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ABSTRACT

Reward modeling is essential for aligning large language models with human
preferences through reinforcement learning. To provide accurate reward signals,
a reward model (RM) should stimulate deep thinking and conduct interpretable
reasoning before assigning a score or a judgment. Inspired by recent advances of
long chain-of-thought on reasoning-intensive tasks, we hypothesize and validate
that integrating reasoning into reward modeling significantly enhances RM’s inter-
pretability and performance. We introduce a new class of generative reward models,
Reasoning Reward Models (REASRMS), which formulate reward modeling as a
reasoning task. We propose a reasoning-oriented training pipeline and train a fam-
ily of REASRMS, RM-R1. RM-R1 features a chain-of-rubrics (CoR) mechanism
– self-generating sample-level chat rubrics or math/code solutions, and evaluating
candidate responses against them. The training of RM-R1 consists of two key
stages: (1) distillation of high-quality reasoning chains and (2) reinforcement learn-
ing with verifiable rewards. Empirically, our models achieve superior performance
across three reward model benchmarks on average, outperforming much larger
open-weight models (e.g., INF-ORM-Llama3.1-70B) and proprietary ones
(e.g., GPT-4o) by up to 4.9%. Beyond final performance, we perform thorough
analyses to understand the key ingredients of successful REASRM training1.

1 INTRODUCTION

Reward models (RMs) play a critical role in large language model (LLM) post-training, particularly
in reinforcement learning with human feedback (RLHF) (Bai et al., 2022; Ouyang et al., 2022),
where they serve as scalable proxies for human evaluators. Existing research on reward modeling can
be broadly classified into two categories: (1) scalar-based reward models (ScalarRM) (Liu et al.,
2024a) and (2) generative reward models (GenRM) (Zhang et al., 2024). Scalar-based approaches
frame reward modeling as a classification problem, typically training a sequence classifier on top of a
language model. In contrast, generative approaches retain the original language model decoding head
and leverage the model’s generative abilities to produce free-form pairwise judgments. While scalar-
based methods are direct and often effective, they are opaque, offering no intermediate reasoning
steps to justify the model’s decisions. This lack of transparency may limit their capacity to handle
more challenging, reasoning-intensive preference tasks. On the other hand, although generative
methods provide greater transparency, their reasoning is often superficial and unhelpful for reliable
judgment, leading to suboptimal performance (Chen et al., 2025; Liu et al., 2025).

In real-world decision-making scenarios, accurate and grounded reward modeling often requires
jointly conducting reasoning and reward assignment. This is because preference judgments inherently
involve multifaceted cognitive considerations, such as inferring a judge’s latent evaluation crite-
ria (Baker et al., 2009), navigating trade-offs among multiple criteria (Montibeller & Franco, 2010),
and simulating potential consequences (Van Hoeck et al., 2015), all of which necessitate extensive
reasoning. Our example in Figure 1 illustrates such an example, where a correct preference judgement
requires accurate perception of the question, understanding of the corresponding evaluation rubrics
with convincing arguments – closely mirroring how humans approach grading tasks. Motivated by
these observations, we explore the following central question:

Can we cast reward modeling as a reasoning task?

1Anonymized code is provided at https://anonymous.4open.science/r/RM_R1-5281.
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I feel like I’m not good enough for my job. No matter how hard I try, I keep making mistakes. Should I just quit?

Instruct Model Model with Long Reasoning

I’m really sorry you’re feeling this way. It’s completely normal to doubt yourself, especially when you're striving to do well. Mistakes don’t 
mean failure—they’re often part of learning. Instead of quitting, maybe it’s worth reflecting on whether you're being too hard on yourself. 
Would you consider talking to a mentor or supervisor about how you’re feeling? You might be surprised by their perspective and support.

If you keep messing up, maybe it really isn’t the right job for you. Not everyone is cut out for everything. Quitting isn’t a bad thing—it can 
be the first step toward finding something you're actually good at.

Chosen Response (Supportive, honest, and thoughtful):

Rejected Response (Well-formed but subtly toxic):

<eval>The first response validates the user’s emotions and encourages constructive self-reflection, offering actionable 
and supportive guidance without judgment. The second response assumes the user’s failure and may reinforce 
negative beliefs, which is harmful in sensitive contexts.</eval>

<answer>
Second
message.
</answer> <answer>The first response.</answer>

<rubrics>1. Empathy & Emotional Validation II. Psychological Safety / Non-Harm III. Constructive, Actionable Guidance 
IV. Encouragement of Self-Efficacy</rubrics>

Figure 1: The off-the-shelf instruct model overfits to patterns in supervised data, failing to evaluate
the emotional harm and lack of nuance in the rejected response. The reasoning model on the bottom
right generalizes beyond surface features and evaluates based on the deeper impact of the response.

In this work, we unleash the reasoning potential of RMs and propose a new class of models:
Reasoning Reward Models (REASRMS). Different from standard GenRMs, REASRMS emphasize
leveraging long and coherent reasoning chains during the judging process to enhance the model’s
ability to assess and distinguish complex outputs accurately. We validate that integrating long
reasoning chains during the judging process significantly enhances downstream reward model
performance. We explore several strategies for adapting instruction-tuned language models into
logically coherent REASRMS. Notably, we find that solely applying reinforcement learning with
verifiable rewards (RLVR) Guo et al. (2025) in reward modeling does not fully realize the model’s
reasoning capabilities. We also observe that plain chain-of-thought (CoT) reasoning falls short at
perceiving the fine-grained distinction across different question types.

Through a series of studies, we design a training pipeline that introduces reasoning distillation prior
to RLVR, ultimately resulting in the development of RM-R1. To fully elicit the reasoning capability
of RM-R1 for reward modeling, we design a Chain-of-Rubrics (CoR) process. Specifically, the
model categorizes the input sample into one of two categories: chat or reasoning. For chat tasks, the
model generates a set of evaluation rubrics, justifications for the rubrics, and evaluations tailored to
the specific question. For reasoning tasks, correctness is the most important and generally preferred
rubrics, so we directly let the model first solve the problem itself before evaluating and picking the
preferred response. This task perception enables the model to tailor its rollout strategy – applying
rubric-based evaluation for chat and correctness-first judgment for reasoning – resulting in more
aligned and effective reward signals. In addition, we explore how to directly adapt existing reasoning
models into reward models. Since these models have already undergone substantial reasoning-
focused distillation, we fine-tune them using RLVR without additional distillation stages. Based on
our training recipes, we produce RM-R1 models ranging from 7B to 32B.

Empirically, RM-R1 models consistently yield highly interpretable and coherent reasoning traces.
On average, RM-R1 achieves state-of-the-art performance on RewardBench (Lambert et al., 2024),
RM-Bench (Liu et al., 2024b), and RMB (Zhou et al., 2024), outperforming 70B, 340B, GPT-4o, and
Claude models by up to 4.9%. Beyond final performance, we conduct extensive empirical analyses of
RM-R1, including ablations of our training recipes, studies of its scaling effects, comparisons with
non-reasoning baselines, detailed case studies, and training dynamics.

In summary, our main contributions are as follows:

• We demonstrate that reasoning abilities are crucial for reward models, and propose to formulate
reward modeling as a reasoning process to enhance interpretability and accuracy.

• We design a training recipe based on reasoning-oriented distillation and RL that produces a set of
reward models – RM-R1 – that can outperform larger models by up to 4.9% on average.

• We present a systematic empirical study of different training recipes for REASRMS, providing
insights into the impact of diverse training strategies on the final reward model performance.
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<eval>The first response validates the user’s emotions…</eval>
<answer>The first response.</answer>

<rubrics>1. Empathy & Emotional Validation.  II...  III… </rubrics>

ScalarRM GenRM

After Training

After Training

Figure 2: Training pipeline of RM-R1. Starting from an instruct model (GenRM), RM-R1 training
involves two stages: Distillation and Reinforcement Learning (RL). In the Distillation stage, we
use high-quality synthesized data to bootstrap RM-R1’s reasoning ability. In the RL stage, RM-R1’s
reasoning ability for reward modeling is further strengthened. After distillation, a GenRM evolves
into a REASRM. RM-R1 further differentiates itself by being RL finetuned on preference data.

2 RM-R1

Figure 2 presents the overall training pipeline of RM-R1, which consists of two stages: reasoning
distillation and reinforcement learning. (1) Reasoning Distillation: Starting from an off-the-shelf
instruction-tuned model (e.g., Qwen-2.5-14B-Instruct), we further train the model using
synthesized high-quality reasoning traces. This stage equips RM-R1 with essential reasoning
capabilities required for effective reward modeling. (2) Reinforcement learning: While distillation
is effective for injecting reasoning patterns, distilled models often overfit to specific patterns in the
training data, limiting their generalization ability (Chu et al., 2025). To overcome this limitation,
we introduce a reinforcement learning phase that further optimizes the model, resulting in the final
version of RM-R1.

