
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DSA: EFFICIENT SERVING FOR VIDEO GENERATION
MODELS VIA DISTRIBUTED SPARSE ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion Transformer models have driven the rapid advances in video generation,
achieving state-of-the-art quality and flexibility. However, their attention mech-
anism remains a major performance bottleneck, as its dense computation scales
quadratically with the sequence length. To overcome this limitation and reduce
the generation latency, we propose DSA, a novel attention mechanism that inte-
grates sparse attention with distributed inference for diffusion-based video gener-
ation. By leveraging carefully-designed parallelism strategies and scheduling, DSA
significantly reduces redundant computation while preserving global context. Ex-
tensive experiments on benchmark datasets demonstrate that, when deployed on
8 GPUs, DSA achieves up to 1.43× inference speedup than the existing distributed
method and 10.79× faster than single-GPU inference.

1 INTRODUCTION

Recent advances in generative models have transformed the landscape of digital content creation,
introducing unprecedented capabilities in generating sophisticated visual content (Rombach et al.,
2021; Ho et al., 2020; Song et al., 2020; Ding et al., 2021). This breakthrough has streamlined
creative processes across multiple industries, from artistic design to media production. Particu-
larly, advanced video generative models have been integrated into professional workflows through
proprietary commercial platforms such as Google Veo, Kwai Kling and OpenAI Sora, as well as
open-sourced alternatives like Stable Video Diffusion (Blattmann et al., 2023), Mochi (Team, 2024),
CogVideo (Hong et al., 2023), Hunyuan Video (Kong et al., 2024) and Wan (Wan et al., 2025).

In the field of vision generation, diffusion transformer models (DiTs) have emerged as a cornerstone,
renowned for their ability to synthesize highly realistic and visually coherent outputs (Peebles & Xie,
2022). By setting new benchmarks in video quality, these models represent a major step forward
in computer-generated content. However, this advantage comes at the cost of prohibitive inference
latency due to the substantial computational overhead of the attention mechanism. In practice, DiTs
often rely on full attention across temporal and spatial dimensions (Zheng et al., 2024; Lin et al.,
2024; Hong et al., 2023; Wan et al., 2025), which incurs quadratic complexity with respect to the
sequence length. This scaling bottleneck poses severe challenges for generating high-resolution,
long-duration videos. For instance, producing a 5-second, 720p video with Wan2.1-14B (Wan et al.,
2025) requires approximately 31 minutes. This underscores the inefficiency of current approaches
and their prohibitive nature for commercial applications, necessitating further optimization.

Prior projects focus on the transformation from dense attention to sparse attention (Zhang et al.,
2025a; Xi et al., 2025; Zhang et al., 2025c;b). Video data inherently exhibit sparsity in the tem-
poral and spatial dimension. Therefore, sparse attention methods typically rely on the observation
that only a subset of temporal or spatial tokens contribute significantly to the next-step denoising.
By dynamically pruning attention maps, these methods achieve notable FLOP reductions without
retraining. However, such savings alone are insufficient at scale. Another domain focuses on the
system optimization. xDiT (Fang et al., 2024) successfully applies sequence parallelism (Li et al.,
2023; Fang & Zhao, 2024; Liu et al., 2024; Jacobs et al., 2024) for video generations. By splitting
the hidden states along the sequence dimension, sequence parallelism can evenly distribute the com-
putation workloads across GPUs, reducing the overall latency. However, this method often achieves
sub-linear scaling due to extra communication overhead. One direction for further improvement
is the integration of sparse attention and distributed inference. MagiAttention (Zewei & Yunpeng,
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2025) combines sparse attention and distributed attention. However, it is used for training Large
Language Models (LLMs) instead of inference.

