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% Check for updates During the diagnostic process, clinicians leverage multimodal information,

such as the chief complaint, medical images and laboratory test results.
Deep-learning models for aiding diagnosis have yet to meet this
requirement of leveraging multimodal information. Here we reporta
transformer-based representation-learning model as a clinical diagnostic
aid that processes multimodal input in a unified manner. Rather than
learning modality-specific features, the model leverages embedding

layers to convertimages and unstructured and structured text into visual
tokens and text tokens, and uses bidirectional blocks with intramodal and
intermodal attention to learn holistic representations of radiographs, the
unstructured chief complaint and clinical history, and structured clinical
information such as laboratory test results and patient demographic
information. The unified model outperformed animage-only model and
non-unified multimodal diagnosis models in the identification of pulmonary
disease (by 12% and 9%, respectively) and in the prediction of adverse clinical
outcomes in patients with COVID-19 (by 29% and 7%, respectively). Unified
multimodal transformer-based models may help streamline the triaging of
patients and facilitate the clinical decision-making process.

It has been common practice in modern medicine to use multimodal  to make accurate diagnostic decisions. In practice, abnormal radio-
clinical information for medical diagnosis. For instance, apart from  graphic patterns are first associated with symptoms mentionedinthe
chestradiographs, thoracic physicians needtotakeintoaccounteach chiefcomplaintorabnormalresultsinthelaboratorytestreport. Then,
patient’sdemographics (such as age and gender), the chief complaint  physiciansrely on their rich domain knowledge and years of training to
(suchas history of present and pastiillness) and laboratory testreports  make optimal diagnoses by jointly interpreting such multimodal data'”.
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Theimportance of exploiting multimodal clinical information has been
extensively verified in the literature’° in different specialties, includ-
ing but not limited to radiology, dermatology and ophthalmology.

The above multimodal diagnostic workflow requires substantial
expertise, which may not be available in geographic regions with lim-
ited medical resources. Meanwhile, simply increasing the workload
of experienced physicians and radiologists would inevitably exhaust
their energy and thus increase the risk of misdiagnosis. To meet the
increasing demand for precision medicine, machine-learning tech-
niques™ have become the de facto choice for automatic yet intelligent
medical diagnosis. Among these techniques, the development of deep
learning'>" endows machine-learning models with the ability to detect
diseases from medical images near or at the level of human experts'* ¢,

Although artificial intelligence (Al)-based medical image diagno-
sis has achieved tremendous progress in recent years, how to jointly
interpret medicalimages and their associated clinical context remains
achallenge. Asillustrated in Fig. 1a, current multimodal clinical deci-
sion support systems'"** mostly lean on a non-unified way to fuse
information from multiple sources. Given a set of input data from
different sources, these approaches first roughly divide them into
three basic modalities, that is,images, narrative text (such as the chief
complaint, whichincludes the history of present and pastillness) and
structured fields (for example, demographics and laboratory test
results). Next, a text structuralization process is introduced to trans-
formthe narrative textinto structured tokens. Then, datain different
modalities are fed to different machine-learning models to produce
modality-specific features or predictions. Finally, a fusion module is
employed to unify these modality-specific features or predictions for
making final diagnostic decisions. In practice, according to whether
multipleinput modalities are fused at the feature or prediction level,
these non-unified methods can be further categorized into early” 2
or late fusion” methods.

One glaring issue with early and late fusion methods is that
they separate the multimodal diagnostic process into two rela-
tively independent stages: modality-specific model training and
diagnosis-oriented fusion. Such a design has one obvious limitation:
theinability toencode the connections and associations among differ-
ent modalities. Another non-negligible drawback of these non-unified
approaches lies in the text structuralization process, which is cum-
bersome and still labour-intensive, even with the assistance of mod-
ern natural language processing (NLP) tools. On the other hand,
transformer-based architectures® are poised to broadly reshape
NLP* and computer vision*. Compared with convolutional neural
networks” and word embedding algorithms®**, transformers* impose
few assumptions about the input dataform and thus have the potential
tolearn higher-quality feature representations from multimodal input
data. More importantly, the basic architectural component in trans-
formers (that is, the self-attention block) remains nearly unchanged
across different modalities?®, providing an opportunity to build
a unified yet flexible model to conduct representation learning on
multimodal clinical information.

In this paper, we present IRENE, a unified Al-based medical diag-
nostic model designed to make decisions by jointly learning holistic
representations of medical images, unstructured chief complaint
and structured clinical information. To the best of our knowledge,
IRENE is presumably the first medical diagnostic approach that usesa
single, unified Almodel to conduct holistic representation learning on
multimodal clinicalinformation simultaneously, as shownin Fig.1a. At
the core of IRENE are the unified multimodal diagnostic transformer
(MDT) and bidirectional multimodal attention blocks. MDT is a new
transformer stack that directly produces diagnostic results from multi-
modalinput data. This new algorithm enables IRENE to take a different
approach from previous non-unified methods by learning holistic rep-
resentations from multimodal clinicalinformation progressively while
eliminating separate paths for learning modality-specific features.

In addition, MDT endows IRENE with the ability to perform represen-
tation learning on top of unstructured raw text, which avoids tedious
text structuralization steps in non-unified approaches. For better
handling of the differences among modalities, IRENE introduces bidi-
rectional multimodal attention to bridge the gap between token-level
modality-specific features and high-level diagnosis-oriented holistic
representations by explicitly encoding the interconnections among
different modalities. This explicit encoding process can be regarded
as acomplement to the holistic multimodal representation learning
processin MDT.

AsshowninFig.2a, MDT is primarily composed of embedding lay-
ers, bidirectional multimodal blocks and self-attention blocks. Because
ofthe MDT, IRENE has the ability tojointly interpret multimodal clinical
information simultaneously. Specifically, afree-form embedding layer
isemployed to convertunstructured and structured textsinto uniform
text tokens (Fig. 2b). Meanwhile, a similar tokenization procedure is
alsoappliedto eachinputimage (Fig. 2c). Next, two bidirectional multi-
modalblocks (Fig.2d) are stacked to learn fused mid-level representa-
tions across multiple modalities. Inaddition to computing intramodal
attention among tokens from the same modality, these blocks also
explicitly compute intermodal attention among tokens across different
modalities (Fig. 2e). These intra- and intermodal attentional operations
are consistent with daily clinical practices, where physicians need to
discoverinterconnected information within the same modality as well
as across different modalities. In reality, these connections are often
hiddenamonglocal patterns, such aswordsin the chief complaint and
imageregionsinradiographs, and different local patterns may refer to
thesamelesion or the same disease. Therefore, such connections pro-
vide mutual confirmations of clinical evidence and are helpful toboth
clinicaland Al-based diagnosis. In bidirectional multimodal attention,
each token can be regarded as the representation of a local pattern,
and token-level intra- and intermodal attention respectively capture
the interconnections among local patterns from the same modality
and across different modalities. In comparison, previous non-unified
methods make diagnoses on top of separate global representations of
input datain different modalities and thus cannot exploit the underly-
ing local interconnections. Finally, we stack ten self-attention blocks
(Fig. 2f) to learn multimodal representations.

IRENE shares some common traits with vision-language fusion
models* ™, both of whichaimto learnajoint multimodal representa-
tion. However, one most noticeable difference exists in the roles of
different modalities. IRENE is designed for a scenario where multiple
modalities supply complementary semanticinformation, which canbe
fused and used to improve prediction performance. In contrast, recent
vision-language fusion approaches®** heavily rely on the distillation
and exploitation of common semantic information among different
modalities to provide supervision for model training.

