
Applying Deep Learning to Basketball Trajectories

Rajiv C. Shah
University of Illinois at Chicago
Department of Communication

rshah@pobox.com

Rob Romijnders
Eindhoven University of Technology

romijndersrob@gmail.com

ABSTRACT
One of the emerging trends for sports analytics is the grow-
ing use of player and ball tracking data. A parallel devel-
opment is deep learning predictive approaches that use vast
quantities of data with less reliance on feature engineering.
This paper applies recurrent neural networks in the form of
sequence modeling to predict whether a three-point shot is
successful. The models are capable of learning the trajec-
tory of a basketball without any knowledge of physics. For
comparison, a baseline static machine learning model with
a full set of features, such as angle and velocity, in addition
to the positional data is also tested. Using a dataset of over
20,000 three pointers from NBA SportVu data, the mod-
els based simply on sequential positional data outperform
a static feature rich machine learning model in predicting
whether a three-point shot is successful. This suggests deep
learning models may offer an improvement to traditional
feature based machine learning methods for tracking data.

CCS Concepts
•Computing methodologies → Neural networks;

Keywords
Deep learning; recurrent neural networks, SportVu, basket-
ball, tracking, trajectories,

1. INTRODUCTION
This paper classifies three point shots based solely on

tracking data. This is done by using a recurrent neural net-
work (RNN) that learns sequences of movements. RNNs are
a class of dynamic models used to predict and generate se-
quences in domains such as text [7], music [5], and motion
data [1].

The inspiration for applying RNNs to ball tracking data
stems from the work of Graves who uses RNNs to develop
predictions on handwriting [3]. Graves used XY sequential

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16 August 13–17, 2016, San Francisco, CA, USA
© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

data taken from handwriting on a smart whiteboard. He pro-
ceeded to train a RNN network on the XY data without any
preprocessing. The model was then able to not only predict
the next letter or word, but even generate sequences based
on different initial starting points. Graves offers an online
handwriting demo that allows anyone to better understand
the significance and potential of the work1.

Imagine applying this generative model to sports track-
ing data to predict player/ball movement that would allow
generating dynamic sequences that reflect the tendencies of
a specific player. For example, it could be possible to create
fictional scenarios, but have ball and player movement in the
style of a player, e.g, penetration drives based on the style
of Jeremy Lin.

An attempt by Wang to use RNNs on tracking data was
unsuccessful [12]. While he was able to use RNNs on images,
he notes that using the difficultly of using the XY positional
data. He suggests that pictorial representation is a better
method for analyzing plays. Based on Wang's warnings, the
authors approached the idea of RNN cautiously by assessing
the ability of RNNs to learn sequence data in two ways[10].

As figure 1 shows, over time the RNN learns and antici-
pates the shape of the wave. After enough training cycles,
the network learns the shape and can anticipate well.

Figure 1: RNN learning a sine wave

The second way is to learn simple addition. A simple RNN
model learned to add between 5 to 15 single digit numbers
[9]. For example, using a 2 layer LSTM network with 100
hidden units, a batch of 50 training examples, and 5000
epochs, the RNN is able to sum:

8 + 6 + 4 + 4 + 0 + 9 + 1 + 1 + 7 + 3 + 9 + 2 + 8 as 66.215

This isn’t too far from the actual answer of 62. Further
training can improve the performance.

1See http://www.cs.toronto.edu/ graves/handwriting.html

ar
X

iv
:1

60
8.

03
79

3v
2

 [
cs

.N
E

]
 1

6
A

ug
 2

01
6

10.475/123_4

Based on those positive results, we focus on predicting ball
movement on three-point shots for several reasons. First,
ball movement has a much higher velocity than players and
therefore is more difficult to model. Second, the trajectory
of ball movement is non-linear, which makes RNN a better
fit than traditional linear models. Third, little attention has
been given to ball movement, while there is a large scholar-
ship around extracting player movement from tracking data.
The rest of this article discusses the approach, experimental
results, and the implications of our classifier for three-point
attempts based on tracking data.

