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ABSTRACT

Researchers have shown that distance and size are not the only fac-
tors that impact the target acquisition time in desktop interfaces,
but that its intended use, whether it is selected, dragged, or other-
wise manipulated, can also have a significant influence. However,
despite the increasing popularity of virtual 3D environments, the
intended use of targets in these contexts has never been investigated,
in spite of the richer, multidimensional manipulations afforded by
these environments. To better understand the effects of intended
use on target acquisition in virtual environments, we present the
results of a study examining five different manipulation tasks: target-
ing, dual-targeting, throwing, docking and reorienting. Our results
demonstrate that the intended use of a target affects its acquisition
time and, correspondingly, the movement towards the target. As
these environments become more commonplace settings for work
and play, our work provides valuable information on throughput,
applicable to a wide range of tasks.

Index Terms: Human-centered computing—Virtual reality;
Human-centered computing—Pointing

1 INTRODUCTION

Target acquisition is one of the most common actions performed in
an interactive system regardless of whether the computing platform
is a desktop computer [26, 37], a touch-based device [24], a large
physical display [52] or an Augmented Reality environment [14].

Fitts’s Law [37] is the most commonly used model to describe
the movement time taken to acquire a target. Movement time (MT)
for a one-dimensional pointing task is described by a linear function
of the index of difficulty (ID) of the pointing task:

MT = a+b · ID (1)

where a, b are empirically determined regression coefficients and
ID is a logarithmic term of target amplitude (A) and target width
(W) [36]:

ID = log2

(
A
W

+1
)

(2)

However, target amplitude and width are not the only factors
impacting acquisition performance [63]. One factor that may impact
target acquisition time is the intended use of the target. By intended
use, we refer to manipulations that a user intends to do or will do with
the target they acquire. For example, in virtual environments, beyond
simply acquiring an object, users can scale objects and move them
around in the space [62], rotate objects to reveal the occluded view
[16] or manipulate objects’ motion to simulate physical phenomena
[4]. In order to perform any of these intended uses of a target, we
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Figure 1: The overall interaction with an object includes two sequential steps:
acquiring the object – time characterized by Fitts’ Law or a variant – and manip-
ulating the object – time varies depending on the complexity and nature of the
manipulation.

must first acquire it. Acting on an object in an interface is thus
a compound action comprised of acquiring it and performing the
action or manipulation of it (See Figure 1) and the question we pose
in this paper is whether the manipulation that we will perform on
an object in a virtual environment, our intended use, impacts the
performance of acquiring the target.

In 2D computer interfaces, research has shown that target ac-
quisition time may vary depending on whether the user wishes to
simply acquire a target (e.g. targeting), move it (e.g. dragging or
docking), or throw it (e.g. flicking) – independent of the time taken
by the subsequent task [38, 48]. It is always tempting to assume that
results in 2D can be directly applied to 3D, particularly to Virtual
Reality (VR), but we hesitate to make such assumption for several
reasons. For instance, the controller in VR is an absolute input while
the mouse is a relative input, leading to different acquisition and
manipulation behaviours, and some tasks more frequent in 3D were
not investigated in 2D (e.g. reorienting a target). Besides, to the
best of our knowledge no similar analysis has been performed in the
increasingly common context of direct target acquisition in VR. As
we incorporate VR into both work [18, 35] and entertainment [51],
understanding the impact of various independent variables on per-
formance measures for VR-based selection tasks remains an area of
active research interest (see [10] for a review).

To explore the impact of intended use on targeting in virtual en-
vironments, more precisely in the context of proximal interaction
using the virtual hand metaphor, we examine five common manip-
ulations in various VR systems, such as games [3], social [39] and
educational applications [25] – TARGETING (selecting a target),
DUALTARGETING (selecting one then another target), THROWING
(acquiring and pushing a target), DOCKING (acquiring and placing
a target) and REORIENTING (rotating a target about its axes) – and
measure how long it takes to acquire the target to be manipulated.
We find that simple targeting exhibits the fastest acquisition times
for that target, reorienting the slowest acquisition times, and other
intended target manipulations result in acquisition times between
these extremes. Given the initial finding that the intended use of
the target impacts time, we probe additional characteristics of move-
ment toward a target with the goal of understanding how and why
prior movement time is impacted by the subsequent intended use
of the target. Movement profiles highlight both characteristics and
differences in peak speed, time to peak speed, movement prior to



selection and selection speed across different intended uses.
This paper is organized as follows. After presenting the related

work on target acquisition modelling in both 2D and 3D, we describe
and explain the experiment setup and task design of our study. Then,
we detail our analysis from three aspects: selection time, motion
kinematics and Fitts’ law modelling. Finally, we present our findings
and discuss their implications.

In summary, this is the first work to explore the impact of intended
use on targeting in VR and our contributions include:

• Investigating impacts of intended use on target acquisition in
VR and summarizing characteristics of each use.

• Presenting design implications for interfaces and interactions
in VR.

2 RELATED WORK

Fitts’ Law [22, 37] is probably the most well-examined relation-
ship in human-computer interaction (HCI) research. While Fitts’
Law was originally formulated in terms of a 1D pointing task, re-
searchers in HCI have long recognized that understanding the cost
of target acquisition in graphical interfaces is useful, as it allows
us to characterize the relative efficiency of different arrangements
of interfaces. As a result, researchers have proposed a number of
extensions to Fitts’ Law to model 2D targeting [2], 3D targeting [54],
gaze-based targeting [58], foot-based movement [28, 57], among
others. Researchers have also explored modelling error in Fitts’
Law [60], generalized Fitts’ Law to incorporate steering tasks [1,42],
and leveraged the fundamental components of Fitts’ Law to design
a host of pointing facilitation techniques (see [6] for a review).

