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Abstract

Conversational search systems require effective
handling of context-dependent queries that of-
ten contain ambiguity, omission, and coreference.
Conversational Query Reformulation (CQR) ad-
dresses this challenge by transforming such
queries into self-contained forms suitable for stan-
dard retrieval pipelines, including those based
on vector databases. Existing CQR approaches
face two major limitations: a reliance on costly
external supervision from human annotations or
large language models, and poor alignment be-
tween the rewriting model and the downstream
retriever. To address these issues, we propose
ConvSearch-R1, the first self-driven framework
that eliminates the need for external rewrite su-
pervision by leveraging reinforcement learning
to optimize query reformulation directly through
retrieval signals obtained from vector databases.
Our method introduces a novel two-stage pipeline:
(1) Self-Driven Policy Warm-Up, which mitigates
the cold-start problem via retrieval-guided self-
distillation, and (2) Retrieval-Guided Reinforce-
ment Learning, which employs a rank-incentive
reward shaping mechanism to overcome the spar-
sity of traditional retrieval metrics. Extensive eval-
uations on the TopiOCQA and QReCC datasets
show that ConvSearch-R1 significantly outper-
forms previous state-of-the-art methods, achiev-
ing over 10% improvement on the challenging
TopiOCQA dataset while using only a 3B pa-
rameter model without any external supervision.
Our results highlight the practical utility of vector
databases in enabling effective, self-supervised
reformulation strategies for conversational search
applications.
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Conversation

Who is the current president of the United States?

Donald Trump is the 47th and current president of the United States.

Does Trump have his company in New York?

In New York, Trump owns a building called Trump 
Tower, designed by Der Scutt.

Rewriter Off-the-shelf Retriever

Context & Query

ConvSearch-R1
<think> ......... </think>

<rewrite> ......... </rewrite>

Rewritten Query rt
Donald Trump's Trump Tower in New
York was designed by Der Scutt. What
other buildings did Der Scutt design?

1

2

3

Retriever Collection

4

Which other buildings were designed by the 
designer of his company?

Der Scutt also designed One Astor Plaza and 
520 Madison Avenue.

Reference Passage
Der Scutt worked on Trump Tower next to the

Tiffany & Co. flagship store on Fifth Avenue, New
York City, developed by Donald Trump. His other

major buildings include One Astor Plaza, 520
Madison Avenue, ... He was the design consultant

for the Grand Hyatt New York.

5

Retrieve

Figure 1. Illustration of the CQR task. Given a query and its con-
text, the rewriter aims to reformulate the query into a stand-alone
form, which facilitates the off-the-shelf retriever in finding the
most relevant passage.

1. Introduction
Conversational search aims to fulfill users’ information
needs through multi-turn interactions, unlike traditional in-
formation retrieval systems that only consider single-turn,
keyword-based queries (Joshi et al., 2017; Kwiatkowski
et al., 2019). In these multi-turn scenarios, conversational
queries often contain ambiguity, omission, and coreference,
making it difficult for existing retrieval methods to accu-
rately capture user intent (Anantha et al., 2020; Qu et al.,
2020; Gao et al., 2022). Given the challenges and com-
putational costs of training multi-turn retrievers, Conversa-
tional Query Reformulation (CQR) (Elgohary et al., 2019;
Vakulenko et al., 2020; Yu et al., 2020) has emerged as a
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practical solution, transforming context-dependent queries
into self-contained forms that can be effectively processed
by off-the-shelf retrievers (As shown in Figure 1).

Existing CQR approaches have explored various strategies
to address conversational search challenges. Some methods
rely on explicit rewrites as supervision, obtained through
either human annotations (Lin et al., 2020; Vakulenko et al.,
2020; Del Tredici et al., 2021; Vakulenko et al., 2021) or
knowledge distillation (Mao et al., 2023b; Mo et al., 2024a)
from large language models (LLMs) like ChatGPT (OpenAI,
2023). More recent approaches attempt to leverage retrieval
signals for preference optimization, though still require ex-
ternally annotated data for initialization and generally limit
exploration to pairwise preferences rather than optimizing
for actual ranking improvements (Mo et al., 2023; Jang
et al., 2024; Zhang et al., 2024; Yoon et al., 2025; Lai et al.,
2025). These approaches suffer from two critical constraints:
1) the high dependency on costly and inconsistent exter-
nal sources for high-quality annotation; and 2) insufficient
alignment between the rewriting model and the downstream
retriever. The fundamental challenge remains: how to en-
able query reformulation models to effectively align with
retrievers without explicitly annotated reference rewrites,
through self-exploration guided by retrieval feedback from
vector databases.