2. APPROACH

2.1 Data preparation
The data used in this study stems from publicly avail-

able SportVu data. SportVu is an optical tracking system
installed by the National Basketball Association (NBA) in
all 30 courts to collect real-time data. The tracking system
records the spatial position of the ball and players on the
court 25 times a second during a game.

This study focused on three point plays as defined by ball
movement over at or greater than 8 feet in height and over
a range of 22 feet in the SportVu tracking data. This data
was joined with the play by play data from the NBA, which
indicates when a three-point shot is taken and whether it is
successful. Only shots that are in both datasets are kept.
Figure 2 shows examples of trajectories in our dataset. The
data in the figure only shows the trajectory prior to a dis-
tance of four feet from the basket. The height refers to the
distance above the basketball rim. Additionally, the X and
Y coordinate are combined into a single distance.

Figure 2: Examples of basketball trajectories in the
datasetTrajectory until the basketball i within 4 feet
of the basket

The dataset for this study consists of over 20,000 three
point shot attempts from 631 games. The data was taken
from the NBA.com site in the beginning of the 2015-2016
season. The dataset does not contain every three-point at-
tempt in those 631 games. The incompleteness of the pub-
licly available SportVu data and only keeping verifiable shots
with both play by play limits the size of our dataset. The
percentage of made shots in the dataset is 35.7%, which

compares favorably to the 35% season average for 2015-2016
regular season [2].

The first dataset consists of only the X, Y, Z, and game
clock variables representing the location of the ball in three
dimensions over time. X refers to the length of the court,
Y is the width of the court, and Z is the height of the ball.
A second dataset is created with additional variables based
on the physics of ball trajectories. The belief was that these
variables would add more information over just the location
data for machine learning models. Specifically, the added
variables included the difference in movement over each time
period for each dimension. Three other variables included:
the distance to the center point of the rim, the difference
over time for this distance, and the angle of the ball with
respect to the rim.

Data for both datasets is centered. Additionally, the data
is split into a train/test datasets using a split of 80/20.

2.2 Recurrent Neural Network
This paper will forgo the mathematical formulas associ-

ated with RNNs. For those seeking a fuller treatment, we
refer you to the work of Schmidhuber [8].

In this study, we use a popular variant of RNN with long
short-term memory (LSTM) units. The network architec-
ture relies on a two layered LSTM using peephole connec-
tions. The input to the LSTM is the XYZ data and the
game clock. At each time step, the RNN predicts both the
probability of a successful shot and parameters for the mix-
ture density network (MDN). The probability comes from a
softmax layer and is trained based on cross entropy error.
The MDN consists of three mixtures of tri-variate Gaussians
and is trained via cross entropy.

An Adam optimizer was used along with dropout in the
models. The results for the classification model use the area
under the receiver-operating characteristic curve known as
AUC. AUC can range from 0.5 (pure chance) to 1.0 (ideal
classification).

3. EXPERIMENTAL RESULTS
The goal is to predict whether a shot is a make or miss be-

tween two to eight feet from the basket. As the ball is further
from the basket, there is more uncertainty for the models to
consider. This section provides results on a baseline model
using non-sequential data and a RNN using sequential data.

3.1 Baseline models
To assess the value of a sequencing model, the first step

was setting a baseline using traditional techniques. Using
the last point (closest to the basket), we built classifiers
using a generalized linear model and gradient boosted ma-
chines (GBM). These classifiers provide insight into how
valuable the last data point is as well as possible interactions
between variables. The parameters for the classifiers relied
on the default values and were not optimized. The goal was
a rough approximation of how a non-sequential model would
perform.

GLM GBM
AUC 0.53 0.80

Table 1: Baseline XYZ models at 1 foot from basket

The first set of models only used the three variables that
indicated the position of the ball at one foot above the bas-
ket: X, Y, Z. A logistic regression using Elastic Net with an
alpha of 0.5 resulted in an AUC of 0.53. A gradient boosted
trees model with 50 trees resulted in an AUC of 0.80 as
shown in Table 1. As the later models will highlight, this
performance is much worse than other approaches.