We validated the effectiveness of IRENE on two tasks (Fig. 1b):
(1) pulmonary disease identification and (2) adverse clinical outcome
prediction in patients with COVID-19. In the first task, IRENE outper-
formed previous image-only and non-unified diagnostic counterparts
by approximately12% and 9% (Fig. 1c), respectively.In the second task,
we employed IRENE to predict adverse clinical events in patients with
COVID-19, that is, admission to the intensive care unit (ICU), mechanical
ventilation (MV) therapy and death. Different from the first task, the
second task relies more on textual clinical information. Inthis scenario,
IRENE significantly outperformed non-unified approaches by over 7%
(Fig. 1d). Particularly noteworthy is the nearly 10% improvement that
IRENE achieved on death prediction, demonstrating the potential
for assisting doctors in taking immediate steps to save patients with
COVID-19. When compared to human experts (Fig. 1e) in pulmonary
diseaseidentification, IRENE clearly surpassed junior physicians (with
<7 yrof experience) in the diagnosis of all eight diseases and delivered
aperformance comparable to or better than that of senior physicians
(with>7 yr of experience) on six diseases.
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Fig.1|IRENE. a, Contrasting the previous non-unified multimodal diagnosis
paradigm with IRENE. IRENE eliminates the tedious text structuralization
process, separate paths for modality-specific feature extraction and the
multimodal feature fusion module in traditional non-unified approaches.
Instead, IRENE performs multimodal diagnosis with a single unified

False positive rate

False positive rate

multimodal transformer (thatis, Perceiver) and IRENE in the two tasks inb. We
compared the mean performance of IRENE and the multimodal transformer

using independent two-sample ¢-test (two-sided). Specifically, we repeated

each experiment ten times with different random seeds, after which P values
were calculated. e, Comparison of IRENE with junior (<7 yr of experience,

transformer. b, Scheme for splitting an original dataset into training, validation
and testing sets for pulmonary disease identification (left) and adverse clinical
outcome prediction of COVID-19 (right). c,d, Comparison of the experimental
results from the image-only models, non-unified early fusion methods,

n=2)andsenior (>7 yr of experience, n = 2) physicians; average performance
reported for each group. IRENE surpasses the diagnosis performance of junior
physicians while performing competitively with senior experts. AUC, area
under the curve.
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Fig.2|Network architecture of IRENE. a, Overall workflow of IRENE in the

first task, that is, pulmonary disease identification. The input data consist of

five parts: the chief complaint (ChiComp), laboratory test results (LabTest),
demographics (sex and age) and radiograph. Our MDT includes two bidirectional
multimodal attention blocks and ten self-attention blocks. The training process
isguided by pulmonary disease annotations provided by human experts.

b, Encoding different types of clinical text in the free-form embedding.
Specifically, IRENE accepts unstructured chief complaints as part of the input.

Image patch tokens

Unified tokens

¢, Encoding aradiograph as a sequence of image patch tokens. d, Detailed design
ofabidirectional multimodal attention block, which consists of two-layer
normalization layers (Norm), one bidirectional multimodal attention layer

and one MLP. e, Detailed attention operations in the bidirectional multimodal
attention layer, where representations across multiple modalities are learned
and fused simultaneously. f, Detailed architecture of a self-attention block. PI,
positioninjection.

Results

Dataset characteristics for multimodal diagnosis

The first dataset focused on pulmonary diseases. We retrospectively
collected consecutive chest X-rays from 51,511 patients between 27
November 2008 and 31 May 2019 at West China Hospital, whichis the
largest tertiary medical centre in western China covering a100 million
population. Each patient is associated with at least one radiograph, a
short piece of unstructured chief complaint, history of present and
pastillness, demographics and acomplete laboratory test report. The
datasetis built for eight pulmonary diseases: chronic obstructive pul-
monary disease (COPD), bronchiectasis, pneumothorax, pneumonia,
interstitial lung disease (ILD), tuberculosis, lung cancer and pleural
effusion. Discharge diagnoses were extracted from discharge summary
reports following a standard process described in a previous study™

andtakenasthe ground-truth disease labels. The discharge summary
reports were produced as follows. An initial report was written by a
junior physician, which was then reviewed and confirmed by a senior
physician. In case of any disagreement, the final decision was made by
adepartmental committee comprising atleast three senior physicians.

Thebuilt dataset consisted of 72,283 data samples, among which
40,126 samples were normal. The distribution of diseases (that is, the
number of relevant cases) is as follows: COPD (4,912), bronchiectasis
(676), pneumothorax (2,538), pneumonia (21,409), ILD (3,283), tuber-
culosis (938), lung cancer (2,651) and pleural effusion (4,713). The
performance metricis theareaunder the receiver operating character-
istic curve (AUROC). We split this datasetinto training, validation and
testing sets according to each patient’s admission date. Specifically, the
training setincluded 44,628 patients admitted between 27 November
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Table 1| Comparison with baseline models in the task of pulmonary disease identification

Method Mean COPD Bronchiectasis Pneumothorax Pneumonia ILD Tuberculosis Lungcancer  Pleural
effusion
Image-only 0.805 0.847 0.746 0.789 0.845 0.799 0.769 0.825 0.819
(0.802,0.808) (0.845, 0.851) (0.743, 0.748) (0.786, 0.791) (0.843,0.848) (0.796, 0.801) (0765, 0.772) (0.821,0.830) (0.817,0.822)
Early fusion  0.835 0.895 0.772 0.810 0.873 0.824 0.793 0.871 0.842
(0.832,0.839) (0.893, 0.898) (0.768, 0.775) (0.807,0.812) (0.870, 0.875) (0.822, 0.827) (0.791, 0.796) (0.868,0.875) (0.839, 0.845)
Late fusion 0.826 0.888 0.765 0.822 0.870 0.804 0.770 0.839 0.850
(0.823,0.828) (0.885,0.890) (0.763, 0.767) (0.820, 0.825) (0.868, 0.872) (0.802, 0.805) (0.767,0.772) (0.836,0.841)  (0.847,0.852)
GIT 0.848 0.911 0.798 0.824 0.895 0.819 0.807 0.872 0.858
(0.844,0.850) (0.907,0.913) (0.796, 0.800) (0.821, 0.827) (0.893, 0.898) (0.816, 0.821) (0.804, 0.810) (0.871, 0.873) (0.855, 0.860)
Perceiver 0.858 0.910 0.788 0.846 0.903 0.830 0.825 0.890 0.872
(0.855, 0.861) (0.907,0.912) (0.784,0.791) (0.842, 0.850) (0.901, 0.906) (0.827,0.833) (0.823, 0.828) (0.887,0.892) (0.869, 0.874)
IRENE 0.924 0.922 0.907 0.954 0.921 0.934 0.918 0.914 0.924

(0.921,0926)  (0.920,0.925) (0.903,0.910) (0.952, 0.957)

(0.918, 0.923) (0.929, 0.937) (0.917,0.921) (0.911,0.917) (0.921,0.926)

The baseline models include the image-only model, the early fusion method, the late fusion approach and two recent transformer-based multimodal classification models (that is, GIT and

Perceiver). The evaluation metric is AUROC, with 95% confidence intervals in brackets.

2008 and1June2018. Thevalidation setincluded 3,325 patients admit-
ted between 2June 2018 and 1 December 2018. Finally, the trained and
validated IRENE system was tested on 3,558 patients admitted between
2 December 2018 and 31 May 2019. Although this was a retrospective
study, our data splitting scheme followed the practice of a prospective
study, thus creating a more challenging and realistic setting to verify
the effectiveness of different multimodal medical diagnosis systems,
incomparison to data splitting schemes based on random sampling.

