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Abstract

Machine learning models can assign fixed pre-
dictions that preclude individuals from changing
their outcome. Existing approaches to audit fixed
predictions do so on a pointwise basis, which
requires access to an existing dataset of individ-
uals and may fail to anticipate fixed predictions
in out-of-sample data. This work presents a new
paradigm to identify fixed predictions by finding
confined regions of the feature space in which
all individuals receive fixed predictions. This
paradigm enables the certification of recourse for
out-of-sample data, works in settings without rep-
resentative datasets, and provides interpretable
descriptions of individuals with fixed predictions.
We develop a fast method to discover confined
regions for linear classifiers using mixed-integer
quadratically constrained programming. We con-
duct a comprehensive empirical study of confined
regions across diverse applications. Our results
highlight that existing pointwise verification meth-
ods fail to anticipate future individuals with fixed
predictions, while our method both identifies them
and provides an interpretable description.

1. Introduction
Machine learning is increasingly used in high-stakes set-
tings to decide who receives a loan (Hurley & Adebayo,
2016), a job interview (Bogen & Rieke, 2018), or an organ
transplant (Murgia, 2023). Models predict outcomes using
features about individuals, without considering how indi-
viduals can change them (Liu et al., 2024). Consequently,
models may assign an individual a fixed prediction which is
not responsive to their actions.

The responsiveness of a model is integral to its safety in
settings where predictions map to people. In lending and
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hiring, fixed predictions may preclude individuals from ac-
cess to credit and employment. In content moderation, a
fixed prediction can ensure that malicious actors are unable
to evade detection by manipulating their features. There has
been little work that mentions this effect, let alone studies it.
Yet fixed predictions arise in practice. Recently, a predictive
model used to allocate livers in the United Kingdom was
found to preclude all young patients – no matter how ill –
from receiving a liver transplant (Murgia, 2023).

Existing approaches to check model responsiveness (see
Kothari et al., 2023) work by verifying recourse on an
individual-by-individual basis. These pointwise approaches
can only verify recourse for available data, and do not pro-
vide guarantees on model responsiveness out-of-sample. In
practice, this means that critical issues can only be identi-
fied after a model has been deployed and it is too late to
prevent harms. Moreover, in some settings there may be
no data available to run these pointwise procedures due to
privacy or because the model is being deployed on a new
population. For instance, many interpretable medical and
criminal justice scoring systems are available publicly (see
e.g., Morrison et al., 2022; Yamga et al., 2023; Ribeiro Ju-
nior et al., 2023; of Pennsylvania, 2025), but gaining access
to a representative dataset is difficult due to privacy con-
cerns. Without available data, pointwise approaches can
only be used after generating synthetic data that may not
be representative of the entire population or feature space.
Finally, even when individuals without recourse can be iden-
tified, it can be hard to determine the root cause of these
fixed predictions (Rawal et al., 2020).

This work studies a new paradigm in algorithmic recourse
that characterizes fixed predictions by verifying recourse
over an entire region of the feature space (e.g., all plausi-
ble job applicants). In contrast to existing pointwise ap-
proaches, auditing regions of the feature space can identify
confined regions (i.e., where all individuals are assigned a
fixed prediction), or provide a formal certification of model
responsiveness over the entire region. This approach is
robust to distribution shifts, can be used without the need
for available datasets or synthetic data generation, and pro-
vides an interpretable description of individuals with fixed
predictions.

Verifying recourse for a single individual is a non-trivial
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Figure 1. Stylized recourse verification problem that aims to find all individuals that are assigned a fixed prediction under a given classifier.
The feature space (1) defines all possible feature vectors x. The region of interest (2) is a subset of the feature space representing
individuals on which to audit recourse. The action set (3) defines a set of constraints on what actions a individuals can take to change their
prediction under a classifier (4). A confined region (5) is a subset of the region of interest in which all individuals are assigned a fixed
prediction, which depends on both the classifier and the action set. In this example, a single confined regions provides an interpretable
characterization of all individuals that receive a fixed prediction.

combinatorial problem that requires performing exhaustive
search over a subset of the feature space that captures both
the model as well as actionability constraints (Ustun et al.,
2019; Kothari et al., 2023). Characterizing all fixed predic-
tions represents an even more intensive setting that requires
searching over any plausible individual. Despite these chal-
lenges, we develop a fast method to find confined regions
by Mixed-Integer Quadratically Constrained Programming
(MIQCP) to audit linear classifiers. The main contributions
of this work include:

1. We introduce a new approach to formally verify recourse
for linear classifiers over entire regions of the feature
space. This tool can be used certify the responsiveness
of classifiers beyond data present in a training dataset and
can provide stronger guarantees for out-of-sample data.
We also present tools to find (or enumerate all) confined
regions in the feature space, providing an intuitive tool
for model developers to audit and correct problems with
model responsiveness.

2. We develop fast methods that are able to find confined re-
gions via MIQCP. Our approach handles a broad class of
actionability constraints, and can verify recourse within
seconds on real-world datasets.

3. We evaluate our approach on applications in consumer
finance, content moderation, and criminal justice. Our
results show that pointwise verification approaches fail to
verify model responsiveness over regions, emphasizing
the need for tools that audit recourse beyond individual
data points. We also showcase the ability of our approach
to audit model responsiveness in settings with no public
datasets via a case-study on the Pennsylvania criminal
justice sentencing risk assessment instrument.

Related Work Our work introduces a new direction for
algorithmic recourse (also known as counterfactual explana-
tions) (Venkatasubramanian & Alfano, 2020; Karimi et al.,
2020b). We build on a line of work that has focused on
generating actionable recourse under hard constraints on
what actions can be made (Ustun et al., 2019; Russell, 2019;
Mahajan et al., 2019; Mothilal et al., 2020; Kanamori et al.,
2021; Karimi et al., 2020a). Recent work has highlighted
that under inherent actionability constraints, ML models
may assign fixed predictions that preclude access for individ-
uals (Kothari et al., 2023; Dominguez-Olmedo et al., 2022;
Karimi et al., 2021). While these works have highlighted
the problem of fixed predictions, no existing work has at-
tempted to characterize regions in which this phenomenon
occurs for a given classifier.

Most of the existing work on algorithmic recourse has fo-
cused on providing or verifying recourse for individuals.
These approaches fail to provide a high level understanding
of recourse (i.e., what actions are needed for what types
of individuals) which can be used by stakeholders to inter-
pret and calibrate their trust in the underlying ML model.
Motivated by this shortcoming, recent work has studied
the problem of generating a global summary of recourse
via either mapping individuals to a fixed number of pos-
sible actions (Lodi & Ramı́rez-Ayerbe, 2024; Ley et al.,
2023; Warren et al., 2024), limiting the number of features
that can be used in recourse across all instances (Carrizosa
et al., 2024), or providing an interpretable summary of po-
tential recourse options for different sub-groups (Rawal &
Lakkaraju, 2020). Our work is fundamentally different from
these approaches in that we aim to find and characterize
confined regions (i.e., interpretable regions in the feature
population without recourse) instead of global actions (i.e.,
interpretable regions in the action space). Our approach also
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formally certifies recourse over an entire region, whereas
existing approaches provide no out-of-sample guarantees.

More broadly, our work builds on a line of research that
has focused on algorithmic recourse as a tool to safeguard
access in applications such as hiring and lending. Towards
this aim, other work has studied how to generate recourse
that is robust to model updates (Upadhyay et al., 2021; Forel
et al., 2024), distributional shifts (Altmeyer et al., 2023;
Guo et al., 2022; Hardt et al., 2023; O’Brien & Kim, 2022;
Rawal et al., 2020), imperfect adherence to the prescribed
recourse (Pawelczyk et al., 2022; Virgolin & Fracaros, 2023;
Maragno et al., 2024), and causal effects (Mahajan et al.,
2019; Karimi et al., 2020c; Kleinberg & Raghavan, 2020).

2. Problem Statement
We consider a classification task of predicting a label y ∈
{0, 1} from a set of d features x = [x1, x2, . . . , xd] ∈ X in
a bounded feature set X . We study linear classification mod-
els, a broad function class encompassing popular methods
such as logistic regression, linearizable rule-based models
(e.g., rule sets, decision lists), and concept-bottleneck mod-
els (Koh et al., 2020; Sun et al., 2024). We assume access to
the linear classifier f(x) = sign(w⊤x+ b) where w ∈ Rd

is the vector of coefficients and b ∈ R is the intercept of the
classifier. Without loss of generality, we assume f(x) = 1
is the desired outcome (e.g., receiving a loan). We use bold-
face variables (e.g., x) to denote vectors, and standard text
with subscripts (e.g., xd) to denote a specific element of a
vector.

Actionability Constraints The recourse verification prob-
lem (Kothari et al., 2023) tests whether an individual x ∈ Rd

can obtain the desired outcome of a model by actions on
their features. Each action is a vector a ∈ Rd that shifts
the features of the individual to x + a = x′ ∈ X . We
refer to the set of all actions an individual x can take as the
action set A(x). In practice, an action set is represented by
a set of constraints. Table 1 shows sample deterministic ac-
tionability constraints represented in both natural language
and mathematical formulae that can be embedded into an
optimization problem. Actionability constraints can cap-
ture inherent limitations on how semantically meaningful
features can change (e.g., age can only increase) and how
those changes impact other features (e.g., increasing years
of account history also increase age).