Our proposed Distributed Sparse Attention (DSA) bridges this gap by jointly exploiting redundancy
in attention maps and the computational capacity of distributed hardware. DSA is built on two
key components: mixed parallelism (MP) and dynamic attention scheduling (DAS). At runtime,
a lightweight profiler determines the attention pattern for each head, after which the most suitable
sequence parallelism strategy is applied. This adaptive choice ensures that both computation and
communication overheads are substantially reduced. Furthermore, since the distribution of attention
patterns can vary across layers and time steps, DAS dynamically adjusts the execution order to better
overlap computation with communication, thereby maximizing the efficiency. Notably, this design
achieves super-linear scaling, enabling larger models to run faster than their smaller counterparts
under specific configurations.

Overall, our work makes the following key contributions: (1) We analyze the runtime characteristics
of advanced DiT models during video generation and identify the computation bottleneck. (2) We
propose DSA, a novel training-free attention mechanism which integrates both sparse attention and
distributed inference. (3) We conduct extensive experiments to evaluate DSA, demonstrating its
ability to reduce end-to-end latency by 11× while maintaining the video quality.

2 PRELIMINARIES

2.1 DIFFUSION

Diffusion models are based on a stochastic denoising process, where data is gradually corrupted by
noise via a forward diffusion process and then reconstructed using a learned reverse process (Rom-
bach et al., 2021; Song et al., 2020; Ho et al., 2020). The forward process is defined as:

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I)

where xt represents the noisy data at timestep t, and αt controls the variance schedule. The reverse
process is parameterized by a neural network ϵθ, which predicts the noise added at each timestep.
The reverse transitions are modeled as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

where µθ and Σθ are learned mean and variance functions. The model iteratively refines a noisy
sample until it converges to the original data distribution.

Diffusion models excel in their ability to handle complex data distributions and produce high-
resolution outputs, making them a preferred choice for generative tasks. However, their iterative
denoising process requires multiple forward passes through the network, resulting in high computa-
tional and memory demands.

2.2 DIFFUSION TRANSFORMER

Transformers, originally designed for sequence-to-sequence tasks in natural language process-
ing (Vaswani et al., 2017), become a cornerstone of modern AI architectures. Their self-attention
mechanism enables effective modeling of long-range dependencies, making them well-suited for
diverse tasks, including generative modeling (Liu et al., 2021; Dosovitskiy et al., 2020; Peebles &
Xie, 2022). In recent diffusion models, transformers are often employed as the backbone for the de-
noising network, where they learn to predict the noise or original data distribution at each timestep.

The transformer architecture relies on self-attention (MHSA) layers and feedforward neural net-
works. The self-attention mechanism computes a weighted representation of input tokens by attend-
ing to their pairwise relationships:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

where Q, K, and V represent the query, key, and value matrices, and dk is the dimensionality of the
keys. The attention module can capture global context efficiently, which is critical for vision tasks.
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2.3 SPARSE ATTENTION

Sparse attention exploits the fact that only a subset of tokens—either within frames or across
time—contribute significantly to the output, allowing many attention computations to be skipped.
Broadly, sparse attention can be categorized into static and dynamic patterns. Static sparse attention
relies on predefined attention masks, typically designed based on observed runtime characteristics
of the model. Because the computation pattern is fixed in advance, it enables the use of high-
performance kernels. In contrast, dynamic sparse attention determines the sparse patterns on the
fly during inference, usually by approximating query–key interactions. While static patterns offer
efficiency through predictable computation, dynamic patterns provide greater adaptivity.

Examples of static sparse attention include MInference (Jiang et al., 2024), STA (Zhang et al.,
2025c), and SVG (Xi et al., 2025). Among them, SVG achieves the best performance, as it pre-
serves the original video generation quality without degradation. In contrast, dynamic sparse atten-
tion is exemplified by SpargeAttention (Zhang et al., 2025a), which pools query and key tokens and
computes cosine similarities to identify critical attention blocks in an online manner, skipping the
unimportant ones. SpargeAttention is versatile and can be applied to large language models, image
generation models, and video generation models. However, its performance lags behind state-of-
the-art static methods such as SVG, particularly in maintaining video quality.