The second dataset, MMC (that is, the multimodal COVID-19
dataset), on which IRENE was trained and evaluated, consisted of
chest computed tomography (CT) scanimages and structured clinical
information (for example, chief complaint that comprises comorbidi-
ties and symptoms, demographics, laboratory test results and so on)
collected from patients with COVID-19. The CT images were associ-
ated with inpatients with laboratory-confirmed COVID-19 infection
between 27 December 2019 and 31 March 2020. There were three types
ofadverse event that could happento patientsin MMC, namely admis-
siontoICU,MVanddeath. The training and validation sets came from17
hospitalsand the training set had 1,164 labelled cases (70%), while the
validation set had 498 labelled ones (30%). Next, we chose the trained
model with the best performance on the validation set and tested it
ontheindependent testing set, which comprised 700 cases collected
from 9 external medical centres. The distribution of the three events
inthe testing set was as follows: ICU (155), MV (94), death (59). This was
an imbalanced classification problem where the majority of patients
did not have any adverse outcomes. Against this background, we used
the area under the precision-recall curve (AUPRC) instead of AUROC
asthe performance metric, asthe former focused more onidentifying
adverse events (thatis, ICU, MV and death).

Pulmonary disease identification

Table1landFig.3 present the experimental results from IRENE and other
methods on the dataset for pulmonary disease identification. As shown
in Table 1, IRENE significantly outperformed the image-only model,
the traditional non-unified early’ and late fusion* methods and two
recent state-of-the-art transformer-based multimodal methods (that
is, Perceiver’® and GIT*) in identifying pulmonary diseases. Overall,
IRENE achieved the highest mean AUROC of 0.924 (95% CI: 0.921, 0.927),
about 12% higher than the image-only model (0.805, 95% ClI: 0.802,
0.808) that only takes radiographs as the input. In comparison with
diagnostic decisions made by non-unified early fusion (0.835,95% CI:
0.832, 0.839) and late fusion (0.826, 95% CI: 0.823, 0.828) methods,
IRENE maintained an advantage of at least 9%. Comparing IRENE to
GIT (0.848,95% Cl: 0.844, 0.850), we observed an advantage of over 7%.
Evenwhen compared to Perceiver, the transformer-based multimodal
classification model developed by DeepMind, IRENE still delivered

competitive results, surpassing Perceiver (0.858,95% Cl: 0.855, 0.861)
by over 6%. When carefully checking each disease and comparing IRENE
against the previous best result among all five baselines, we observed
that among all eight pulmonary diseases, IRENE achieved the largest
improvements on bronchiectasis (12%), pneumothorax (10%), ILD (10%)
and tuberculosis (9%).

We also compared IRENE against human experts who were divided
into two groups: one group of two junior physicians (with <7 yr of
experience) and a second group of two senior physicians (with >7 yr
of experience). For better comparison, we present the average perfor-
mance within each group in Fig. 1e. Specifically, we extracted annota-
tions by human experts from electronic discharge diagnosis records.
Notably, all physicians from the reader study did not participate in
data annotation. We observed that IRENE exhibited advantages over
the junior group on all eight pulmonary diseases, especially in the
diagnosis of bronchiectasis (junior, false positive rate (FPR): 0.29, true
positive rate (TPR): 0.58), pneumonia (junior, FPR: 0.37, TPR: 0.76),
ILD (junior, FPR: 0.09, TPR: 0.63) and pleural effusion (junior, FPR:
0.35, TPR: 0.86). Compared with the senior group, IRENE was advan-
tageous in the diagnosis of pneumonia (senior, FPR: 0.21, TPR: 0.80),
tuberculosis (senior, FPR: 0.07, TPR: 0.17) and pleural effusion (senior,
FPR: 0.25, TPR: 0.77). In addition, IRENE performed comparably with
senior physicians on COPD (senior, FPR: 0.07, TPR: 0.76), ILD (senior,
FPR:0.09, TPR: 0.71) and pneumothorax (senior, FPR: 0.08, TPR: 0.79)
while showing slightly worse performance on bronchiectasis (senior,
FPR:0.12, TPR: 0.82) and lung cancer (senior, FPR: 0.08, TPR: 0.73).

Adverse clinical outcome prediction in patients with COVID-19
Triage of patients with COVID-19 heavily depends onjoint interpreta-
tion of chest CT scans and other non-imaging clinical information.
In this scenario, IRENE exhibited even more advantages than it did
in the pulmonary disease identification task. As shown in Table 2,
IRENE consistently achieved impressive performance improvements
on the prediction of the three adverse clinical outcomes for patients
with COVID-19; that is, admission to ICU, MV and death. In terms of
mean AUPRC, IRENE (0.592, 95% CI: 0.500, 0.682) outperformed the
image-only model (0.307, 95% Cl: 0.237, 0.391), early fusion model**
(0.521, 95% Cl: 0.435, 0.614) and late fusion model* (0.503, 95% ClI:
0.422, 0.598) by nearly 29%, 7% and 9%, respectively. As for specific
clinical outcomes, IRENE (0.712, 95% CI: 0.587, 0.834) achieved about
5% AUPRC gain over the non-unified early fusion method (0.665, 95%
Cl:0.548,0.774) inthe prediction of admission to ICU. Similarly, inthe
prediction of MV, IRENE achieved a >6% performance improvement
when compared with the early fusion model. Last but not least, IRENE
(0.441,5% CI:0.270, 0.617) was much more capable of predicting death
than the image-only model (0.192, 95% Cl: 0.073, 0.333), early fusion
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of the attention assigned to individual pixels in the radiograph. Left: input

chest X-ray. Right: pixels with different attention values. e, The impact of cross
attention on the relevance and importance of high-ranking words (from chief
complaints) and image patches (from radiographs) in the pulmonary disease

identification task. Specifically, we define high-ranking words and patches as
those whose tokens have top 25% cosine similarity scores with the CLS token.

f, Normalized importance of every word in the chief complaint. g, Visualization
of thedistribution of attention between every image patch and each of the top 3
ranked words. The colour barsin d and gillustrate the confidence of IRENE about
apixel being abnormal, where a bright colour stands for high confidence and a
dark colour denotes low confidence.

model (0.346, 95%: 0.174, 0.544) and late fusion model (0.335, 95%
Cl:0.168, 0.554). Compared with two transformer-based multimodal
models (thatis, GIT and Perceiver), we observed an advantage of over
6% on average.

Impact of different modules and modalities in IRENE

Toinvestigate theimpact of different modules and modalities, we con-
ducted thorough ablative experiments and report their resultsin Table 3.
First, weinvestigated theimpact of bidirectional multimodal attention
blocks (rows 0-2). We found that replacing all bidirectional multimodal

attention blocks with self-attention blocks led to ~7% performance drop
(from 0.924 t0 0.858) in pulmonary disease identification. This phenom-
enon verified ourintuition that directly learning progressively fused rep-
resentations from raw datawould deteriorate diagnosis performance.
In contrast, simply increasing the number of bidirectional multimodal
attention blocks from two to six did not bring obvious performance
improvements (from 0.924 to 0.905), indicating that using two suc-
cessive bidirectional multimodal attention blocks could be an optimal
choicein IRENE.Inrow 3, we presented the result of using unidirectional
attention (thatis, text-to-image attention). Comparing row O withrow 3,
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Table 2 | Comparison with baseline models in the task
of adverse clinical outcome prediction in patients with
COVID-19

Method Mean Admissionto NeedforMV  Death
ICU
Image-only 0.307 0.482 0.247 0.192
(0.237,0.391)  (0.355,0.636) (0.136,0.398) (0.073,0.333)
Early fusion 0.521 0.665 0.551 0.346
(0.435,0.614) (0.548,0.774) (0.397,0.699) (0.174,0.544)
Late fusion  0.503 0.647 0.533 0.330
(0.422,0.598) (0.535,0.759) (0.388,0.685) (0.164,0.531)
GIT 0.514 0.653 0.554 0.335
(0.442,0.605) (0.546,0.743) (0.411,0.702) (0168, 0.554)
Perceiver 0.526 0.652 0.566 0.360
(0.448, 0.611) (0.529,0.771)  (0.406,0.715)  (0.201, 0.543)
IRENE 0.592 0.712 0.624 0.4/

(0.500,0.682) (0.587,0.834) (0.473,0.754)

The evaluation metric is AUPRC, with 95% confidence intervals in brackets.