The goal of research into Fitts’ Law is to understand and improve
throughput [63] in the use of interactive systems. If we characterize
the temporal cost and error rate of individual interactions (e.g. se-
lecting a target, manipulating that target, keyboarding, homing, etc.),
then the overall temporal cost and error rate of a compound interac-
tion is the sum of these basic interactions [13,19]. By improving the
speed of target acquisition via new target acquisition techniques [6]
and the speed of interactions via new interaction techniques [10],
each of these subtasks becomes more efficient, increasing the over-
all efficiency of the interaction. Essentially, the assumption is that
each individual interaction can be independently optimized. This
is equally true in VR research: Bergström et al. [10], analyzing 20
years of VR research, note that studies with selection tasks measure
the time a participant needs to select the next target (occasionally
with additional measures of error and throughput for the selection
task), while studies with manipulation tasks measure the time a
participant manipulates virtual objects.

While, to the best of our knowledge, the independence of basic in-
teractions has never been evaluated in VR, we have reason to believe
that this assumption is questionable in traditional two-dimensional
computer interfaces. Mandryk and Lough [38] examined how the
intended use of a target impacts the time it takes to acquire the
target. Mandryk and Lough note that, in real-world interfaces, the
user acquires a target with a specific goal in mind. Perhaps they
wish to click the target (targeting). Perhaps the target activates a
secondary set of widgets and they need to then click on a second
target (i.e. dual targeting). Perhaps they wish to move the target in
some way, e.g. to re-position it imprecisely (flicking or dragging) or
to re-position it precisely at a new location (docking). Mandryk and
Lough found that, if the intended use was targeting or dual targeting,
participants acquired the target significantly faster than if the in-
tended use was flicking or dragging. They also noted a difference in
acceleration and deceleration during the selection of the target to be
manipulated: if the participants intended to flick or dock the target,
then the selection movement toward that target exhibited a higher
peak speed and a longer deceleration phase. Follow-on work by
Ruiz and Lank [48] replicated these results and, via a more complete

analysis of movement profiles, analyzed their potential impact on
kinematics-linked endpoint prediction [34]. While Ruiz and Lank
note that the impact on kinematics-linked modelling was likely not
a concern, in both cases results implied that the potential benefits of
new interaction techniques observed during manipulation may not
be realized if they result in a corresponding increase in acquisition
time for the target to be manipulated.

There is also a significant possibility that virtual reality manipula-
tions will differ from both real-world and two-dimensional interface
manipulations. Considering real-world manipulations, the field of
psychology has actively studied the act of reaching and grasping for
many years [47]. Factors, including perception of the object to be
grasped [23], the manipulations to be performed on the object [50],
and tactile feedback during the act of grasping [30] impact both tra-
jectories toward an object and the positioning and speed associated
with the grasping of an object. However, there exists a disconnect be-
tween real world affordances and perceived affordances [43] and an
absence of the physiological interactions between hand and object,
which may impact behaviour. Furthermore, while it is always tempt-
ing to assume that previous results in 2D [38, 48] can be directly
applied to 3D, especially to VR, past research indicates that this may
not be true. As one example of this, Cockburn and Mckenzie [17]
found that user performance deteriorated for a locate-and-point task
when transforming from a 2D interface to a 3D interface. Further-
more, movement planning, whether in real world or in computer
interfaces, requires trajectory planning [34, 47]; in immersive VR
environments, depth has been found to greatly impact both perceived
width and distance [5, 15], a factor that may significantly alter the
trajectory, kinematics and the impact of intended use.

3 METHODOLOGY

We conducted a controlled experiment to investigate the effect of
intended use of a target on the time taken to acquire it in VR. We
focused on interaction at arms’ length using a 1-to-1 mapping of
physical controller movement to virtual controller movement, a
direct 3D target acquisition technique common in VR [15, 45, 46].
Figure 2 depicts the timeline of a trial in this experiment.
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Primary Target
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Figure 2: A timeline of a trial: A trial starts by showing the Start Target. Once it is
successfully acquired, it vanishes and a Primary Target is shown, together with a
Secondary Target if required by the Task. Participants acquire the Primary Target
and perform the Task. Start Target is shown again when the trail ends.

3.1 Apparatus and Participants
The system was implemented in Unity 2020.3.7f1 with the Oculus
Integration v29.0 and the study was conducted standalone on the
Oculus Quest 2 (tracking frequency is 72 Hz) with Oculus left- and
right-hand controllers.

In pilot studies we noted that the virtual controllers could occlude
targets and their irregular shape caused problems of precision when
selecting a target (because the exact selection location was unclear).
To address this, we used a smaller controller 3D model (from GEAR
VR), made the models translucent, and added a blue sphere (cursor)
to the top side of the virtual controller indicating selection location,
as shown in Fig. 3. Although the physical and virtual controllers



are not in the same shape, this design rarely affects how participants
recognize them as participants only see virtual controllers rather
than physical ones. In addition, participants focus on using cursor,
rather than the model for interactions. Making the model semi-
transparent also does not impact the selection performance of a
virtual hand [32, 56]. Besides, cursor is useful for target selection
in VR [7] and our design presents better visual tracking on it.

We also noted that, as participants became fatigued, they would
sometimes switch hands for a brief period, interacting with their
non-dominant hand which impacted performance. Therefore, along-
side instructing participants to perform the study only with their
dominant hand, we disabled the non-dominant hand controller at the
outset of the study and invited participants to take breaks during the
experiment if needed.

A total of 15 participants, aged from 22 to 33 (M = 26.1,SD =
3.1, 5 identified as women, all right-handed) participated in the
study. 12 participants had experienced VR prior to the study; those
participants primarily used VR for entertainment activities, such as
playing games. The experiment took approximately 45 minutes and
participants received $15 for their participation.