2.4 SEQUENCE PARALLELISM

Traditional parallelism strategies, including data, tensor and pipeline parallelism (Li et al., 2020;
Zheng et al., 2022; Rasley et al., 2020; Narayanan et al., 2021), do not scale well when the sequence
length becomes extremely large. Sequence parallelism (SP) partitions the input along the sequence
dimension across devices to distribute both memmory and compute burden for attention over long
sequences. There are mainly three categories of sequence parallelism:

• SP-Ring (Li et al., 2023; Liu et al., 2024): The sequence data is partitioned into chunks and
distributed across devices in a ring layout. During the attention operation, the key and value
embeddings are circulated among devices in a ring fashion via peer-to-peer (P2P) communication,
which is often overlapped with computation to improve efficiency.

• SP-Ulysses (Jacobs et al., 2023): The input is also partitioned along the sequence dimension.
Through an all-to-all communication step, these chunks are redistributed so that each GPU holds
the full sequence for a subset of attention heads. Local attention is computed independently for
each head, after which the outputs are redistributed to restore the original sequence partitioning.

• SP-Unified (Fang & Zhao, 2024; Gu et al., 2024):This is a hybrid sequence parallelism, combin-
ing the strengths of Ulysses and Ring while mitigating their respective limitations. Devices are
organized into a two-dimensional grid (mesh): Ulysses is applied along one dimension (rows),
while Ring is applied along the other (columns). Redistribution via all-to-all and send-receive
communication ensures proper transfer of data between sequence partitions and head slices.

3 CHALLENGES AND MOTIVATION

Deploying a transformer model for video generation has the following challenges.

1. Attention is the computational bottleneck. A high-resolution video is typically flattened into a
long sequence of vision tokens. For instance, a 5-second 720p video corresponds to approximately
xx tokens. As the attention module scales quadratically with the sequence length, it accounts for a
substantial fraction of inference time, evidenced by the breakdown of inference execution time for
Wan2.1-14B model with flash attention (Dao, 2024) in Figure 1. This overhead becomes even more
pronounced when scaling to longer durations or higher resolutions.

2. Sparse attention is not scalable. Since high-resolution videos lead to long sequences of vision
tokens for inference, it is natural to adopt parallel inference strategies such as sequence parallelism
to reduce per-device computational overhead. However, existing sparse attention methods are not
designed for multi-GPU inference and thus fail to scale efficiently. Sequence parallelism partitions
the token sequence into sub-chunks, with each device responsible for a subset of the query, key,
and value embeddings. A key challenge arises because existing sparse attention methods (Xi et al.,
2025; Zhang et al., 2025a;c) require access to the full-sequence query and key to determine the
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Figure 1: Execution time breakdown of 720p
5-second video generation of different models
on H100 GPUs
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Figure 2: Weak scaling of a 720p 5-second
video using Wan2.1-14B on H100 GPUs,
showing sub-linear decrease in generation time

sparse attention pattern. Under ring-style sequence parallelism (Li et al., 2023; Liu et al., 2024), this
leads to excessive communication overhead as devices must exchange full embeddings. Ulysses-
style sequence parallelism (Jacobs et al., 2024) alleviates this by gathering embeddings via all-to-
all communication, but still incurs significant overhead since tokens outside the sparse mask are
redundantly transferred.

Meanwhile, existing sparse attention methods fail to consider additional complexities when scaling
sparse attention to distributed settings. For instance, attention sinks (Xiao et al., 2024) can be ob-
served in video generation models (Xi et al., 2025). When distributing the sequence over GPUs,
only 1 GPU holds attention sink tokens, while these tokens need to be attended by all other GPUs.