(0.270, 0.617)

we observed that our bidirectional design brought a 4% performance
gain (from 0.884 to 0.924). Next, we studied theimpact of clinical texts
(rows 4 and 5). The first observation was that using the complementary
narrative chief complaint substantially boosted the diagnostic perfor-
mance because removing chief complaint from the input datareduced
model performance by 6% (from 0.924 to 0.860). Apart from the chief
complaint, we also studied theimpact of laboratory test results (row 5).
We observed that including laboratory test results brought about a
4% performance gain (from 0.882t0 0.924). Then, we investigated the
impact of tokenization procedures. We saw that modelling the chief
complaint and laboratory test results of a patient as a sequence of
tokens (row 0) did perform better than directly passing an averaged
representation (row 6) to the model. This improvement brought by
the tokenization of the chief complaint and laboratory test results veri-
fied the advantage of token-level intra- and intermodal bidirectional
multimodal attention, which exploited local interconnections among
the word tokens of the clinical text and the image patch tokens of the
radiograph in the input data. Lastly, we investigated the impact of the
inputimage in IRENE (row 7) and observed a substantial performance
drop (from 0.924 to 0.543). This phenomenon indicated the vital role
of the input radiograph in pulmonary disease identification. We then
investigated theimpact of chief complaints and laboratory test results
on each respiratory disease (Extended Data Fig. 1). When we removed
either chief complaints or the laboratory test results from the input,
the performance decreased on each disease. Specifically, we found that
introducing the chief complaint could be most helpful for the diagnosis
of pneumothorax, lung cancer and pleural effusion, while the laboratory
testresults affected the diagnosis of bronchiectasis and tuberculosis the
most. Clinical interpretations can be found in Supplementary Note 1.

Attention visualization results

Figure 3 provides attention visualization results for acase with COPD. In
Fig.3a, we see that the image modality (thatis, the radiograph) played
asignificant role in the diagnostic process, and its weight was nearly
80% in the final decision. The chief complaint was the second most
important factor, accounting for roughly 16% weight. As Fig. 3b shows,
Pa0, (oxygen pressureinarterial blood) and PaCO, (partial pressure of
carbondioxidein arterial blood) were the two mostimportant labora-
tory test items, which are consistent with the observations reported
in the literature®*. Nonetheless, we see that the total weight of the
remaining 90 test items was quite large, with distribution over these
90 laboratory testitems being nearly uniform. The reason mightbe that
theselaboratory testitems could help rule out other diseases. Figure 3¢
showsthat fromthe perspective of IRENE, age was amore critical factor

thansex. Figure 3d provides the attention map of the radiograph, imply-
ing that IRENE would refer to hilar enlargement, hyper-expansion and
flattened diaphragm as the mostimportant pieces of evidence for the
diagnosis of COPD. In addition, IRENE could also identify large black
areas due to bullae as relatively important evidence. Figure 3e sum-
marizes the experimental results with and without cross attention,
where we present the sum of similarity scores of important (top 25%)
tokens (that is, words and image patches) with the CLS token whichis
the start token that aggregates the information of the rest tokens. We
found that with cross attention, the sum of similarity scores became
larger, indicating that cross attention hasimproved the identification
ofimportant tokens compared with the model without cross attention.
InFig. 3f, IRENE recognized ‘sputum’, ‘dyspnoea’ and ‘years’ asthe three
most important words in the chief complaint. Figure 3g provides the
cross-attention maps between each of the top three important words
and the image. The word ‘sputum’is primarily associated with the tra-
cheaand the lower pulmonary lobes in the image. The high attention
area of the trachea could be reasonable because trachea is often the
location where sputum might occur. The high attention region in the
left lower lobe had reduced vascular markings, while both the leftand
right lower lobes of the lungs were hyperinflated. Hyperinflated lungs
and reduced vascular markings are common symptoms of COPD, which
often has abnormal sputum production. Our model has also associated
the word ‘dyspnoea’ withmost areas of the lungsin theimage because
dyspnoea canbe caused by avariety of pulmonary abnormalities that
could occuranywhereinthelungs. Lastly, our model hasidentified the
areas surrounding the bronchias theimage regions associated with the
word ‘years’, which implies ‘years’ should be associated with chronic
diseases, such as chronic bronchitis, which is often part of COPD.

Discussion

IRENE is more effective than the previous non-unified early
and late fusion paradigm in multimodal medical diagnosis
This is the most prominent observation obtained from our experi-
mental results, and it holds for the tasks of pulmonary disease identi-
fication and the triage of patients with COVID-19. Specifically, IRENE
outperforms previous early fusion and late fusion methods by anaver-
age of 9% and 10%, respectively, for identifying pulmonary diseases.
Moreover, IRENE achieves about 3% performance gains on all eight
diseases and substantially improves the diagnostic performance on
four diseases (that is, bronchiectasis, pneumothorax, ILD and tuber-
culosis) by boosting their AUROC by over 10%. We believe that these
performance benefits are closely related to several capabilities of
IRENE. First, IRENE is built on top of a unified transformer (that is,
MDT). MDT directly produces diagnostic decisions from multimodal
input data and learns holistic multimodal representations progres-
sively and implicitly. In contrast, the traditional non-unified approach
decomposes the diagnosis probleminto several components which, in
most cases, consist of datastructuralization, modality-specific model
training and diagnosis-oriented fusion. In practice, these components
are hard to optimize and may prevent the model from learning holistic
and diagnosis-oriented features. Second, inspired by the daily activi-
ties of physicians, IRENE applies intra-directional and bidirectional
intermodal attention to tokenized multimodal data for exploiting the
localinterconnections among complementary modalities. In contrast,
the previous non-unified paradigm directly makes use of the extracted
global modality-specific representations or predictions for diagno-
sis.In practice, the token-level attentional operations inbidirectional
multimodal attention helps capture and encode the interconnections
among the local patterns of different modalities into the fused repre-
sentations. Furthermore, IRENE is designed to conduct representation
learning directly on unstructured raw texts. In contrast, the previous
non-unified approachrelies on non-clinically pre-trained NLP models
to provide word embeddings, which inevitably distracts the diagnosis
system from its intended functionality.
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Table 3 | An ablation study of IRENE, removing or replacing individual components

Row HA (2) HA (0) HA (6) Unidirection Image ChiComp LabTest Tokenization Mean

0 v v v v v 0.924 (0.921, 0.926)
1 v v v v v 0.858(0.850, 0.867)
2 v v v v v 0.905 (0.899, 0.910)
3 v v v v v v 0.884 (0.880, 0.888)
4 v v v v 0.860 (0.855, 0.864)
5 v v v v 0.882(0.873, 0.891)
6 v v v v 0.894(0.886, 0. 900)
7 v v v v 0.543(0.525, 0.569)

HA (N) denotes the presence of N bidirectional multimodal attention block(s) in the MDT, while the remaining blocks are self-attention blocks (12 blocks in total). Image denotes the input
radiograph. Unidirection means we only compute text-to-image attention in multimodal attention blocks. ChiComp stands for the chief complaint. LabTest denotes laboratory test results.
Tokenization stands for the tokenization procedures for the chief complaint and laboratory test results. For each row in the table, check marks denote the associated modules are used in the
model while blank spaces indicate the associated modules are removed. The evaluation metric is AUROC, with 95% confidence intervals in brackets.