3.2 Interaction for Target Acquisition
Fig. 3 illustrates the visual interaction of the target acquisition. To
acquire a target, participants place the cursor (1 cm width) partially
inside a target and press the selection button (in our implementation,
A on the right controller) to select that target. When any part of the
cursor enters a target, the target is highlighted in translucent blue,
indicating that it is now selectable. A successful selection turns the
cursor green. If instead the button is pressed while the cursor is
outside the target, the cursor turns red and an alert sound is played
to inform participants of the erroneous selection. Participants are
expected to correctly acquire each target, and they can proceed after
a correct selection.

Figure 3: Input controller: when Cursor enters a target, the target turns translu-
cent blue. Incorrect selections turn Cursor into red while correct selections turn it
into green.

Given that the overall goal of this experiment was to measure
how the intended use of a target impacts the time taken to acquire
that target, the overall interaction requires acquisition of a target
followed by a manipulation of that target, i.e. an intended use or
Task. The interaction to start a Task proceeds as follows:

1. A participant acquires an initial target, the Start Target. To
ensure that all targets in different tasks are noticeable and
reachable within the field of view, the Start Target is positioned
35cm in front of and 20cm below the head.

2. When the participant correctly selects the Start Target, the Start
Target vanishes and a Primary Target is displayed immediately.

He/She is asked to acquire and manipulate this Primary Target.
Considering that the arms of healthy adults typically reach
at least 60cm from the torso [5, 15, 31, 33, 44], targets are
placed within 60cm of participants in a region surrounding the
location of the Start Target.

3. Participants move the cursor from the Start Target to the Pri-
mary Target and perform a Task on the Primary Target.

By default, the Start Target’s position remains the same in the vir-
tual world for all tasks and targets are anchored relatively to the
Start Target’s position, which do not follow participants’ movement.
However, as participants could adjust their position during the ex-
periment, we allow them to re-calibrate the Start Target’s position
when they notice a shift in their position, before starting any new
Task. In practice, the re-calibration was seldom used.

Figure 4: Correctly acquiring Start Target to calibrate starting position and reveal
the task (the example shows TARGETING).

3.3 Independent Variables
Independent variables (IVs) in this study include the Index of Dif-
ficulty (ID) of the Primary Target, Primary Direction, Secondary
Direction and Task.

ID of the acquisition action is computed using MacKenzie’s for-
mula [36] for the Amplitude A (distance between the Start Target
and the Primary Target) of values 9cm, 12.5cm, or 16cm, and the
Width W of the Primary Target of values 3cm or 5cm). This yields
six different IDs (1.49, 1.81, 2.00, 2.07, 2.37, and 2.66 bits).

Primary Direction D and Secondary Direction D′ (Up, Down,
Forward, Backward, Left or Right) represent the direction of move-
ment from the Start Target to the Primary Target and the Primary
Target to the Secondary Target respectively.

The rationale for these values is as follows. The Primary Target
can be located in six basic directions from the Start Target, i.e. Up,
Down, Forward, Backward, Left and Right. Given the position of
the Start Target, six distinct directions, and the possible existence
of sequential manipulation after acquiring the Primary Target, the
maximum values of target amplitude and target width are set to 20cm
and 10cm respectively to avoid a target appearing outside of the field
of view or outside of the reachable workspace. These constraints
motivate the above values for independent variables. With this
configuration, participants observe targets that are close to them
from a top view rather than a straight horizontal view, which helps
to reduce the depth impact on the perceived width and addresses the
occlusion issue between Primary Target and Secondary Target.

3.3.1 Task
The Tasks that participants were asked to complete were one of
five manipulations of the primary target: TARGETING, DUALTAR-
GETING, DOCKING, THROWING, or REORIENTING (illustrated in
Fig. 5). Detailed description of individual tasks follows.

TARGETING: Correctly selecting the Start Target of width W
reveals a white sphere (Primary Target) of width W located at the



amplitude A in direction D from the position of Start Target. Par-
ticipants simply have to acquire the Primary Target by moving the
controller to the target and selecting it.

DUALTARGETING: Correctly selecting the Start Target of width
W reveals a white sphere (the Primary Target) and a red sphere (the
Secondary Target) both of width W. The Primary Target is located
in direction D with amplitude A from Start Target while Secondary
Target is located in another direction D′ (different from previous
and next trials) with amplitude 9cm from the Primary Target (a
distance that guarantees that both targets still remain within arms’
reach for the participant, see Sect. 3.3). Participants must select
these two spheres sequentially: first the Primary Target, and then
the Secondary Target.

DOCKING: Correctly selecting the Start Target of width W re-
veals a white sphere (the Primary Target) of width W and amplitude
A in direction D, and a semi-transparent sphere (the Secondary Tar-
get) 1.5 times larger than the Primary Target and located 9cm away
from the Primary Target in direction D′. The width of the Secondary
Target reduces the required precision of the task, allowing partici-
pants to finish this task more easily. Participants are instructed to
drag-and-release the Primary Target into Secondary Target.

THROWING: Correctly selecting the Start Target of width W
reveals a white sphere (the Primary Target) of width W located
at a position direction D from Start Target and at a distance of
amplitude A, and a semi-transparent green wall (the Secondary
Target) located 9cm away from the Primary Target in direction
D′. To reduce task difficulty (wall size being too small) and avoid
visual distraction (wall size being too big), the size of this wall is set
to 40cm×40cm×1cm which is over 8 times larger than the size
of Primary Target in width. Participants are instructed to “throw”
the Primary Target towards the Secondary Target by releasing the
pressed button. The released Primary Target then moves in the
throwing direction.

REORIENTING: Correctly selecting the Start Target of width
W reveals a white object (the Primary Target) and a red object
(the Secondary Target) whose bodies are both spheres of width
W. Different shapes (i.e. a capsule, a cylinder and a cube) are
placed into both Primary Target and Secondary Target to indicate
the orientation, which only serve as visual references and are not
selectable. The Primary Target is located at amplitude A from Start
Target in direction D and Secondary Target 9cm away from Primary
Target in direction D′. The Secondary Target has an orientation
along its roll axis with a random angle in the range (- π

2 to π

2 ), values
empirically obtained from pilot studies to reduce clutching and task
difficulty. To move to the next trial, participants were asked to
rotate the Primary Target such that the Primary Target has a similar
orientation to the Secondary Target, that is when the angle difference
in each axis is smaller than π

12 . The colour of Secondary Target
changes to green to inform participants of the correct orientation of
the Primary Target.