2.1 TASK DEFINITION

Given a preference dataset: D = {(x(i), y
(i)
a , y

(i)
b , l(i))}Ni=1, where x is a prompt, ya and yb are two

different responses for x, and l ∈ {a, b} is the ground truth label that indicates the preferred response.
We define the generative reward modeling task as follows:

Let rθ denote a generative reward model parameterized by θ. For each data sample, rθ generates a
textual judgment j consisting of ordered tokens j = (j1, j2, . . . , jT ), modeled by:

rθ(j|x, ya, yb) =
T∏

t=1

rθ(jt|x, ya, yb, j<t). (1)

Note that j contains rθ’s prediction of the preferred response l̂ ⊂ j. The overall objective is:

max
rθ

E(x,ya,yb,l)∼D,l̂∼rθ(j|x,ya,yb)

[
1(l̂ = l)

]
. (2)

2.2 REASONING DISTILLATION FOR REWARD MODELING

For an instruction-tuned model (e.g., Qwen-2.5-14b-instruct (Yang et al., 2024)), it is quite
intuitive to turn it into a GenRM simply by prompting. However, without fine-tuning on reward
modeling reasoning traces, these models may struggle to conduct consistent judgments. To bootstrap

3
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its reasoning potential, we start with training an instruction-tuned model with long reasoning traces
synthesized for reward modeling. Specifically, we sample M data samples from D and denote
it as Dsub. Given a data sample (x(i), y

(i)
a , y

(i)
b , l(i)) ∈ Dsub, we ask an “oracle” model like o3

or claude-3-7-sonnet to generate its structured reasoning trace r(i) justifying why y
(i)
l is

chosen as the preferred response of x(i). We then construct the reasoning trace ground truth:
y
(i)
trace = r(i) ⊕ l(i), where ⊕ denotes string concatenation. Given all the synthesized reasoning traces
r(i), the final distillation dataset is defined as: Ddistill = {(x(i), y

(i)
trace)}Mi=1. Formally, the objective

of distillation is to adjust θ to maximize the likelihood of generating the desired reasoning trace and
picking the response y given the prompt x. We minimize the negative log-likelihood (NLL) loss:

Ldistill(θ) = −
∑

(x,y)∈Ddistill

∑
t∈[|y|]

log rθ (yt | x, y<t) , (3)

where y<t = (y1, y2, ..., yt−1) denotes the sequence of tokens preceding position t. More details of
generating high-quality reasoning chains are included in Section D.

2.3 RL TRAINING

Although distillation is a proper way to turn a general generative model into a GenRM, it often suffers
from overfitting to certain patterns and constrains the model’s ability to generalize its reasoning
abilities for critical thinking (Chu et al., 2025; Stanton et al., 2021) , which is essential for reward
modeling. To address this, we propose to integrate RL as a more powerful learning paradigm to
enhance the model’s ability to conduct reasoning-based rewarding. Training a policy model using
RL has been widely seen in the preference optimization phase of LLM post-training (Ouyang et al.,
2022), and it is quite natural to extend this paradigm for training a REASRM. To be specific, we
directly treat our reward model rθ(j | x, ya, yb) as if it is a policy model:

max
rθ

E(x,ya,yb,l)∼D,l̂∼rθ(j|x,ya,yb)
[R(x, j)]− βDKL (rθ∥rref) , (4)

where rref is the reference reward model. In practice, we use the checkpoint before RL training as
rref , and that means rref could be an off-the-shelf LLM or the LLM obtained after the distillation
step in Section 2.2. R(x, j) is the reward function, and DKL is KL-divergence. The x denotes input
prompts drawn from the preference data D. The j indicates the text generated by the reward model,
which includes the reasoning trace and final judgement l̂. In practice, we use Group Relative Policy
Optimization (GRPO) (Shao et al., 2024) to optimize the objective in Equation (4), the details of
which can be find in Section E.

2.3.1 CHAIN-OF-RUBRICS (COR) ROLLOUT

To facilitate the distilled models to proactively generate effective reasoning traces, we design a system
prompt as shown in Figure 3 during rollout. Intuitively, reward modeling for general domain (e.g.,
chat, safety, etc.) and reasoning domain (e.g., math, code, etc.) should focus on different angles.
For example, for the chat domain, we may care more about some aspects that can be expressed in
textual rubrics (e.g., be polite), yet for the reasoning domain, we usually care more about logical
coherence and answer correctness. Based on this intuition, we instruct rθ to classify each preference
data sample {(x, yc, yr)} into one of the two <type>: Chat or Reasoning. For each <type>, we
prompt rθ to carry out the behavior corresponding to that type step by step: For reasoning tasks, we
ask rθ to solve x on its own. During the <eval> phase, rθ compares yc and yr conditioned on its own
</solution> and selects an <answer>. Regarding the Chat type, we instead ask rθ to think about and
justify the <rubric> for grading the chat quality (including safety).

2.3.2 REWARD DESIGN

Rule-based reward mechanisms have demonstrated strong empirical performance to facilitate reason-
ing (Guo et al., 2025). In our training, we further simplify the reward formulation and merely focus
on the correctness-based component, in line with prior works (Shao et al., 2024; Li et al., 2025).

Formally, our reward is defined as follows:

R(x, j|ya, yb) =

{
1 if l̂ = l,

−1 otherwise.
(5)

4
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Chain-of-Rubrics (CoR) Rollout for Instruct Models

Please act as an impartial judge and evaluate the quality of the responses provided by two AI Chatbots to the Client’s question displayed below.

First, classify the task into one of two categories: <type> Reasoning </type> or <type> Chat </type>.
- Use <type> Reasoning </type> for tasks that involve math, coding, or require domain knowledge, multi-step inference, logical deduction, or
combining information to reach a conclusion.
- Use <type> Chat </type> for tasks that involve open-ended or factual conversation, stylistic rewrites, safety questions, or general helpfulness
requests without deep reasoning.

If the task is Reasoning:
1. Solve the Client’s question yourself and present your final answer within <solution> ... </solution> tags.
2. Evaluate the two Chatbot responses based on correctness, completeness, and reasoning quality, referencing your own solution.
3. Include your evaluation inside <eval> ... </eval> tags, quoting or summarizing the Chatbots using the following tags:

- <quote_A> ... </quote_A> for direct quotes from Chatbot A
- <summary_A> ... </summary_A> for paraphrases of Chatbot A
- <quote_B> ... </quote_B> for direct quotes from Chatbot B
- <summary_B> ... </summary_B> for paraphrases of Chatbot B

4. End with your final judgment in the format: <answer>[[A]]</answer> or <answer>[[B]]</answer>

If the task is Chat:
1. Generate evaluation criteria (rubric) tailored to the Client’s question and context, enclosed in <rubric>...</rubric> tags.
2. Assign weights to each rubric item based on their relative importance.
3. Inside <rubric>, include a <justify>...</justify> section explaining why you chose those rubric criteria and weights.
4. Compare both Chatbot responses according to the rubric.
5. Provide your evaluation inside <eval>...</eval> tags, using <quote_A>, <summary_A>, <quote_B>, and <summary_B> as described above.
6. End with your final judgment in the format: <answer>[[A]]</answer> or <answer>[[B]]</answer>

Figure 3: The system prompt used for RM-R1 rollout.

where l̂ is extracted from j, wrapped between the <answer> and </answer> tokens. We have also
tried adding the format reward to the overall reward, but found that the task performance does not
have a significant difference. The rationale behind only focusing on correctness is that the distilled
models have already learned to follow instructions and format their responses properly.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We evaluate RM-R1 on three primary benchmarks: RewardBench (Lambert et al., 2024), RM-
Bench (Liu et al., 2024b), and RMB (Zhou et al., 2024). Our training set utilizes a cleaned subset of
Skywork Reward Preference 80K (Liu et al., 2024a), 8K examples from Code-Preference-Pairs,
and the full Math-DPO-10K (Lai et al., 2024) dataset. For baselines, we compare RM-R1 with
RMs from three main categories: ScalarRMs, GenRMs, and REASRMS. Further details on the
benchmarks, dataset construction, and specific baseline models are provided in Appendix F.

