
Explore until Confident: Efficient Exploration for
Embodied Question Answering

Author Names Omitted for Anonymous Review.

SV

Is the dishwasher in the 
kitchen open? A) Yes B) No

Stop?

Question

Prediction set: [“Yes”, “No”] 
-> Continue exploration

Step - 1

Step - 15

Prediction set: [“Yes”, “No”]
-> Continue Continue

Step - 16

Prediction set: [“Yes”, “No”]
-> Continue

Step - 5

A) Yes 

Final Answer

Step - 13

Continue Continue Continue

Prediction set: [“Yes”] -> Stop
Ours

FBE

Fig. 1: Our framework leverages a large vision-language model
(VLM) to obtain semantic information from the views (visualized
by overlaying it on top of the occupancy map), which guides a Fetch
robot to explore relevant locations. The robot maintains a set of
possible answers and stops when the set reduces to a single answer
based on the current view.

Abstract—We consider the problem of Embodied Question
Answering (EQA), where a robot needs to actively explore an
environment to gather information until it is confident about
the answer to a question. We leverage the strong semantic
reasoning capabilities of large vision-language models (VLMs)
to efficiently explore and answer such questions. We first build
a semantic map of the scene based on depth information and
via visual prompting of a VLM — leveraging its vast knowledge
of relevant regions of the scene for exploration. Next, we use
conformal prediction to calibrate the VLM’s question answering
confidence, allowing the robot to know when to stop exploration
— leading to a more calibrated and efficient exploration strategy.
To test our framework in simulation, we also contribute a
new EQA dataset with diverse scenes built upon the Habitat-
Matterport 3D Research Dataset (HM3D). Both simulated and
real robot experiments show our proposed approach improves
the performance and efficiency over baselines.

I. INTRODUCTION

Imagine that a service robot is sent to a home to perform
various tasks, and the household owner asks it to check
whether the stove is turned off. This setting is referred to as
Embodied Question Answering (EQA) [1, 2], where the robot
starts at a random location in a 3D scene, explores the space,
and stops when it is confident about answering the question.
This can be a challenging problem due to highly diverse scenes
and lack of an a-priori map of the environment.

Recently, large vision-language models (VLMs) have
achieved impressive performance in answering complex ques-
tions about static 2D images [3, 4]. They can also help the
robot actively perceive the 3D scene given partial 2D views
and reason about future actions for the robot to take [5]. Such
capabilities are critical to performing EQA, as the robot can
now better reason about relevant regions of the environment,

actively explore them, and answer questions that require
semantic reasoning. However, there are two main challenges:
1) Limited Internal Memory of VLMs. Efficient exploration

benefits from the robot tracking previously explored re-
gions and also ones yet to be explored but relevant for
answering the question. However, VLMs do not have an
internal memory for mapping the scene and storing such
semantic information;

2) Miscalibrated VLMs. VLMs are fine-tuned on pre-trained
large language models (LLMs) as the language decoder,
and LLMs have been shown to often be miscalibrated [6] –
that is they can be over-confident or under-confident about
the output. This makes it difficult to determine when the
robot is confident enough about question answering in EQA
and then stop exploration, affecting overall efficiency.

How can we endow VLMs – with limited memory and
potential for miscalibration – with the capability of efficient
exploration for EQA? We propose a framework (Fig. 1) that (1)
fuses the commonsense/semantic reasoning abilities of a VLM
into a global geometric map to enable efficient exploration, and
(2) uses the theory of multi-step conformal prediction [7, 8]
to formally quantify VLM uncertainty about the question.
Through exploration, the robot builds a semantic map of the
scene that stores information on occupancy and locations the
VLM deems worth exploring. Such semantic information is
obtained by annotating the free space in the current image
view, prompting the VLM to choose among the unoccupied
regions, and querying its prediction (Fig. 2). Throughout an
episode, the robot maintains a set of possible answers, updates
the set at each step based on new visual information provided
to the VLM, and stops exploration when the set of possible
answers reduces to a single option. Conformal prediction
formally ensures the set covers the true answer with high
probability. The set size is also minimized and thus the robot
can stop as soon as possible.