Except TARGETING, all other tasks require a manipulation sub-
task on either the Primary Target or the Secondary Target. For
DUALTARGETING, a second selection is required on the Secondary
Target and other tasks require a ”press and hold” behaviour on the
Primary Target for object manipulation. While behaviours in the
manipulation sub-task vary across Task, the acquisition time of the
Primary Target (delimited by the controller ”button down” action
on the primary target) is consistent across all tasks.

3.4 Procedure

Participants were recruited from our local university. To preserve
social distancing requirements, the study was conducted remotely,
and both the VR headset and controllers were sanitized before being
delivered to participants.

Before written consent was obtained, participants were asked to
read an information letter in which they were warned about potential

(a) TARGETING

(b) DUALTARGETING

(c) DOCKING

(d) THROWING

(e) REORIENTING

Figure 5: Illustration of visualization, selection and manipulation actions in each
task. 1) Primary Target (white) appears at the left of the vanished Start Target and
Secondary Target appears at the back of the Primary Target. 2) Correct selection on
the Primary Target. 3) Perform the manipulation actions on either Primary Target or
Secondary Target based on the task.

motion sickness as a result of wearing the head-mounted display
device and that they could stop the experiment at any time without
penalty if they felt uncomfortable or simply did not wish to con-
tinue. They were then asked to watch an instructional video, answer
a demographics questionnaire (asking for their gender [53], age,
handedness, and VR experience). They were then asked to sign the
informed consent.

Participants started the experimental software by connecting with
one of the researchers via video conferencing tools. The researcher
verified informed consent, walked participants through disabling the
non-dominant hand controller, and then guided the participant to
start the experiment. In addition to researchers’ verbal guidance,
participants could also follow the instructions text in the system
during the experiment, which presented detailed steps to guide them
to control the system and finish each task.

As noted above, to evaluate the impact of intended use on target
acquisition in VR, we represented different intended uses as a Task
for the participant. The experiment consisted of repeated blocks of
trials where participants had to select a target and complete a given
Task on that target using the controller in their dominant hand.

Each trial, therefore, consisted of the following steps. First, the



participant had to acquire the Start Target to calibrate a starting
position. Correctly selecting this target would hide it, start a count-
down timer, and reveal a Primary Target that the participant was
asked to acquire and manipulate to fulfill the Task (Section 3.3.1)
for the given condition. A trial ended once the Task was completed
successfully or if the countdown timer exceeded 15 seconds. The
countdown timer was implemented to avoid excessive trial comple-
tion times, i.e., to limit study duration. The experimental system
then moved to the next trial and revealed the Start Target again (see
Fig. 4 & Fig. 2).

Participants were instructed to complete the trials as quickly and
accurately as possible while keeping an error rate below 5% (error
rate was displayed to the participant at the end of each block). In
case of an error, the trial was appended to the end of the current
block, and participants needed to complete all trials within a block
successfully before moving on to the next block, thus ensuring the
same number of correct trials for all conditions. While participants
were not required to repeat a block if the error rate exceeded 5%,
controlling the error rate is a common practice to balance speed and
accuracy in pointing experiments [7]. Participants were allowed
to take a break without a time limit between each block and after
completing each Task.

3.5 Data Collection
All participant movement data was logged as a sequence of time-
stamped, three-dimensional coordinates. The system also logged
selection actions, whether the selection was an error and subsequent
task manipulations.

Recall that the goal of this experiment is to measure the effect
of different Tasks (intended uses of the Primary Target) on the
time taken to select the Primary Target. The dependent variables
collected and logged by the system were selection time (Tsel) and
errors. For all trials, we use button press down events on the Start
Target and Primary Target to determine the beginning and end of
the Primary Target’s selection movement. The selection time was
the time interval from the button press action of the Start Target to
the button press action on the Primary Target. The length of time to
complete the Task was logged, but is immaterial to this experiment
as we are only interested in the impact of Task on Primary Target
selection time.

As noted above, the system also identified errors. We consider
errors that occurred only while acquiring the Primary Target. Errors
were classified as one of three error types:

• enter error — when participants pressed the button outside the
Primary Target before having entered it.

• exit error — when participants pressed the button outside the
Primary Target after having entered it at least once

• pass error — when the countdown timer reached 0 before the
Primary Target was correctly selected.

The Error rate, displayed to participants and in our analysis, refers
to the percentage of erroneous trials in a block over the total number
of trials in the block (including any repeated trials). For example,
if a participant failed once on every trial within a block and then
succeeded on the second attempt, the error rate would be 50%.

3.6 Design Summary
We adopted a repeated-measures within-subjects design. We
effectively looked at three independent variables (IVs): Task
(TARGETING, DUALTARGETING, DOCKING, THROWING and RE-
ORIENTING), ID (1.49, 1.81, 2.00, 2.07, 2.37, and 2.66 bits), and
Block (1-4). The order of Task was counterbalanced across partic-
ipants using a Latin square [59]. Note that for each ID, Primary
Direction D and Secondary Direction D′ were randomly ordered for

generalization. The combination between D and ID and that of D
and D′ were not controlled in our experiment. In summary, each
participant completed 4 Blocks × 6 IDs × 6 Primary Directions ×
5 (counterbalanced) Tasks, i.e. 720 trials. This resulted in a data set
containing 10 800 successful trials for our 15 participants.