We summarize all feasible actions that lead to the desirable
outcome for an individual in the recourse set.

Definition 2.1. The recourse set consists of all feasible
actions for an individual x that lead to the desired outcome:

Recourse(x, f, A) = {a : f(x+ a) = 1,a ∈ A(x)}

We say an individual receives a fixed prediction under a
classifier f and action set A if Recourse(x, f, A) = ∅, and
has recourse if |Recourse(x, f, A)| ≥ 1

Verification with Regions This paper studies the problem
of verifying recourse over an entire region of the feature
space R ⊆ X . This region could represent plausible charac-
teristics of decision subjects (e.g., any loan applicants), or a
sub-group of interest (e.g., all Black female loan applicants).

We start by generalizing the notions of recourse and fixed
predictions to regions instead of individual data points.

Definition 2.2. A region R is responsive under a classifier
f and action set A if all individuals within the region have
recourse. A region R is confined if all individuals within
the region have a fixed prediction.

Note that a region is responsive if all individuals within the
region have recourse. Similarly, a region is only confined
if all individuals are assigned fixed predictions. If the re-
gion contains a mix of individuals with recourse and fixed
predictions, the region is neither confined nor fixed.

The goal of the Region Recourse Verification Problem (RVP)
is to certify whether a given region R is confined, respon-
sive, or neither. This task can be cast as an optimization
problem that finds the largest confined area S(f,A) within
the region S ⊆ R. For simplicity, we drop the explicit
dependence of S on (f,A). Let Size(S) be a function that
quantifies the size of the confined area S . Given a region R,
a classifier f , and an action set A, the RVP can be modeled
as the following optimization problem:

maximize
S

Size(S)

subject to ∀x ∈ S : Recourse(x, f,A) = ∅
S ⊆ R

An optimal solution to this optimization problem, S∗, can
be used to directly verify whether the entire region R is
confined, responsive, or neither:

Verify(S∗,R) =


Responsive, if S∗ = ∅
Confined, if S∗ = R
⊥, otherwise

Use Cases Verifying recourse over regions is a powerful
tool that can be used to catch potential harms that arise from
fixed predictions before deploying a model, characterize
confined regions, and audit discrimination.

Detecting Harms before Deployment. Existing approaches
that verify recourse for individual data points may fail to
find confined regions before deploying a model, especially
in settings with large distribution shifts. This failure can
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Class Example Features Constraint

Immutability n dependents should not change xj = n dependents aj = 0

Monotonicity reapplicant can only increase xj = reapplicant aj ≥ 0

Integrality n accounts must be positive integer ≤ 10 xj = n accounts aj ∈ Z ∩ [0− xj , 10− xj ]

Categorical Encoding preserve one-hot encoding
of married,single

xj = married
xk = single

aj + xj ∈ {0, 1} xk + ak ∈ {0, 1}
aj + xj + ak + xk = 1

Ordinal Encoding preserve one-hot encoding of
max degree BS,max degree MS

xj = max degree BS
xk = max degree MS

aj + xj ∈ {0, 1} xk + ak ∈ {0, 1}
aj + xj + ak + xk = 1 aj + xj ≥ ak + xk

Logical Implications
if is employed = TRUE
then work hrs per week ≥ 0
else work hrs per week = 0

xj = is employed
xk = work hrs per week

aj + xj ∈ {0, 1}
ak + xk ∈ [0, 168]
aj + xj ≤ 168(xk + ak)

Causal Implications if years of account history increases
then age will increase commensurately

xj = years at residence
xk = age

aj ≤ ak

Table 1. Examples of deterministic actionability constraints. Each constraint can be expressed in natural language and modeled using
standard tools from mathematical programming (see e.g., Wolsey, 2020).

result in tangible harms such as precluding individuals from
receiving loans or allowing malicious actors to bypass con-
tent filters. Verifying recourse over regions can catch these
harms during model development and allow model develop-
ers to adjust the model before deployment.

Characterizing Confined Regions. The RVP can be run
sequentially to enumerate all confined boxes in a region for
a classifier. These boxes are simple to understand and can be
used to help model developers debug ML models or provide
a high-level summary of confined regions for stakeholders.
These confined boxes can also be used to construct a valid
(lower) bound on the fraction of the region that is confined.
This can be used by model developers as a metric to compare
two potential ML models before deployment.

Data-Free Auditing. Recourse verification over regions can
be used as a tool to find sources of potential discrimination
in a model (e.g., individuals that are assigned fixed predic-
tions in a lending application). This approach only requires
access to a classifier and a description of the region to audit
(which can be as simple as bounds on each feature). This
allows external auditors to evaluate the responsiveness of a
classifier with no access to the underlying data. This is es-
pecially powerful in applications where models are publicly
available but associated data is not (e.g., criminal justice
(of Pennsylvania, 2025) and medicine (Yamga et al., 2023)).

Pitfalls of Auditing by Observation Existing methods
for recourse verification (e.g., Kothari et al., 2023) can only
verify recourse for observed data (e.g., individuals in a train-
ing dataset). These point-wise approaches can be used to
audit the responsiveness of a region by verifying whether
any observed data points are assigned a fixed predictions.
However, these approaches may fail to correctly output
whether a region is responsive or confined. We outline two
kinds of failures:

Definition 2.3. Given a recourse verification task for a
region R, a model f , and action set A, we say that a method
returns a blindspot if it outputs that a region is responsive

but there exists an individual in the region that is assigned a
fixed prediction.

Definition 2.4. Given a recourse verification task for a
region R, a model f , and action set A, we say that a method
returns a loophole if it outputs that a region is confined but
there exists an individual in the region with recourse.

These failure modes can arise when an audit over observed
data does not reveal all potential individuals within the re-
gion. In Section 4 we show that this can occur with a variety
of different strategies to select data to test within a region.

3. Verification via Confined Boxes
Towards formally verifying recourse over an entire region,
we formulate a mixed-integer quadratically constrained pro-
gram (MIQCP) to solve the RVP.

Characterizing Regions with Boxes We focus on a spe-
cial case of the RVP that finds the largest confined box. A
box is a set defined by simple upper and lower bound con-
straints on each dimension. Let Uj = maxx∈R xj , Lj =
minx∈R xj be the upper and lower bound for each feature
j in the region. Given an upper bound, u ∈ Rd : u ≤ U,
and lower bound, l ∈ Rd : l ≥ L, a box BR(u, l) is de-
fined as BR(u, l) = {x ∈ R : l ≤ x ≤ u}. We focus on
boxes due their interpretability, which can help model de-
velopers understand the source of fixed predictions. Boxes
can be viewed as a type of decision rule, which have been
widely studied for their interpretability within the broader
ML community (e.g., (Lawless et al., 2023; 2022; Lawless
& Gunluk, 2023)). For ease of notation we drop the explicit
dependence on R and refer to boxes as B(u, l). We define
the size of a box B(u, l) as the sum of the normalized ranges
of each feature:

Size(B(u, l)) =

d∑
j=1

uj − lj
Uj − Lj

(1)
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Generating Confined Boxes We start by formulating the
related problem of auditing whether a given box B(u, l)
in region R contains any data points with recourse, which
we denote the Region Recourse Existence Problem (REP).
Let x ∈ Rd−q × Zq be a decision variable representing an
individual, and a ∈ Rd−q × Zq represent an action. We
assume that the region R, feature space X , and action set
A can be represented by a set of constraints over a mixed-
integer set (see Figure 1 for an example). This general
assumption encompasses a variety of potential regions and
feature sets. We model the REP as a mixed-integer linear
program (MILP) over x and a (see Appendix A for details).

Recall that the RVP can be cast as an optimization problem
to find the largest confined region within R. By definition
the REP is infeasible for every confined box. To certify
that the REP is infeasible for a given box, and by extension
certify that the box is confined, we leverage a classical result
from linear optimization called Farkas’ lemma:

Theorem 3.1 (Farkas (1902)). Let A ∈ Rm×n and b ∈ Rm.
Then exactly one of the following two assertions is true:

I. There exists x ∈ Rn such that Ax ≤ b

II. There exists y ≥ 0 such that AT y = 0 and b⊤y = −1

Farkas’ lemma states that we can certify that a system of
inequalities over continuous variables Ax ≤ b is infeasible
by finding a Farkas certificate y ≥ 0 such that A⊤y = 0 and
b⊤y = −1. In our context, we can thus view the problem
of finding a confined box as a joint problem of selecting
a box and finding an associated Farkas certificate for the
REP. However, Farkas’ lemma only applies to continuous
variables, and the REP can include discrete variables.

We extend Farkas’ certificates to the discrete setting using
a simple strategy that simultaneously generates certificates
for all possible continuous restrictions of the REP. A con-
tinuous restriction of a MILP is a restricted version of the
optimization problem where all discrete variables are fixed
to specific values. Note that a box is confined if and only if
every continuous restriction of the REP is infeasible.

Let C be the set of continuous restrictions, where each re-
striction c ∈ C corresponds to a specific set of fixed values
for the discrete variables (e.g., x1 = 1, x2 = 2 for a prob-
lem with two discrete variables x1, x2 ∈ Z2). Note that the
set C is finite, from the assumption R is bounded and only
discrete variables are fixed, but grows exponentially with
respect to the number of discrete variables. If there are no
discrete variables in the REP, there is a single continuous re-
striction representing the full problem with no fixed values.
In settings where there are a large number of discrete vari-
ables, enumerating all possible continuous restrictions may
become computationally intractable. However, we prove in
Section 3.1 that under very general constraints and minimal

assumptions we can relax many if not all of the discrete
variables in the REP. Under these new theoretical results,
the set of restrictions that the algorithm must consider is
often incredibly small (e.g., |C| ≤ 4 for all the datasets and
actionability constraints considered in Kothari et al. (2023)).