The superiority of the aforementioned abilities has been partly
verified in the second task: the prediction of adverse outcomes in
patients with COVID-19. From Table 2, we see that IRENE holds a 7%
average performance gain over the early fusion approach and anaver-
age of 9% advantage over the late fusion one. This performance gain
is alittle lower than that in the pulmonary disease identification task
asthere are no unstructured texts in the MMC dataset that IRENE can
use.Nonetheless, IRENE can still leverage its unified and bidirectional
multimodal attention mechanisms to better serve the goal of rapidly
triaging patients with COVID-19. For example, IRENE boosts the per-
formance of MV and death prediction by 7% and 10%, respectively.
Such substantial performance improvements brought by IRENE are
valuableintherealworld for allocating appropriate medical resources
to patientsinatimely manner, as medical resources are usually limited
during a pandemic.

IRENE provides abetter transformer-based choice for jointly
interpreting multimodal clinical information

We compared IRENE to GIT*® and Perceiver’’, two representative
transformer-based models that fuse multimodal information for
classification. GIT performs multimodal pre-training on tens of mil-
lions of image-text pairs by using the common semantic information
among different modalities as supervision signals. However, these
characteristics have two obvious deficiencies in the medical diagnosis
scenario. First, itis much harder to access multimodal medical datain
theamount of the same order of magnitude. Second, multimodal data
in the medical diagnosis scenario provide complementary instead
of common semantic information. Thus, it is impractical to perform
large-scale multimodal pre-training, as in GIT, using alimited amount of
medical data. These deficiencies are alsoreflected in the experimental
results. Forinstance, the average performance of GIT is about 7% and 8%
lower than that of IRENE in the pulmonary disease identification task
and adverse outcome prediction of COVID-19task, respectively. These
advantages show that token-level bidirectional multimodal attention
in IRENE can effectively use a limited amount of multimodal medical
data and exploit complementary semantic information.

Perceiver simply concatenates multimodal input data and takes
theresulting one-dimensional (1D) sequence as the input instead of
learning fused representations among modality-specific low-level
embeddings asinIRENE. This poses a potential problem: the modality
that makes up the majority of the input would have a larger impact
on final diagnostic results. For example, since an image often has a
muchlarger number of tokens than atext, Perceiver would inevitably
assign more weight to the image instead of the text when making
predictions. However, it is not always true that images play a more
importantroleindaily clinical decisions. To some extent, this point
is also reflected in our experimental observations. For example,

Perceiveryields clear performance improvements (2% gain on aver-
ageinTablel) over the early fusion modelinidentifying pulmonary
diseases where the input radiograph serves as the main informa-
tion source. However, in the task of rapidly triaging patients with
COVID-19, the performance of Perceiver is only comparable to that
ofthe early fusion method. The underlying reasonis that CT images
are not as helpful in this task as radiographs in pulmonary disease
identification. In contrast, IRENE demonstrates satisfactory perfor-
manceinboth tasks by learning holistic multimodal representations
through bidirectional multimodal attention. Our method encourages
features from different modalities to evenly blend into each other,
which prevents the learned representations from being dominated
by high-dimensional inputs.

IRENE helps reduce reliance on text structuralizationin the
traditional workflow

In traditional non-unified multimodal medical diagnosis methods,
the usual way to deal with unstructured texts is text structuralization.
Recent text structuralization pipelines in non-unified approaches”
severely rely on artificial rules and the assistance of modern NLP
tools. For example, text structuralization requires human annota-
tors to manually define alist of alternate spellings, synonyms and
abbreviations for structured labels. On top of these preparations,
specialized NLP tools are developed and applied to extract structured
fields from unstructured texts. As a result, text structuralization
steps are not only cumbersome butalso costly in terms of labour and
time. In comparison, IRENE abandons such tedious structuralization
steps by directly accepting unstructured clinical texts as part of
theinput.

Outlook

NLP technologies, particularly transformers, have contributed sig-
nificantly to the latest Al diagnostic tools using either text-based elec-
tronic health records™ orimages*. We have described an Al framework
consisting of a unified MDT and bidirectional multimodal attention
blocks. IRENE is distinct from previous non-unified methods in that
it progressively learns holistic representations of multimodal clini-
cal data while avoiding separate paths for learning modality-specific
features in non-unified techniques. This approach may be enhanced
by the latest development of large language models®5,

In real-world scenarios, IRENE may help streamline patient care,
such as triaging patients and differentiating between those patients
who are likely to have acommon cold from those who need urgent inter-
vention for a more severe condition. Furthermore, as the algorithms
becomeincreasingly refined, these frameworks could become a diag-
nostic aid for physicians and assist in cases of diagnostic uncertainty
or complexity, thus not only mimicking physician reasoning but also
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further enhancing it. The impact of our work may be most obvious in
areaswherethere arefew and uneven distribution of healthcare provid-
ersrelative to the population.

There are several limitations that would need to be considered
during the deployment of IRENE in clinical workflows. First, the cur-
rently used datasets are limited in both size and diversity. To resolve
thisissue, more data would need to be collected from additional medi-
cal institutions, medical devices, countries and ethnic groups, with
which IRENE canbe trained to enhance its generalization ability under
a broader range of clinical settings. Second, the clinical benefits of
IRENE need to be further verified. Thus, multi-institutional multina-
tional studies would be needed to further validate the clinical utility
of IRENE in real-world scenarios. Third, it is important to make IRENE
adaptable to a changing environment, such as dealing with rapidly
mutating SARS-CoV-2 viruses. To tackle this challenge, the model could
be trained on multiple cohorts jointly or one could resort to other
machine-learning technologies, such as online learning. Moreover,
IRENE fails to consider the problem of modal deficiency, where one
or more modalities may be unavailable. To deal with this problem, one
canrefer to masked modelling®. For instance, during the training stage,
some modalities could be randomly masked to imitate the absence of
these modalities in clinical workflows.

Methods

Image and textual clinical data

Inthe pulmonary disease identification task, chest X-ray (CXR) images
were collected from West China Hospital. AllCXRs were collected as part
ofthe patients’ routine clinical care. For the analysis of CXR images, all
radiographs were first de-identified to remove any patient-related infor-
mation. The CXRimages consisted of both anterior and posterior views.
There were three types of textual clinical data: the unstructured chief
complaint (that is, history of present and past illness), demographics
(ageand gender) and laboratory test results. Specifically, the chief com-
plaintisunstructured, while demographics and laboratory test results
are structured. We set the maximum length of the chief complaint to
40.Ifapatient’s chief complaint had more than 40 words, we only took
the first 40; otherwise, zero padding was used to satisfy the length
requirement. There were 92 results in each patient’s laboratory test
report (see Supplementary Note 2), most of which came from ablood
test. We normalized every test result by minimum-maximum (min-max)
scaling so that every normalized value was between 0 and 1, where the
minimum and maximum values in min-max scaling were determined
using the training set. In particular, -1 denoted missing values.

In the second task, that is, adverse clinical outcome prediction
for patients with COVID-19, the available clinical data were divided
into four categories: demographics (age and gender), the structured
chief complaint consisting of comorbidities (7) and symptoms (9) and
laboratory testresults (19) (see Supplementary Note 3 for more details).
We also applied median imputation to fill in missing values.