4 RESULTS

We analyze our results in terms of error rate, Primary Target se-
lection time (Tsel), motion kinematics and Fitts’ Law modelling.
Note that our focus is on Tsel , the time taken to move from the Start
Target to the Primary Target given that our interest is on how Tasks
performed on the Primary Target impact the time to select it, Tsel .

4.1 Error Rate
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Figure 6: Mean error rate of Tsel for Task. Error bars are shown with 95%
confidence intervals.

Recall that, in order to complete a block, participants were re-
quired to successfully complete each trial. In the case of an error in
selecting the Primary Target, participants would need to repeat the
corresponding trial at the end of the Block. As a result, alongside
the 10,800 correct trials, we collected an additional 289 erroneous
trials, for a total of 11,089 trials. Among 289 trials, only 3 trials had
pass error and participants did not report the time pressure during
the study, implying that the timer did not push participants.

Given the non-normal distribution of error rate, a Friedman
test was conducted for three independent variables (IVs): Task,
Block, and ID. We found a significant effect of Block on error rate
(χ2

Block(3)=15.46, p<0.005). However, pairwise Wilcoxon rank sum tests
with Bonferroni corrections did not show significant differences
between blocks. With all blocks, error rate (M=2.20%, SD=5.77) was
below the 5% error rate threshold that we recommended our partici-
pants not to exceed. Error rate of each Task was shown in Fig. 6. The
Friedman test did not reveal a significant effect of Task on error rate,
but showed a significant effect of ID (χ2

Block(3)=12.92, p<0.05). How-
ever, pairwise comparisons did not reveal any significant differences
across IDs.

4.2 Selection Time
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Figure 7: Mean selection time of Tsel for Task. Error bars are shown with 95%
confidence intervals. The statistic significances evaluated by pairwise t-test are
connected with lines (p<0.01).



We aggregated non-erroneous trials and removed outliers by elim-
inating any trial whose selection time was more than three standard
deviations from the mean, leaving 10,645 trials for analysis.

Given the non-normal distribution of the data, a Box-Cox trans-
formation [11] was applied to selection time. When sphericity was
violated using Mauchly’s test, Greenhouse-Geisser correction to
the DoFs was applied. When significant effects were found, pair-
wise t-tests with Bonferroni corrections were conducted for post-hoc
analysis. Effect sizes were reported as partial eta squared (η2

p).
We first conducted a two-way RM-ANOVA (α=0.05) for selec-

tion time on Block and Task to test for a possible learning effect. We
found a significant effect of Block (F3,42=41.64, p<0.001, η2

p=0.75). Pair-
wise comparisons revealed significant differences between Block 1
(M=1.03s) and the other three blocks (p<0.001, 2: 0.97s, 3: 0.94s & 4: 0.93s).
We found a significant effect of Task (F4,56=33.11, p<0.001, η2

p=0.70) but
we did not find a significant interaction effect between Block and
Task. These results suggested a potential learning effect that did
not differ between tasks; we thus removed the first block in our
remaining analysis.

After removal of the first Block,we found a significant effect of
Task (F4,56=29.11, p<0.001, η2

p=0.68) on Tsel . As shown in Fig. 7, pairwise
comparisons showed that TARGETING (0.85s) was significantly faster
than the other four tasks: p<0.001 for all, DUALTARGETING (0.91s,
7.1% faster), DOCKING (0.93s, 9.4% faster), THROWING (0.93s, 9.4%
faster) and REORIENTING (1.12s, 31.8% faster). Moreover, REORI-
ENTING was found significantly slower than other tasks: p<0.001 for
all. We found a significant effect of ID (F2.1,29.7=254.54, p<0.001, η2

p=0.95).
Pairwise comparisons showed significant differences (p<0.01) be-
tween each ID except for 1.81&2 bits and 2.07&2.37 bits. We also
found a significant interaction effect between Task and ID (F20,280=3.00,
p<0.001, η2

p=0.18). REORIENTING was significantly slower than other
tasks for all IDs (p<0.05), except THROWING at 2.66 bits (p=0.08).
TARGETING was only significantly faster than DUALTARGETING
and REORIENTING at 1.49 bits, and THROWING at 2.37 bits (p<0.01),
as shown in Fig. 8. There were no significant differences among
other conditions.
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Figure 8: Mean selection time of Tsel by ID and Task. Error bars are shown with
95% confidence intervals.

4.3 Motion Kinematics
In order to try to better understand where the difference for Tsel
between Tasks comes from, we analyzed the motion kinematics
profile of participants’ correct target selections. We once again
kept all non-erroneous trials and removed the first block due to the
aforementioned possible learning effect.

We computed velocity profiles based on the cursor’s 3D posi-
tion and corresponding timestamps. A time interval of each trial
was normalized. Then, the corresponding velocities and normalized
distances from the cursor to the Primary Target were interpolated
to create a time-equidistant profile (every 2% of trial time). Next,
for each task and participant, these values were aggregated by com-
puting the average for each normalized time interval. These were
subsequently averaged over all participants to produce a single nor-
malized profile for each task (see Fig. 10).

In order to compare our results to Mandryk & Lough’s work [38],
we also used these profiles to compute the following motion kine-

matics measures: peak velocity (pkV), time to peak velocity (t2pkV),
percent of time after peak velocity (afterpkV%), and selection ve-
locity (sV: the velocity at the end of the Tsel) at Primary Target for
each trial (see Fig. 9).

For each metric, we removed outliers if the observed value was
more than three standard deviations from the mean. Given the non-
normal distribution of dependent variables, we conducted an Aligned
Rank Transform [61] for pkV, t2pkV, afterpkV% and sV on two IVs:
Task and ID. Contrasts ART [20] with Bonferroni corrections was
applied as the post-hoc analysis if a significant effect was found and
effect sizes were reported as partial eta squared (η2

p).