We formulate a continuous restriction c ∈ C of the REP as a
linear program (LP) (see Appendix A), which we represent
in the following standard form:

Ccx+Dca ≤ bc(u, l)

where Cc and Dc are m × d matrices and bc(u, l) is a m-
dimensional vector that is a linear function of the box upper
and lower bounds u, l. Here m represents the number of
constraints in the continuous restriction of the REP.

MIQCP Formulation We can now formulate the RVP as
MIQCP that finds the largest box with Farkas certificates of
infeasibility for every continuous restriction. Let yc ∈ Rm

be decision variables representing the Farkas certificate for
a continuous restriction c ∈ C, and u, l ∈ Zd represent
the upper and lower bounds of a box. Note that there is
one variable in y for every constraint in the continuous
restriction. We can now find the largest confined box B(u, l)
with associated certificates of infeasibility yc for c ∈ C using
the Farkas Certificate Problem (FCP):

maximize
yc,u,l

∑
d

ud − ld
Ud − Ld

(2a)

subject to bc(u, l)
⊤yc = −1 ∀c ∈ C (2b)

C⊤
c yc = 0 ∀c ∈ C (2c)

D⊤
c yc = 0 ∀c ∈ C (2d)
yc ≥ 0 ∀c ∈ C (2e)

L ≤ l ≤ u ≤ U (2f)

u, l ∈ Zd (2g)

The objective of the problem is to maximize the size of the
box, as defined in Equation (1). Constraints (2b)-(2e) follow
from Farkas’ lemma and ensure that yc is a valid certificate
of infeasibility for the continuous restriction c of the REP.
Constraint (2f) ensures the FCP generates a valid box within
the region R. We restrict u, l to be integer variables to pre-
vent numerical precision issues when solving this MIQCP
in practice. This is not an onerous assumption as any con-
tinuous variable xj with a desired precision 10−p can be
re-scaled and rounded to an integer variable 10pxj . The
problem is quadratically constrained due to the inner prod-
uct of bc(u, l) and yc in constraint (2b). While MIQCPs
are often more computationally demanding than MILPs, the
FCP can be solved in seconds on real-world datasets using
commercial solvers (e.g., Achterberg, 2019), as the problem
scales with the number of features and actionability con-
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straints (which are typically small) rather than the number
of data points in the data set.

When verifying recourse over a fixed box B(u, l) the FCP
can be decomposed into |C| problems (solved independently
for each continuous restriction). If the FCP is infeasible for
any continuous restriction c, then the RVP is infeasible for
the box. If the FCP is feasible for all continuous restrictions
c ∈ C, then the box is responsive. Alas, when optimizing
over potential boxes, the FCP cannot be decomposed as the
variables u, l link all the continuous restrictions.

Generating Multiple Boxes Solving an instance of the
FCP generates a single confined box or certifies that the
region is responsive. However, in practice, a given region
may contain multiple confined regions. To provide model
developers and stakeholders with a comprehensive view
of individuals with fixed predictions, the FCP can be run
sequentially to enumerate multiple (or all) confined boxes
with the region. It does so by iteratively adding no-good
cuts to exclude previously discovered confined regions from
R (see Appendix B for details).

3.1. Handling Discrete Variables

In the preceding section, the RVP was solved by enumer-
ating and finding Farkas’ certificates for all continuous re-
strictions of the REP. However, this approach scales expo-
nentially with respect to the number of discrete variables in
the REP. In this section, we show that under a very broad
set of actionability constraints and general assumptions we
can relax all the discrete variables in the REP and still verify
recourse over the entire region.

Linear Recourse Constraints We consider a restricted
set of constraints, which we call linear recourse constraints
(detailed in Table 2). These constraints include a broad
class of actionability constraints such as monotonicity, cate-
gorical encodings, and immutability. They can be used to
define the feature space X , the region R, or the action set A.
Linear recourse constraints encompass many actionability
constraints considered in previous literature including all
the constraints in (Ustun et al., 2019; Russell, 2019; Kothari
et al., 2023). We denote an action set comprised only of
these constraints as linear recourse constraints.

Key Result Theorem 3.2 shows that we can recover the
solution to the REP by solving a linear relaxation if:

A.1 No variable appears in more than one K-hot constraint.

A.2 The directional linkage constraints do not enforce re-
lationships between variables appearing in K-hot con-
straints.

A.3 The directional linkage constraints do not imply any

circular relationships between variables.

Practically, Theorem 3.2 shows we can solve the FCP with
a single continuous restriction (i.e., |C| = 1), relaxing all
discrete variables in the problem.

Theorem 3.2. Under Assumptions A.1- A.3, the linear re-
laxation of the REP is feasible iff the REP is feasible for any
problem with linear recourse constraints.

For a full proof and formal definitions of the assumptions,
see Appendix C. The assumptions for Theorem 3.2 are gen-
eral and hold in many realistic settings. For instance, K-hot
constraints are often used to encode categorical features
(e.g., via a one-hot encoding). Assumption A.1 holds in this
setting as each associated variable only corresponds to one
encoding (i.e., one K-hot constraint). Similarly, Assump-
tion A.2 holds as long as there are no logical implications
between the categorical features. Finally, Assumption A.3
holds as long as there are no circular implications between
variables. Circular implications between variables represent
flaws in constructing the action set and should be caught
prior to solving the RVP.

Theorem 3.2 holds under linear recourse constraints but
not under more general constraints. In Appendix D we
discuss how to extend our approach to general constraints,
and provide practical guidelines on how to select continuous
restrictions to include in the FCP.

4. Experiments
We present experiments showing that point-wise ap-
proaches fail to correctly find confined regions, while our
methods to audit recourse over regions accurately find
such regions when they exist. Hence our methods can
help decision-makers avoid harms from deploying mod-
els with fixed predictions. We include code to repro-
duce our results at https://github.com/conlaw/
confined_regions/ and provide additional details and
results in Appendix E.

Setup We evaluate our approach on three real-world
datasets in consumer finance (heloc (FICO, 2018),
givemecredit(Kaggle, 2011)) and content moderation
(twitterbot (Gilani et al., 2016)). Each dataset include
features that admit inherent actionability constraints that
apply to all individuals (e.g., preserving feature encoding)
which we use to construct the action set (see Appendix E
for details). We encode all categorical features using a one-
hot encoding and discretize all continuous features. We
split the processed dataset into a training sample (50% used
to train the model), and an audit sample (used to evaluate
responsiveness in deployment).

We use the training dataset to fit a ℓ1-regularized logistic re-
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Class Description Formulation Discussion

Integer Bound Constraints Places an integer upper or lower bound on a
variable

Lj ≤ vj ≤ Uj . Encompasses a wide range of separable constraints including
monotonicity, actionability, and bounds on the action step size (Kothari
et al., 2023)

K-Hot Constraint Preserves that the unweighted sum of a set of
variables {vj}j∈J is at most K ∈ Z.

∑
j∈J ± vj ≤ K. Generalizes the popular one-hot encoding for categorical variables.

Directional Linkage Constraints Ensures that one feature, vj is greater than or
equal to another feature vk

vj ≤ vk. Ensures a broad class of non-separable constraints (i.e., constraints that act
on multiple features) including thermometer encodings, and deterministic
causal constraints (e.g., increasing years of account history implies a
commensurate increase in Age).

Table 2. Linear Recourse Constraints Classes. Variables vj used in the constraints may represent x variables (i.e., constrain the region), a
variables (i.e., constrain the actions), or x+ a (i.e., constrain the resulting feature vector). This restricted set of constraints encompasses a
broad set of existing actionability constraints considered in previous literature.

gression model and tune its parameters via cross-validation.
We use the auditing dataset to verify recourse over a set of
regions Ω that represent different sub-groups of interest for
the classification task. We generate these regions R ∈ Ω
by restricting the feature space to fixed combinations of im-
mutable characteristics (e.g., all individuals with a specified
age and gender). We remove all regions from Ω that do
not have at least 5 data points in the training dataset. The
fraction of data points with fixed predictions (p) in the each
dataset varies between 10− 55%. We represent the feature
space X for each dataset as the smallest box containing all
available data.

Methods We compare our method to pointwise baselines
that audit recourse over a sample of individual data points
to generate outputs for the entire region. Given a sample of
individual data points, these point-wise approaches output
that a region is responsive (confined) if all data points have
recourse (no recourse). We generate different baselines by
using different strategies to select which individual data
points to include in the sample.

• Data: We use all data points from the training dataset that
fall within the region.

• Region: We sample 100 data points uniformly at random
from the region being audited.

• Score: We evaluate the data points within the region with
the highest and lowest classifier score (i.e. argmaxx w

Tx
and argminx w

Tx).

• ReVer: We implement our approach, which we call
Region Verification (ReVer), in Python using Gurobi
(Achterberg, 2019) to solve all MIQCPs.

