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Abstract

Federated contextual bandits (FCB), as a pivotal instance of combining federated
learning (FL) and sequential decision-making, have received growing interest in
recent years. However, existing FCB designs often adopt FL protocols tailored for
specific settings, deviating from the canonical FL framework (e.g., the celebrated
FedAvg design). Such disconnections not only prohibit these designs from flexibly
leveraging canonical FL algorithmic approaches but also set considerable barriers
for FCB to incorporate growing studies on FL attributes such as robustness and
privacy. To promote a closer relationship between FL and FCB, we propose a novel
FCB design, FedIGW, which can flexibly incorporate both existing and future FL
protocols and thus is capable of harnessing the full spectrum of FL advances.

1 Introduction

Federated learning (FL), since proposed in [1, 2], has received great attention due to its attractive
features in handling distributed multi-agent machine learning [3, 4]. With the popularity of FL,
many attempts have been made to generalize it beyond the original focus of supervised learning to
other learning paradigms [5–8]. Among these attempts, the study of federated decision-making is
one particularly promising direction [9, 10]. As one pivotal instance of federated decision-making,
federated contextual bandits (FCB) [11–20] have gained significant interest recently, which has found
broad practical applications (e.g., in cognitive radio and recommender systems).

Table 1: A brief summary of FCB designs; a comprehensive
illustration can be found in Appendix A

Ref. Setting FL CB
[11] Tabular Mean Averaging AE

[11, 12] Linear Linear Regression AE
[11, 13–16] Linear Ridge Regression UCB

[17] Gen. Lin. Distributed AGD UCB
[18, 19] Kernel Nyström approx. UCB

[20] Neural NTK approx. UCB
FedIGW Realizable Flexible IGW

AE: arm elimination; UCB: upper confidence bound; Gen. Linear:
generalized linear model; AGD: accelerated gradient descent; NTK:

neural tangent kernel; IGW: inverse gap weighting

However, the existing FCB designs
[11–20] mostly adopt tailored FL pro-
tocols for their specific settings, which
often deviate from the canonical FL
framework [1, 2] (see Table 1 for a
brief summary). In particular, most
of them perform one-shot aggregation
of compressed local data per epoch
(e.g., combining local covariance ma-
trices). Such choices are rare (and
even undesirable) in canonical FL de-
signs, where agents typically commu-
nicate and aggregate their model pa-
rameters (e.g., gradients) for multiple rounds. Due to such disconnections, these designs cannot
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effectively leverage advances in FL studies, ranging from basic algorithmic approaches to appealing
additional guarantees (e.g., privacy, robustness, and beyond).

Motivated by this disconnection from FCB to FL, this work proposes a novel FCB design, termed
FedIGW, where inverse gap weighting [21], a regression-based CB strategy, is adopted for contextual
bandits (CB) while flexible FL routines can be incorporated. With the flexible choice of FL, FedIGW
not only accommodates a wide range of basic FL protocols but also allows for great extensibility (e.g.,
to privacy and robustness) as both existing and future advances from FL can be effectively leveraged.

2 Problem Formulation

Agents. A total of M agents simultaneously participate in a contextual bandit (CB) system for T
time steps. At each time step t, for each agent m, the environment samples a context xm,t ∈ Xm and
a context-dependent reward vector rm,t ∈ [0, 1]Am according to a fixed but unknown distribution
Dm, where Am is the action set of agent m with size |Am| = Km. Then, the agent m observes the
context xm,t, selects an action am,t fromAm,t, and then receives the associated reward rm,t(am,t) as
in the standard CB [22]. The expected reward of playing action am facing context xm is denoted as
µm(xm, am) := E[rm,t(am)|xm,t = xm]. The agents gradually learn their optimal policies, denoted
as π∗

m(xm) := argmaxam∈Am
µm(xm, am) for agent m with context xm.

Federation. In federated learning, it is commonly considered that there exists a central server in the
system, and the agents can share information with the server, which can then broadcast aggregated
information back to the agents. The later discussions in this work also follow this scenario, while
we note that the proposed FedIGW design can be effectively extended to handle general (instead of
star-shaped) communication graphs such as in [23].

Realizable Rewards. Moreover, to capture the common interests motivating collaboration among
agents, we initiate this work by considering the agents’ expected reward functions are globally shared
and are within a function class F , to which the agents have access. This assumption, rigorously stated
in the following, is often referred to as the realizability assumption.
Assumption 2.1 (Realizability). There exists f∗ in F such that f∗(xm, am) = µm(xm, am) for all
m ∈ [M ], xm ∈ Xm and am ∈ Am.