Peak Velocity (Fig. 9 (A)): We found a significant effect of
Task on pkV (F4,1306=76.67, p<0.001, η2

p=0.19). Contrasts ART showed
significant differences of pkV (p<0.001 for all) between each Task
except between DUALTARGETING (M=51.52 cm/s) and DOCKING
(51.52 cm/s). REORIENTING (49.1 cm/s) was 8.3% slower than TARGET-
ING (53.2 cm/s), 4.8% slower than DUALTARGETING and DOCKING
respectively, and 13.6% slower than THROWING (55.8 cm/s). We found
a significant effect of ID on pkV (F5,1306=608.60, p<0.001, η2

p=0.70). Pair-
wise comparisons revealed significant differences (p< 0.001) between
pairs of ID except for 1.49&2.00, 1.81&2.37 and 2.07&2.66 bits. We also
found an interaction effect between Task and ID (F20,1306=2.14, p<0.005,
η2

p=0.03). Contrasts ART also showed that there were no significant
differences between 1.49&2.00, 1.81&2.37 and 2.07&2.66 bits for each
task. In other words, no significant differences on pkV were revealed
when target amplitudes were the same.

Time to Peak Velocity (Fig. 9 (B)): We found a significant effect
of Task on t2pkV (F4,1306=43.31, p<0.001, η2

p=0.12). Pairwise comparisons
showed that TARGETING (0.51 s) and DUALTARGETING (0.52 s) had
significantly shorter t2pkV (p<0.001 for all) than the other three tasks.
More specifically, they reached the peak velocity at least 3.8% earlier
than DOCKING, THROWING and REORIENTING (0.54 s for all). We
found a significant effect of ID (F4,1306=27.56, p<0.001, η2

p=0.10). Pairwise
comparisons showed significant differences (p< 0.001) between each
ID except for 1.49&2.00, 1.81&2.37, 2.07&2.37 and 2.37&2.66 bits. We did
not find an interaction effect between Task and ID.

Percent of Time after Peak Velocity (Fig. 9 (C)): A signifi-
cant effect of Task was revealed on afterpkV% (F4,1306=182.49, p<0.001,
η2

p=0.36). The post-hoc analysis showed TARGETING (38.7%) had sig-
nificantly smaller afterpkV% (p<0.001 for all) than the other four tasks
while REORIENTING (49.5%) had significantly larger afterpkV%
(p<0.001 for all). Participants spent 28% more time after peak velocity
in REORIENTING compared to TARGETING and at least 20% longer
than other three tasks, suggesting a longer deceleration phrase in
REORIENTING. We found a significant effect of ID on afterpkV%
(F4,1306=200.95, p<0.001, η2

p=0.43). Pairwise comparisons showed signifi-
cant differences (p< 0.001) between each ID except for 2.00&2.07 bits.
We did not find an interaction effect between Task and ID.

Selection Velocity (Fig. 9 (D)): We found a significant ef-
fect of Task on sV (F4,1306=123.43, p<0.001, η2

p=0.27) and the contrasts
ART revealed that REORIENTING had significantly slower sV
(7.70 cm/s, p<0.001 for all) and THROWING had significantly higher sV
(11.87 cm/s, p<0.001 for all) than other tasks. Compared to other tasks,
sV for REORIENTING was at least 25% slower and over 50% slower
than THROWING . DUALTARGETING (10.59 cm/s) also had signifi-
cantly higher sV than TARGETING (9.64 cm/s, p<0.01, 9.9% higher). We
found a significant effect of ID on sV (F5,1306=95.62, p<0.001, η2

p=0.27).
Pairwise comparisons showed significant differences (p< 0.01) be-
tween each ID except for 1.49&1.81, 1.49&2.07, 1.81&2.07, 2.00&2.37 and
2.37&2.66 bits. We also found an interaction effect between Task and
ID (F20,1306=2.51, p<0.001, η2

p=0.04). Pairwise comparisons showed that
there were no significant differences between 1.49&1.81, 1.49&2.07,
1.81&2.07, 2.00&2.37, 2.37&2.66 and 2.00&2.66 bits in each task. Inter-
preting these numbers in terms of target width and amplitude, these
results argue that sV is significantly impacted by target width.
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Figure 10: Velocity profile and normalized distance percentage to Primary Target
in Tsel . Trial progress refers to the normalized time interval of a trial.

4.4 Fitts’ Law

Given our research question, i.e. whether Task users will perform
on an object impacts the time taken to acquire the object, Fitts’ law
modelling and throughput analysis were applied only to the selection
of Primary Target, i.e., only to Tsel in Figure 2 but not to the sub-
sequent manipulation task. To perform our analysis, we computed
the effective target width (We) for each target width by multiplying
the standard deviation by 4.133 [37,41] and used We to calculate the
effective ID, IDe accordingly. As a result, the difference between W
and We ranges from 0 cm to 0.6 cm and the corresponding difference
between ID and IDe ranges from 0 bits to 0.12 bits, as shown in
Table 1.

The classical Fitts’ Law was used for modelling [22, 36] due to
two concerns: 1. for ID, as our targets are spheres, Fitts’ law variants
for targets in arbitrary shapes are not necessary. 2. as Triantafyllidis
& Li [55] points out, no work has included all spatial factors in 3D
space and a standard metric for 3D modelling is missing. Meanwhile,

the classical formula is still a common practice in VR [9, 54, 55].

A(cm) W (cm) We(cm) ID(bits) IDe(bits)

9.0 3.0 3.2 2.00 1.93
9.0 5.0 4.4 1.49 1.61
12.5 3.0 3.0 2.37 2.37
12.5 5.0 4.6 1.81 1.89
16.0 3.0 3.0 2.66 2.66
16.0 5.0 4.8 2.07 2.12

Table 1: Effective target width (We) and effective ID (IDe) are calculated for each
pair of target amplitude (A) and target width (W).