3. Sequence parallelism is sub-linearly scalable. Sequence parallelism is an effective approach
for handling long-sequence training and inference. However, it introduces additional communication
overhead since query, key, and value embeddings must be exchanged across devices. Consequently,
the scaling efficiency becomes sub-linear, meaning adding more GPUs does not yield a proportional
reduction in latency. As shown in Figure 2, when generating a 5-second 720p video using Wan2.1-
14B on H100 GPUs, the inference time only reduces from 1837.9s to 287.9s when scaling from
1 to 8 GPUs, equivalent to a scaling efficiency of 79.7%. Thus, sequence parallelism only trades
the overall throughput for a single request latency. This limitation raises concerns about the cost-
effectiveness of sequence parallelism in commercial model-as-a-service (MaaS) deployments.

4 DISTRIBUTED SPARSE ATTENTION

To address the above challenges, we introduce Distributed Sparse Attention (DSA), a methodology
that integrates sparse attention with distributed inference for efficient video generation. In contrast to
computing full-attention with sequence parallelism, DSA selectively matches the sparse pattern and
parallel strategy, leading to significant lower computational overhead. During the communication
of query, key and value embeddings, DSA can also filter out the unimportant tokens but only trans-
fer critical tokens to the target device, reducing the overall communication overhead. As a result,
DSA achieves sparse computation and super-linear scalability while preserving the video generation
quality, leading to significant reduction in the generation latency and deployment cost.

4.1 SPARSITY PATTERN MATCHING

Existing methods, such as SVG (Xi et al., 2025), adopt static sparsity patterns for video generation
models to achieve training-free inference acceleration. These static patterns are effective because
video generation models exhibit distinct attention patterns, specifically spatial sparsity and temporal
sparsity. Similar patterns have been observed in Large Language Models (Xiao et al., 2025). SVG
pre-defines spatial and temporal sparse masks and matches attention heads to one of these masks
through sampling, achieving video generation without quality loss.

While we adopt the same static pattern strategy, a challenge arises in distributed inference: video
data is split into sub-sequences, rendering the previous matching strategy—which relies on full
sequences—ineffective. To address this limitation, we employ local pattern matching with majority
voting. We create pre-defined attention masks for local query and key sub-sequences, ensuring mask
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(a) Spatial attention pattern
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(b) Temporal attention pattern

Figure 3: Attention patterns which are unique to video generation models (Xi et al., 2025). In the
spatial attention pattern, query tokens primarily attend to key tokens within the same frame or in
adjacent frames, reflecting spatial locality. In contrast, the temporal attention pattern involves query
tokens attending to key tokens at the same spatial location but across different frames. Both patterns
exhibit the attention sink pattern (Xiao et al., 2024), which all query tokens attend to the first few
key tokens, which are often the text tokens in video generation.

locations align with the corresponding query and key positions. Subsequently, we perform all-gather
operations to aggregate local pattern matching decisions and vote on the final sparsity pattern.

4.2 MIXED PARALLELISM

Existing models, including Hunyuan-Video (Kong et al., 2024), Wan (Wan et al., 2025), and Step-
Video (Ma et al., 2025), have adopted unified sequence parallelism (USP) (Fang & Zhao, 2024) as
their default parallelization strategy. USP combines ring-style (Li et al., 2023; Liu et al., 2024) and
Ulysses-style (Jacobs et al., 2023) sequence parallelism approaches. Specifically, it first performs
all-to-all operations to gather sub-sequences, then executes ring-style attention to exchange key-
value embeddings for self-attention computation. This design allows USP to degenerate to ring-style
sequence parallelism when the Ulysses degree is 1, and vice versa.

However, this hybrid design is primarily optimized for cross-node communication. In contrast,
model deployment is typically confined to a single node, since video generation models generally
range from several billion to around 20 billion parameters. Furthermore, USP fails to account for
the attention patterns inherent in video generation models. As demonstrated in prior work, attention
maps in video generation models exhibit sparsity, particularly in the form of temporal and spatial
sparse attention patterns illustrated in Figure 3. Current approaches lack specialized designs that
leverage these distinct attention patterns to reduce the computational and communication overhead.

