling of these chal-
lenges by incorporating advanced data augmentation techniques and integrating
multi-scale features. Refining our curriculum learning strategy could also en-
hance segmentation accuracy in these complex scenarios.

Fig. 4. Qualitative results on validation set.

5 Conclusion

In this study, we proposed a comprehensive approach to abdominal organ seg-
mentation, leveraging a data-level curriculum learning strategy alongside a CPU-
friendly lightweight 3D U-Net architecture. Our method effectively addressed the
challenges of segmenting both large and small structures by prioritizing easier
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cases in early training phases, thereby enhancing model generalization. Quan-
titative results demonstrated that our approach achieved high accuracy across
multiple organs, particularly excelling in the segmentation of major organs such
as the liver and spleen. Despite some limitations in segmenting smaller or less
distinct organs, our approach shows promise for future refinement and applica-
tion in clinical settings.
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Table 7. Checklist Table. Please fill out this checklist table in the answer column.
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Introduction includes at least three parts:
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Pre-processing Page 3
Strategies to improve model inference Page 5,6,7
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