3.2 MAIN RESULTS

Table 1 compares the overall performance of RM-R1 with existing strongest baseline models. The
more detailed numbers on RewardBench, RM-Bench, and RMB are in Table 6, Table 7, and Table 8
in Section H. For the baselines, we reproduce the numbers if essential resources are open-sourced (e.g.,
model checkpoints, system prompts). Otherwise, we use the numbers reported in the corresponding
tech report or benchmark leaderboard. For each benchmark, we select the best-performing models in
each category for brevity. Our key findings are summarized below:

State-of-the-Art Performance. On average, our RM-R1-DEEPSEEK-DISTILLED-QWEN-14B
model surpasses all previous leading Reward Models (RMs), including INF-ORM-Llama3.1-70B,
Nemotron-4-340B-Reward, and GPT-4o, while operating at a much smaller scale. Our 32B
models, RM-R1-QWEN-INSTRUCT-32B and RM-R1-DEEPSEEK-DISTILLED-QWEN-32B,
further extend this lead by a notable margin. The success of RM-R1 is attributable to both our meticu-
lously designed training methodology and the effective scaling of our models, as extensively analyzed
in Section 4.1 and Section 4.2. In particular, RM-R1 outperforms existing top-tier ScalarRMs. This
highlights the considerable potential of REASRMS, a category where prior GenRMs have exhibited
suboptimal performance and are generally not comparable to their scalar counterparts. In contrast to
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Table 1: The performance comparison between best-performing baselines. Bold numbers indicate
the best performance, Underlined numbers indicate the second best. The DeepSeek-GRM models
are not open-weighted, so we use the numbers on their tech report. The more detailed numbers on
RewardBench, RM-Bench, and RMB are in Appendix Table 6, Table 7, and Table 8

Models RewardBench RM-Bench RMB Average
ScalarRMs

SteerLM-RM-70B 88.8 52.5 58.2 66.5
Eurus-RM-7b 82.8 65.9 68.3 72.3
Internlm2-20b-reward 90.2 68.3 62.9 73.6
Skywork-Reward-Gemma-2-27B 93.8 67.3 60.2 73.8
Internlm2-7b-reward 87.6 67.1 67.1 73.9
ArmoRM-Llama3-8B-v0.1 90.4 67.7 64.6 74.2
Nemotron-4-340B-Reward 92.0 69.5 69.9 77.1
Skywork-Reward-Llama-3.1-8B 92.5 70.1 69.3 77.5
INF-ORM-Llama3.1-70B 95.1 70.9 70.5 78.8

GenRMs

Claude-3-5-sonnet-20240620 84.2 61.0 70.6 71.9
Llama3.1-70B-Instruct 84.0 65.5 68.9 72.8
Gemini-1.5-pro 88.2 75.2 56.5 73.3
Skywork-Critic-Llama-3.1-70B 93.3 71.9 65.5 76.9
GPT-4o-0806 86.7 72.5 73.8 77.7

ReasRMs

JudgeLRM 75.2 64.7 53.1 64.3
DeepSeek-PairRM-27B 87.1 – 58.2 –
DeepSeek-GRM-27B-RFT 84.5 – 67.0 –
DeepSeek-GRM-27B 86.0 – 69.0 –
Self-taught-evaluator-llama3.1-70B 90.2 71.4 67.0 76.2

Our Methods

RM-R1-DEEPSEEK-DISTILLED-QWEN-7B 80.1 72.4 55.1 69.2
RM-R1-QWEN-INSTRUCT-7B 85.2 70.2 66.4 73.9
RM-R1-QWEN-INSTRUCT-14B 88.2 76.1 69.2 77.8
RM-R1-DEEPSEEK-DISTILLED-QWEN-14B 88.9 81.5 68.5 79.6
RM-R1-QWEN-INSTRUCT-32B 91.4 79.1 73.0 81.2
RM-R1-DEEPSEEK-DISTILLED-QWEN-32B 90.9 83.9 69.8 81.5

our structured rollout and distillation with RLVR training strategy, prior critique-based methods have
relied heavily on rejection sampling and unstructured, self-generated chain-of-thought (CoT) reason-
ing from instruct models (Liu et al., 2025; Wang et al., 2024b), limiting their reasoning capabilities
and leading to inferior performance compared to ScalarRMs. Simultaneously, our comprehensive
evaluation indicates that the top-performing scalar models on RewardBench do not consistently
achieve state-of-the-art (SOTA) performance; in fact, larger models frequently underperform smaller
ones. This evaluation underscores the need for a more comprehensive and systematic approach to
RM assessment.

Effective Training towards Reasoning for Reward Modeling. Our spe-
cialized, reasoning-oriented training pipeline delivers substantial performance
gains. For instance, RM-R1-QWEN-INSTRUCT-14B consistently surpasses
Self-taught-evaluator-llama-3.1-70B, a reasoning model five times its size.
The RM-R1 model series also demonstrates impressive results on RM-Bench, exceeding
the top-performing baseline by up to 8.7%. On this most reasoning-intensive benchmark,
RM-R1-DEEPSEEK-DISTILLED-QWEN-32B establishes a new state-of-the-art. It achieves
91.8% accuracy in math and 74.1% in code, outperforming the previous best models (73%
in math and 63% in code) by significant margins. Furthermore, it also records the strongest
reasoning performance among our released models on RewardBench. Despite its performance,
our Instruct-based models are remarkably data-efficient, reaching competitive performance
using only 8.7K examples for distillation—compared to the 800K examples used in training
DeepSeek-Distilled (Guo et al., 2025). Overall, our study underscores the significant
potential of directly adapting large reasoning models into highly effective reward models.
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4 ANALYSIS

In this section, we present a series of empirical analyses to understand the key ingredients for training
effective reasoning reward models. Our analysis spans scaling effects, design decisions, reasoning
ablations, and a case study. We also present additional analysis on training dynamics in Section I.2.

4.1 TRAINING RECIPES

We first investigate the key ingredients underlying the successful training of RM-R1. Through a
series of ablation studies, we examine our design choices to identify effective strategies for training
high-quality reasoning reward models. We compare the following settings: Cold Start RL, Cold
Start RL + Rubrics, Cold Start RL + Rubrics + Query Categorization (QC), and Distilled + RL
+ Rubrics + QC (i.e., RM-R1). The details of these settings are in Section I.1.

Table 2: Ablation study of the design choices for Reasoning Training on RewardBench.

Method Chat Chat Hard Safety Reasoning Average
Instruct (Original) 95.8 74.3 86.8 86.3 85.8
Instruct + Cold Start RL 92.5 81.5 89.7 94.4 89.5
Instruct + Cold Start RL + Rubrics 93.0 82.5 90.8 94.2 90.1
Instruct + Cold Start RL + Rubrics + QC 92.3 82.6 91.6 96.3 90.8
RM-R1 95.3 83.1 91.9 95.2 91.4

In Table 2, we present the results of the ablation studies described above, using the
Qwen-2.5-Instruct-32B model as the Instruct (Original) model. Several key conclusions
emerge:

• RL training alone is insufficient. While Cold Start RL slightly improves performance on hard
chat and reasoning tasks, it fails to close the gap to fully optimized models.

• CoR prompting optimizes RM rollout and boosts reasoning performance. Instructing RM-R1
to self-generate chat rubrics or problem solutions before judgment helps overall performance,
especially for chat and safety tasks. Incorporating explicit query categorization into the prompt
notably improves reasoning performance, suggesting that clearer task guidance benefits learning.

• Distillation further enhances performance across all axes. Seeding the model with high-quality
reasoning traces before RL yields the strongest results, with improvements observed on both hard
tasks and safety-sensitive tasks.

4.2 SCALING EFFECTS

We then investigate how model performance varies with scale, considering both model size and
inference-time compute. In some cases – such as ScalarRMs from InternLM2 (Cai et al., 2024) and
Skywork (Liu et al., 2024a) – the smaller models (7B/8B) outperforms the larger ones (20B/27B),
showing no advantage of scaling. In this subsection, we show that this trend does not hold for
RM-R1, where scaling brings clear and substantial improvements.

4.2.1 MODEL SIZES

We first analyze the impact of model scale. Our study is based on the Qwen-2.5-Instruct model
family at three sizes: 7B, 14B, and 32B. We evaluate performance improvements resulting from
our training procedure described in Section 2, with results averaged across three key benchmarks:
RewardBench, RM-Bench, and RMB.

For each model size, we compare the original and post-training performance. Figure 4a plots the
relative improvement (%) with respect to model size. Observing an approximately linear trend, we fit
a linear regression model and extrapolate to hypothetical scales of 3B and 72B, shown using faint
markers and dashed extensions. The results strongly support a scaling law for reasoning reward
models: larger models not only result in an absolute better final performance but also consistently
yield greater performance gains. This aligns with the intuition that our training effectively leverages
the superior reasoning capabilities of larger models.
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Figure 4: Scaling effect of RM-R1. (a)
Larger models benefit more from reasoning
training. (b) Longer reasoning chains improve
RM performance.

Method RewardBench RM-Bench RMB Avg.
Train on Full Data

Instruct + SFT 90.9 75.4 65.9 77.4
Instruct + Distilled + SFT 91.2 76.7 65.4 77.8
RM-R1 * 91.4 79.1 73.0 81.2

Train on 9k (Distillation) Data
Instruct + SFT 88.8 74.8 66.9 76.6
Instruct + Distilled * 89.0 76.3 72.0 79.2

Table 3: Comparison of reasoning-based train-
ing versus SFT across benchmarks. * indicates
reasoning-based methods. Reasoning training con-
sistently yields better performance.

4.2.2 INFERENCE-TIME COMPUTATION

Next, we examine how model performance varies with different compute budgets measured in number
of tokens allowed during inference. Since this is particularly relevant to reasoning-focused models, we
fix our base model to DeepSeek-R1-Distill-Qwen-14B. We evaluate average performance
across the three key benchmarks using a wide range of inference-time compute budgets: 512, 1024,
2048, 4096, and 8192 tokens.

To ensure a fair comparison, we match the training rollout budget to the inference budget in each
setting (i.e., we allow a maximum of k tokens during training for a compute budget of k at inference).
All models are trained using GRPO with identical datasets and hyperparameter configurations.
Figure 4b shows the relationship between compute budget and performance. We observe a clear
improvement trend as the inference budget increases. This highlights the benefits of long reasoning
chains in reward modeling.