This assumption is a natural extension from its commonly adopted single-agent version [21, 24–26]
to a federated one, and it incorporates many previously studied FCB scenarios as special cases. For
example, the federated linear bandits [12–16] are with a linear function class F .

Algorithm 1 FedIGW (Agent m)

Input: epoch number l = 1, reward function f̂ l
m(·, ·) = 0, local dataset Sl

m = ∅
1: for time step t = 1, 2, · · · do
2: observe context xm,t ▷ CB: IGW
3: compute â∗

m = argmaxam∈Am
f̂ l(am, xm,t) and set action selection distribution as

plm(am|xm,t)←

{
1/

(
Km + γl

(
f̂ l(â∗

m, xm,t)− f̂ l(am, xm,t)
))

if am ̸= â∗
m

1−
∑

a′
m ̸=â∗

m
plm(a′

m|xm,t) if am = â∗
m

4: select action am,t ∼ plm(·|xm,t); observe reward rm,t(am,t)
5: update the local dataset, Sl

m ← Sl
m ∪ {(xm,t, am,t, rm,t(am,t))}

6: if t = τ l then ▷ FL
7: perform FL f̂ l+1 ← FLroutinem(Sl

m)
8: update dataset Sl+1

m ← ∅; update epoch l← l + 1
9: end if

10: end for

3 Algorithm Design

In this section, we present a novel FCB design, termed FedIGW. In particular, FedIGW proceeds in
epochs, as illustrated in Algorithm 1, which are separated at time slots τ1, τ2, · · · w.r.t. the global
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time step t, i.e., the l-th epoch starts from t = τ l−1 + 1 and ends at t = τ l, and the overall number of
epochs is denoted as l(T ). In each epoch l, we describe the FL and CB components, respectively,
as follows, while emphasizing on how they are compatible yet decoupled, which thus enables the
incorporation of flexible FL choices.

CB: Inverse Gap Weighting (IGW). For CB, we use the method of inverse gap weighting [27],
which has received growing interest in the single-agent setting recently [21, 28–30] but has not been
fully investigated in the federated setting. At any time step in epoch l, when encountering the context
xm, agent m first estimates the optimal arm by â∗m = argmaxam∈Am

f̂ l(xm, am) from an estimated
function f̂ l (provided by the to-be-discussed FL). Then, she randomly selects her action am according
to the following distribution, which is inversely proportional to each action’s estimated reward gap
from the estimated optimal action â∗m:

plm(am|xm)←

{
1/

(
Km + γl

(
f̂ l(â∗m, xm)− f̂ l(am, xm)

))
if am ̸= â∗m

1−
∑

a′
m ̸=â∗

m
plm(a′m|xm) if am = â∗m

,

where γl is the learning rate in epoch l that controls the exploration-exploitation tradeoff.

FL: Flexible Designs. By IGW, all agents perform stochastic arm sampling, and thus each agent m
collects a set of data samples Slm := {(xm,t, am,t, rm,t : t ∈ [τ l−1 + 1, τ l])} in epoch l. In order to
enhance the CB interactions with IGW in the subsequent epoch l + 1, an improved estimate f̂ l+1

based on all agents’ data is desired. This objective aligns precisely with the aim of standard FL,
which aggregates local models for better global estimates [1, 2].

With this match, the agents can perform a standard FL protocol (e.g., FedAvg [1] or SCAFFOLD
[31]) with the server. To highlight the flexibility and generality, we denote the adopted FL protocol
as FLroutine(·) with datasets Sl[M ] := {S

l
m : m ∈ [M ]}. FLroutine(Sl[M ]) targets at solving the

following standard FL problem:

minf∈F L̂(f ;Sl[M ]) :=
∑

m∈[M ]
(nm/n) · L̂m(f ;Slm), (1)

where nm := |Slm| is the number of samples in dataset Slm, n :=
∑

m∈[M ] nm is the total number

of samples, and L̂m(f ;Slm) := (1/nm) ·
∑

i∈[nm] ℓm(f(xi
m, aim); rim) is the empirical local loss of

agent m with ℓm(·; ·) : R2 → R as the loss function and (xi
m, aim, rim) as the i-th sample in Slm.

The output function of this FL process is then used as the estimated reward function f̂ l+1 for IGW
sampling in the next epoch l + 1.