To address these challenges, we propose ConvSearch-R1, a
novel self-driven framework that completely eliminates the
dependency on external rewrite supervision. Leveraging re-
trieval ranking signals as rewards, the model self-discovers
effective rewrites through iterative exploration and exploita-
tion. Specifically, we design a two-stage framework: (1)
Self-Driven Policy Warm-Up (SDPWU), which addresses
the cold-start problem by leveraging the model’s few-shot
reasoning capabilities combined with retrieval ranking sig-
nals from vector databases to self-distill high-quality rewrite
data without external supervision; and (2) Retrieval-Guided
Reinforcement Learning, which further aligns the rewrite
model with the retriever through Group Relative Policy Op-
timization (GRPO) (Shao et al., 2024). With a carefully
designed rank-incentive reward shaping, ConvSearch-R1
addresses the sparsity issue in conventional retrieval metrics
(like Recall@K and NDCG@K) (Jiang et al., 2025), provid-
ing smoother learning signals rather than binary or highly
skewed outcomes, enabling stable and efficient exploration
of the vast reformulation space.

We validate the effectiveness and generalizability of
ConvSearch-R1 through extensive experiments using 3B
parameter models. Compared to approaches employing
7B models (Zhang et al., 2024; Yoon et al., 2025), our
method is not only more cost-efficient but also delivers even
better performance. ConvSearch-R1 achieves state-of-the-
art performance on two widely-used conversational search

datasets, TopiOCQA (Adlakha et al., 2021) and QReCC
(Anantha et al., 2021). Notably, on the more challenging
TopiOCQA dataset under dense retrieval, ConvSearch-R1,
using Llama3.2-3B and Qwen2.5-3B as backbones, im-
proves by 10.3% and 10.7% on average across all metrics,
respectively, compared to previous state-of-the-art results.
This demonstrates that, even without human rewrites or ex-
ternal distilled data, relying solely on self-distillation com-
bined with RL under the reasoning mode enables the model
to perform effectively on the CQR task.

Our contributions are summarized as follows:

• We propose ConvSearch-R1, the first conversational
query rewriting approach that completely eliminates
dependency on external rewrite supervision, enabling
effective alignment with off-the-shelf retrievers with-
out costly human annotations.

• We introduce a novel two-stage alignment frame-
work comprising self-driven policy warm-up and rank-
incentive reward shaping that effectively addresses the
cold-start problem and reward sparsity challenges in-
herent in retrieval-aligned optimization.

• Our extensive experiments across multiple datasets
and retrievers demonstrate substantial performance
improvements over state-of-the-art methods, partic-
ularly on the challenging TopiOCQA dataset, where
ConvSearch-R1 achieves over 10% average improve-
ment across all metrics while using smaller language
models and no external supervision.

• To facilitate future research in this area, we make
datasets, code, and models available at https://
github.com/BeastyZ/ConvSearch-R1.

2. Related Work
2.1. Conversational Search

Conversational search is a way of searching for information
by having a natural, back-and-forth dialogue with a search
system, similar to talking with a person. The core challenge
of conversational search lies in addressing omission, ambi-
guity, and coreference present in the current query. Existing
approaches to conversational search can be broadly catego-
rized into two main types: conversational dense retrieval
(CDR) and CQR. For CDR, many existing methods (Mao
et al., 2024; Kim & Kim, 2022; Mo et al., 2024b) use a sub-
stantial amount of annotated session-passage pairs to fine-
tune an ad-hoc retriever into a context-aware conversational
retriever, a process that is costly and may not fully take the
advantages of off-the-shelf retrievers. On the other hand,
CQR leverages the strengths of existing ad-hoc retrieval
systems by striving to transform context-dependent queries
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into stand-alone forms. Early studies (Voskarides et al.,
2020; Lin et al., 2020) primarily relied on human rewrites
to endow models with query rewriting capability. With the
advent of LLMs, some recent works have begun to utilize
the power of LLMs for query rewriting. Mao et al. (2023b)
and Ye et al. (2023) employ ChatGPT to perform query
rewriting via a training-free, purely prompt-based method.
Meanwhile, many approaches (Mo et al., 2023; Zhang et al.,
2024; Jang et al., 2024; Mo et al., 2024a; Lai et al., 2025;
Yoon et al., 2025) distill high-quality rewrites from ChatGPT
or Llama to train rewriters that possess strong rewriting abil-
ity from the outset. In contrast, ConvSearch-R1 improves
query rewriting capability through self-distillation and RL-
based trial and error. ConvSearch-R1 not only significantly
reduces the cost of obtaining rewrites but also achieves state-
of-the-art performance.