4.3 EFFECTIVENESS OF REASONING TRAINING

We now analyze the impact of reasoning-based training. Here, we demonstrate that reasoning-based
training can outperform answer-only approaches. We consider the following settings:

Instruct + SFT. This approach fine-tunes the instruct model directly toward producing the correct
final answer using the full dataset, without providing any intermediate reasoning chains.

Instruct + Distilled + SFT. This approach applies SFT (with respect to the answer directly) after the
distillation stage, serving as a direct comparison point with RM-R1 trained with RL.

Instruct + RM-R1 (Distilled + RL). This is the full approach proposed in this paper, following the
procedure detailed in Section 2.

Instruct + Distilled. This setting uses the model checkpoint immediately after the distillation stage,
before any RL fine-tuning.

In summary, methods with “+ RM-R1” or “+ Distilled” represent reasoning-based approaches, while
the remaining methods are purely non-reasoning-based approaches. In Table 3, we report the results
measured across the three benchmarks. The findings clearly demonstrate that reasoning training
significantly benefits reward model performance. Under fair comparisons (i.e., training on exactly the
same amount of data), reasoning-based models consistently outperform their SFT-only counterparts.
In particular, even high-quality distillation alone, applied to a small subset of the data, provides
notable gains, highlighting the value of incorporating structured intermediate reasoning.

4.4 CASE STUDY

To gain deeper insights into RM-R1, we further conduct a case study using Qwen-14B-Instruct,
comparing its behavior with a cold-start RL model. The results, summarized in Table 4, reveal the
following key observations:
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Table 4: Case Study of RM-R1(succinct version). Complete Chatbots and model responses are
shown in Table 9, 10, and 11. Cold-Start RL evaluation tends to focus on superficial features (e.g.,
number of suggestions, relevance), whereas RM-R1 produces high-quality rubrics (e.g., accuracy for
factual questions), faithfully follows them, and evaluates responses based on their actual content.

Question: symptoms of sickle-cell disease

Chatbot A:
1. Painful red or yellow skin lesions; 2. Frequent infections; 3. Fatigue and weakness; 4. Anemia; 5. Slower growth and development; 6.
Jaundice; 7. Swelling of hands and feet; 8. Vision loss; 9. Tiredness and weakness after physical activity; 10. Breathlessness; 11. Fever, chills,
and night sweats.

Chatbot B
Sickle cell disease is a genetic disorder that affects the shape of red blood cells. It is most common in African Americans, but can also affect
people from other ethnic groups. The symptoms of sickle cell disease can vary widely from person to person, but some common symptoms
include:

1. Fatigue: ...; 2. Pain: ...; 3. Fever: ...; 4. Anemia: ...; 5. Delayed growth and development: ...; 6. Infections: ...; 7. Pigmentation: ...

It’s important to note that not everyone with sickle cell disease will experience all of these symptoms, ... Therefore, it’s important to consult with
a healthcare provider if you suspect you or someone you know may have sickle cell disease.

Cold-start RL evaluation ✗
<type>Chat</type>
<rubric> Relevance 40 % – Comprehensiveness 30 % – Clarity/organisation 30 % </rubric>
<eval> Chatbot A provided a list of symptoms that are directly relevant to sickle cell disease. The response is comprehensive and includes
a wide range of symptoms commonly associated with the condition. The symptoms are listed in a clear and organized manner, making it easy for
the client to understand the information. Chatbot B’s response is less organized than Chatbot A’s response, and the explanation of sickle cell
disease may be unnecessary for the client’s question.</eval>
<answer>[[A]]</answer>

RM-R1 evaluation ✓
<type>Chat</type>
<rubric> 1 Accuracy 40 % · 2 Comprehensiveness 30 % · 3 Clarity 20 % · 4 Helpfulness 10 % <justify> Accuracy is weighted
highest because providing correct information about medical conditions is crucial. Comprehensiveness is important because ...</justify>
</rubric>
<eval> Accuracy of information: Chatbot A provides a list of symptoms without explanation, but some listed items (e.g. “painful red
or yellow skin lesions,” “vision loss”) are not typical of sickle-cell disease. Chatbot B offers more accurate information, explaining each
symptom’s nature and severity. ... Comprehensiveness:...Clarity and organization:...Helpfulness:... </eval>
<answer>[[B]]</answer>

Transparent Judging Process. The reasoning traces generated by RM-R1 are highly interpretable
and coherent, reflecting the model’s perception of human preferences. It explicitly articulates why
certain responses are better, providing transparency into its evaluation process.

High-Quality, Question-Dependent Rubrics. RM-R1 accurately understands the question and
the context of comparison, correctly prioritizing “accuracy” as the most critical rubric for medical-
related questions. In contrast, the cold-start RL model overlooks the most important factors and
instead emphasizes superficial or broadly defined features (e.g., relevance). The ability to generate
high-quality, question-specific rubrics stems from the knowledge acquired during the distillation.

Faithful Adherence to Rubrics and Content-Based Judgement. RM-R1 grounds its evaluation
in the actual content of the model responses. It correctly identifies inaccuracies in Chatbot A’s
response based on factual content rather than surface presentation. Furthermore, it systematically
evaluates all aspects of the rubric, leading to a structured, interpretable, and verifiable judging process.

5 CONCLUSION AND FUTURE WORK

In this paper, we revisited reward modeling through the lens of reasoning. We introduced RM-R1,
a family of REASRMS that effectively generate explicit chains of rubrics and rationales, and scale
with both model size and inference compute. Across three public benchmarks, RM-R1 matched or
surpassed commercial and open-source RMs while producing more interpretable judgments. Ablation
investigations reveal that (1) task-type categorization, (2) bootstrapping from high-quality reasoning
traces, and (3) RL fine-tuning are all indispensable. Qualitative analyses further showed that RM-R1
learns to prioritize high-impact rubrics, faithfully follow its own criteria and justify coherently. Future
work includes active preference collection, where REASRMS use active learning to query human
preference only when the current rubric set is insufficient for a new preference sample. Finally, it
would be natural to extend our study to multimodal/agentic reward modeling scenarios.
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ETHICS STATEMENT

RM-R1 focuses on fundamental research in reinforcement learning and reward modeling. Our
methods are developed and evaluated entirely on publicly available benchmarks without involving
human subjects, sensitive personal data, or private information. The proposed training pipeline is
designed as a general optimization technique and does not raise concerns regarding fairness, bias,
discrimination, privacy, or security. We believe that our study poses no foreseeable ethical risks and
fully complies with research integrity standards.

REPRODUCIBILITY STATEMENT

We have taken concrete steps to facilitate independent reproduction of our results. The experimen-
tal setup, datasets, baselines, and evaluation protocols are detailed in Sections 3, 4 and F.1, with
training/evaluation hyperparameters, rollout settings, and compute requirements consolidated in Sec-
tion G. We provide an anonymous supplementary repository (see https://anonymous.4open.
science/r/RM_R1-5281) containing: (i) Distillation data curation and training from OpenAI
and Claude models, (ii) RL training with publicly available preference data, (iii) prompt templates for
all settings (Distillation data curation, distillation training and RL training for instruct/distilled mod-
els), (iv) the chain-of-rubrics evolution mechanism and implementation details for rubric sampling
and aggregation, and (v) the complete evaluation scripts for RewardBench, RMB and RM-Bench.
Third-party models and services (e.g., Llama, Qwen, DeepSeek-Distilled-Qwen, GPT-4o,
Gemini) are versioned in the configs. Deviations from defaults and ablations are included with their
configs, while more discussions about computational overhead are in Section J. We welcome the
reviewers to reproduce our results.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs did not play a role in shaping the research ideas or writing of this paper to an extent that would
merit authorship or contributor status. Within this work, LLMs are regarded strictly as the primary
subject of study and serve as the central experimental object in our evaluations.

B RELATED WORK

Reward Models (RMs). Early RMs were typically outcome-focused: trained to predict human
preference rankings for complete outputs (Zhong et al., 2025). Recent advances have looked at
providing process supervision, which rewards or evaluates the steps of a model’s reasoning rather
than only the final answer. A series of works propose to train process reward models that judge the
correctness of intermediate reasoning steps (Lightman et al., 2023; Cui et al., 2025; Setlur et al.,
2024). A limitation of many PRMs is their heavy reliance on curated step-level human labels or
specific schemas, and they often remain domain-specific. Zhang et al. (2024) propose Generative
Verifiers, framing reward modeling as a next-token prediction task. This allows the reward model to
leverage chain-of-thought and even use majority voting over multiple sampled rationales to make
more reliable judgments. DeepSeek-GRM (Liu et al., 2025) and JudgeLRM Chen et al. (2025) have
studied using reasoning models as generative reward models, which are the most relevant research to
ours. However, their main focus is on the effect of scaling inference-time computation on reward
modeling. On the contrary, our work is the first to provide a systematic empirical comparison of
different reward model training paradigms, shedding light on when and why a distilled and RL-trained
reward model like RM-R1 has advantages over the conventional approaches.