Institutional Review Board/Ethics Committees approvals were
obtained from West China Hospital and all participating hospitals.
All patients signed a consent form. The research was conducted in a
manner compliant with the United States Health Insurance Portability
and Accountability Act. It adhered to the tenets of the Declaration of
Helsinki and complied with the Chinese Center for Disease Control and
Prevention policy on reportable infectious diseases and the Chinese
Health and Quarantine Law.

Baseline models

We include five baseline models in our experimental performance
comparisons, including the diagnosis model purely based on medi-
cal images (denoted as Image-only), the traditional non-unified early
and late fusion methods with multimodal input data and two recent
state-of-the-art transformer-based multimodal classification methods
(thatis, GIT and Perceiver). Implementation details are discussed below.

Image-only.Inthe pulmonary diseaseidentification task, we built the
pure medicalimage-based diagnosis model on top of ViT*, one of the
most well-known and widely adopted transformer-based deep neural
networks forimage understanding. Our ViT-like network architecture
had 12 blocks and each block consisted of one self-attention layer®,
one multilayer perceptron (MLP) and two-layer normalization lay-
ers®. There were two fully connected (FC) layers in each MLP, where
the number of hidden nodes was 3,072. The input size of the first FC
layer was 768. Between the two FClayers, we inserted a GeLU activation
function®. After each FC layer, we added a dropout layer*, where we
setthe dropoutrateto 0.3. The output size of the second FC layer was
also 768.Eachinputimage was divided into anumber of 16 x 16 patches.
The output CLS token was used for performing the final classification.
We used the binary cross-entropy loss as the cost function during the
training stage. Note that before the training stage, we performed super-
vised ViT pre-training on MIMIC-CXR** to obtain visual representations
with more generalization power. In the task of rapidly triaging patients
with COVID-19, as in ref. 22, we first segmented pneumonia lesions
from CT scans, then trained multiple machine-learning models (that
is, logistic regression, random forest, support vector machine, MLP
and LightGBM) using image features extracted from the segmented
lesion areas and finally chose the optimal model according to their
performance on the validation set.

Non-unified early and late fusion. There are a number of existing
methods using the archetypical non-unified approach to fuse mul-
timodal input data for diagnosis. For better adaptation to different
scenarios, we adopted different non-unified models for different tasks.
Specifically, we modified the previously reported early fusion method"”
forour first task (thatis, pulmonary disease identification). In practice,
a ViT model extracts image features from radiographs and the fea-
ture vector at its CLS token is taken as the representation of the input
image. Similar to theimage-only baseline, supervised pre-training on
MIMIC-CXR** was applied to the ViT to obtain more powerful visual
features before we carried out the formal task. To process the three
types of clinical data (that is, the chief complaint, demographics and
laboratory test results), we employed three independent MLPs to
convert different types of textual clinical data to features, which were
then concatenated with theimage representation. Therationaleis that
bothimages and textual datashould berepresentedin the same feature
space for the purpose of cross referencing. Since the chief complaint
includes unstructured texts, we first needed to transform them into
structured items. To achieve this goal, we trained an entity recognition
model to highlight relevant clinical symptoms in the chief complaint.
Next, we used BERT* to extract features for all such symptoms, to which
average pooling was applied to produce a holistic representation for
each patient’s chief complaint. Then, we used a three-layer MLP to
further transform this holistic featureintoalatent space similar to that
oftheimage representation. Theinputsize of this three-layer MLP was
768 and the output size was 512. The number of hidden nodes was 1,024.
After each FC layer, we added a ReLU activation and a dropout layer,
withthe dropoutrate setto 0.3.Likewise, for laboratory test results, we
alsoapplied an MLP with the same architecture butindependent weight
parameters to transform those test resultsintoa1D feature vector. The
inputsize of this laboratory test MLP was 92 and the output size was 512.
The MLP model for demographics had two FC layers, where the input
sizewas 2 and the output size was 512. The hidden layer had 512 nodes.
The feature fusion module included the concatenation operation and
athree-layer MLP, with the number of hidden nodes set to 1,024. The
output from the MLP in the feature fusion module was passed to the
final classification layer for making diagnostic decisions. During the
training stage, we jointly trained the ViT-like model and all MLPs using
the binary cross-entropy loss. As for the late fusion baseline, we com-
bined the predictions of theimage- and text-based classifiers following
ref. 23.Specifically, we trained a ViT model with radiographs and their
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associated labels. To construct the input to the text-based classifier, we
concatenated laboratory test results, demographics and the holistic
representation (obtained via averaging extracted features of symp-
toms, similar to the early fusion method) of the chief complaint. Then,
we forwarded the constructed input through a three-layer MLP, whose
input and output dimensions were 862 and 8, respectively. Then, we
trained the MLP with the same labels used for training the ViT model.
Finally, we averaged the predicted probabilities of the image- and
text-based classifiers to obtain the final prediction.

In the second task, we followed a proposed early fusion method?®,
where image features, structured chief complaint (comorbidities and
symptoms) and laboratory test results had been concatenated as the
input. Then, we trained multiple machine-learning models and chose
the optimal model using previously introduced artificial rules*. For
the late fusion baseline, we trained 5 machine-learning models (logistic
regression, random forest, support vector machine, MLP and Light-
GBM) each forimage features, structured chief complaints and labora-
tory test results following the protocol used in ref. 22. Then, we took
the average of the predicted probabilities of these 15machine-learning
models as the adverse outcome prediction.

GIT.GIT* isagenerative image-to-text transformer that unifies vision-
language tasks. We took GIT-Base as abaseline in our comparisons. Its
image encoder is a ViT-like transformer and its text decoder consists
of six standard transformer blocks?. In practice, we fine-tuned the
officially released pre-trained model on our own datasets. For fair-
ness, we adopted the same set of fine-tuning hyperparameters used
for IRENE. In the pulmonary disease identification task, we first for-
warded eachradiograph throughtheimage encoder toextractanimage
feature. Next, we concatenated this image feature with the averaged
word embedding (using BERT) of the chief complaint as well as the
feature vectors of the demographics and laboratory test results. The
concatenated features were then passed to the text decoder to make
diagnostic predictions. In the task of adverse clinical outcome predic-
tion for patients with COVID-19, we first averaged the image features of
CTslices. Then, the averaged image feature was concatenated with the
feature vectors of the clinical comorbidities and symptoms, laboratory
test results and demographics. Next, we forwarded the concatenated
multimodal features through the text decoder to predict adverse
outcomes for patients with COVID-19.

Perceiver. This is a very recent state-of-the-art transformer-based
model* from DeepMind, proposed for tackling the classification
problem with multimodal input data. A variant of Perceiver®, that
is, Perceiver 10*, introduces the output query on top of Perceiver
to handle additional types of task. As making diagnostic decisions
can be considered as a type of classification, we adopted Perceiver
instead of Perceiver 10 as one of our baseline models. Our Perceiver
architecture followed the setting for ImageNet classification®***
and had six cross-attention modules. Each cross-attention module
was followed by a latent transformer with six self-attention blocks.
The input of Perceiver consists of two arrays: the latent array and
byte array. Following ref. 30, we initialized the latent array using a
truncated zero-mean normal distribution, with standard deviation
set to 0.02 and truncation bounds set to (-2, 2). The byte array con-
sisted of multimodal data. In the pulmonary disease identification
task, we first flattened the input image into a 1D vector. Then, we
concatenated it with the averaged word embedding (using BERT) of
the chief complaint as well as 1D feature vectors of the input demo-
graphics and laboratory test results. This resulted in along 1D vec-
tor, which was taken as the byte array. In the task of adverse clinical
outcome prediction of COVID-19, we also flattened the input image
into a1D vector, which was then concatenated with the feature vec-
tors of the clinical comorbidities and symptoms, laboratory test
results and demographics. The learning process of Perceiver can be

summarized as follows: the latent array evolves by iteratively extract-
ing higher-quality features from the input byte array by alternating
cross-attention and latent self-attention computations. Finally, the
transformed latent array serves as the representation used for diag-
nosis. Note that similar to theimage-only and non-unified baselines,
we pre-trained Perceiver on MIMIC-CXR*. During pre-training, we
used zero padding inthe byte array for the non-existent clinical text
in every multimodal input.