It is worth particularly emphasizing that there is no restriction on the FL protocol in FedIGW as long
as it follows the canonical FL framework formulated in Eq. (1), which is a goal commonly adopted in
FL studies. Such flexibility is remarkable as it enables FedIGW to incorporate any existing or future
FL protocols just by plugging a new FL component into it.

4 Flexible Extensions

Besides flexibly incorporating canonical FL protocols, another major advantage offered by the
decoupled FL choices is to bring appropriate appendages from FL that directly benefit FCB, as
illustrated in Fig. 2. In the following, we discuss how to leverage techniques of robustness and privacy
from FL in FedIGW, while presenting intriguing avenues for future exploration.

Robustness. One important direction in FCB studies is to improve robustness against malicious at-
tacks. Some advances have been achieved in attaining this desirable property, e.g., robust aggregation
schemes are studied in [32–34]. However, these designs are still tailored to specific settings and
require performing careful construction on previous basic FCB designs.

With the FL component as a largely decoupled component in the design of FedIGW, it is more
convenient to achieve robustness as suitable techniques from FL studies can be directly applied with
only minor modifications. The key is that as long as such FL protocols can provide an estimated
function (which is a common goal of FL), they can be adopted in FedIGW to achieve additional
robustness guarantees in FCB. For example, [35–39] studied how to handle malicious agents, who
can deviate arbitrarily from the FL protocol and tamper with their own updates, during learning.

3



Figure 1: Experiments with Bibtex (left) and Delicious (right). Figure 2: Flexible FL appendages

The commonly adopted scheme is to invoke certain robust estimators (e.g., median and trimmed
mean). Under suitable assumptions, existing approaches have shown that as long as the proportion of
malicious agents does not exceed a threshold (typically, 1/2), the estimators calculated by federation
can still converge within certain amounts of error due to the malicious agents.

Privacy. Moreover, many mechanisms have also been studied in FL [40–42], to guarantee differential
privacy (DP), where the most common approach is to insert noises of suitable scales [40, 43, 44].
Similar to the study of robustness, while there have been some attempts to insert tailored noises into
FCB designs for privacy guarantees [13, 45, 46], the proposed FedIGW algorithm can effortlessly
leverage the existing fruitful investigations on FL with privacy guarantees [40–42]. The key is still
that all favorable properties during learning the estimate f̂ (which is used in IGW interactions) are
naturally inherited by FedIGW.

Other Possibilities. There have been many studies on personalization [47, 48], fairness guarantees
[49, 50], client selections [51, 52], and practical communication designs [53–55] in FL among many
other directions, which are all conceivably applicable in FedIGW.

5 Performance Evaluation

Following the single-agent study of IGW [21], theoretical analyses can be performed on FedIGW to
demonstrate its efficiency, where the convergence results of FL algorithms play a critical role. Due to
the space limitation, the detailed theoretical results are deferred to the full version of this work.

In this section, we report the empirical performances of FedIGW on two real-world datasets: Bibtex
[56] and Delicious [57]. The reported Fig. 1 compares the averaged rewards collected by FedIGW
using different FL choices, including FedAvg [1], SCAFFOLD [31], and FedProx [3], and M = 10
agents with two single-agent designs, where FALCON [21] can be viewed as the single-agent version
of FedIGW and AGR [58] is an alternative strong single-agent CB baseline. This is the first time, to
the best of our knowledge, FedAvg is practically integrated with FCB experiments, let alone other
FL choices. It can be observed that on both datasets, FedIGW achieves better performance than
the single-agent baselines with more rewards collected by each agent on average, which validates
its effectiveness in leveraging agents’ collaborations. Also, it can be observed that using the more
developed SCAFFOLD and FedProx provides improved performance compared with the basic
FedAvg, demonstrating FedIGW’s capability of harnessing advances in FL protocols. Additional
experimental details are discussed in Appendix B with more results provided, including error bars.