Reinforcement Learning from Human Feedback (RLHF). Early works Christiano et al. (2017)
first demonstrated that reinforcement learning could optimize policies using a reward model trained
from human pairwise preferences. Subsequent studies applied RLHF to large-scale language models
using policy optimization algorithms such as PPO (Schulman et al., 2017). For example, Ziegler et al.
(2019) fine-tuned GPT-2 via PPO on human preference rewards, and Stiennon et al. (2020) showed
that RLHF could significantly improve the quality of summarization by optimizing against a learned
preference model. More recently, Ouyang et al. (2022) used a similar PPO-based pipeline to train
InstructGPT, establishing the modern RLHF paradigm for instruction-following models. Recently,
Verifiable supervision techniques have also emerged: DeepSeek-R1 (Guo et al., 2025) uses a form
of self-verification during RLHF to reward correct reasoning steps, rather than only final-answer
quality. This method incentivizes policies to produce outputs that can be verified for correctness,
bridging the gap between pure preference-based feedback and ground-truth signals. However, even
with such innovations, most RLHF implementations still treat reward modeling and reasoning as
separate stages.

C USER PROMPT FOR DEEPSEEK-DISTILLED REASONING MODELS

Large reasoning models such as DeepSeek-R1-distilled models (Guo et al., 2025) do not
have a system prompt, so we show the user prompt for rollouts in Figure 5.

Chain-of-Rubrics (CoR) Rollout for Reasoning Models

Please act as an impartial judge and evaluate the quality of the responses provided by two AI Chatbots to the
Client question displayed below.

... [Pairwise Input Content] ...

Output your final verdict at last by strictly following this format: ’<answer>[[A]]</answer>’ if Chatbot
A is better, or ’<answer>[[B]]</answer>’ if Chatbot B is better.

Figure 5: The user prompt used for RM-R1 rollout (for reasoning models).
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D DETAILS OF REASONING CHAIN GENERATION

We now expand on the details of generating high-quality reasoning chains. We first use the same
prompt to query Claude-3.7-Sonnet, generating initial reasoning traces. However, approxi-
mately 25% of these traces are incorrect, primarily on harder chat tasks. To correct these cases, we
pass the original prompt, the incorrect trace, and the correct final answer to OpenAI-O3, which then
generates a corrected reasoning trace aligned with the right answer.

This two-stage process yields a high-quality distillation set. We deliberately choose the order—first
Claude, then O3—based on qualitative observations: Claude excels at solving easier tasks and
maintaining attention to safety considerations, whereas O3 performs better on harder tasks but tends
to overemphasize helpfulness at the expense of safety. We select approximately 12% of the training
data (slightly fewer than 9K examples) for distillation. This is then followed by RL training.

E GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is a variant of Proximal Policy
Optimization (PPO) (Schulman et al., 2017), which obviates the need for additional value function
approximation, and uses the average reward of multiple sampled outputs produced in response to the
same prompt as the baseline. More specifically, for each prompt x, GRPO samples a group of outputs
{y1, y2, · · · , yG} from the old policy πθold and then optimizes the policy model by maximizing the
following objective:

JGRPO(θ) =Ex∼D, {ji}G
i=1∼rθold (j|x)

[
1

G

G∑
i=1

1

|ji|

|ji|∑
t=1

{
min

( rθ(ji,t | x, ji,<t)

rθold(ji,t | x, ji,<t)
Âi,t,

clip
( rθ(ji,t | x, ji,<t)

rθold(ji,t | x, ji,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

)
− β DKL [rθ(· | x) ∥πref(· | x)]

}]
,

(6)

where β is a hyperparameter balancing the task specific loss and the KL-divergence. Specifically, Âi

is computed using the rewards of a group of responses within each group {r1, r2, . . . , rG}, and is
given by the following equation:

Âi =
ri − mean({r1, r2, · · · , rG})

std({r1, r2, · · · , rG})
. (7)

F EXPERIMENT SETUPS

F.1 BENCHMARKS

In this paper, we consider the following three benchmarks:

RewardBench (Lambert et al., 2024): RewardBench is one of the first endeavors towards benchmark-
ing reward models through prompt-chosen-rejected trios, covering four categories: chat, chat-hard,
reasoning, and safety, with 358, 456, 740, and 1431 samples, respectively.

RM-Bench (Liu et al., 2024b): Building on RewardBench, RM-Bench evaluates reward models
for their sensitivity to subtle content differences and robustness against style biases. It includes
four categories: Chat, Safety, Math, and Code, with 129, 441, 529, and 228 samples, respectively.
Each sample contains three prompts of varying difficulty. RM-Bench is the most reasoning-intensive
benchmark among those we consider.

RMB (Zhou et al., 2024): Compared with RewardBench and RM-Bench, RMB offers a more
comprehensive evaluation of helpfulness and harmlessness. It includes over 49 real-world scenarios
and supports both pairwise and Best-of-N (BoN) evaluation formats. RMB comprises 25,845 instances
in total—37 scenarios under the helpfulness alignment objective and 12 under harmlessness.
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F.2 PREFERENCE DATASETS

We consider the following datasets for training:

Skywork Reward Preference 80K (Liu et al., 2024a) is a high-quality collection of pairwise
preference data drawn from a variety of domains, including chat, safety, mathematics, and code. It
employs an advanced data filtering technique to ensure preference reliability across tasks. However,
we identify a notable issue with this dataset: all samples from the magpie_ultra source exhibit a
strong spurious correlation, where rejected responses consistently contain the token “<im_start>,”
while accepted responses do not. Additionally, responses from this source show a systematic
bias—accepted responses are typically single-turn, while rejected responses are multi-turn. This
problematic subset constitutes approximately 30% of the Skywork dataset and primarily covers
mathematics and code domains. To avoid introducing spurious correlations into training, we exclude
all magpie_ultra data and retain only the cleaned subset for our experiments.

Code-Preference-Pairs is a high-quality coding preference dataset. It is constructed by prompting a
model with original code, introducing deliberate bugs, and manipulating examples (e.g., swapping
broken and corrected versions, removing error comments) to generate fine-grained preference pairs.
We subsample 8K examples from this dataset for use in our experiments.

Math-DPO-10K (Lai et al., 2024) is a high-quality stepwise preference dataset focused on mathe-
matical reasoning. We use the full dataset in our experiments.

A global statistics of our training dataset is summarized in Table 5.

Table 5: Global Statistics of our Training Dataset. * indicates the source is from Skywork-Reward-
Preference-80K-v0.2.

Source Size Domain
magpile_pro_llama3.1* 29682 Reasoning
offset_bias* 8504 Chat (length bias)
helpsteer2* 7221 Chat
wildguard* 6709 Safety
magpile_pro* 2030 Chat
Code-Preference-Pairs 8000 Reasoning
Math-DPO-10K 10000 Reasoning

F.3 BASELINES

We compare RM-R1 with RMs from three categories:

ScalarRMs. ScalarRMs produce a score for model response directly, predicting preference through
single numeric scores without explicit reasoning traces. This category includes models such as
Eurus-RM (Yuan et al., 2024), Internlm2 (Cai et al., 2024) SteerLM-RM (Wang et al., 2024c),
Nemotron-RM (Adler et al., 2024), Tulu-v2.5 (Ivison et al., 2024), Starling-RM (Zhu et al., 2023),
ArmoRM (Wang et al., 2024a), Skywork-RM (Liu et al., 2024a), etc. While these models often
achieve strong results on well-defined benchmarks, they generally lack interpretability and struggle
to capture fine-grained reasoning.

GenRMs. Generative reward models (GenRMs) offer more expressive feedback by producing
free-form textual judgments, typically without further training. This includes the widely used LLM-
as-a-Judge setup (Zheng et al., 2023), where pretrained language models are prompted to explain and
evaluate responses. We also categorize under GenRMs models that directly generate output answers
without intermediate reasoning steps. Representative examples include LLaMA (Dubey et al., 2024),
Qwen (Yang et al., 2024), Claude (Anthropic, 2024), GPT-4o (Achiam et al., 2023; Hurst et al., 2024),
Gemini 1.5 Pro (Reid et al., 2024), and Skywork-Critic (Shiwen et al., 2024). By leveraging LLMs’
generative capabilities, these models enhance interpretability through natural language rationales and
explanations.

REASRMS. Reasoning-enhanced reward models (REASRMS) explicitly incorporate reasoning
processes before their final judgments, often trained through critiques or chain-of-thought strategies.
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Notable examples are JudgeLRM (Chen et al., 2025), Critique-RM (Yu et al., 2024), DeepSeek-
GRM (Liu et al., 2025), Self-taught Evaluators (Wang et al., 2024b) and our proposed RM-R1
models. These models excel in tasks demanding rigorous reasoning, safety evaluations, and nuanced
preference judgments due to their grounding in structured critical thinking.

G IMPLEMENTATION DETAILS

Our training framework is based on VERL (Sheng et al., 2024) and OpenRLHF (Hu et al.,
2024). For Instruct models, we use 8.7k data for distillation and 64k for RLVR. For
Deepseek-Distilled models, we use the full data for RLVR.

Distillation Stage. We use the SFTTrainer from OpenRLHF with a fixed batch size of 128 and
a micro-batch size of 1, training for a single epoch. To optimize GPU memory usage, we enable
gradient checkpointing, FlashAttention, and Adam offloading. The learning rates are set based on the
model size: 5e−6, 3e−6, and 2e−6 for models of size 7B, 14B, and 32B, respectively.