Results We summarize our results in Table 3 for all
datasets and methods. We use ReVer to certify whether
each region is responsive, confined, or neither. We use these
results to evaluate the reliability of baseline methods. We
evaluate each method in terms of the percentage of regions
where it: certifies responsive, outputs responsive, outputs a
blindspot (i.e., misses individuals in the region with fixed

PointWise

Dataset Metrics Data Region Score ReVer

heloc
n = 5842 d = 43
|Ω| = 155 p = 22.2%
FICO (2018)

Certifies Responsive — — — 54.2%
Outputs Responsive 91.6% 66.5% 71.0% 54.2%↱

Blindspot 37.4% 12.3% 16.8% 0.0%
Certifies Confined — — — 0.0%
Outputs Confined 0.6% 0.0% 0.0% 0.0%↱

Loophole 0.6% 0.0% 0.0% 0.0%

givemecredit
n = 120, 268 d = 23
|Ω| = 715 p = 7.4%
Kaggle (2011)

Certifies Responsive — — — 60.1%
Outputs Responsive 72.2% 60.1% 62.9% 60.1%↱

Blindspot 12.0% 0.0% 2.8% 0.0%
Certifies Confined — — — 18.3%
Outputs Confined 19.4% 19.2% 19.2% 18.3%↱

Loophole 1.1% 0.8% 0.8% 0.0%

twitterbot
n = 1438 d = 21
|Ω| = 20 p = 55.3%
Gilani et al. (2016)

Certifies Responsive — — — 25.0%
Outputs Responsive 40.0% 25.0% 25.0% 25.0%↱

Blindspot 15.0% 0.0% 0.0% 0.0%
Certifies Confined — — — 5.0%
Outputs Confined 25.0% 25.0% 25.0% 5.0%↱

Loophole 20.0% 20.0% 20.0% 0.0%

Table 3. Overview of results for all datasets, regions, and methods.
For each dataset, we include the number of regions we audit (|Ω|),
and the fraction of data points with fixed predictions (p).

predictions), certifies confined, outputs confined, and out-
puts a loophole (i.e., misses individuals in the region with
recourse). Additional metrics are reported in Appendix E.

On Preempting Harms during Model Development
Our results demonstrate that individualized recourse ver-
ification approaches fail to properly predict whether a re-
gion is responsive or confined. All baseline approaches
result in blindspots, ranging from 2.8% to 37.4% of re-
gions, and loopholes, ranging from 0.6% to 20% of regions.
The baseline approaches incorporate both separable and
non-separable actionability constraints. Consequently, these
blindspots and loopholes arise from focusing on individual
data points instead of the region as a whole and highlight the
importance of region-specific methods. In Appendix F we
show that these failures are exacerbated in settings whether
there is a distribution shift in the test dataset.

Blindspots and loopholes represent failure cases that un-
dermine the benefits of algorithmic recourse and lead to
tangible harms if left undetected in model development.
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Figure 2. Percentage of feasible points in the region with a fixed
prediction as a function of the number of confined boxes generated.
Note that any point is a valid lower bound on the percentage of
points with fixed predictions across the entire region.

Consider a content moderation setting where a machine
learning model is used to remove sensitive content. A loop-
hole could represent malicious content (e.g., discriminatory
or offensive content) that is able to bypass the filter by chang-
ing superficial features of the post. In a consumer finance
application, a blindspot represents unanticipated individuals
that receive fixed predictions and are precluded from ever
getting access to a loan. In both these settings, rectifying
the problem after deployment would involve training a new
machine learning model (e.g., by dropping features that
lead to fixed predictions, or adding new features that pro-
mote actionability) which can be time-consuming, costly,
and continues to inflict harm while the existing model op-
erates. This highlights the importance of auditing recourse
over regions — it foresees potential harms that occur when
deployed models assign fixed predictions.

On Characterizing Fixed Predictions In Section 5 we
show sample regions that our algorithm certifies as confined.
These regions are represented by simple decision rules (e.g.,
Age 21-25 and Male) and can help model developers
debug the sources of fixed predictions. For instance, the
latter example may prompt a model developer to remove
features related to age and gender from the dataset.

In some settings, fixed predictions are rare and can be repre-
sented by a small number of regions (see e.g., the case study
in Section 5). However, in complicated settings there may
be a large a number of confined regions. To demonstrate
this phenomenon, we run our approach sequentially to enu-
merate up to 100 confined regions within our benchmark
datasets. For each dataset, we audit a region encompass-
ing any plausible individual (i.e., any individual satisfying
indisputable conditions on each feature). Figure 2 shows
the fraction of the entire region covered after generating up
to 100 confined regions using our approach. Note that any
point on this curve represents a valid lower bound on the
total fraction of the region that is assigned a fixed prediction.

These lower bounds can be used by model developers to de-
cide between alternative ML models for a given application.
More broadly, our results highlight the scale and difficulty of
fully characterizing confined regions. Although each dataset
has fewer than 50 features, at least 100 regions are confined.
Our results highlight that fixed predictions arise in complex
ways from immutable features. As such, they create an in-
sidious new kind of discrimination: unlike traditional forms
of discrimination based on protected characteristics (e.g.,
race and gender), this form of discrimination is much harder
to identify, requires looking at combinations of features, and
depends on the classifier.

On Computation Remarkably, our approach runs in un-
der 5 seconds on average across all datasets (see Appendix
E). This shows that although region verification is more
computationally challenging than individual verification,
our approach can verify regions extremely quickly. On two
thirds of the datasets, our approach is even faster than the
Region baseline which audits 100 individual data points.

5. Demonstration
Setup We showcase the potential of region verification
as a tool for auditing discrimination via a case study of the
Pennsylvania Criminal Justice Sentencing Risk Assessment
Instrument (SRAI) (of Pennsylvania, 2025). The SRAI is a
simple linear scoring system that uses 37 features, including
age and gender, to predict the risk of an offender committing
a re-offense (i.e., criminal recidivism). The guidelines state
that an offender is deemed low-risk if the SRAI risk score
is under 5 points.

We audit whether there are any protected groups that are
precluded from being predicted as low-risk. To that end,
we specify an action set that does not allow changes to pro-
tected characteristics (i.e., age and gender), and enforces
logical constraints on the features (e.g., to have a prior con-
viction for violent crime the number of previous convictions
needs to be at least one). Full details of the actionability
constraints are included in Appendix G. Note that we allow
every unprotected characteristic (i.e., criminal history) to
be mutable. This choice allows us to answer whether any
protected group, based solely on protected characteristics,
is never predicted to be low risk.

Results We find two confined regions:

Our results highlight that the SRAI discriminates against
individuals on the basis of gender and age by precluding
those groups from ever receiving a desirable outcome. Our
tool is able to find these forms of discrimination and present
an interpretable summary of the results to stakeholders, who
must then gauge whether this form of discrimination should
be allowed in the criminal justice context. Notably, our
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Fixed Prediction if:

Fixed Prediction if:

and

audit required no access to the data that was used to develop
the SRAI, underscoring that auditing classifiers for confined
regions is possible even when models are publicly available
but associated data is not, as in contexts like criminal justice
and medicine.

6. Concluding Remarks
Our paper introduces a new paradigm for algorithmic re-
course that seeks to characterize fixed predictions by finding
confined regions, areas in the feature space where a model is
not responsive to individuals’ actions. This work highlights
that characterizing confined regions can help model devel-
opers pre-empt harms that arise from deploying models with
fixed predictions. Our work develops a method to tackle this
problem by leveraging tools from MIQCP to find confined
boxes within a region of the feature space. Our method pro-
vides interpretable descriptions of confined regions, can be
run in seconds for real-world datasets, and enables data-free
auditing of model responsiveness. However, these methods
should be extended to address the following limitations:

• Our methods are designed to work with linear classifiers.
In principle, our methods can be extended to any model
that can be represented by a MILP. However, many MILP-
representable models (e.g., tree ensembles) would require
solving a large, computationally-intractable MIQCP and
need new algorithmic approaches.

• Our approach finds confined boxes. Boxes are an in-
terpretable way to characterize regions but have limited
expressive power. Future work should explore whether
more expressive classes capture confined regions with
fewer items.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendix
Understanding Fixed Predictions via Confined Regions

A. REP Integer Programming Formulation
Recall the following:

• x ∈ Rd−q × Zq is a decision variable representing an individual.

• a ∈ Rd−q × Zq is a decision variable representing an action.

• f(x) = sign(w⊤x+ b) is the linear classifier where f(x) = 1 is the desirable outcome.

• X represents the feature space.

• R represents the region of interest.

• A(x) represents a set of feasible actions for a given individual x under the set of actionability constraints.

We assume that X , R, and A can all be represented via a set of constraints in a MILP optimization model. We formulate the
REP for a given region of interest R as the following MILP:

w⊤(x+ a) ≥ b (3a)
x+ a ∈ X (3b)

x ∈ R (3c)
a ∈ A(x) (3d)
x ∈ B(u, l) (3e)

x,a ∈ Rd−m × Zm (3f)

Note that this problem has no objective as it is a feasibility problem. Constraint (3a) ensures that the data point x, after
taking action a, is classified with the desirable outcome. Constraints (3c) and (3b) ensure that x + a if a valid feature
vector (i.e., included in X ), and x is part of the region of interest. Constraint (3d) ensures that the action a satisfies the
actionability constraints. Finally Constraint (3e) ensures that x is included in the box B(u, l). Note that any solution to the
REP represents a feasible x ∈ B(u, l) with recourse. Thus the region B(u, l) is confined if and only if the REP is infeasible.