II. PROBLEM FORMULATION

Distribution of scenarios for EQA. We formalize Embodied
Question Answering (EQA) by considering an unknown joint
distribution over scenarios ξ ∼ D the robot can encounter. A
scenario is a tuple ξ := (e, T, g0, q, y), where e is a simulated
or real 3D scene (e.g., , a floor plan with certain dimensions),
T is the maximum number of time steps allowed for the robot
to navigate in the scene (e.g., a function of scene size), g0 is
the robot’s initial pose (2D position and orientation at time
0), q is the question, and y is the ground truth answer. We



will use a subscript to indicate the scenario (e.g., Tξ for the
maximum time horizon in scenario ξ), and a superscript t for
time steps (e.g., gt for the robot’s pose at time t). We consider
multiple-choice questions q, e.g., “Where did I leave the black
suitcase? A) Bedroom B) Living room C) Storage room D)
Dining room.” Thus the set of labels Y := {‘A’, ‘B’, ‘C’, ‘D’}
contains any answer y.

Robot navigating in a scenario. We do not expect the robot
to have any prior knowledge of the scene. We initialize the
robot at g0, and at any time t it can traverse to different
poses gt. The robot’s onboard camera provides RGB images
Itc ∈ RHI×WI×3 and depth images Itd ∈ RHI×WI . We
associate a time step with each time the robot stops and
takes RGB/depth images. Additionally, we assume access to
a collision-free planner π that determines the next pose gt+1

to travel to, a maximum of 3m away from gt.

VLM predictions. We pass the RGB image and a text prompt
s to the VLM, and query its probability over predicting the
next token. For convenience, we denote xt = (Itc, q) consisting
of the RGB image Itc and the question q. Then, the VLM’s
prediction given the question q at time t can be denoted
as f̂(xt) ∈ [0, 1]|Y|, which are the softmax scores over the
multiple choice set Y . We denote f̂y(·) as the softmax score
for a particular label y.

Goal: efficient exploration. In a new scenario, the robot may
stop at any time step t ≤ Tξ and make a final answer. Our
goal is to answer the question correctly in unseen test scenarios
ξ ∈ D, using a minimal number of time steps.

III. TARGETED EXPLORATION USING VLM REASONING

A. Exploration Map and Frontier-Based Exploration

For tracking where the robot has explored, we first adopt a
3D voxel-based representation for the map of size L ×W ×
H — M and L expand as the robot explores more areas,
and H is fixed as 3.5m (typical floor height). Each voxel
corresponds to a cube with side length l. At each pose gt with
depth image Itd ∈ RHI×WI and known camera intrinsics, we
apply Volumetric Truncated Signed Distance Function (TSDF)
Fusion [9, 10] to update (1) occupancy of the voxels and (2)
if they are explored/seen in the current Itd. At each time step
we then project the 3D voxel map into a 2D point map M :
a 2D point is considered free (un-occupied) if all voxels up
until 1.5m are marked free, which is the height of the camera
(in simulation and in reality), and considered explored if all
voxels along H have been marked explored.

Based on the 2D map storing occupancy and exploration
information, we use a heuristics-based 2D planner that plans
new poses around unexplored region. Our strategy is based
around Frontier-Based Exploration (FBE), which has been
proven a simple yet effective method for navigation tasks [11].
FBE finds the frontiers (Fig. 2), the locations at the boundary
of the explored and unexplored regions, samples one as
the planned location, and uses the normal direction to the
unexplored region boundary as the planned orientation.
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Fig. 2: To query VLM’s uncertainty over possible exploration loca-
tions, we visually prompt the VLM with possible points in the current
view (left column) and also with the entire view (middle column) to
obtain the Local Semantic Value (LSV) and Global Semantic Value
(GSV) (Section III-B). A weighted combination of them (SV) is saved
in a semantic map (right column). The values are used as the weights
for sampling the next frontier to navigate to, guiding the robot towards
unknown and relevant regions (Section III-C)