To address this limitation, we propose Mixed Parallelism (MP). As shown in Figure 3, the spatial
and temporal patterns show distintive features: the spatial sparsity occurs as the tokens are attending
to its spatially close tokens in the same frame or in the nearby frames while the temporal sparsity
shows that the tokens are attending other tokens at the same spatial location but across different
frames. Thus, it can be wiser to apply a distinct parallel strategy to each sparsity pattern.

Spatial Sequence Parallel. This parallel strategy is applied to spatial sparse patterns. Given N
devices, each video sequence is partitioned into N chunks of sub-sequences. Since query tokens
primarily attend to spatially proximate key tokens in spatial sparsity, we can simplify sparse attention
to local and adjacent computation only. However, this approach introduces two key complexities:

• Attention sink tokens: The first frame contains attention sink tokens that require global attention.
Specifically, tokens in the first frame located on the first device must be attended by all other query
tokens across devices.

• Variable spatial proximity ranges: The range of spatially proximate tokens varies across different
attention heads. In some cases, spatial tokens located on adjacent devices also require attention.

To address these challenges, we broadcast attention sink tokens from the first device to all others
and perform partial-ring communication for adjacent spatial tokens, as illustrated in Figure 4b. We
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Figure 4: Comparison between the original ring-style attention (a) and partial-ring attention (b). The
typical ring attention will transfer the key and value embeddings from one device to others, resulting
in N−1 times of data transfer. By leveraging the spatial attention pattern, partial-ring only transfers
the embeddings to the adjacent neighbors, keeping the number of data transfer to 2.

compute attention outputs in chunks using online softmax (Dao, 2024) and overlap communication
with computation. Since we only attend to spatially adjacent tokens, our approach performs send-
receive operations only twice (one clockwise and one counterclockwise), compared to the N − 1
iterations required by typical ring attention. This design significantly reduces communication costs
as the number of GPUs increases. Moreover, by incorporating adjacent spatial tokens rather than
relying solely on local computation, we better preserve video generation quality.

Temporal Sequence Parallel. For temporal sparsity, the challenge is more complex due to re-
peated diagonal attention patterns that require query tokens on one device to attend to key tokens
distributed across all devices. This necessitates the use of sequence parallelism. To achieve higher
computational efficiency on modern accelerators such as GPUs, we perform layout transformations
on temporal sparsity patterns to enable blockwise computation.

While ring-style sequence parallelism processes only subsequences per transmission and cannot
perform global layout transformations, Ulyssesstyle sequence parallelism (Jacobs et al., 2024) is
ideally suited for this scenario. Each device initially stores a subsequence of the input with shape
[B,S/N,H,D], where B is the batch size, S is the full sequence length, H is the number of atten-
tion heads, and D is the head dimension. An all-to-all exchange is first performed so that each device
reconstructs full sequences with shape [B,S,H/N,D]. With the complete sequence available lo-
cally, we can then apply a sparse attention pattern independently to the subset of heads assigned to
each device. After the attention computation, a second all-to-all operation restores the tensor layout
to [B,S/N,H,D]. While the total communication volume remains the same as in conventional
Ulysses sequence parallelism, the use of sparse attention greatly reduces the computational cost.

4.3 DYNAMIC ATTENTION SCHEDULING

Diffusion models exhibit dynamic behavior in their attention computation across different layers and
denoising steps when processing various prompts. Consequently, the ratio between spatial sparse
heads and temporal sparse heads fluctuates dynamically throughout the inference process. To en-
hance performance, we propose dynamic attention scheduling, which efficiently coordinates com-
putation and communication operations. Figure 5 shows the mechanism of our proposed solution.

Spatial-dominant Schedule. When spatially sparse heads comprise the majority of attention heads,
we interleave spatial attention computation with temporal attention computation. The key optimiza-
tion is to hide the communication overhead of all-to-all operations through this interleaving strategy.