A.1. Continuous Restriction

Recall that C is the set of continuous restrictions of the REP, where a continuous restriction c ∈ C corresponds to the REP
with fixed values for the discrete variables (e.g., x1 = 1, x2 = 2 for discrete variables JD = {x1, x2}). Let vj ∈ JD

represent a discrete variable, and sj be its fixed value in continuous restriction c. We can incorporate continuous restrictions
into the MILP formulation by adding the following additional constraints that fix the values of discrete variables in the
formulation:

vj = sj ∀vj ∈ JD

Note that since all discrete values are fixed, this is not a linear program over the d− q continuous variables.
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B. Generating multiple confined boxes
Solving an instance of the RVP can generate single confined box. However in practice, a given region may contain multiple
confined boxes. To provide model developers or stakeholders with a holistic view of fixed predictions, the RVP can be run
sequentially to enumerate multiple (or all) confined boxes with the region. We do so by adding no-good cuts to the FCP that
exclude previously discovered regions. This is equivalent to re-solving the RVP for a new region R′ ⊂ R that excludes
existing confined boxes.

Let ū, l̄ be an existing confined box. Let decision variables zu, zl ∈ {0, 1}d track whether the new box u, l is outside the
existing box. We model the no-good cuts that exclude ū, l̄ via the following linear constraints:

ud ≤ l̄d − 1 + (Ud − l̄d − 1)(1− zud) ∀d ∈ [d] (4a)
ld ≥ ūd + 1 + (Ld − ūd + 1)(1− zld) ∀d ∈ [d] (4b)∑
d

zud + zld ≥ 1 (4c)

zu, zl ∈ {0, 1}d (4d)

Constraint (4a) checks whether the upper bound for feature d in the new box is less than the lower bound for feature d in the
existing box. Note that these constraints are enforced if zud = 1. Constraint (4b) checks an analogous condition for the
lower bound of feature d. Constraints (4c)-(4d) ensure that at least one constraint of type (4a) or (4b) are active. In other
words, it ensures that the new region must fall outside the previous region by ensuring that at least one feature differs in the
new box. We exclude constraints for bounds that are tight with the population bounds (i.e., ud = Ud or ld = Ld) as they are
implied in the FCP. Given that our procedure tends to generate sparse regions (i.e., regions that change few features from
their population upper and lower bounds), these no good-cuts typically add a very small number of binary variables and
constraints to the full formulation.
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C. Proof of Theorem 3.2
We prove this result by showing that the polyhedron defining feasible individuals x and actions a under linear recourse
constraints is totally unimodular, which means that all extreme points of the polyhedron are integral. Consequently, the
linear relaxation of the REP is feasible if and only the discrete REP is feasible.

We start by (re)-introducing important notation:

• x is a decision variable corresponding to an individual with the region R.

• a is a decision variable corresponding to an action which must be feasible under the action set A(x).

• vj represents a set of variables corresponding to feature j (i.e., xj , aj , or xj + aj).

Consider the following mixed-integer polyhedron that represents all feature space, region, and actionability constraints.

x+ a ∈ X (5a)
x ∈ R (5b)
x ∈ B(u, l) (5c)
a ∈ A(x) (5d)

x,a ∈ Rd−m × Zm (5e)

Recall that for Theorem 3.2, we consider a subset of possible constraints used in X ,R, A called linear recourse constraints
which were introduced in Section 3.1. We denote the polyhedron 5 with only linear recourse constraints as the linear
recourse polyhedron. We repeat these constraint types here to keep this section self-contained:

• K-Hot Constraints: Let Ji be the set of variables that participate in a K-hot constraint i. A K-Hot constraint is:∑
j∈Ji

± vj ≤ K.

• Unit Directional Linkage Constraints: This constraint acts on two sets of variables vi, vk and requires:

vj ≤ vk.

• Integer Bound Constraints: Act on a single variable vj and require:

Lj ≤ vj or vj ≥ Uj

Note that in all these constraints, all variable coefficients in these constraints are in {0,±1}, and thus any matrix comprised
of linear recourse constraints is a {0,±1}-matrix. Let J = {Ji} be the set of K-hot constraints. We define an undirected
graph which captures all directional implications between variable indices, which we call the implication graph. For every
variable index i we create one node in the graph ni in the implication graph. We create an edge from node nj to nk if there
exists a unit-directional linkage that acts on j and k. Note that this implication graph is could include multiple connected
(and potentially cyclic) components.

We now formally define assumptions A.1-A.3:

A.1 No variable appears in more than one K-hot constraint. Formally,

|Ji ∩ Jk| = ∅, ∀Ji, Jk ∈ J .

A.2 The directional linkage constraints do not enforce relationships between variables appearing in K-hot constraints.
Formally, each connected component in the implication graph contains at most one node ni corresponding to a variable
in ∪Ji∈J Ji.
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A.3 The directional linkage constraints do not imply any bi-directional implications between variables. Formally, the
implication graph is acyclic.

We start by proving the key lemma for our result which states the linear recourse polyhedron is totally unimodular.

Lemma C.1. The linear recourse polyhedron is totally unimodular.

Proof. We prove this result by showing that every column submatrix of the linear recourse polyhedron admits an equitable
bicoloring (Conforti et al., 2014). We consider a linear recourse polyhedron comprised exclusively of constraints where
vj = xj + aj , which we denote with the matrix Z. Note that any constraint where vj = xj or vj = aj uses a subset of the
variables {xj , aj} and thus represents a column sub-matrix of this general case. In other words, proving our result in this
special case also proves the result for settings where constraints may have vj = xj or vj = aj .

Consider the following coloring scheme for any column submatrix of Z.

1. For each index j, if columns corresponding to both xj and aj are included in the submatrix, color the column
corresponding to xj red and the column corresponding to aj blue.

2. For each K-hot constraint i, let J̄i ⊆ Ji be the remaining variables in the constraint, whose columns are included in the
submatrix but have not yet been colored. Alternate coloring variables in J̄i red and blue.

3. Consider the implication graph created by the directional constraints. Remove any node corresponding to an index j
that contains no variables selected in the submatrix, and any index j where all variables corresponding to the index
that are present in the submatrix have already been colored in Step 1. Note that every node nj now corresponds to
exactly one column (i.e., xj or aj). For each connected component of the revised implication graph, pick an initial
node as follows. If there is a node nj corresponding to a variable in ∪Ji∈J Ji in the component, select it as the initial
node. Note that nj must have already been assigned a color in Step 2. If no such node exists, select an arbitrary node
as the initial node. If the initial node corresponds corresponds to a column that has not yet been colored, color the
corresponding column arbitrarily. We now traverse the connected component coloring columns as follows. Given a
current node nj with color c, color all nodes nk connected to it that are uncolored with the opposite color. Repeat until
all nodes in the connected component are colored.

4. Note that any remaining uncolored columns must correspond to a single variable xj or aj that only participate in
integer bound constraints. Color each column arbitrarily.

Note that assumptions A.1- A.3 ensure that this is a valid coloring (i.e., we always assign a column exactly one column).
Specifically, Item A.1 ensures that a column corresponding to a variable xj or aj is never assigned more than one color in
Step 2. Similarly, Item A.2 and Item A.3 ensures that each node in the revised implication graph is assigned exactly one
color, and that every pair of columns connected with associated nodes in the revised implication is assigned different colors.

We now show that this coloring is equitable (i.e., the sum of the columns colored red minus the sum of the columns colored
blue differ by at most one for each row). We denote the sum of the columns colored red minus the sum of the columns
colored blue for each row as the row sum. Since each row corresponds to a single constraint, we show this result for each
constraint class separately:

• K-hot Constraints: This follows directly from Step 1 and Step 2.

• Unit-Directional Linkage Constraints: Consider a generic sub-matrix of Z. If the row corresponding to a directional
linkage constraint i that operates on index j and k has columns corresponding to xj and aj (xk and ak) in the the
submatrix, Step 1 ensures the net sum for columns for variables corresponding to j (k) is 0. If after Step 1, there is
exactly one remaining uncolored column in the row of the submatrix then the entire row sum is ±1. If there are two
uncolored columns then it must correspond to one variable (i.e., xj or aj) from index j and one from index k. Step 3
ensures that these are assigned different colors. Thus in all cases, the row sum is 0 or ±1.

• Integer Bound Constraints: Every corresponding to an integer bound constraint in the submatrix includes columns
correspond to either xj AND aj , xj , or aj . In the first case, Step 1 ensures that the row sum is 0. In the latter case, the
row sum will be ±1 depending on the color selected in Step 4.
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We now prove the full result of Theorem 3.2.

Proof. By Lemma C.1, under Assumptions A.1- A.3 the linear recourse polyhedron is totally unimodular. This means that
every extreme point of the polyhedron is integral and corresponds to feasible integer vectors x,a.

The REP with linear recourse constraints corresponds to the linear recourse polyhedron with an addition linear constraint
(i.e., the linear recourse polyhedron intersected with a half-space). We now show that the REP is feasible iff the linear
relaxation of the REP is feasible.

⇒ (REP is feasible implies the linear relaxation of the REP is feasible) This follows from the fact that the latter
problem is a relaxation of the first problem.

⇐ (The linear relaxation of the REP is feasible implies the REP is feasible) Intuitively, this follows from the fact that
the REP is the linear recourse polyhedron intersected with a halfspace. If there are any feasible data points in the REP there
must be at least one feasible extreme point (which represents a solution to the REP).