IRENE

In practice, we forwarded multimodal input data (that is, medical
images and textual clinical information) to the MDT for acquiring
prediction logits. During the training stage, we computed the binary
cross-entropy loss between the logits and ground-truth labels. Spe-
cifically, we used pulmonary disease annotations (8 diseases) and real
adverse clinical outcomes (3 clinical events) as the ground-truth labels
inthe first and second tasks, respectively.

MDT is a unified transformer, which primarily consists of two
starting layers forembedding the tokens from theinputimage and text,
respectively, two stacked bidirectional multimodal attention blocks
for learning fused mid-level representations by capturing intercon-
nections among tokens from the same modality and across different
modalities, ten stacked self-attention blocks for learning holistic multi-
modal representations and enhancing their discriminative power, and
one classification head for producing prediction logits.

The multimodalinput datainthe pulmonary disease identification
task (that is, the first task) consisted of five parts: a radiograph, the
unstructured chief complaint thatincludes history of present and past
iliness, laboratory test results, each patient’s gender and age, which
were denoted as x', X, x'*°, x*** and x*%°, respectively. We passed x' to a
convolutionallayer, which produced asequence of visual tokens. Next,
we added standard learnable 1D positional embedding®-* and dropout
to every visual token to obtain asequence of image patch tokens X} .
Meanwhile, we applied word tokenization to x* to encode each word
from the unstructured chief complaint. Specifically, we used a
pre-trained BERT* to generate an embedded feature vector for each
word in x*, after which we obtained a sequence of word tokens X{¢, ...
Wealso applied a similar tokenization procedure to x'®®, where min-max
scaling was first employed to normalize every component of x'®, We
then passed eachnormalized component to ashared linear projection
layer to obtain a sequence of latent embeddings X'f'fw We also per-
formed linear projections on x** and x**° to obtain encoded feature

vectors X*** and X*¢°. Subsequently, we concatenated
{XffN“,X‘lf?V,ﬂb,Xsex,Xage} together to produce a sequence of clinical text

tokens X[ ., where N = N + N + 2. In practice, we set N and N** to
40 and 92, respectively.

Asforthetask of adverse clinical outcome prediction for patients
with COVID-19, its multimodal input data also consisted of five parts:
asetof CTslices, structured chief complaint (comorbidities and symp-
toms), laboratory test results, each patient’s gender and age, which are
denoted asx', x°¢, x®, x*** and x°¢, respectively. Each CT slice was con-
verted to a sequence of image patch tokens X!, as in the first task.
Different from the first task, the chief complaint was structured. To
convertx““to tokens, we conducted ashared linear projection to each
component, which generated asequence of embeddings X¢¢, .. Alinear
projection layer was applied tox'®® to acquire )('Ia‘,’vIb Asfor x** and x*°,
we performed linear projections to obtain encoded X*** and X*** as in
the first task. Finally, we directly concatenated { ISNCC,)('lﬁ%ah,XseX,)@ge}
to produce N clinical text tokens XI:N' where N = N¢¢ + Nab 4 2, We set
Necand N'2bto 16 and 19, respectively.

Thefirst two layers of MDT were two stacked bidirectional multi-
modal attention blocks. Suppose the input of the first bidirectional
multimodal attention block consists of X{ and X’T, where I (= 0) stands
for the layer index, X? = X{ | denotes the assembly of image patch
tokens and X9 = XIT:N represents the bag of clinical text tokens. The
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process of generating the query, key and value matrices for eachmodal-
ity inthe bidirectional multimodal attention block was as follows:

QK Vi = LP(Norm(X})),

QLK VL = LP(Norm (X4)),

where LP (-)and Norm (-) represent linear projection and layer normali-
zation, respectively. The forward passinside abidirectional multimodal
attention block could be summarized as:

x| = Attention (Q!, k!, V{) + A Attention (Q!, K}, Vi),

o

%L = Attention (Q’ K V’T) + A Attention (Q’ Kl V’),

o

where Attention (Q), K., V!) and Attention (Q%,K%,V%) capture the
intramodal connectionsin theimage and text modalities, respectively.
Attention (@, k%, V) and Attention (Q!, k!, V}) dig out the intermodal
connections between the image and text. Next, both intra- and inter-
modal connections were encoded into latent representations ¥} and
x5 Weset 1to1.0 asitgaverise to the best performancein our prelimi-
nary experiments. Attention (Q, K, V) included two matrix multiplica-
tions (mat. mul.) and one scaled softmax operation:

. QKT
Attention (Q,K, V) = softmax(—d V),

k

where T stands for the matrix transpose operator, d; is a scaling
hyper-parameter, which was set to 64. Next, we introduced residual
learning® and forwarded the resulting x!, ¥ to the following normaliza-
tionlayerand MLP:

X' = MLP (Norm (%{)) + +X{,
X = MLP (Norm (%)) + +X,

where X*! and X! were passed to the next bidirectional multimodal
attention block as the input, resulting in X*?and X‘*2. Then, we com-
bined tokensin X'*?and X, to produce a bag of unified tokens, which
were passed to the subsequent self-attention blocks*. We also allocated
multiple heads® in both bidirectional multimodal attention and
self-attention blocks, where the number of heads was set to 12. This
multihead mechanism allowed the model to perform attention opera-
tionsin multiple representation subspaces simultaneously and aggre-
gate the results afterwards.

Lastly, we applied average pooling to the unified tokens gener-
ated from the last self-attention block to obtain a holistic multimodal
representation for medical diagnosis. This representation was passed
to a two-layer MLP to produce final prediction logits. During the
training stage, we calculated the binary cross-entropy loss between
these logits and their corresponding pulmonary disease annota-
tions (the first task) or real adverse clinical outcomes (the second
task). A loss function value was computed for every patient case.
Specifically, in the first task, each patient case contained one radio-
graph and related textual clinical information. In the second task,
each patient case involved multiple CT slices, and these CT slices
shared the same textual clinical information. We forwarded each CT
slice and its accompanying textual clinical information to MDT to
obtain one holistic representation. Since we had multiple CT slices,
we obtained anumber of holistic representations (equal to the num-
ber of CT slices) for the same patient. Then, we performed average
pooling over these holistic representations to compute an averaged

representation, which was finally passed to a two-layer MLP and the
binary cross-entropy loss.

Implementation details

For the pulmonary disease identification task, we first resized each
radiographto 256 x 256 pixels during the training stage, then cropped
arandom portion of each image, where the area ratio between the
cropped patch and the original radiograph was randomly deter-
mined to be between 0.09 and 1.0. The cropped patch was resized to
224 x 224, after which arandom horizontal flip was applied to increase
the diversity of training data. In the validation and testing stages, each
radiograph was first resized to 256 x 256 pixels, and then a square
patch at the image centre was cropped. The size of the square crop
was 224 x 224. The processed radiographs were finally passed to the
image-only model, non-unified-chest, Perceiver and IRENE as input
images. Inthe task of adverse clinical outcome prediction for patients
with COVID-19, the inputimages were CT scans. We first used the lesion
detection and segmentation methodologies proposed in ref. 46. This
is a deep learning algorithm based on a multiview feature pyramid
convolutional neural network***, which performs lesion detection,
segmentation and localization. This neural network was trained and
validated on 14,435 participants with chest CT images and definite
pathogen diagnosis. On a per-patient basis, the algorithm showed
superior sensitivity of 1.00 (95% CI: 0.95,1.00) and an F1-score of 0.97
in detecting lesions from CT images of patients with COVID-19 pneu-
monia. Adverse clinical outcomes of COVID-19 were presumed to be
closely related to the characteristics of pneumonia lesion areas. For
each patient’s case, we cropped a 3D CT subvolume by computing the
minimum 3D bounding box enclosing all pneumonialesions. Next, we
resized all 3D subvolumes from different patients to a uniform size,
which was 224 x 224 x 64. Lastly, we sampled 16 evenly spaced slices
fromevery 3D subvolume along its third dimension.