Temporal-dominant Schedule. When temporally sparse heads are dominant, we adopt a different
approach. First, we compute the local attention for spatial heads while overlapping this computation
with all-to-all communication. During the subsequent Ulysses attention computation, we perform
partial-ring communication to gather spatial tokens, which are then concatenated into a larger tensor.
Finally, we execute spatial attention computation while simultaneously overlapping it with temporal
all-to-all communication.

6
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(a) Spatial-Prominent Schedule.
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Figure 5: Dynamic attention scheduling. The green boxes represent spatial attention and blue boxes
represent temporal attention.

5 EVALUATION

5.1 EXPERIMENT SETUP

We evaluated DSA on three state-of-the-art video generation models: Wan2.1-1.3B, Wan2.1-14B, and
Hunyuan-Video. We employed VBench (Huang et al., 2024) as our primary benchmark for assess-
ing video quality. Since the original prompts in VBench are concise and limited in complexity, we
refined them using GPT-4-mini. From VBench’s comprehensive evaluation framework, we selected
four critical dimensions: overall consistency, subject consistency, spatial relationship, and tempo-
ral style, which together provide a holistic assessment of video generation quality. Additionally,
we conducted frame-to-frame comparisons using traditional image quality metrics, including Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Learned Percep-
tual Image Patch Similarity (LPIPS) (Zhang et al., 2018). These evaluation metrics comprehensively
cover both image quality and spatial-temporal coherence at the video level.

We compared DSA with both sparse attention and distributed inference approaches. For video quality
evaluation, we selected SparseAttention (Zhang et al., 2025a), and Sparse-Video-Gen (SVG) (Xi
et al., 2025). Ring/Ulysses Sequence parallelism is not used for quality evaluation as it achieves
the same performance as the full attention baseline. For system performance, we compared the
generation latency for both sparse attention and distributed methods including SVG (Xi et al., 2025)
and SP-Unified (Fang & Zhao, 2024; Gu et al., 2024). As USP enables different combinations of
ring and Ulysses attention, we only kept the best results in Table 2.

5.2 VIDEO QUALITY EVALUATION

We evaluated the quality of the videos generated by different methods, and the results are summa-
rized in Table 1. We set the sparsity level to 75% for both SVG and DSA, while using a similarity
threshold of 0.6 and a CDF threshold of 0.98 for Sparse Attention. According to the quantitative
evaluation metrics, DSA consistently achieves performance comparable to SVG, while outperform-
ing MInference and SparseAttention across both the Wan and Hunyuan models. This indicates that
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Dense

DSA

(a) Prompt: A vibrant orange-and-white clownfish
darts through a sunlit coral reef, weaving gracefully
among swaying anemones and colorful corals.

Dense

DSA

(b) Prompt: A fluffy panda joyfully swings back and
forth on a brightly colored playground swing set.

Figure 6: Visualization of the generated outputs from Wan2.1-14B

Model Method
Generated Video Quality

PSNR ↑ SSIM ↑ LPIPS ↓ Overall Subject Spatial Temporal
Consistency ↑ Consistency ↑ Relationship ↑ Style ↑

Wan2.1-1.3B

Dense - - - 0.168 0.922 0.819 0.156
Sparge 31.39 0.704 0.175 0.166 0.909 0.713 0.152
SVG 34.74 0.832 0.073 0.168 0.921 0.825 0.154

DSA (Ours) 34.67 0.833 0.073 0.166 0.922 0.824 0.152

Wan2.1-14B

Dense - - - 0.170 0.927 0.798 0.163
Sparge 30.79 0.641 0.189 0.161 0.892 0.701 0.155
SVG 33.03 0.781 0.109 0.170 0.925 0.804 0.166

DSA (Ours) 33.19 0.775 0.103 0.171 0.922 0.804 0.165

Hunyuan-video

Dense - - - 0.165 0.940 0.614 0.158
Sparge 32.19 0.762 0.141 0.160 0.930 0.584 0.143
SVG 33.32 0.810 0.120 0.168 0.938 0.637 0.152

DSA (Ours) 33.40 0.804 0.121 0.167 0.940 0.633 0.149

Table 1: Video quality evaluation on VBench

DSA effectively preserves the fidelity and coherence of generated video sequences despite its use of
a sparse attention mechanism.