To compensate for the non-normal distribution of selection time
in Tsel , we adopted a common practice [14, 52] where we first aggre-
gated the mean for each effective Index of Difficulty (IDe) per Block
per Task and then aggregated the median for each IDe and Task. IDe
ranged from 1.61 to 2.66 bits and the aggregated median time of all
tasks correlate with IDe positively (R2 ≥ 0.96), as shown in Fig. 11.
When looking at the coefficients of these linear regression models in
Table 2, we noticed that slope values b were relatively similar across
Task but REORIENTING has a higher y-intercept value a than the
other four tasks. We also report throughput scores in Table 2. Unsur-
prisingly, TARGETING had the largest throughput, REORIENTING
had the lowest throughput, and the throughputs of the other three
tasks were similar, a result consistent with Tsel values.

Task a b TP

TARGETING
0.36 0.23 2.47
[0.28 0.43] [0.20 0.28] [2.34 2.61]

DUALTARGETING
0.44 0.22 2.29
[0.32 0.57] [0.16 0.28] [2.15 2.44]

DOCKING 0.39 0.25 2.25
[0.30 0.49] [0.21 0.30] [2.13 2.38]

THROWING 0.37 0.26 2.26
[0.27 0.48] [0.21 0.31] [2.13 2.38]

REORIENTING 0.54 0.27 1.87
[0.38 0.70] [0.20 0.35] [1.76 1.99]

Table 2: Modelling results of Fitts’ Law (MT = a+b · IDe) and throughput values
T P = IDe/MT : estimates (95% CI)
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5 GENERAL DISCUSSION

The goal of this paper is to explore the impact of intended use of a
target, i.e. the Task performed on the target, on the time required
to select that target, i.e. Tsel , before performing the manipulation.
We examined five tasks: classical TARGETING, DUALTARGETING,
DOCKING, THROWING, and REORIENTING. Our hypothesis is
that there is an impact, i.e. that the selection that precedes target
manipulation is impacted by the specific manipulation Task that we
perform on the selected target.

Our results support this hypothesis. While we did not find a sig-
nificant effect on error rate, we did find significant differences in the
time taken to select the target. In particular, we found that selection
preceding classical TARGETING took significantly less time than
selections preceding all other Tasks we tested, and that selection
preceding a REORIENTING Task took significantly longer than selec-
tions preceding all other tasks. More specifically, with the interaction
effect between Task and ID, TARGETING was significantly faster
than some Tasks at certain IDs and REORIENTING was significantly
slower than all other Tasks at all IDs except for THROWING at 2.66
bits. Target selection preceding DUALTARGETING, DOCKING and
THROWING did not differ significantly in the time taken. While dif-
ferences of selection time between those four tasks and TARGETING
was small (within 0.27s), they had been already more than 7% slower,
with REORIENTING over 30% slower than TARGETING. Given that
there are significant differences for TARGETING and REORIENTING,
we reject our null hypothesis (no impact of intended use) and claim
evidence for the impact of intended use on target selection.

To understand where and how this difference occurred, we ana-
lyzed movement time during the selection task. First, we created
kinematic profiles of distance and speed during target selection. A
visual inspection of Figure 10 shows that REORIENTING has a lower
peak speed and reaches peak speed earlier in movement with a cor-
responding increase in the length of time spent decelerating. Further
kinematic analysis supports this visual analysis; in Figure 9, RE-
ORIENTING has the lowest peak speed (at least 4.8% lower) and the
longest deceleration phase (more than 20% greater) than other Tasks
by a significant margin. It implied that participants planned their
movement and did not rush during the selection for REORIENTING.
Besides, the Fitts’ law modelling confirmed this by showing that
the reaction time for REORIENTING was higher and the throughput
value of REORIENTING was smaller than other tasks.

The kinematic analysis does, however, present some additional
observations that merit future investigation. For example, REORI-
ENTING results in the lowest peak speed; THROWING results in
the highest peak speed in the preceding selection movement, which
is followed by peak speed for selection preceding TARGETING.

DUALTARGETING and DOCKING do not result in significant differ-
ences in peak speed in the preceding selection kinematics. Effect

sizes are not small for various measures of kinematics highlighted in
Sect. 4.3. Based on typical interpretations of effect size, η2 > 0.14,
i.e. large effect size1, for all differences except time to peak speed
(t2pkV ), where the effect size maps to medium effect. The absence
of additional significant differences in selection time between DU-
ALTARGETING, DOCKING and THROWING does not imply that
differences in selection prior to these Tasks do not exist; it simply
implies that we measured no significant differences in selection time.
Future work is planned to probe these effects in more depth.

It is interesting to contrast our results in Mandryk’s and Lough’s
results in 2D [38]. Mandryk’s and Lough’s four intended uses
(Tasks) correspond to TARGETING, DUALTARGETING, DOCKING,
and THROWING in our experiment. They found that TARGETING
and DUALTARGETING resulted in selection times (Tsel) that differed
significantly from DOCKING’s and THROWING’s selection times,
but did not observe differences between TARGETING and DUALTAR-
GETING. In contrast, while we, too, found that TARGETING resulted
in shortest preceding selection times, DUALTARGETING resulted in
Tsel more similar to DOCKING’s and THROWING’s Tsel . In terms of
overall differences, we and Mandryk and Lough find differences in
Tsel under 10% in overall magnitude for these selections (9.4% in
ours and 8.8% estimated in theirs). Our REORIENTING is unique to
our study, and resulted in the most significant differences in preced-
ing selection time; REORIENTING resulted in target selection times
more than 30% longer than TARGETING.