B. VLM Visual Prompting for Semantic Value (Fig. 2)

As the VLM already has access to rich prior knowledge
from large-scale Internet data, we hypothesize that it can
potentially provide useful information in determining relevant
locations to explore. We achieve this by obtaining the VLM’s
uncertainty over the possible locations via visual prompting.
Given the current RGB image Itc, we first identify the free
space seen in Itc by (a) projecting it onto M , (b) keeping
only the free points, and (c) sampling a set of points P
using farthest point sampling to ensure coverage. In practice,
we use |P | = 3, which we find sufficient to cover the
possible distinct regions in an image. Then, we de-project the
sampled points back onto Itc and annotate them with letters
YP = {‘A’, ‘B’, ‘C’} on Itc to get an annotated image Itc,YP

,
which can be used for visual prompting (Fig. 2). Now, we
have the following prompt:
Consider the question: {question}, and you will 
explore the scene for answering it. Which 
direction (black letters on the image) would you 
explore then? Answer with a single letter.

We then use the (normalized) probability output of the VLM
over each of the three directions to construct the local semantic
value (LSV) of p ∈ P :

LSVp(x
t) = f̂yp(x

t) = f̂yp(I
t
c, sLSV,q) ∈ [0, 1], (1)

where xt = (Itc, q) is the RGB image and question (cf. Sec. II)
and sLSV,q is the prompt above with the question filled in. Note
that this is a “local” score because the comparison is from one
image, and the locations P are not suited for being compared
to those seen in images taken with different poses gt (e.g.,
see top and bottom rows in Fig. 2) when planning the next
robot pose using M . We additionally need to determine if we
should navigate to poses visible from the current pose at all:
via visual prompting:
Consider the question: {question}, and you will 
explore the scene for answering it. Is there any 
direction shown in the image worth exploring? 
Answer with Yes or No.

This allows us to obtain the global semantic value (GSV) of
a given point p ∈ P by querying the (normalized) probability



of the VLM predicting ‘Yes’:

GSVp(x
t) = f̂‘Yes’(x

t) = f̂‘Yes’(I
t
c, sGSV,q)) ∈ [0, 1], (2)

where again sGSV,q is the prompt above with the question filled
in. To determine the overall semantic value (SV), we apply
temperature scaling (τLSV and τGSV) to each of the two values
and compute the following score:

SVp(x
t) = exp

(
τLSV · LSVp(x

t) + τGSV · GSVp(x
t)
)
. (3)

C. Semantic-value-weighted Frontier Exploration

Now we detail how to incorporate preferences in exploring
high semantic-value regions using the semantic map — we
apply SV as the weights when sampling the next frontier
to navigate to. Each weight are based on two values, SVp,
the semantic value at point p, and also SVp,Normal, defined
as the average semantic value of the points within a certain
distance dSV from p in the normal direction. SVp,Normal can
be particularly useful to better guide the robot towards the
relevant regions if they are not close to robot’s current pose.

IV. STOPPING CRITERION FOR EXPLORATION AND
ANSWERING THE QUESTION

The second piece of efficient exploration is to know when
you have enough information to answer the question and
realize when you should stop exploring. Techniques for as-
sessing VLM confidence in question answering typically rely
on softmax scores. For example, one can compute the entropy
of the predicted answer at each time step:

H(f̂(xt)) = −
∑
y∈Y

f̂y(x
t) log f̂y(x

t), (4)

and stop if this quantity is below a pre-defined threshold. Or
we can directly prompt the model:

We can then look at the probability of the model predicting
‘Yes’; we refer to this as the question-image relevance score:

Rel(xt) = f̂‘Yes’(I
t
c, (q, sRel,q)), (5)

where sRel,q is the prompt above with the question filled in.
By normalizing this quantity with the sum of confidences
of predicting ‘Yes’ and ‘No’, one obtains a scalar quantify
bounded in [0, 1]. A scalar threshold hrel ∈ [0, 1] can then be
used as the stopping criterion.