RLVR Stage. We use the VERL framework for all GRPO training. The training batch size is fixed
at 1024, with a mini-batch size of 128. We adopt Fully Sharded Data Parallel (FSDP) to improve
memory efficiency. For rollout generation, we use vLLM with tensor parallelism size 4 and GPU
memory utilization capped at 0.4. Sampling follows default parameters (temperature = 1.0, top-p =
1.0). KL regularization is applied with a coefficient of 1e−3 and a clip ratio of 0.2. Each prompt is
sampled with 7 candidate responses.

The maximum input sequence length is 4,096 tokens, and the maximum response length is 8,192
tokens. Learning rates are set separately for the two model variants:

• Instruct models: 1e−6, 7e−7, and 5e−7 for 7B, 14B, and 32B models, respectively.

• Reasoning models: 1e−6, 1e−6, and 8e−7 for 7B, 14B, and 32B models, respectively.

We train the 7B, 14B, and 32B models on 1, 2, and 4 nodes, respectively, each equipped with 8
H100 GPUs.

H FULL EXPERIMENT RESULT

In this section, we provide the full experiment results and a more comprehensive coverage of existing
baselines. The results of RewardBench, RM-Bench, and RMB are provided in Table 6, Table 7, Ta-
ble 8, respectively.

I SUPPLEMENTARY INFORMATION FOR SECTION 4

I.1 ABLATION SETTINGS

Cold Start RL. This approach generally involves pure RL, with rule-based rewards centered on
answer correctness and format compliance. Such strategies have achieved notable success in advanced
mathematical problem solving (Shao et al., 2024).

In this setting, we replicate this conventional training setup. Specifically, we use a combination of a
format reward and an answer reward:

Rformat =

{
1 if format matches,
0 otherwise,

and Ranswer =

{
1 if answer matches,
0 otherwise.

(8)

The total reward is the sum R = Ranswer +Rformat. We use the prompt template shown in Figure 7, a
version without any guidance on structured reasoning.

Cold Start RL + Rubrics. To examine the influence of structured reasoning in final model perfor-
mance, compared with the last setting, we use the prompt template shown in Figure 6. Compared with
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Table 6: Results of our proposed method and baselines on the RewardBench. Bold numbers indicate
the best performance, Underlined numbers indicate the second best. ✥ indicates potential data
contamination.

Models Chat Chat_Hard Safety Reasoning Overall
ScalarRMs

Eurus-RM-7b 98.0 65.6 81.4 86.3 82.8
Internlm2-7b-reward 99.2 69.5 87.2 94.5 87.6
SteerLM-RM 70B 91.3 80.3 92.8 90.6 88.8
Cohere-0514 96.4 71.3 92.3 97.7 89.4
Internlm2-20b-reward 98.9 76.5 89.5 95.8 90.2
ArmoRM-Llama3-8B-v0.1 96.9 76.8 90.5 97.3 90.4
Nemotron-4-340B-Reward 95.8 87.1 91.5 93.6 92.0
Skywork-Reward-Llama-3.1-8B✥ 95.8 87.3 90.8 96.2 92.5
Skywork-Reward-Gemma-2-27B✥ 95.8 91.4 91.9 96.1 93.8
INF-ORM-Llama3.1-70B 96.6 91.0 93.6 99.1 95.1
GenRMs

Llama3.1-8B-Instruct 85.5 48.5 75.6 72.1 70.4
Prometheus-8*7B-v2 93.0 47.1 80.5 77.4 74.5
Llama3.1-70B-Instruct 97.2 70.2 82.8 86.0 84.0
Llama3.1-405B-Instruct 97.2 74.6 77.6 87.1 84.1
Claude-3-5-sonnet-20240620 96.4 74.0 81.6 84.7 84.2
GPT-4o-0806 96.1 76.1 86.6 88.1 86.7
Gemini-1.5-pro 92.3 80.6 87.9 92.0 88.2
SFR-LLaMa-3.1-70B-Judge-r 96.9 84.8 91.6 97.6 92.7
Skywork-Critic-Llama-3.1-70B✥ 96.6 87.9 93.1 95.5 93.3

REASRMS

JudgeLRM 92.9 56.4 78.2 73.6 75.2
SynRM 38.0 82.5 74.1 87.1 70.4
RM-R1-DEEPSEEK-DISTILLED-QWEN-7B 88.9 66.2 78.4 87.0 80.1
CLoud 97.0 58.0 84.0 92.0 82.8
DeepSeek-GRM-16B 90.8 74.3 84.7 81.8 82.9
DeepSeek-GRM-27B-RFT 94.7 77.2 87.0 79.2 84.5
RM-R1-QWEN-INSTRUCT-7B 94.1 74.6 85.2 86.7 85.2
DeepSeek-GRM-27B 94.1 78.3 88.0 83.8 86.0
DeepSeek-PairRM-27B 95.5 86.8 52.3 92.0 87.1
RM-R1-QWEN-INSTRUCT-14B 93.6 80.5 86.9 92.0 88.2
RM-R1-DEEPSEEK-DISTILLED-QWEN-14B 91.3 79.4 89.3 95.5 88.9
Self-taught-evaluator-llama3.1-70B 96.9 85.1 89.6 88.4 90.0
RM-R1-DEEPSEEK-DISTILLED-QWEN-32B 95.3 80.3 91.1 96.8 90.9
RM-R1-QWEN-INSTRUCT-32B 95.3 83.1 91.9 95.2 91.4

the last setting, the model is prompted to generate rubrics and evaluate accordingly. However, com-
pared with the final system prompt of RM-R1 Figure 3, all input prompts are treated uniformly—that
is, chat and reasoning tasks are not distinguished.

Cold Start RL + Rubrics + Query Categorization (QC). This setting largely follows the previous
one, with a key modification: prompting the LM to first categorize the task into reasoning or chat,
and then apply different strategies for handling those tasks. Intuitively, reinforcement learning alone
can effectively explore reasoning tasks, a domain where it has already achieved considerable success.
Here, we incorporate the system prompt shown in Figure 3, which explicitly distinguishes between
chat and reasoning tasks.

For reasoning tasks specifically, we note that answer quality is closely tied to correctness, and that
high-level rubrics may be less effective than simply evaluating whether the model can solve the
problem and verify its own answer. Thus, this setting emphasizes correctness-based evaluation guided
by task classification in the prompt.

Distilled + RL + Rubrics + QC (RM-R1). Building on the previous setup, we introduce an
additional distillation stage from stronger teacher models as a warm start before RL training. The
motivation is that with RL alone, weaker models (especially at smaller scales) often fail to explore
high-quality rubrics and convincing reasoning chains for chat tasks throughout the RL training
process. Distilling strong reasoning traces on a small subset of data can effectively mitigate this
limitation.
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Table 7: The full results of tested reward models on RM-Bench. Chat, Math, Code, Safety show the
model’s Average Accuracy on each domain. Easy, Normal, Hard show the model’s Accuracy on each
difficulty level across all domains. Bold numbers indicate the best performance, Underlined numbers
indicate the second best.

Models Chat Math Code Safety Easy Normal Hard Avg

ScalarRMs

steerlm-70b 56.4 53.0 49.3 51.2 48.3 54.9 54.3 52.5
tulu-v2.5-70b-preference-mix-rm 58.2 51.4 55.5 87.1 72.8 65.6 50.7 63.0
Mistral-7B-instruct-Unified-Feedback 56.5 58.0 51.7 86.8 87.1 67.3 35.3 63.2
RM-Mistral-7B 57.4 57.0 52.7 87.2 88.6 67.1 34.9 63.5
Eurus-RM-7b 59.9 60.2 56.9 86.5 87.2 70.2 40.2 65.9
internlm2-7b-reward 61.7 71.4 49.7 85.5 85.4 70.7 45.1 67.1
Skywork-Reward-Gemma-2-27B 69.5 54.7 53.2 91.9 78.0 69.2 54.9 67.3
ArmoRM-Llama3-8B-v0.1 67.8 57.5 53.1 92.4 82.2 71.0 49.8 67.7
GRM-llama3-8B-sftreg 62.7 62.5 57.8 90.0 83.5 72.7 48.6 68.2
internlm2-20b-reward 63.1 66.8 56.7 86.5 82.6 71.6 50.7 68.3
Llama-3-OffsetBias-RM-8B 71.3 61.9 53.2 89.6 84.6 72.2 50.2 69.0
Nemotron-340B-Reward 71.2 59.8 59.4 87.5 81.0 71.4 56.1 69.5
URM-LLaMa-3.1-8B 71.2 61.8 54.1 93.1 84.0 73.2 53.0 70.0
Skywork-Reward-Llama-3.1-8B 69.5 60.6 54.5 95.7 89.0 74.7 46.6 70.1
INF-ORM-Llama3.1-70B 66.3 65.6 56.8 94.8 91.8 76.1 44.8 70.9