To improve the performance of these models, additional
variables were added that experience suggests should im-
prove a trajectory model. These variables included: X, Y,
Z coordinates of the ball, the distance to the center of the
basket, the difference between the last two points for X, Y,
Z, distance to center, and the angle of the ball with respect
to the basket. The results in Table 2 are for an Elastic Net
with an alpha of 0.5 and a gradient boosted trees model with
50 trees.

Distance to
basket

GLM GBM

2 feet 0.875 0.942
3 feet 0.807 0.902
4 feet 0.721 0.848
5 feet 0.659 0.796
6 feet 0.604 0.746
7 feet 0.583 0.742
8 feet 0.558 0.719

Table 2: AUC for Baseline models on full feature
dataset

It is interesting to note that the tree based models perform
much better. This indicates that the data contains non-
linearities.

3.2 RNN with only positional dataset
The RNNs are fed a sequence length of 12, which repre-

sents about a half a second of time. The inputs consists of
the three positional dimensions and game clock. The net-
work is then trained and scored on the validation set. The
results are shown in Table 5. The network architecture uses
2 layers with a LSTM of 64 hidden units, Adam optimizer
with a learning rate of 0.005, dropout of 0.6, and a batch
size of 64.

Distance to
basket

RNN

2 feet 0.93
3 feet 0.913
4 feet 0.906
5 feet 0.880
6 feet 0.873
7 feet 0.841
8 feet 0.843

Table 3: AUC for RNN models on the positional
dataset

The RNN is able to improve from baseline models at all
distances except 2 feet. The AUC values for distances from 6
to 8 feet are impressive. They are considerably better than
the GBM and show that the RNN was able to learn and
classify basketball trajectories.

4. DISCUSSION
There are a number of interesting issues arising from the

experimental results. The first are the implications of the
results, particularly the performance of the RNN on the po-
sitional dataset. This result speaks directly to the role of fea-
ture engineering when using deep learning. The second issue
focuses on possible ways to improve the RNN performance.
The final issue considers the limitations on performance due
to the SportVu data.

The RNN is able to produce the highest classification
scores. Only using positional data, these models outper-
form the feature engineered GBM models. This suggests the
sequential RNN models are capable of learning nonlinear be-
havior. While this application may be considered simplistic,
this work illustrates just how well RNNs can learn sequential
behavior.

The second issue concerns methods for improving perfor-
mance for RNNs. The first step would be a more compre-
hensive search for better performing hyper-parameters. The
models in this paper are not fully optimized. Another ap-
proach is increasing the training set size. In this study, we
found that at 4 feet we could reach an AUC of 0.870 with
just half the training data versus 0.906 with the full training
set. It is readily apparent that ball trajectories are a much
simpler problem than other predictive models, such as play
prediction. This suggests for more complex prediction tasks
larger datasets will be more beneficial. Consider the train-
ing sets used in other RNN applications. For example, in
Graves’ work on handwriting used XY data to predict the
next letter or sample. The IAM online handwriting dataset
consists of over 85,000 words, each of words is broken up
into line strokes with xy and time. The resulting dataset
for just the line strokes is about 500 MB. In the character
level RNN work, the training text includes over 5 million
characters [4]. In contrast, we are looking at tens of thou-
sands of shots which total about 40 MB. One method to
ameliorate the paucity of the training dataset is augment-
ing by reworking the existing data. An example of applying
this can be found in a recent winner of a Kaggle competi-
tion, who noted the ”canonical examples are found in image
classification tasks where images are cropped and perturbed
to improve the generalization capabilities of the classifier.”
[11] Their team was able to apply similar techniques to their
sequential data to augment it.