6 Conclusions

In this work, we studied the problem of federated contextual bandits (FCB) and recognized that
existing FCB designs are largely disconnected from canonical FL studies in their adopted FL protocols,
which hinders the integration of crucial FL advancements. To bridge this gap, we introduced a novel
design, FedIGW, capable of accommodating a wide range of FL protocols, provided they address
a standard FL problem. Moreover, we explored how advancements in FL can seamlessly bestow
additional desirable attributes upon FedIGW. Specifically, we delved into the incorporation of
robustness and privacy, presenting intriguing opportunities for future research. Empirical validations
on real-world datasets underscored its practicality and flexibility. It would be valuable to pursue
further exploration of alternative CB algorithms within FCB, e.g., [25, 59, 60], and investigate
whether the FedIGW design can be extended to more general federated RL [9, 10].
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A Related Works

We provide a more detailed review of federated multi-armed bandits (FMAB) and federated contextual
bandits (FCB) in the following.

• Tabular. There have been many studies on cooperative designs in multi-armed bandits (i.e., the
tabular setting), e.g., [61–64], focusing on different learning targets and different communication
schemes (e.g., through a communication graph or with some randomly selected peers). Notably, in
[11], communication-efficient designs are proposed via periodically aggregating local estimates and
performing arm elimination globally. We here also discuss another line of works on FMAB [65–69].
In their considered setting, the global rewards are (weighted) averages of local observations; however
the former is not directly observable. With maximizing global rewards as the learning target, the
agents need to collaboratively perform explorations and aggregate local information. Especially,
[65–69] all commonly employ UCB-based exploration schemes while the adopted FL routine is to
average local sample means as globe ones and to construct global confidence bounds.

• Linear. The most commonly studied FCB setting is federated linear bandits. There have been many
investigations in this direction. Especially, different environments have been tackled in different works,
e.g., the finite-armed fixed-context setting [11, 12], the finite-armed stochastic-context setting [16],
the infinite-armed fixed-context setting [70], and the infinite-armed adversarial-context setting [11, 13–
15]. Furthermore, many other settings (e.g., unobserved context [71]) and additional properties (e.g.,
privacy [13, 45], robustness [33]) have been investigated. As summarized in the main paper, these
works mainly select arm elimination (AE) or LinUCB [72] as their CB designs, which require both
model estimates and confidence bounds. Thus, in their designed communication schemes, compressed
local data (e.g., aggregated local rewards and covariance matrices) are often directly shared to solve
a global ridge regression and to construct tighter confidence bounds. Compared with these studies,
FedIGW can effectively solve the finite-armed stochastic-context setting without sharing any raw or
compressed local data but only communicate processed model parameters (e.g., gradients).

• Generalized Linear and Kernelized. As extensions of the linear reward functions, [17] considers
the generalized-linear class, and [18, 19] study the kernelized one. The adopted basic techniques are
similar to the aforementioned ones in federated linear bandits, while efforts are focused on fine-tuning
communications (e.g., via Nyström approximation [18, 19]). It is worth noting that [17] invokes the
distributed accelerated gradient descent algorithm to solve their considered distributed optimization
with a generalized linear function class, which can be viewed as a preliminary attempt to involve FL
or distributed optimization designs in FCB. However, the motivation there is the lack of a closed-form
solution as in the linear case, while [17] additionally needs to share the local covariance matrices
to construct better confidence bounds. The FedIGW proposed in this work, instead, can leverage
flexible FL designs.

• Neural. A recent work [20] extends the advances on single-agent neural bandits [73] to the
federated setting, where the neural tangent kernel (NTK) analyses are incorporated. With NTK to
“linearize” the considered over-parameterized neural network, [20] still largely follows the designs in
the aforementioned federated linear bandits while some additional attempts have been made, e.g., an
extra one-round averaging of model parameters besides aggregating NTK. This work, instead, takes
a step further to fully leverage FL designs which often perform multiple (instead of one) rounds of
model aggregations that are often necessary to guarantee convergence. Moreover, the optimization
and generalization errors of a FedAvg variant with overparameterized neural networks are provided
in [74], which is conceivably compatible with FedIGW for the corresponding analyses. Moreover,
as shown by the additional experimental results in Appendix B.4 FedIGW empirically outperforms
FN-UCB [20] on different tasks and is more computationally efficient.

B Experiment Details and Additional Results

This section first provides a comprehensive description of the experimental settings and procedures.
The codes and detailed instructions have been uploaded in the supplementary materials so as to
execute the experiments and reproduce the results.

Additional results are also provided to deepen the understanding of the impact of adopting different
FL protocols in FedIGW and the effect of involving different numbers of agents. Moreover, a
performance comparison between FedIGW and the state-of-the-art FCB design, FN-UCB [20], is
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reported. These results reveal that our proposed FedIGW not only outperforms the single-agent
designs but also supersedes the strong FCB baselines.