Formally, consider a feasible solution to the relaxed REP v (note that this includes both x,a for ease of notation). This
solution must be a feasible point in the linear recourse polyhedron (otherwise it would contradict it being a feasible solution).
We can represent any feasible point in the linear recourse polyhedron as a convex combination of extreme points of the
polyhedron {µk}k by the Minkowski representation theorem:

v =
∑
k

λkµk s.t.
∑
k

λk = 1, λk ≥ 0 ∀k

Constraint (3a) in the REP implies:

b ≤ w⊤v = w⊤(
∑
k

λkµk) =
∑
k

λkw
⊤µk

Since λk ≥ 0 this means that there is at least one extreme point µk such that w⊤µk ≥ b, and thus at least one feasible
solution to the discrete REP.

16



Understanding Fixed Predictions via Confined Regions

D. Practical Guidelines for Selecting Continuous Restrictions for the FCP
Unfortunately, Theorem 3.2 does not hold directly under a broader set of constraints. Consider the following simple example
over two features x1, x2. Let x1 be a binary variable, and x2 be an integer variable bounded between 0 and 10. Add one
directional linkage constraint such that increasing x1 by one unit causes x2 to decrease by 10 units. The classifier assigns
the desirable outcome if x1 + a1 ≥ 0.5. Consider the region R = x1 × x2 = {0} × [5, 10]. Every individual in the region
has continuous recourse by setting a1 = 0.5. However, in the discrete version of the REP, which requires a1 ∈ {0, 1}, no
individual has recourse because setting a1 = 1 would require violating the bound constraint x2 + a2 ≥ 0.

One strategy to handle general constraints is to restrict a subset of discrete variables in the REP, such that each resulting
continuous restriction meets the conditions of Theorem 3.2. In practice, this strategy leads to a small number of continuous
restrictions. For example, consider the heloc dataset used in our experiments, which has 42 binary features, one integer
feature, and 20 non-separable constraints. It contains two constraints that are not linear recourse constraints:

• Actions on YearsSinceLastDelqTrade≤3 will a 3 unit change in YearsOfAccountHistory

• Actions on YearsSinceLastDelqTrade≤5 will a 5 unit change in YearsOfAccountHistory

Note that these are not linear recourse constraints because a unit change in one variable results in a non-unit change in another.
There are over 242 possible continuous restrictions which makes solving the full FCP over every restriction computationally
intractable. However, restricting YearsSinceLastDelqTrade≤3 and YearsSinceLastDelqTrade≤5 (i.e.,
fixing each variable to either 0 or 1) transforms the two violating constraints into integer bound constraints. This only
generates four continuous restrictions (2× 2) but still allows the FCP to leverage Theorem 3.2.

This strategy is sufficient for many actionability constraints available with public implementations. For example, all
constraints implemented in the Reach package (Kothari et al., 2023) (e.g., if-then constraints, directional linkage constraints
with non-unit scaling factors) only require restricting one discrete variable. An alternative approach in settings with a large
number of non-separable constraints over discrete variables is to enumerate feasible feature vectors for the inter-connected
discrete variables and re-formulate them as one feature which represents a categorical encoding over all possible values
(similar to the approach detailed in Ustun et al., 2019).

In settings where this is not possible or does not dramatically reduce the number of discrete variables our approach can also
be run with a single continuous restriction corresponding to a linear relaxation of the original REP. Solving this relaxed FCP
can be used to provide weaker guarantees:

• If the relaxed version of the FCP returns a confined box, this box is confined for the discrete version of the problem
(any individual without continuous recourse also does not have recourse in the discrete problem).

• If the relaxed FCP certifies that the entire region is confined (i.e., all data points are assigned fixed predictions), then
the entire region is guaranteed to be confined in the discrete version of the problem.

• Unfortunately, if the relaxed version of the FCP is infeasible there is no guarantee that the entire region is responsive.
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E. Supplementary Material for Experiments
In this section we present all the actionability constraints for the datasets used in our experiments. Note that the feature
space X for each dataset has the same upper and lower bounds as well as non-separable constraints as the action set. All
regions we audit in this paper are represented by boxes with fixed values for immutable features.

E.1. Actionability Constraints for the heloc Dataset

We show a list of all features and their separable actionability constraints in Table 4.

Name Type LB UB Actionability Sign
ExternalRiskEstimate≥40 {0, 1} 0 1 No
ExternalRiskEstimate≥50 {0, 1} 0 1 No
ExternalRiskEstimate≥60 {0, 1} 0 1 No
ExternalRiskEstimate≥70 {0, 1} 0 1 No
ExternalRiskEstimate≥80 {0, 1} 0 1 No
YearsOfAccountHistory Z 0 50 No
AvgYearsInFile≥3 {0, 1} 0 1 Yes +
AvgYearsInFile≥5 {0, 1} 0 1 Yes +
AvgYearsInFile≥7 {0, 1} 0 1 Yes +
MostRecentTradeWithinLastYear {0, 1} 0 1 Yes
MostRecentTradeWithinLast2Years {0, 1} 0 1 Yes
AnyDerogatoryComment {0, 1} 0 1 No
AnyTrade120DaysDelq {0, 1} 0 1 No
AnyTrade90DaysDelq {0, 1} 0 1 No
AnyTrade60DaysDelq {0, 1} 0 1 No
AnyTrade30DaysDelq {0, 1} 0 1 No
NoDelqEver {0, 1} 0 1 No
YearsSinceLastDelqTrade≤1 {0, 1} 0 1 Yes
YearsSinceLastDelqTrade≤3 {0, 1} 0 1 Yes
YearsSinceLastDelqTrade≤5 {0, 1} 0 1 Yes
NumInstallTrades≥2 {0, 1} 0 1 Yes +
NumInstallTrades≥3 {0, 1} 0 1 Yes +
NumInstallTrades≥5 {0, 1} 0 1 Yes +
NumInstallTrades≥7 {0, 1} 0 1 Yes +
NumInstallTradesWBalance≥2 {0, 1} 0 1 Yes +
NumInstallTradesWBalance≥3 {0, 1} 0 1 Yes +
NumInstallTradesWBalance≥5 {0, 1} 0 1 Yes +
NumInstallTradesWBalance≥7 {0, 1} 0 1 Yes +
NumRevolvingTrades≥2 {0, 1} 0 1 Yes +
NumRevolvingTrades≥3 {0, 1} 0 1 Yes +
NumRevolvingTrades≥5 {0, 1} 0 1 Yes +
NumRevolvingTrades≥7 {0, 1} 0 1 Yes +
NumRevolvingTradesWBalance≥2 {0, 1} 0 1 Yes +
NumRevolvingTradesWBalance≥3 {0, 1} 0 1 Yes +
NumRevolvingTradesWBalance≥5 {0, 1} 0 1 Yes +
NumRevolvingTradesWBalance≥7 {0, 1} 0 1 Yes +
NetFractionInstallBurden≥10 {0, 1} 0 1 Yes +
NetFractionInstallBurden≥20 {0, 1} 0 1 Yes +
NetFractionInstallBurden≥50 {0, 1} 0 1 Yes +
NetFractionRevolvingBurden≥10 {0, 1} 0 1 Yes
NetFractionRevolvingBurden≥20 {0, 1} 0 1 Yes
NetFractionRevolvingBurden≥50 {0, 1} 0 1 Yes
NumBank2NatlTradesWHighUtilization≥2 {0, 1} 0 1 Yes +

Table 4. Separable actionability constraints for the heloc dataset.

The non-separable actionability constraints for this dataset include:

1. DirectionalLinkage: Actions on NumRevolvingTradesWBalance≥2 will induce to actions on
NumRevolvingTrades≥2.Each unit change in NumRevolvingTradesWBalance≥2 leads to:1.00-unit
change in NumRevolvingTrades≥2

2. DirectionalLinkage: Actions on NumInstallTradesWBalance≥2 will induce to actions on
NumInstallTrades≥2.Each unit change in NumInstallTradesWBalance≥2 leads to:1.00-unit change in
NumInstallTrades≥2

18



Understanding Fixed Predictions via Confined Regions

3. DirectionalLinkage: Actions on NumRevolvingTradesWBalance≥3 will induce to actions on
NumRevolvingTrades≥3.Each unit change in NumRevolvingTradesWBalance≥3 leads to:1.00-unit
change in NumRevolvingTrades≥3

4. DirectionalLinkage: Actions on NumInstallTradesWBalance≥3 will induce to actions on
NumInstallTrades≥3. Each unit change in NumInstallTradesWBalance≥3 leads to:1.00-unit
change in NumInstallTrades≥3

5. DirectionalLinkage: Actions on NumRevolvingTradesWBalance≥5 will induce to actions on
NumRevolvingTrades≥5.Each unit change in NumRevolvingTradesWBalance≥5 leads to:1.00-unit
change in NumRevolvingTrades≥5

6. DirectionalLinkage: Actions on NumInstallTradesWBalance≥5 will induce to actions on
NumInstallTrades≥5.Each unit change in NumInstallTradesWBalance≥5 leads to:1.00-unit change in
NumInstallTrades≥5

7. DirectionalLinkage: Actions on NumRevolvingTradesWBalance≥7 will induce to actions on
NumRevolvingTrades≥7.Each unit change in NumRevolvingTradesWBalance≥7 leads to:1.00-unit
change in NumRevolvingTrades≥7

8. DirectionalLinkage: Actions on NumInstallTradesWBalance≥7 will induce to actions on
NumInstallTrades≥7.Each unit change in NumInstallTradesWBalance≥7 leads to:1.00-unit change in
NumInstallTrades≥7

9. DirectionalLinkage: Actions on YearsSinceLastDelqTrade≤1 will induce to actions on
YearsOfAccountHistory. Each unit change in YearsSinceLastDelqTrade≤1 leads to:-1.00-unit
change in YearsOfAccountHistory

10. DirectionalLinkage: Actions on YearsSinceLastDelqTrade≤3 will induce to actions on
YearsOfAccountHistory. Each unit change in YearsSinceLastDelqTrade≤3 leads to:-3.00-unit
change in YearsOfAccountHistory

11. DirectionalLinkage: Actions on YearsSinceLastDelqTrade≤5 will induce to actions on
YearsOfAccountHistory. Each unit change in YearsSinceLastDelqTrade≤5 leads to:-5.00-unit
change in YearsOfAccountHistory

12. ThermometerEncoding: Actions on [YearsSinceLastDelqTrade≤1, YearsSinceLastDelqTrade≤3,
YearsSinceLastDelqTrade≤5] must preserve thermometer encoding., which can only decrease.Actions can
only turn off higher-level dummies that are on, where YearsSinceLastDelqTrade≤1 is the lowest-level dummy
and YearsSinceLastDelqTrade≤5 is the highest-level-dummy.