The last issue to consider is the limits of performance due
to the SportVu data. The SportVu data is based on optical
tracking at a rate of 25 times a second. Close inspection of
most ball trajectories shows they are not entirely smooth,
but can involve ”dips” or noise. A blog post by Mike Beuoy
provides insight into the performance of ball trajectories us-
ing SportVu data [6]. His work analyzed over 30,000 free
throw shots with a physics based model that looked at four
main forces on a ball: gravity, buoyancy, drag, and the mag-
nus effect. He predicts the location of the ball as shown in
Figure 3

There are several misses on this chart that appear within
the area of the rim. Beouy suggest the following explana-
tion, ”While this could be due to a shallow approach angle,
the more likely, and less interesting explanation is that the
SportVU data is simply messy and imprecise (to say noth-
ing of my own imperfect methodologies for deciphering said
data).” The distance and differing angles of a three point
shot compared to the free throw shots suggest it could even

Figure 3: Physics based free throw shot predictions

have a higher error factor, limiting the ability of a model to
make ball tracking predictions.

5. CONCLUSION
This paper develops neural network models for classify-

ing the trajectory of the ball. A RNN network had the
best performance over traditional static approaches. The
RNN is able to achieve an AUC of 0.843 when predicting a
make or miss using half a second of data with the ball 8 feet
away from the basket. This outperforms the traditional ap-
proaches which had an AUC of 0.558 and 0.719 for a general
linear model and a gradient boosted machines, respectively.

This paper focuses on a simpler problem by solely focus-
ing on three-point trajectories. However, it is not readily
apparent given the high ball velocity and noisy nature of
the motion data, whether a sequential classifier would add
value. The results here clearly indicate RNNs offer value.

This paper stands in the vanguard for applying RNNs to
motion tracking data. The results here suggest RNNs have
the ability to offer an improved understanding of sequential
data. Future work will likely study other motion tracking
tasks, such as play classification or even the individual style
of a player. In other contexts, such as handwriting, a RNN
can learn the style of a person. In the same way, we are
hopeful that RNNs can be used to learn the style of an
individual basketball player.

6. REFERENCES
[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet,

L. Fei-fei, and S. Savarese. Social LSTM : Human
Trajectory Prediction in Crowded Spaces. Cvpr, 2016.

[2] BasketballReference.com. NBA league Averages. In
http://www.basketball-
reference.com/leagues/NBA stats.html.

[3] A. Graves. Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850, pages 1–43,
2013.

[4] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing
and Understanding Recurrent Networks. Iclr, pages
1–13, 2016.

[5] I.-T. Liu and B. Ramakrishnan. Bach in 2014: Music
Composition with Recurrent Neural Network.
arXiv:1412.3191, 5:1–9, 2014.

[6] M. Beuoy. Introducing ShArc: Shot Arc analysis. In
http://www.inpredictable.com/2015/05/introducing-
sharc-shot-arc-analysis.html.

[7] J. Martens. Generating Text with Recurrent Neural
Networks. Neural Networks, 131(1):1017–1024, 2011.

[8] J. Schmidhuber. Deep Learning in neural networks:
An overview. Neural Networks, 61:85–117, 2015.

[9] R. Shah. RNN Addition (1st grade). In
http://projects.rajivshah.com/blog/2016/04/05/rnn addition/.

[10] R. Shah. Shiny front end for Tensorflow demo. In
http://projects.rajivshah.com/blog/2016/04/01/tens.

[11] A. a. P. Sim. How Much Did It Rain? II, Winner’s
Interview: 1st place. In
ttp://blog.kaggle.com/2016/01/04/how-much-did-it-
rain-ii-winners-interview-1st-place-pupa-aka-aaron-
sim/.

[12] K.-c. Wang and R. Zemel. Classifying NBA Offensive
Plays Using Neural Networks. MIT Sloan Sports
Analytics Conference, pages 1–9, 2016.

7. CODE/DATA
A short summary of this paper is available at tinyurl.com/traj-

rnn. You can also download the data and the model used
for this paper on github.

http://tinyurl.com/traj-rnn
http://tinyurl.com/traj-rnn
https://github.com/RobRomijnders/RNN_basketball

	1 Introduction
	2 Approach
	2.1 Data preparation
	2.2 Recurrent Neural Network

	3 Experimental results
	3.1 Baseline models
	3.2 RNN with only positional dataset

	4 Discussion
	5 Conclusion
	6 References
	7 Code/Data