2.2. RLVR-based Retrieval

Reinforcement learning from verifiable reward (RLVR) has
recently emerged as a powerful approach for enhancing
language models’ capabilities without explicit supervision
(DeepSeek-AI et al., 2025). While recent work has inte-
grated RLVR with retrieval mechanisms (Jin et al., 2025;
Song et al., 2025; Chen et al., 2025; Sun et al., 2025), these
efforts primarily focus on improving single-turn question
answering by teaching LLMs to better utilize retrieval tools.
In contrast, our approach leverages reasoning to optimize
query reformulation specifically for conversational search
contexts. In the retrieval domain, Jiang et al. (2025) ap-
plies RLVR for query generation, but differs from our work
in two key aspects: (1) it uses retrieval metrics directly
as rewards, while we develop a specialized rank-incentive
reward function, which significantly enhances retrieval per-
formance; and (2) it addresses only single-turn scenarios,
not the conversational challenges of omission, ambiguity,
and coreference resolution. Regarding conversational search
specifically, existing RL approaches Wu et al. (2021); Chen
et al. (2022) rely on human rewrites for reward computation,
whereas our method eliminates external supervision require-
ments while incorporating reasoning capabilities into the
rewriter.

3. ConvSearch-R1
3.1. Task Formulation

A conversational search session be defined as a sequence
of alternating user queries and system answers: S =
{(q1, a1), (q2, a2), . . . , (qt, at)}, where qt denotes the user
query at turn t, and at denotes the corresponding system
answer. At turn t, the user issues a query qt, which is po-
tentially dependent on the previous conversational history
Ct−1 = {(q1, a1), (q2, a2), . . . , (qt−1, at−1)}. The task of
CQR is, given the current query qt and the preceding con-

versational history Ct−1, to generate a context-independent
reformulated query rt = f(qt, Ct−1), where f(·) is the re-
formulation function that leverages both previous queries
and system answers to resolve omission, ambiguity, and
coreference in qt. The optimal reformulation function f∗

can be defined as:

f∗ = argmax
f

ES [δ(T (rt), p̂t)],

where p̂t is the gold-standard passage for qt in the collection,
T (·) is the retriever that returns passages given a query, and
δ(·, ·) is a matching function that measures the relevance
between the retrieved passage and the gold passage.

3.2. Overview

ConvSearch-R1 employs a reasoning-based approach to
enable the rewriter to fully grasp the omission, ambiguity,
and coreference present in the current user query, thereby
generating rewrites that are both context-independent and
semantically rich. As illustrated in Figure 2, ConvSearch-
R1 does not require any external supervised data (reference
rewrite) and consists of the following stages: (1) Self-distill
a set of format-compliant data from the πinit through few-
shot learning, aligning it with the preferences of the retriever.
Only the top-ranked (rank-1) rewrites are retained and used
to fine-tune the πinit, thus getting the πSFT with initial
ability to follow the desired output format and perform query
rewriting; (2) Further improve the πSFT using RL with rank-
incentive reward shaping, yielding the final rewriter πθ. The
output format of the rewriter is required to strictly adhere
to the following structure: <think>reasoning process here
</think>\n<rewrite>rewrite here </rewrite>.

3.3. Self-Driven Policy Warm-Up

Following Chu et al. (2025)’s findings on SFT’s crucial role
in stabilizing output formats for effective RL training, we
introduce a self-driven policy warm-up strategy that avoids
costly knowledge distillation from more powerful LLMs
used in previous approaches.