13. ThermometerEncoding: Actions on [MostRecentTradeWithinLast2Years,
MostRecentTradeWithinLastYear] must preserve thermometer encoding.

14. ThermometerEncoding: Actions on [AvgYearsInFile≥3, AvgYearsInFile≥5, AvgYearsInFile≥7]
must preserve thermometer encoding., which can only increase.Actions can only turn on higher-level dummies
that are off, where AvgYearsInFile≥3 is the lowest-level dummy and AvgYearsInFile≥7 is the highest-
level-dummy.

15. ThermometerEncoding: Actions on [NetFractionRevolvingBurden≥10,
NetFractionRevolvingBurden≥20, NetFractionRevolvingBurden≥50] must preserve
thermometer encoding., which can only decrease.Actions can only turn off higher-level dum-
mies that are on, where NetFractionRevolvingBurden≥10 is the lowest-level dummy and
NetFractionRevolvingBurden≥50 is the highest-level-dummy.

16. ThermometerEncoding: Actions on [NetFractionInstallBurden≥10,
NetFractionInstallBurden≥20, NetFractionInstallBurden≥50] must preserve thermome-
ter encoding., which can only decrease.Actions can only turn off higher-level dummies that are on, where
NetFractionInstallBurden≥10 is the lowest-level dummy and NetFractionInstallBurden≥50 is
the highest-level-dummy.
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17. ThermometerEncoding: Actions on [NumRevolvingTradesWBalance≥2,
NumRevolvingTradesWBalance≥3, NumRevolvingTradesWBalance≥5,
NumRevolvingTradesWBalance≥7] must preserve thermometer encoding., which can only decrease.Actions
can only turn off higher-level dummies that are on, where NumRevolvingTradesWBalance≥2 is the lowest-level
dummy and NumRevolvingTradesWBalance≥7 is the highest-level-dummy.

18. ThermometerEncoding: Actions on [NumRevolvingTrades≥2, NumRevolvingTrades≥3,
NumRevolvingTrades≥5, NumRevolvingTrades≥7] must preserve thermometer encoding., which
can only decrease.Actions can only turn off higher-level dummies that are on, where NumRevolvingTrades≥2 is
the lowest-level dummy and NumRevolvingTrades≥7 is the highest-level-dummy.

19. ThermometerEncoding: Actions on [NumInstallTradesWBalance≥2, NumInstallTradesWBalance≥3,
NumInstallTradesWBalance≥5, NumInstallTradesWBalance≥7] must preserve thermometer en-
coding., which can only decrease.Actions can only turn off higher-level dummies that are on, where
NumInstallTradesWBalance≥2 is the lowest-level dummy and NumInstallTradesWBalance≥7 is the
highest-level-dummy.

20. ThermometerEncoding: Actions on [NumInstallTrades≥2, NumInstallTrades≥3,
NumInstallTrades≥5, NumInstallTrades≥7] must preserve thermometer encoding., which can
only decrease.Actions can only turn off higher-level dummies that are on, where NumInstallTrades≥2 is the
lowest-level dummy and NumInstallTrades≥7 is the highest-level-dummy.
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E.2. Actionability Constraints for the givemecredit Dataset

We present a list of all features and their separable actionability constraints in Table 5.

Name Type LB UB Actionability Sign
Age Z 21 103 No
NumberOfDependents Z 0 20 No
DebtRatio≥1 {0, 1} 0 1 Yes +
MonthlyIncome≥3K {0, 1} 0 1 Yes +
MonthlyIncome≥5K {0, 1} 0 1 Yes +
MonthlyIncome≥10K {0, 1} 0 1 Yes +
CreditLineUtilization≥10 {0, 1} 0 1 Yes
CreditLineUtilization≥20 {0, 1} 0 1 Yes
CreditLineUtilization≥50 {0, 1} 0 1 Yes
CreditLineUtilization≥70 {0, 1} 0 1 Yes
CreditLineUtilization≥100 {0, 1} 0 1 Yes
AnyRealEstateLoans {0, 1} 0 1 Yes +
MultipleRealEstateLoans {0, 1} 0 1 Yes +
AnyCreditLinesAndLoans {0, 1} 0 1 Yes +
MultipleCreditLinesAndLoans {0, 1} 0 1 Yes +
HistoryOfLatePayment {0, 1} 0 1 No
HistoryOfDelinquency {0, 1} 0 1 No

Table 5. Separable actionability constraints for the givemecredit dataset.

The non-separable actionability constraints for this dataset include:

1. ThermometerEncoding: Actions on [MonthlyIncome≥3K, MonthlyIncome≥5K, MonthlyIncome≥10K]
must preserve thermometer encoding., which can only increase.Actions can only turn on higher-level dummies that
are off, where MonthlyIncome≥3K is the lowest-level dummy and MonthlyIncome≥10K is the highest-level-
dummy.

2. ThermometerEncoding: Actions on [CreditLineUtilization≥10, CreditLineUtilization≥20,
CreditLineUtilization≥50, CreditLineUtilization≥70, CreditLineUtilization≥100]
must preserve thermometer encoding., which can only decrease.Actions can only turn off higher-level dummies that are
on, where CreditLineUtilization≥10 is the lowest-level dummy and CreditLineUtilization≥100
is the highest-level-dummy.

3. ThermometerEncoding: Actions on [AnyRealEstateLoans, MultipleRealEstateLoans] must preserve
thermometer encoding., which can only decrease.Actions can only turn off higher-level dummies that are on, where
AnyRealEstateLoans is the lowest-level dummy and MultipleRealEstateLoans is the highest-level-
dummy.

4. ThermometerEncoding: Actions on [AnyCreditLinesAndLoans, MultipleCreditLinesAndLoans] must
preserve thermometer encoding., which can only decrease.Actions can only turn off higher-level dummies that are on,
where AnyCreditLinesAndLoans is the lowest-level dummy and MultipleCreditLinesAndLoans is the
highest-level-dummy.
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E.3. Actionability Constraints for the twitterbot Dataset

We present a list of all features and their separable actionability constraints in Table 6.

Name Type LB UB Actionability Sign
SourceAutomation {0, 1} 0 1 No
SourceOther {0, 1} 0 1 No
SourceBranding {0, 1} 0 1 No
SourceMobile {0, 1} 0 1 No
SourceWeb {0, 1} 0 1 No
SourceApp {0, 1} 0 1 No
FollowerFriendRatio≥1 {0, 1} 0 1 No
FollowerFriendRatio≥10 {0, 1} 0 1 No
FollowerFriendRatio≥100 {0, 1} 0 1 No
FollowerFriendRatio≥1000 {0, 1} 0 1 No
FollowerFriendRatio≥10000 {0, 1} 0 1 No
FollowerFriendRatio≥100000 {0, 1} 0 1 No
AgeOfAccountInDays≥365 {0, 1} 0 1 Yes
AgeOfAccountInDays≥730 {0, 1} 0 1 Yes
UserReplied≥10 {0, 1} 0 1 Yes
UserReplied≥100 {0, 1} 0 1 Yes
UserFavourited≥1000 {0, 1} 0 1 Yes
UserFavourited≥10000 {0, 1} 0 1 Yes
UserRetweeted≥1 {0, 1} 0 1 Yes
UserRetweeted≥10 {0, 1} 0 1 Yes
UserRetweeted≥100 {0, 1} 0 1 Yes

Table 6. Separable actionability constraints for the Twitterbot dataset.

The non-separable actionability constraints for this dataset include:

1. ThermometerEncoding: Actions on [FollowerFriendRatio≥1, FollowerFriendRatio≥10,
FollowerFriendRatio≥100, FollowerFriendRatio≥1000, FollowerFriendRatio≥10000,

FollowerFriendRatio≥100000] must preserve thermometer encoding.

2. ThermometerEncoding: Actions on [AgeOfAccountInDays≥365, AgeOfAccountInDays≥730] must pre-
serve thermometer encoding.