However, the softmax scores from VLMs are often mis-
calibrated, i.e., they are often over- or under-confident. This
motivate us to rigorously quantify the VLM’s uncertainty and
carefully calibrate the raw confidences. Our main insight is
to employ multi-step conformal prediction, which allows the
robot to maintain a set of possible answers (prediction set)
over time, and stop when the set reduces to a single answer.
Conformal prediction uses a moderately sized (e.g., ∼300)
set of scenarios for carefully selecting a confidence threshold
above which answers are included in the prediction set. This
procedure allows us to achieve calibrated confidence: with

a user-specified probability, the prediction set is guaranteed
to contain the correct answer for a new scenario. CP also
minimizes the prediction set size [7, 8], which helps the
robot to stop as quickly as it can while satisfying calibrated
confidence.

A. Applying Multi-Step CP for Embodied Question Answering
Here we describe how CP provides a principled and more

interpretable stopping criterion for multi-step exploration by
building on the multi-step CP approach presented in [8] (see
Section B for background on conformal prediction). Let xt

denote the input at time t consisting of the RGB image
Itc and the question q. Each episode results in a sequence
x̄ = (x0, x1, . . . ) of such inputs. We first define the relevance-
weighted confidence score at time t (analogous to the single-
step definition Eq. (A7)):

ρty(x
t) := Rel(xt)(f̂y(x

t)− 1). (6)

This quantity is large when the input xt at time t is deemed
highly relevant and the VLM is confident in the answer y. We
can then define the episode-level confidence as:

ρ̄y(x̄) := min
t∈[T ]

ρty(x
t), (7)

where T is the maximum allowable episode length. Given
a calibration dataset Z = {zi = (x̄i, yi)}Ni=1 of input
sequences (collected using the exploration policy) and ground-
truth answers, we define the non-conformity score for data
point i as κi := 1− ρ̄yi

(x̄i).
We can then perform the standard CP calibration as de-

scribed in Section B using these non-conformity scores in
order to obtain a confidence threshold q̂. Then, given a
new input sequence x̄test, we can construct a sequence-level
prediction set C̄(x̄test) := {y ∈ Y|ρ̄y(x̄test) ≥ 1−q̂}. This set is
guaranteed to contain the ground-truth answer with probability
1 − ϵ. However, at test-time, the robot does not obtain the
entire sequence x̄test at once; instead, the prediction sets must
be causally constructed over time (i.e., using observations up
to the current time). Define the causally constructed prediction
set at time t to be:

Ct(xt
test) := {y ∈ Y|ρty(xt

test) ≥ 1− q̂}. (8)

Claim 1: For all time t ∈ [T ], the causally constructed pre-
diction set Ct(xt

test) contains the sequence-level set C̄(x̄test).
Moreover, ∩T

t=0C
t(xt

test) = C̄(x̄test).
Proof: See App. Section A.

Proposition 1: With probability 1 − ϵ for test scenarios
drawn from D, the ground-truth label ytest is contained in the
prediction set ∩t

k=0C
k(xk

test) for all t ∈ [T ].
Proof: This follows directly from the claim above and

the fact that the sequence-level prediction set C̄(x̄test) contains
the ground-truth label with user-defined probability 1 − ϵ as
guaranteed by CP.

At test time, we thus construct the set Ct(xt
test) at each

step and maintain the intersection of these sets over time.
If the resulting intersection contains only a single element,
the robot halts its exploration with 1 − ϵ confidence that the
corresponding answer is correct.
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Fig. 3: Normalized time step taken vs. success rate in simulated
experiments for (a) comparing different exploration methods, (b)
ablating GSV and LSV from our method, and (c) varying semantic
value temperature scaling.

V. EXPERIMENTS AND DISCUSSION

Through extensive simulated and hardware experiments, we
investigate the following key questions:
• Q1 - Semantic exploration: Does our method use fewer

steps while achieving the same level of EQA success
compared to baselines without leveraging VLM reasoning
for exploration?

• Q2 - Stopping criteria: Does our method with confidence
calibration use fewer steps while achieving the same level
of EQA success compared to baselines without calibration?