B.1 Experiment Settings

In the following, we report a comprehensive description of the experimental details adopted in the
simulations.

Datasets. Our experiments employ two distinct real-world multi-label classification datasets, Bibtex
[56] and Delicious [57], which are also used in other practical CB investigations such as [58]. The
aim of CB is considered to be recommending one of the correct labels at any given time. Especially,
in the experiments, at each time step, a context is randomly sampled from the dataset while the true
labels are concealed from the agents. The agents then determine which label to select (i.e., pull one
arm) with their CB algorithms; thus the number of arms is the number of possible labels in each
dataset. Upon pulling one arm, a reward of 1 is granted if the pulled arm corresponds to one of the
true labels, while a reward of 0 is granted otherwise. Details of each task are listed in Table 2, from
which we can observe that these scenarios are challenging given their high-dimensional contexts and
large numbers of arms.

Table 2: The context dimension and number of arms in Bibtex and Delicious
Task Context dimension Number of arms

Bibtex 1835 159
Delicious 500 983

Environments. In the experiments, the environments sample contexts for all agents from the same
set of datasets described above. For simplicity, the system is also designed as a synchronous one, i.e.,
tm(t) = t, ∀m ∈ [M ].

FedIGW. As described in Section 5, for both tasks, two-layer multi-layer perceptrons (MLPs) with a
hidden layer having a constant 256 width are used to approximate the reward functions in FedIGW.
Moreover, multiple standard FL protocols including FedAvg [1], SCAFFOLD [31] and FedProx
[3] are adopted as the FL component in FedIGW. During each FL process, the local batch size,
the number of communications, and the local learning rate are specified in Table 3. Moreover, the
epoch length is designed to be growing exponentially, while culminating at an upper limit of 4096 to
maintain timely updates.

Additionally, for practical conveniences, we set the parameter γ as a constant hyper-parameter and
perform some preliminary manual selections with the final adopted values reported in Table 3. We
believe this approach is more practically appealing as it does not need to scale γ consistently; a
similar choice of using constant γ’s is also adopted in [75].

Table 3: Hyperparameter choices for FedIGW in Bibtex and Delicious
Task Learning Rate Batch Size Communications Parameter γ

Bibtex 0.1 64 100 7000
Delicious 0.2 64 100 7000

Single-agent baseline: AGR. The adaptive greedy (AGR) algorithm [76] is selected as one of the
single-agent baselines due to its strong empirical performance on Bibtex and Delicious reported in
[58]. The algorithmic details can be found in [58], and we also leveraged the code provided in [58] to
build this baseline.

Single-agent baseline: FALCON. The other single-agent baseline, FALCON, is proposed in [21],
which is essentially the single-agent version of FedIGW. We still adopt the same algorithmic configu-
rations as FedIGW (i.e., epoch length, parameter γ, local batch size, and local learning rate) except
that the MLP is optimized locally instead of in a federation, i.e., there are no communications.

Performance evaluation. All the reported results except Fig. 8 are averaged from 10 independent
runs, whose error bars are further provided. In Fig. 8, the unpractical long running time of the
baseline algorithm prohibits us from performing repeated experiments as discussed in the following
description of computing resources.
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Figure 3: Averaged rewards and error bars on Bibtex from two single-agent baselines and FedIGW using
FedAvg, FedProx, and SCAFFOLD as its FL protocol. The continuous curves represent the empirical average

values, and the shadowed areas are the standard deviations.

Computing Resources. The computational requirement is relatively low for testing the two single-
agent baselines (AGR and FALCON) and our proposed FedIGW. Specifically, we use a dual Nvidia-
RTX 3090 workstation with an overall 20 GB RAM, which is more than needed as only 2 GB RAM
is occupied during the experiments of AGR, FALCON, and FedIGW using the aforementioned MLP
having a hidden layer with width 256. However, as illustrated later in Section B.4, when testing
FN-UCB [20], the overall 20 GB RAM is not sufficient for running it when the MLP hidden layer
has a width larger than 10; thus, we down-scaled the width to be 5 for smooth testing.

B.2 Additional Results: Varying FL Choices

We here provide additional details of Fig. 1 in Figs. 3 and 4, especially with error bars, and numerically
verify the flexibility of FedIGW with different FL protocols, including FedAvg [1], SCAFFOLD [31]
and FedProx [3]. As observed in Section 5, using the further optimized SCAFFOLD and FedProx
provides better performances compared with using the basic FedAvg, which credits to that FedIGW
can seamlessly leverage algorithmic advances in FL protocols. Moreover, it can be observed that the
performance obtained by using SCAFFOLD as the FL choice in FedIGW is also particularly stable,
which demonstrates its superiority in the application of sequential decision-making.