Given our results that the intended use of a target impacts the time
taken to select a target, the question that follows from this is what
these results mean. To address this question, we point, again, to the
analysis of 20 years of VR-based by Bergström et al. [10]. As noted
earlier in our review of this work, Bergström et al. highlight that, as
dependent variables, selection task studies measure selection time
for the selection task and manipulation task studies measure the time
participants take to manipulate an object. Success in selection-based
research is measured by shortening selection times or reducing errors,
or both; success in manipulation is similarly based on increased
throughput for the manipulation task. The assumption that underlies
these success metrics is, ipso facto, that each individual user action
can be optimized in isolation from other tasks in interfaces, i.e.,
that manipulation does not impinge upon preceding selection, but
our results argue that this assumption cannot be made. If different
manipulations impact the time taken for a preceding selection, then
measuring only the manipulation time may over-estimate (or under-
estimate) the benefits of a novel interaction technique.

It is also true that we only measure retrospective impact (i.e. the
impact of future intended use on preceding selection), but prospec-
tive impacts are also possible. It is hypothetically possible that a
pointing facilitation technique in VR, e.g. an area cursor, might

1https://www.spss-tutorials.com/effect-size/

https://www.spss-tutorials.com/effect-size/


impact a user’s ability to perform a task on a target, e.g. reorien-
tation of the target acquired via the area cursor. While exploring
prospective impacts is one area of future work, it also highlights
a more general implication for system design. Specifically, when
we have new interaction techniques (i.e. new manipulations) or
new pointing facilitation techniques (i.e. new selection techniques),
incorporating them into realistic systems requires thinking not just
about the individual action that they optimize but also about their
place within and more general impacts on the overall task flow of
the user.

5.1 Applicable Scenarios

Figure 12: Menu selection for changing target opacity: a) DUAL-TARGETING, b)
DOCKING, c) REORIENTING.

Our results can be framed into concrete applications and interface
design in VR. One classical example is menu selection [21, 40].
Considering Fig. 12, our results suggest that interactions that take
advantage of DUALTARGETING and DOCKING may result in similar
selection time prior to the manipulation sub-task and differ from each
other based on the design of manipulation techniques. In contrast,
techniques that leverage REORIENTING already take longer selection
time prior to the manipulation. Similarly, in data visualization tasks
in virtual environments [12], rotational manipulations of a dataset
may introduce additional costs if the target acquisition prior to the
rotational manipulation is slowed.

5.2 Limitations

One highlighted limitation is that the range of IDs (1.49 to 2.66 bits)
in this experiment is fairly small for a Fitts’ Law design. This is be-
cause we restrict our current experiment to arms’ length interactions
with a controller on static targets, so target widths and distances
are constrained for a reachability concern in VR. While these IDs
are commonly used in a arms’ length interactions in VR environ-
ment, they are low compared to desktop interfaces [38], touch-based
interfaces [24], distant interactions in VR [7, 9, 14, 15], contexts
where movement amplitudes can increase due to the greater distance
of targets from the user. This explains why the throughput values
in Table 2 are relatively lower, compared to throughput scores in
other VR studies [9, 54]. However, incorporating more distant inter-
actions adds additional complexity to the selection action because
direction (e.g. targeting via a ray) and depth are often controlled
differently during distant interaction [7,9]. Future work could assess
the findings for a wider range of IDs.

While we contrast five different Tasks (the intended use) in our
study, there exist more complex manipulations in the virtual environ-
ments. Furthermore, we do not consider objects’ surface characteris-
tics, perceived weight, and perceived fragility [30, 47] as objects in
our study have similar surface, weight and fragility. We also do no
consider bimanual interactions [27] nor co-articulated actions (e.g.
6-dof reorienting, i.e. a docking task that requires both rotation and
translation) [29, 49]. As noted in the experiment design, we did not
control the Primary Direction and Secondary Direction. Machuca
and Stuerzlinger [8] found that target acquisition in virtual envi-
ronments was slower and had less throughput along the depth-axis,
i.e. Forward and Backward in our experiment, than lateral direc-
tions. Further research can explore how directions can impact the

acquisition for various intended uses, particularly for co-articulated
actions.

Finally, it is noted that our experiment was conducted remotely
in participants’ homes. While an in-home environment increases
the external validity of our study, it cannot be as controlled as a
laboratory one, whose setup and control can assume to be optimized
for the experiment. Space in homes may be constrained, and house-
holds may present interruptions during the experiment. To limit
this as a factor, we note that participants were provided with de-
tailed instructions, from both pre-recorded videos and experiment
systems. A researcher was also present via video conferencing tools
during the experiment, allowing the environment to be monitored
for confounds. We also note that our within-subjects design partially
controls for confounds by ensuring that the environment is similar
across each task for a participant.

5.3 Future Work

The results of our intended use study present interesting avenues
of future research into interaction in virtual reality environments.
As one example, a novel interaction technique might not result
in higher throughput during the interaction, but it is possible that
it might speed the selection that precedes the interaction. In this
case, considering both the selection and manipulation of a target
as a unified task allows us to identify potentially beneficial novel
interactions that might have been ignored if the only metric for
success is throughput for the manipulation.

Another possible area of inquiry given differences in kinematics
noted in Sect. 4.3 is that a more careful analysis of movement during
selection might allow the system to infer what a user intends to do
with a target prior to acquiring the target. This, in turn, could allow
us to develop interaction techniques that leverage this inference.
Reorientation appears a good initial candidate to identify given the
deviation in the selection kinematics shown in Sect. 4.3.

6 CONCLUSION

A significant body of research in virtual reality exists that explores
both selection and manipulations techniques to speed performance,
and this past research typically assumes that these actions – the
selection and the subsequent manipulation – can be independently
optimized [10]. Based upon past work in 2D environments, in this
paper we question this assumption. We examine the impact of five
common virtual reality manipulations (TARGETING, DUALTARGET-
ING, DOCKING, THROWING, and REORIENTING) on the time taken
to select a target prior to performing the manipulation. We identify
the existence of an effect of subsequent use of a target on the act of
selecting the target. Specifically, we find that TARGETING had the
shortest selection time, REORIENTING had the longest, and the other
three intended uses we evaluate result in acquisition times between
these two extremes. We synthesize these results and highlight their
implications for research and design in VR environments.
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