A. HM-EQA Dataset

While prior work has primarily considered synthetic scenes
and simple questions such as “what is the color of the coffee
table?” involving basic attributes of relatively large pieces
of furniture, we are interested in applying our VLM-based
framework in more realistic and diverse scenarios. To this
end, we propose HM-EQA, a new EQA dataset based on the
Habitat-Matterport 3D Research Dataset (HM3D) [12]. At the
end, we generate 500 questions from 312 different scenes.
Please see Section C for the details.
B. Q1: Semantic Exploration - Baselines

To evaluate how well our VLM-based semantic exploration
performs, we consider the following baselines:
• FBE: This baseline applies frontier-based exploration with-

out using any semantic values for weighted sampling.
• CLIP-FBE: This baseline considers semantic values when

sampling the next frontier like ours. However, the semantic
values are from CLIP [13], which provides the relevance
of an image given a text input. We apply the multi-scale
relevancy extractor from [14] to extract a dense pixel-wise
CLIP score to allow fine-grained localization of relevant
objects or exploration directions.

• Ours-No-LSV: Ours without LSV.
• Ours-No-GSV: Ours without GSV.

C. Q1: Semantic Exploration - Simulation Results

Fig. 3a shows the average success rate (answer correctly
predicted) achieved when the robot is allowed to run for
different numbers of time steps. Compared to FBE and CLIP-
FBE, our method uses fewer steps to achieve success. The
difference becomes significant around 20% − 30% of the
maximum allowable steps, demonstrating the effect of VLM-
based active exploration at the early stage of the episodes.

Fig. 3b, we demonstrate that both GSV and LSV are critical
to achieving high success rates when using semantic values to

guide exploration. Without GSV, the planner can be myopic
as it only considers LSV, and thus the robot being stuck
in incorrectly chosen locations and unable to explore other
locations. Without LSV, the robot explores less efficiently
overall due to the less fine-grained semantic values.

In Fig. 3c, we vary the temperature scaling τLSV and τGSV
applied when determing the semantic values (SV) used for
sampling the frontier. The higher the scalings are, the bigger
the difference in SV among different regions. Results show
that too high τ leads to faster exploration at the beginning,
but worse performance in later normalized time steps. This is
potentially due to the robot overly prioritizing the semantic
regions. Too low τ also leads to inferior efficiency.
D. Q2: Stopping Criterion - Baselines

To evaluate how well our CP-based stopping criterion
performs, we consider the following baselines:
• Entropy: This baseline uses the entropy of the predicted

answer (4) as the metric, and stops exploration once it is
lower than some threshold (varied). The final answer is the
one with the highest f̂y(xt) at the stopping time step.

• Relevance: use the question-image relevance score (5) as
the metric, and stop exploration once it is higher than some
threshold (which can be varied). The final answer is the one
with the highest f̂y(xt) at the stopping time step.

E. Q2: Stopping Criterion - Simulation Results

For evaluation, we vary the different thresholds used by our
method (ϵ), Entropy, and Relevance. We then consider the nor-
malized time step vs. the achieved success rate. Fig. 4 shows
that our method significantly outperforms EntropyEq. (4). We
find that, as the robot often sees irrelevant views (e.g., facing
an empty wall), the VLM still outputs highly confident, biased
answers for the question. Such bias leads to low prediction
entropy and the robot stops prematurely.
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Fig. 4: Normalized time step taken vs. success rate using varying
threshold in Ours and the baselines, in simulated experiments.

This observation leads to the necessity of using the question-
answer relevance score Eq. (5), which helps the robot ignore
some of the irrelevant views and continue exploring. However,
we find that, in order to achieve high success rates (upper right
side of the plot), Relevance tends to use more time steps.
For example, to achieve 58% success rate, our method takes
about 71% of the maximum time steps while Relevance takes
85%. Our method, based on the theory of multi-step conformal
prediction Section IV-A, calibrates the VLM’s confidence and
consequently improves exploration efficiency.
F. Q2: Stopping Criterion - Hardware Results.

Please see Section D for results.
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