3. ThermometerEncoding: Actions on [UserReplied≥10, UserReplied≥100] must preserve thermometer encod-
ing.

4. ThermometerEncoding: Actions on [UserFavourited≥1000, UserFavourited≥10000] must preserve ther-
mometer encoding.

5. ThermometerEncoding: Actions on [UserRetweeted≥1, UserRetweeted≥10, UserRetweeted≥100]
must preserve thermometer encoding.

E.4. Computing Infrastructure

We run all experiments on a personal computer with an Apple M1 Pro chip and 32 GB of RAM. All MILP and MIQCP
problems were solved using Gurobi 9.0 (Achterberg, 2019) with default settings.

E.5. Additional Results

Table 7 shows an extended version of our main results that include three additional metrics:

• Realized Blindspot Rate: The fraction of total regions that are predicted to be responsive but contain individuals with
fixed predictions in the test dataset.
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PointWise

Dataset Metrics Data Region Score ReVer

heloc
n = 5842 d = 43
|Ω| = 155 p = 22.2%
FICO (2018)

Certifies Responsive — — — 54.2%
Outputs Responsive 91.6% 66.5% 71.0% 54.2%↱

Blindspot 37.4% 12.3% 16.8% 0.0%↱
Realized Blindspot 1.9% 0.0% 0.0% 0.0%

Certifies Confined — — — 0.0%
Outputs Confined 0.6% 0.0% 0.0% 0.0%↱

Loophole 0.6% 0.0% 0.0% 0.0%↱
Realized Loophole 0.0% 0.0% 0.0% 0.0%

Comp. Time (s) 0.05(0.0) 0.74(0.1) 0.02(0.0) 4.67(3.6)

givemecredit
n = 120, 268 d = 23
|Ω| = 715 p = 7.4%
Kaggle (2011)

Certifies Responsive — — — 60.1%
Outputs Responsive 72.2% 60.1% 62.9% 60.1%↱

Blindspot 12.0% 0.0% 2.8% 0.0%↱
Realized Blindspot 3.1% 0.0% 1.0% 0.0%

Certifies Confined — — — 18.3%
Outputs Confined 19.4% 19.2% 19.2% 18.3%↱

Loophole 1.1% 0.8% 0.8% 0.0%↱
Realized Loophole 0.3% 0.0% 0.0% 0.0%

Comp. Time (s) 0.02(0.1) 0.32(0.1) 0.01(0.0) 0.13(0.1)

twitterbot
n = 1438 d = 21
|Ω| = 20 p = 55.3%
Gilani et al. (2016)

Certifies Responsive — — — 25.0%
Outputs Responsive 40.0% 25.0% 25.0% 25.0%↱

Blindspot 15.0% 0.0% 0.0% 0.0%↱
Realized Blindspot 15.0% 0.0% 0.0% 0.0%

Certifies Confined — — — 5.0%
Outputs Confined 25.0% 25.0% 25.0% 5.0%↱

Loophole 20.0% 20.0% 20.0% 0.0%↱
Realized Loophole 0.0% 0.0% 0.0% 0.0%

Comp. Time (s) 0.02(0.1) 0.36(0.1) 0.01(0.0) 0.07(0.2)

Table 7. Overview of results for all datasets, regions, and methods. For each dataset, we include the number of regions we audit (|Ω|), and
the fraction of data points with fixed predictions (p).

• Realized Loophole Rate: The fraction of total regions that are predicted to be confined but contain individuals with
recourse in the test dataset.

• Computation Time: The average computation time in seconds over all regions for each dataset.

As expected, the realized blindspot and loophole rates are lower than the true blindspot and loophole rate. Recourse
verification over regions safeguards against rare events (i.e., new individuals with fixed predictions that were not part of
the training dataset), which makes the risks less likely to be realized over a small test dataset. However in real-world
applications, models are typically deployed and make predictions on datasets much larger than its original training dataset —
increasing the probability of blindspots and loopholes being realized.

Our extended results also highlight that our approach runs incredibly quickly across all three datasets, auditing a region in
under 5 seconds on average. In two out of three datasets, our approach is quicker than the Region which runs pointwise
recourse on 100 data points.
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F. On Out-of-Sample Robustness
Auditing recourse over regions, rather than individuals, allows practitioners to find individuals with fixed predictions beyond
a training dataset and is robust to distribution shifts. We demonstrate this capability by considering realized blindspots,
regions that are predicted to be responsive but contain individuals with fixed predictions in the test distribution. We evaluate
the performance of the Data baseline, which certifies recourse by looking at individuals within a training dataset, in two
regimes: (1) where the test distribution is the same as the train distribution of data, (2) where the train distribution is more
likely to include individuals predicted to receive the desirable outcome. We simulate this distribution shift by training a
logistic regression classifier on the entire dataset that predicts the likelihood of receiving the desirable outcome. We then
construct the training dataset by sampling individuals with a probability proportional to their predicted score in the linear
classifier using a soft-max function with a temperature of 1. In Figure 3 we plot the realized blindspot rate for the Data
baseline in all datasets with and without distribution shift. Our results show that even under the same distribution the Data
baseline can fail to catch instances of fixed predictions in the test dataset. This problem is further exacerbated by distribution
shift, with the realized blindspot rate increasing across all three datasets. Note that by design ReVer has 0 realized blindspots
because the regions themselves remain fixed under both train and test. Overall, these results highlight the importance of
auditing regions as a tool to robustly foresee future fixed predictions, even under distribution shift.
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Figure 3. Realized blindspot rate for Data baseline with and without a distribution shift. Realized blindspot rate is the percentage of
regions predicted to be responsive that contain individuals with fixed predictions in test dataset.
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G. Supplementary Material for Case Study on Pennsylvania SRAI
In this section we present all the actionability constraints for the Pennsylvania SRAI. Note that the feature space X for this
setting has the same upper and lower bounds as well as non-separable constraints as the action set. For this case study, we
audit a box region that contains any possible offender.

G.1. Actionability Constraints for the SRAI

We show a list of all features and their separable actionability constraints in Table 8.

Name Type LB UB Actionability Sign
GenderMale {0, 1} 0 1 No
GenderFemale {0, 1} 0 1 No
AgeUnder21: {0, 1} 0 1 No
Age21-25 {0, 1} 0 1 No
Age26-29 {0, 1} 0 1 No
Age30-39 {0, 1} 0 1 No
Age40-49 {0, 1} 0 1 No
Age50+ {0, 1} 0 1 No
CurrentConvictionMurder {0, 1} 0 1 Yes
CurrentConvictionPerson-Felony {0, 1} 0 1 Yes
CurrentConvictionPerson-Misd. {0, 1} 0 1 Yes
CurrentConvictionSex-Felony {0, 1} 0 1 Yes
CurrentConvictionSex-Misd. {0, 1} 0 1 Yes
CurrentConvictionBurglary {0, 1} 0 1 Yes
CurrentConvictionProperty-Felony {0, 1} 0 1 Yes
CurrentConvictionProperty-Misd. {0, 1} 0 1 Yes
CurrentConvictionDrug-Felony {0, 1} 0 1 Yes
CurrentConvictionDrug-Misd {0, 1} 0 1 Yes
CurrentConvictionPublic-Admin. {0, 1} 0 1 Yes
CurrentConvictionPublic-Order. {0, 1} 0 1 Yes
CurrentConvictionFirearms {0, 1} 0 1 Yes
CurrentConvictionOther Weapons {0, 1} 0 1 Yes
CurrentConvictionOther {0, 1} 0 1 Yes
NumPriorConvictionsNone {0, 1} 0 1 Yes
NumPriorConvictions1 {0, 1} 0 1 Yes
NumPriorConvictions2-3 {0, 1} 0 1 Yes
NumPriorConvictions4-5 {0, 1} 0 1 Yes
NumPriorConvictions5+ {0, 1} 0 1 Yes
PriorConvictionPerson/Sex {0, 1} 0 1 Yes
PriorConvictionProperty {0, 1} 0 1 Yes
PriorConvictionDrug {0, 1} 0 1 Yes
PriorConvictionPublicOrder {0, 1} 0 1 Yes
PriorConvictionPublicAdmin {0, 1} 0 1 Yes
PriorConvictionDUI {0, 1} 0 1 Yes
PriorConvictionFirearm {0, 1} 0 1 Yes
MultipleCurrentConvictions {0, 1} 0 1 Yes
PriorJuvenileAdjudication {0, 1} 0 1 Yes

Table 8. Separable actionability constraints for the Pennsylvania SRAI.

The non-separable actionability constraints for this dataset include:

1. OneHotEncoding: Actions on [AgeUnder21, Age21-25, Age26-29, Age30-39, Age40-49, Age50+] must
preserve one-hot encoding of Age. Exactly 1 of [AgeUnder21, Age21-25, Age26-29, Age30-39, Age40-49,
Age50+] must be TRUE

2. OneHotEncoding: Actions on [GenderMale, GenderFemale] must preserve one-hot encoding of Gender. Exactly
1 of [GenderMale, GenderFemale] must be TRUE

3. Actions on [NumPriorConvictionsNone, NumPriorConvictions2-3, NumPriorConvictions4-5,
NumPriorConvictions5+] must preserve one-hot encoding of NumPriorConvictions. Exactly 1
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of [NumPriorConvictionsNone, NumPriorConvictions2-3, NumPriorConvictions4-5,
NumPriorConvictions5+] must be TRUE

4. LogicalConstraint: If NumPriorConvictionsNone is True then any PriorConviction] variable must be
False.
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