GenRMs

tulu-v2.5-dpo-13b-chatbot-arena-2023 64.9 52.3 50.5 62.3 82.8 60.2 29.5 57.5
tulu-v2.5-dpo-13b-nectar-60k 56.3 52.4 52.6 73.8 86.7 64.3 25.4 58.8
stablelm-2-12b-chat 67.2 54.9 51.6 65.2 69.1 63.5 46.6 59.7
tulu-v2.5-dpo-13b-stackexchange-60k 66.4 49.9 54.2 69.0 79.5 63.0 37.2 59.9
Nous-Hermes-2-Mistral-7B-DPO 58.8 55.6 51.3 73.9 69.5 61.1 49.1 59.9
Claude-3-5-sonnet-20240620 62.5 62.6 54.4 64.4 73.8 63.4 45.9 61.0
tulu-v2.5-dpo-13b-hh-rlhf-60k 68.4 51.1 52.3 76.5 53.6 63.0 69.6 62.1
tulu-2-dpo-13b 66.4 51.4 51.8 85.4 86.9 66.7 37.7 63.8
SOLAR-10.7B-Instruct-v1.0 78.6 52.3 49.6 78.9 57.5 67.6 69.4 64.8
Llama3.1-70B-Instruct 64.3 67.3 47.5 83.0 74.7 67.8 54.1 65.5
Skywork-Critic-Llama-3.1-70B 71.4 64.6 56.8 94.8 85.6 73.7 56.5 71.9
GPT-4o-0806 67.2 67.5 63.6 91.7 83.4 75.6 58.7 72.5
Gemini-1.5-pro 71.6 73.9 63.7 91.3 83.1 77.6 64.7 75.2

REASRMS

JudgeLRM 59.9 59.9 51.9 87.3 73.2 766.2 54.8 64.7
RM-R1-QWEN-INSTRUCT-7B 66.6 67.0 54.6 92.6 79.2 71.7 59.7 70.2
Self-taught-evaluator-llama3.1-70B 73.4 65.7 56.3 90.4 80.2 74.5 59.7 71.5
RM-R1-DEEPSEEK-DISTILLED-QWEN-7B 64.0 83.9 56.2 85.3 75.9 73.1 68.1 72.4
RM-R1-QWEN-INSTRUCT-14B 75.6 75.4 60.6 93.6 82.6 77.5 68.8 76.1
RM-R1-QWEN-INSTRUCT-32B 75.3 80.2 66.8 93.9 86.3 80.5 70.4 79.1
RM-R1-DEEPSEEK-DISTILLED-QWEN-14B 71.8 90.5 69.5 94.1 86.2 83.6 74.4 81.5
RM-R1-DEEPSEEK-DISTILLED-QWEN-32B 74.2 91.8 74.1 95.4 89.5 85.4 76.7 83.9

I.2 TRAINING DYNAMICS

We analyze the training dynamics of RM-R1 using the Qwen-2.5-14B-Instruct model by
tracking both response length and reward progression throughout RL training. We consider two
settings: (a) Cold Start RL, and (b) Warm Start RL following reasoning-chain distillation. We present
the finding in Figure 8.

In the Cold Start RL setting, we observe that the model gradually learns to reason, as reflected by a
steady increase in response length over the course of training. However, training becomes unstable
near the end, with a sharp drop in the reward curve, suggesting potential issues such as overfitting.

In contrast, under Warm Start RL, the model begins with stronger initial reasoning abilities, exhibiting
longer responses from the outset. Interestingly, the model first learns to produce more concise
reasoning traces before gradually increasing response length again as training progresses. The reward
curve rises smoothly and consistently throughout training, demonstrating more stable and efficient
learning compared to the Cold Start setting.
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Table 8: The leaderboard of RMB, ranked by the average score of all subsets. Bold numbers indicate
the best performance, Underlined numbers indicate the second best.

Helpfulness Harmlessness
Models BoN Pairwise BoN Pairwise Overall

ScalarRMs

Tulu-v2.5-13b-preference-mix-rm 0.355 0.562 0.351 0.545 0.453
SteerLM-RM 70B 0.502 0.574 0.578 0.673 0.582
Skywork-Reward-Gemma-2-27B 0.472 0.653 0.561 0.721 0.602
Internlm2-20b-reward 0.585 0.763 0.499 0.670 0.629
ArmoRM-Llama3-8B-v0.1 0.636 0.787 0.497 0.663 0.646
Internlm2-7b-reward 0.626 0.782 0.563 0.712 0.671
Eurus-RM-7b 0.679 0.818 0.543 0.693 0.683
Skywork-Reward-Llama-3.1-8B 0.627 0.781 0.603 0.759 0.693
INF-ORM-Llama3.1-70B 0.650 0.798 0.607 0.767 0.705
Starling-RM-34B 0.604 0.774 0.674 0.795 0.712

GenRMs

Llama2-70b-chat 0.289 0.613 0.249 0.602 0.438
Llama3.1-8B-Instruct 0.365 0.675 0.267 0.653 0.490
Gemini-1.5-pro 0.536 0.763 0.299 0.661 0.565
Mixtral-8x7B-Instruct-v0.1 0.480 0.706 0.491 0.671 0.587
skywork-critic-llama3.1-8B 0.600 0.725 0.578 0.578 0.620
skywork-critic-llama3.1-70B 0.640 0.753 0.614 0.614 0.655
Llama3.1-70B-Instruct 0.648 0.811 0.558 0.739 0.689
Mistral-Large-2407 0.678 0.817 0.583 0.725 0.701
Claude-3-5-sonnet 0.705 0.838 0.518 0.764 0.706
Qwen2-72B-Instruct 0.645 0.810 0.649 0.789 0.723
GPT-4o-2024-05-13 0.639 0.815 0.682 0.814 0.738
REASRMS

JudgeLRM 0.363 0.699 0.363 0.674 0.531
RM-R1-DEEPSEEK-DISTILLED-QWEN-7B 0.451 0.658 0.429 0.664 0.551
RM-R1-QWEN-INSTRUCT-7B 0.543 0.740 0.608 0.765 0.664
Self-taught-evaluator-llama3.1-70B 0.616 0.786 0.546 0.733 0.670
Deepseek-GRM-27B-RFT 0.592 0.801 0.548 0.765 0.670
RM-R1-DEEPSEEK-DISTILLED-QWEN-14B 0.593 0.765 0.613 0.769 0.685
Deepseek-GRM-27B 0.623 0.805 0.570 0.761 0.690
RM-R1-QWEN-INSTRUCT-14B 0.594 0.776 0.620 0.778 0.692
RM-R1-DEEPSEEK-DISTILLED-QWEN-32B 0.620 0.782 0.618 0.771 0.698
RM-R1-QWEN-INSTRUCT-32B 0.636 0.791 0.682 0.809 0.730

J COMPUTATIONAL OVERHEAD

The core contribution of RM-R1 lies in re-casting reward modeling as a reasoning task and demon-
strating, for the first time, that generative RMs can outperform scalar RMs on public benchmarks with
fully transparent training recipes and detailed, from-scratch analysis. While long-chain-of-thought
models naturally incur higher inference cost, they offer substantial gains in interpretability, generaliza-
tion (Merrill & Sabharwal; Li et al.), and broader applicability (Gunjal et al., 2025; Fernández-Sánchez
et al., 2025). This is analogous to the introduction of DeepSeek-R1, which showcased the potential of
reasoning models before subsequent work improved efficiency. We believe REASRMS will become
more important in the future because it can dynamically allocate more compute to more complex
problems, which cannot be done in conventional RMs. We similarly view efficiency improvements as
orthogonal to our main contribution.

While the long chain-of-thought outputs of REASRMS naturally increase inference latency, this
overhead can be mitigated with modern RL engines and careful system design. In conventional RL
pipelines, the rollout and reward computation stages are often cascaded, leading to a total wait time
that is the sum of both processes. However, a parallel design can be implemented where the next
batch of rollouts is initiated while the reward model is processing the current batch. In such a setup,
the total time is determined by the maximum of the two stages’ latencies, not their sum. Since the
policy model’s rollout time (T1) and the reward model’s computation time (T2) are often similar for
complex tasks, this parallelism can make the practical overhead of using a REASRM minimal.
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Chain -of -Rubrics (CoR) Roll-out for Instruct Models
(no categorization of task types)

Please act as an impartial judge and evaluate the quality of the responses provided by two AI Chatbots to the Client’s question
displayed below.

Instructions
1. Begin your evaluation by generating the rubric criteria tailored to the Client’s question and context.

Enclose the rubric in <rubric> . . . </rubric> tags.
2. Assign weights to each rubric item based on their relative importance.
3. Within <rubric>, include a <justify> . . . </justify> section explaining the rationale behind the chosen criteria and weights.
4. Compare both Chatbot responses using the rubric.
5. Include your evaluation in <eval> . . . </eval> tags.

Support your analysis using:
- <quote_A> . . . </quote_A> for direct quotes from Chatbot A
- <summary_A> . . . </summary_A> for paraphrased summaries of Chatbot A
- <quote_B> . . . </quote_B> for direct quotes from Chatbot B
- <summary_B> . . . </summary_B> for paraphrased summaries of Chatbot B

6. Conclude with your final judgment using:
<answer>[[A]]</answer> or <answer>[[B]]</answer>

Important Notes:
- Be objective and base your evaluation strictly on the content of the responses.
- Do not let the response order, length, or Chatbot names bias your judgment.