Figure 6 further presents two randomly selected prompts alongside the videos generated by each
method. Visual inspection reveals that the frames produced by DSA closely resemble those generated
using dense attention, maintaining high visual similarity and temporal coherence.

Model Method System Performance
# of GPUs Generation time (s) Speedup

Wan2.1-1.3B

Dense 1 402.34 1
SVG 1 310.14 1.29
USP 8 59.45 6.76

DSA (Ours) 8 54.11 7.43

Wan2.1-14B

Dense 1 1889.25 1
SVG 1 1221.34 1.55
USP 8 251.26 7.52

DSA (Ours) 8 175 10.79

Hunyuan-video-13B

Dense 1 1790.34 1
SVG 1 1340.40 1.34
USP 8 284.71 6.29

DSA (Ours) 8 189.38 9.45

Table 2: Latency and speed of different models when generating a 720p 5-second video.

5.3 SYSTEM PERFORMANCE EVALUATION

We also investigated the system performance of DSA. Unlike large language models, which typi-
cally emphasize metrics such as time to first token (TTFT) and time per output token (TPOT), video
generation models place a higher priority on overall generation latency, as the total runtime spans
the scale of minutes rather than seconds. As shown in Table 2, DSA significantly outperforms the
single-GPU method and can achieve up to 10.79x speedup. This translates to super-linear scaling
on Wan-14B and Hunyuan-13B as the speedup is greater than the proportional increase in the num-
ber of GPUs, demonstrating promising cost-effectiveness in large-scale deployment. Compared to
the distributed unified sequence parallelism, DSA can still achieve 43% improvement on Wan-14B.
However, it is noted that DSA still scales sub-linearly for Wan-1.3B, suggesting that the computation
sharding hurts the hardware utilization and reduces the computation efficiency.
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Model Strategy Generation time (s)

Wan2.1-14B
Naive Schedule 188.92

Dynamic Schedule 180.47
Spatial Only 175

Table 3: Generation latency when adopting different strategies for attention.

Model Spatial Sparsity Temporal Sparsity Overall Subject Spatial Temporal
Consistency ↑ Consistency ↑ Relationship ↑ Style ↑

Wan2.1-14B

95%
95% 0.174 0.916 0.941 0.135
90% 0.176 0.918 0.957 0.135
80% 0.177 0.918 0.957 0.134

90%
95% 0.178 0.915 0.952 0.138
90% 0.178 0.919 0.948 0.135
80% 0.178 0.920 0.950 0.134

80%
95% 0.179 0.917 0.944 0.138
90% 0.179 0.919 0.948 0.136
80% 0.177 0.921 0.956 0.135

Table 4: Sensitivity to sparsity levels for spatial and temporal attention respectively.

5.4 ABLATION STUDIES

Scheduling Strategies. We evaluated the impact of different scheduling strategies on DSA. Un-
der naı̈ve scheduling, spatial and temporal attention are executed sequentially without overlap. In
contrast, Dynamic Attention Scheduling reorders execution based on the spatial–temporal ratio and
incorporates computation–communication overlap. As shown in Table 3, this dynamic strategy re-
duces latency by 4.7%. We further examined a spatial-only strategy, where all attention heads adopt
the spatial pattern. This configuration decreases generation latency to 175 seconds—an 8% im-
provement over naı̈ve scheduling—while incurring negligible impact on video quality (results are
put in the appendix).