Before we performed the formal training procedure, we
pre-trained our MDT on MIMIC-CXR*, as what was done for the baseline
models. Similar to Perceiver, during pre-training, we used zero padding
for non-existent textual clinical information in every multimodal input.
Inthe formal training stage, we used AdamW* as the default optimizer
as we found empirically that it gave better performance on baseline
models and IRENE. The initial learning rate was set to 3 x107° and the
weight decay was 1 x 1072, We trained each model for 30 epochs and
decreased the initial learning rate by a factor of 10 at the 20th epoch.
The batch size was set to 256 in the training stage of both tasks. It is
worth noting that in the task of adverse clinical outcome prediction
of COVID-19, we first extracted holistic feature representations from
16 CT slices (cropped and sampled from the same CT volume). Next,
we applied average pooling to these 16 holistic features to obtain an
averaged representation, which represented all pneumonia lesion
areas in the entire CT volume. The binary cross-entropy loss was then
computed on top of this averaged representation. During the train-
ing stage, we evaluated model performance on the validation set and
calculated the validationloss after each epoch. The model checkpoint
that produced the lowest validation loss was saved and then tested on
the testing set. We employed learnable positional embeddings in all
ViT models. IRENE was implemented using PyTorch*® and the training
stage was accelerated using NVIDIA Apex with the mixed-precision
strategy’'. In practice, we can finish the training stage of either task
within1d using four NVIDIA GPUs.

We adopted the standard attention analysis strategy for vision
transformers. For each layer in the transformer, we averaged the atten-
tion weights across multiple heads (as we used multihead self-attention
inIRENE) to obtain an attention matrix. Toaccount for residual connec-
tions, we added an identity matrix to each attention matrix and nor-
malized theresulting weight matrices. Next, we recursively multiplied
the weight matrices from different layers of the transformer. Finally,
we obtained an attention map that included the similarity between
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every input token and the CLS token. Since the CLS token was used
for diagnostic predictions, these similarities indicated the relevance
between the input tokens and prediction results, which could then
be used for visualization. For cross-attention results, we performed
visualization with Grad-CAM*,

Non-parametric bootstrap sampling was used to calculate 95%
confidence intervals. Specifically, we repeatedly drew1,000 bootstrap
samples fromthe unseentest set. Each bootstrap sample was obtained
throughrandom sampling with replacement, and its size was the same
asthesize of the test set. We then computed AUROC (the first task) or
AUPRC (the second task) on eachbootstrap sample, after whichwe had
1,000 AUROC or AUPRC values. Finally, we sorted these performance
results and report the values at 2.5 and 97.5 percentiles, respectively.

To demonstrate the statistical significance of our experimental
results, we first repeated the experiments for IRENE and the best per-
forming baseline (that is, Perceiver) five times with different random
seeds. Then, we used independent two-sample t-test (two-sided) to
compare the mean performance of IRENE and the best baselineresults,
and calculate Pvalues.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Restrictions apply to the availability of the developmental and valida-
tion datasets, which were used with permission of the participants
forthe current study. De-identified data may be available for research
purposes from the corresponding authors on reasonable request.

Code availability
The custom code is available at https://github.com/RL4M/IRENE.
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Extended Data Fig. 1| Impact of the chief complaint (a) or laboratory test results (b) on each respiratory disease. Specifically, we remove either the chief
complaint or the laboratory test results from the input and report the performance drop on each disease. The evaluation metric is AUROC.
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Reporting on sex and gender Information on sex was collected and involved in the input to the neural network. Reported findings apply to both sexes. The
sex of each patient was based on self-reporting. Sex- and gender-based analyses were not performed because they are not
relevant to this study.

Reporting on race, ethnicity, or ' Information on race, ethnicity, or other socially relevant groupings was not collected.
other socially relevant
groupings

Population characteristics We retrospectively collected consecutive chest X-rays from 51,511 patients between November 27, 2008, and May 31, 2019,
at West China Hospital, which is the largest tertiary medical center in western China covering a 100 million population. Each
patient is associated with at least one radiograph, a short piece of unstructured chief complaint, history of present and past
iliness, demographics, and a complete laboratory test report. The dataset is built for eight pulmonary diseases, including
chronic obstructive pulmonary disease (COPD), bronchiectasis, pneumothorax, pneumonia, interstitial lung disease (ILD),
tuberculosis, lung cancer, and pleural effusion. The built dataset consists of 72,283 data samples, among which 40,126
samples are normal. The distribution of diseases (i.e., the number of relevant cases) is as follows: COPD (4,912),
bronchiectasis (676), pneumothorax (2,538), pneumonia (21,409), ILD (3,283), tuberculosis (938), lung cancer (2,651) and
pleural effusion (4,713). The performance metric is the area under the receiver operating characteristic curve (AUROC). We
split this dataset into training, validation, and testing sets according to each patient’s admission date. Specifically, the training
set includes 44,628 patients admitted between November 27, 2008, and June 1, 2018. And the validation set includes 3,325
patients admitted between June 2, 2018 and December 01, 2018. Finally, the trained and validated IRENE system is tested on
3,558 patients admitted between December 02, 2018 and May 31, 2019.
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The second dataset MMC (i.e., multi-modal COVID-19 dataset), on which IRENE is trained and evaluated, consists of chest CT
images and structured clinical information (e.g., chief complaint that comprises comorbidities and symptoms, demographics,
laboratory test results, etc) collected from COVID-19 patients. The CT images are associated with inpatients with laboratory-
confirmed COVID-19 infection between December 27, 2019 and March 31, 2020. There are three types of adverse events
that could happen to patients in MMC, which are admission to ICU, mechanical ventilation (MV), and death. The training and
validation sets came from 17 hospitals, and the training set has 1,164 labeled cases (70%) while the validation set has 498
labeled ones (30%). Next, we chose the trained model with the best performance on the validation set and test it on the
independent testing set, which is comprised of 700 cases collected from 9 external medical centers. The distribution of the
three events in the testing set is as follows: ICU (155), MV (94), Death (59).

Recruitment No participants were recruited.

Ethics oversight Institutional Review Board (IRB)/Ethics Committees approvals were obtained from West China Hospital and all participating
hospitals. All patients signed a consent form. The research was conducted in a manner compliant with the United States
Health Insurance Portability and Accountability Act (HIPAA). It was adherent to the tenets of the Declaration of Helsinki and
in compliance with the Chinese CDC policy on reportable infectious diseases and the Chinese Health and Quarantine Law.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
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Sample size The sample sizes for the pulmonary disease identification and adverse outcome prediction of COVID-19 are 72,283 and 2,362, respectively.
Data exclusions  No data were excluded

Replication Replication was not relevant. We used independent validation cohorts.

Randomization  Samples were randomly allocated to the training, tuning and testing sets.

Blinding During image processing, all images were first de-identified to remove any patient related information.
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Materials & experimental systems Methods
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