Figure 6: The system prompt of the ablation study on cold start RL without categorization of task
types.

Chain -of -Rubrics (CoR) Roll-out for Instruct Models
(no rubrics)

Please act as an impartial judge and evaluate the quality of the responses provided by two AI Chatbots
to the Client’s question displayed below.

You should choose the chatbot that follows the client’s instructions and answers the client’s question
better. Do not allow the length of the responses to influence your evaluation. Do not favor certain names
of the chatbots. Be as objective as possible. First, compare the chatbot responses and provide your
evaluations. Then, conclude with your verdict using exactly this format: <answer>[[A]]</answer> if
Chatbot A is better, <answer>[[B]</answer> if Chatbot B is better.

Figure 7: The system prompt of the ablation study on cold start RL without any rubrics.
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(a) Cold Start RL
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(b) Warm Start RL

Figure 8: RL training dynamics under different settings: (a) Cold Start RL (Eq. 8) and (b) Warm Start
RL (Eq. 5). In Cold Start RL, the response length steadily increases as the model learns to reason, but
training becomes unstable near the end. In Warm Start RL, the model exhibits more stable training,
with effective refinement of reasoning traces throughout the process.
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Table 9: Complete questions and chatbot responses.

Question: symptoms of sickle-cell disease

Chatbot A:
1. Painful red or yellow skin lesions
2. Frequent infections
3. Fatigue and weakness
4. Anemia
5. Slower growth and development
6. Jaundice
7. Swelling of hands and feet
8. Vision loss
9. Tiredness and weakness after physical activity
10. Breathlessness
11. Fever, chills, and night sweats.

Chatbot B
Sickle cell disease is a genetic disorder that affects the shape of red blood cells. It is most common in African
Americans, but can also affect people from other ethnic groups. The symptoms of sickle cell disease can vary
widely from person to person, but some common symptoms include:

1. Fatigue: People with sickle cell disease often experience fatigue and weakness, even when they have not been
physically active.
2. Pain: Sickle cell disease can cause pain in the body, particularly in the arms, legs, back, and abdomen. Pain
can be mild or severe and can last for days or weeks.
3. Fever: People with sickle cell disease may be prone to infections and may experience frequent fevers.
4. Anemia: Sickle cell disease can cause anemia, a condition in which the body does not have enough red blood
cells to carry oxygen throughout the body.
5. Delayed growth and development: Children with sickle cell disease may be smaller than their peers due to
delayed growth and development.
6. Infections: People with sickle cell disease are at increased risk for infections, particularly in the bloodstream
and urinary tract.
7. Pigmentation: Sickle cell disease can cause dark areas of pigmentation in the body, particularly on the hands
and feet.

It’s important to note that not everyone with sickle cell disease will experience all of these symptoms, and some
people may not experience any symptoms at all. Therefore, it’s important to consult with a healthcare provider if
you suspect you or someone you know may have sickle cell disease.
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Table 10: Cold-Start RL Judges. The rubrics and evaluation mainly center around superficial shallow
features (e.g., number of points listed) without actually taking their accuracy into account.

Cold-start RL evaluation
<type>Chat</type>
<rubric>
The evaluation criteria for the responses are as follows:
- <item>Relevance to the question</item> (40%): The response should directly address the symptoms of sickle
cell disease.
- <item>Comprehensiveness</item> (30%): The response should include a wide range of symptoms commonly
associated with sickle cell disease.
- <item>Clarity and organization</item> (30%): The response should be easy to read and understand, with
symptoms listed in a clear and organized manner.
<justify>
The question specifically asks for the symptoms of sickle cell disease, so the responses should be directly relevant
to this topic. Comprehensiveness is important because sickle cell disease can have a variety of symptoms,
and a comprehensive list will provide a more complete picture of the condition. Clarity and organization are
important because the symptoms can be complex, and a well-organized response will make it easier for the client
to understand the information.
</justify>
</rubric>

<eval>
<quote_A>
1. Painful red or yellow skin lesions
2. Frequent infections
3. Fatigue and weakness
4. Anemia
5. Slower growth and development
6. Jaundice
7. Swelling of hands and feet
8. Vision loss
9. Tiredness and weakness after physical activity
10. Breathlessness
11. Fever, chills, and night sweats.
</quote_A>
<summary_A>
Chatbot A provided a list of symptoms that are directly relevant to sickle cell disease. The response is
comprehensive and includes a wide range of symptoms commonly associated with the condition. The symptoms
are listed in a clear and organized manner, making it easy for the client to understand the information.
</summary_A>
<quote_B>
Sickle cell disease is a genetic disorder that affects the shape of red blood cells. It is most common in African
Americans, but can also affect people from other ethnic groups. The symptoms of sickle cell disease can vary
widely from person to person, but some common symptoms include:
1. Fatigue: People with sickle cell disease often experience fatigue and weakness, even when they have not been
physically active.
2. Pain: Sickle cell disease can cause pain in the body, particularly in the arms, legs, back, and abdomen. Pain
can be mild or severe and can last for days or weeks.
3. Fever: People with sickle cell disease may be prone to infections and may experience frequent fevers.
4. Anemia: Sickle cell disease can cause anemia, a condition in which the body does not have enough red blood
cells to carry oxygen throughout the body.
5. Delayed growth and development: Children with sickle cell disease may be smaller than their peers due to
delayed growth and development.
6. Infections: People with sickle cell disease are at increased risk for infections, particularly in the bloodstream
and urinary tract.
7. Pigmentation: Sickle cell disease can cause dark areas of pigmentation in the body, particularly on the hands
and feet.
</quote_B>
<summary_B>
Chatbot B provided a detailed explanation of sickle cell disease and a list of symptoms. The response is relevant
to the question and includes a wide range of symptoms commonly associated with the condition. However,
the response is less organized than Chatbot A’s response, and the explanation of sickle cell disease may be
unnecessary for the client’s question.
</summary_B>
</eval>

<answer>[[A]]</answer>
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Table 11: RM-R1 RL Judges. The rubrics and evaluation are well-designed and reasonable, assessing
the effectiveness of the model response.

Warm-start RL (RM-R1) evaluation
<type>Chat</type>
<rubric>
1. Accuracy of information (40 %): How correctly does the response describe the symptoms of sickle-cell
disease?
2. Comprehensiveness (30 %): How thoroughly does the response cover the range of symptoms associated with
sickle-cell disease?
3. Clarity and organization (20 %): How well-structured and easy to understand is the information presented?
4. Helpfulness for the user (10 %): How useful is the information for someone seeking to understand sickle-cell
disease symptoms?
<justify>
These criteria focus on evaluating how well each response addresses the user’s question about sickle-cell disease
symptoms. Accuracy is weighted highest because providing correct information about medical conditions is
crucial. Comprehensiveness is important, as sickle-cell disease has multiple symptoms that vary in severity and
presentation. Clarity and organization affect how easily the user can understand the information. Helpfulness
considers how practical and actionable the information is for the user.
</justify>
</rubric>

<eval>
Comparing the two responses:
Accuracy of information:
<quote_A>1. Painful red or yellow skin lesions
2. Frequent infections
3. Fatigue and weakness
4. Anemia
5. Slower growth and development
6. Jaundice
7. Swelling of hands and feet
8. Vision loss
9. Tiredness and weakness after physical activity
10. Breathlessness
11. Fever, chills, and night sweats.</quote_A>
<quote_B>1. Fatigue: People with sickle-cell disease often experience fatigue and weakness, even when they
have not been physically active.
2. Pain: Sickle-cell disease can cause pain in the body, particularly in the arms, legs, back, and abdomen. Pain
can be mild or severe and can last for days or weeks.
3. Fever: People with sickle-cell disease may be prone to infections and may experience frequent fevers.
4. Anemia: Sickle-cell disease can cause anemia, a condition in which the body does not have enough red blood
cells to carry oxygen throughout the body.
5. Delayed growth and development: Children with sickle-cell disease may be smaller than their peers due to
delayed growth and development.
6. Infections: People with sickle-cell disease are at increased risk for infections, particularly in the bloodstream
and urinary tract.
7. Pigmentation: Sickle-cell disease can cause dark areas of pigmentation in the body, particularly on the hands
and feet.</quote_B>
Chatbot A provides a list of symptoms without explanation, but some listed items (e.g. “painful red or yellow
skin lesions,” “vision loss”) are not typical of sickle-cell disease. Chatbot B offers more accurate information,
explaining each symptom’s nature and severity.
Comprehensiveness:
Chatbot A lists 11 symptoms, several of which are inaccurate or uncommon. Chatbot B lists 7 symptoms that
are more representative and supplies contextual detail about variability and medical advice.
Clarity and organization:
Chatbot A’s plain numbered list lacks context, making severity unclear. Chatbot B structures the list with
explanations, improving readability and understanding.
Helpfulness:
Chatbot A is less helpful due to inaccuracies and missing context. Chatbot B is more useful, providing accurate
descriptions, context, and guidance.
</eval>

<answer>[[B]]</answer>
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