Sparsity Selection In DSA, since computation for spatial and temporal patterns is decoupled, we
can assign different sparsity levels to each, unlike SVG, which enforces a uniform sparsity level
across both. To evaluate this flexibility, we sampled 20 prompts from each VBench evaluation
dimension and used Wan2.1-14B to generate videos under varying sparsity settings. Specifically, we
experimented with sparsity levels of 80%, 90%, and 95% for both spatial and temporal dimensions,
and assessed their impact on video quality. As shown in Table 4, setting spatial sparsity too high
degrades performance: when spatial sparsity is increased from 80% to 95% with temporal sparsity
fixed at 95%, the overall consistency score drops from 0.179 to 0.174. However, very high temporal
sparsity tends to yield comparable performance. For example, a temporal sparsity of 95% produces
results similar to those at lower spatial sparsity levels of 90% or 80%. This reveals that temporal
attention patterns are generally more sparse than the spatial patterns. This is because the number of
frames is generally smaller than the size of tokens in a single frame. Consequently, for a given query
token, the number of key tokens at the same spatial location but across different temporal locations
is much smaller than the number of key tokens located within the same or adjacent frames.

6 DISCUSSIONS AND CONCLUSION

In conclusion, we introduce DSA, a novel attention mechanism that integrates sparse attention with
distributed inference for diffusion-based video generation. By selecting suitable parallel strategy for
distinct sparse patterns, DSA substantially reduces computation and communication overhead. Ex-
periments demonstrate that DSA achieves significant efficiency gains: up to 10.79× faster inference
compared to the single-GPU dense attention inference while preserving the video quality.

This work explores parallelization strategies for spatial and temporal attention patterns, without
yet addressing sparse patterns that may emerge in future models. Although dynamic attention
scheduling overlaps computation and communication, its multiple kernel launches can degrade
performance. As future work, we plan to incorporate adaptive sparse patterns and fuse com-
pute–communication into efficient CUDA kernels using libraries such as TileLink (Zheng et al.,
2025b) and Triton-Distributed (Zheng et al., 2025a).

9
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A APPENDIX

A.1 VISUAL COMPARISON BETWEEN DSA AND BASELINES

The figures below present videos generated using full attention, SVG (Xi et al., 2025), and our
proposed DSA method, respectively. We employ Wan2.1-14B Wan et al. (2025) to generate the
videos and extract one frame every 10 frames to illustrate both spatial and temporal consistency.

Figure 7: Prompt: A cheerful, fluffy panda strums a guitar beside a crackling campfire, with snow-
capped mountains rising in the background.

Figure 8: Prompt: A camera soars through surreal fantasy landscapes—floating islands, crystalline
spires, bioluminescent forests, cascading waterfalls, and a shifting, star-lit sky.

Figure 9: Prompt: Digital-art video of a whimsical hybrid creature: a raccoon with a textured turtle
shell and subtle reptilian markings, rendered with detailed fur and shell textures, soft cinematic
lighting, and gentle, playful animation.
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Figure 10: Prompt: Extreme slow-motion close-up of a vibrant turquoise water splash with fine
droplet detail on a transparent background (alpha channel included).

Figure 11: Prompt: Smooth, cinematic aerial panoramic drone shot sweeping over a vivid fantasy
realm of floating islands, crystalline lakes, mist-shrouded forests, and towering ancient spires bathed
in warm golden-hour light.

Figure 12: Prompt: Studio portrait of a happy dog facing the camera, wearing a bright yellow
turtleneck, centered in frame with soft studio lighting against a dark background.
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Figure 13: Prompt: Tightly cropped macro slow-motion close-up of roasted coffee beans cascading
into an empty bowl, highlighting surface texture, sheen, and the graceful motion of individual beans.

Figure 14: Prompt: Two pandas in a cozy study animatedly discuss an academic paper, pointing at
charts, flipping pages, and jotting notes on a cluttered desk.

Figure 15: Prompt: Vibrant ink droplets swirl and diffuse through water, forming dreamy, abstract
cloud-like color formations.
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