B.3 Additional Results: Varying Numbers of Agents

Fig. 5 further reports the averaged rewards of FedIGW with M = 10, 20, 30, 50 involved agents and
their associated error bars in the Bibtex dataset, while Fig. 6 reports the same set of results in the
Delicious dataset. Moreover, Fig. 7 compares the averaged rewards of FedIGW with varying numbers
of agents. In these results, the FL protocol in FedIGW is selected to be FedAvg.

From Figs. 5 and 6, we can observe that FedIGW is capable of collecting more rewards than the two
single-agent baselines, which demonstrates its efficiency. Moreover, Fig. 7 elucidates that the final
performance of FedIGW is positively correlated with an increasing number of clients, which verifies
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Figure 4: Averaged rewards and error bars on Delicious from two single-agent baselines and FedIGW using
FedAvg, FedProx, and SCAFFOLD as its FL protocol. The continuous curves represent the empirical average

values, and the shadowed areas are the standard deviations.

the benefits of learning in a larger federation. Furthermore, the variance (i.e., error bar) in Figs. 5 and
6 begins at a relatively small value and subsequently expands due to the initially intense explorations.
Eventually, when the algorithm gradually approaches convergence, the variance begins to reduce,
reflecting the stabilization of the learning process.

B.4 Additional Results: Comparison with Federated Neural Bandits

To further verify the performance of FedIGW, additional comparisons are conducted with a state-of-
the-art FCB baseline, specifically, the federated neural-upper confidence bound (FN-UCB) design
proposed in [20]. FN-UCB is capable of leveraging neural networks to approximate rewards and [20]
has reported superior performance compared to many other designs, which makes it a strong FCB
baseline. When conducting the experiments, we first notice that FN-UCB necessitates multiple matrix
inversions over the entire set of neural network parameters and such operations lead to substantial
memory consumption when handling the high-dimensional context and numerous arms in both Bibtex
and Delicious (which evidence the difficulty of these two employed datasets). To accommodate our
already powerful computing resources (dual Nvidia-RTX 3090 and 20 GB RAM), we had to use a
small-size MLP in both FALCON and FN-UCB for smooth testing and fair comparison. Especially,
the width of the MLP hidden layer is down-scaled from the originally adopted 256 (in Fig. 1) to only
5, as our 20 GB RAM cannot support FN-UCB using an MLP with its hidden layer wider than 10.
Also, due to the inefficiency of FN-UCB in our testing scenario, the error bars are omitted in Fig. 8.
We believe this experimental observation demonstrates the computational efficiency of FedIGW over
FN-UCB.

Moreover, the statistical performance of FedIGW and FN-UCB is presented in Fig. 8. As evident from
the reported results, the substantial reduction in the neural network size has affected the performance
of FedIGW compared with Figs. 5 and 6. In particular, FedIGW achieves only about 30% of
the previously reported performance on Bibtex and 50% on Delicious. Nevertheless, despite this
diminished performance, our proposed FedIGW still outperforms FN-UCB significantly, surpassing
it by nearly 70% on both tasks as shown in Fig. 8. These comparisons further validate the advantages
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Figure 5: Averaged rewards and error bars on Bibtex from FedIGW (using FedAvg) with varying numbers of
involved agents, i.e., M = 10, 20, 30, 50. The continuous curves represent the empirical average values, and the

shadowed areas are the standard deviations.

of FedIGW, demonstrating its relatively easy implementation and superior performance compared to
existing FCB designs.
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Figure 6: Averaged rewards and error bars on Delicious from FedIGW (using FedAvg) with varying numbers of
involved agents, i.e., M = 10, 20, 30, 50. The continuous curves represent the empirical average values, and the

shadowed areas are the standard deviations.

Figure 7: Averaged rewards and error bars on Bibtex (left) and Delicious (right) at time step 2.3× 104 from two
single-agent baselines and FedIGW (using FedAvg) with varying numbers of involved agents, i.e.,

M = 10, 20, 30, 50.

Figure 8: Comparisons between FedIGW and FN-UCB on Bibtex (left) and Delicious (right) with 10 involved
agents.
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