Self-Distillation. We begin by generating rewrites using
few-shot prompting applied to our initial model πinit:

Dd = {yi = πinit(xi, ρ, instruction) | xi ∈ D},

where D is the original dataset, ρ is a fixed set of few-shot
examples, and Dd is the distilled dataset. We then filter
these outputs to obtain format-compliant samples: Df =
{y ∈ Dd | g(y) = 1}, where g : Y → {0, 1} is a format
validation function indicating whether the output meets the
required constraints.

Preference Collection and Supervised Fine-Tuning. We
identify high-quality rewrites by retaining only samples
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Retrieval-Guided Reinforcement Learning with Rank-Incentive Reward Shaping (Stage 2)

Self-Driven Policy Warm-Up (Stage 1)

Training Data

Few-Shot

RetrieverFormatted Data Rank
1

23

NOT 
FOUND

Rank = 1

Self-Driven Data

Supervised
Fine-Tuning

Training Data

GRPO

Reasoning

<think> The user is asking about ... However, the 
context does not directly address the character's 
origin or background ... The coreference resolution 
is needed to clarify ... </think>

Initialize

Rewrite
<rewrite> What is the origin of the character Beast 
from Beauty and the Beast? ... The film features the 
character as a prince who transforms into an ugly 
beast. ... </rewrite>

Format Reward1
Rank-Incentive Reward2

<think> ... </think>
<rewrite> ... </rewrite>

Rank-Incentive Reward Shaping

1 2

3 4

Update

Format
🔥

🔥

Retriever

Self-Distillation Preference Collection Supervised Fine-Tuning

Figure 2. Overview of ConvSearch-R1. In Stage 1, we self-distilled a set of high-quality data using few-shot learning and obtained the
corresponding SFT model. In Stage 2, we further improved the rewriter’s performance via RL by refining the reward function.

whose rewrites rank the gold passage at position 1, creating
our self-driven data (SD-DATA). Each sample in SD-DATA
is represented as a triplet [c,q,r], containing conversational
history c, current query q, and the reasoning-rewrite pair
r. For more details about data collection, see Appendix B.
Finally, we fine-tune πinit on SD-DATA to maximize the
likelihood of ground-truth outputs, producing πSFT with
fundamental capabilities in format adherence, reasoning,
and query rewriting. Through this process, our model learns
to first generate an appropriate reasoning process and then
produce a context-independent rewrite, conditioned on both
the conversation history and the generated reasoning.

3.4. Retrieval-Guided Reinforcement Learning

Rank-Incentive Reward Shaping. The design of reward
functions is critical in RL, directly impacting the learning
effectiveness of policy models (Devidze et al., 2021). Unlike
Jiang et al. (2025) which directly uses retrieval metrics as
reward signals, we propose Rank-Incentive Reward Shaping
(RIRS) to address the reward sparsity problem. As shown
in Appendix Figure 8, directly using metrics like MRR@3
and NDCG@3 as rewards leads to severe reward sparsity,
hindering effective model learning.

RIRS utilizes retrieval ranking positions to create a more
informative reward signal rather than relying on binary
retrieval metrics. Considering users typically pay more

attention to top positions, RIRS implements a piecewise
reward function that allocates differentiated reward inten-
sities—assigning higher rewards for top positions (1-10)
while maintaining proportionally smaller but meaningful
rewards for moderate positions (11-100). This approach
preserves semantic thresholds of retrieval quality while en-
suring dense feedback signals throughout the policy opti-
mization process. The RIRS reward function is formally
defined as:

R(ξ) = f[1,10]→[1,2](ξ) · I[1,10](ξ)
+f[10,100]→[0,1](ξ) · I(10,100](ξ),

(1)

where fA→B represents a function mapping from interval A
to interval B, IA(ξ) is the indicator function, which equals 1
when ξ is in set A and 0 otherwise, ξ is the rank variable.

Considering format correctness, the complete reward func-
tion is:

R(ξ, ϕ) = R(ξ) · I(ϕ = 1) + δ · I(ϕ = 0), (2)

where ϕ ∈ 0, 1 is the format compliance indicator, and
δ = −0.1 is the penalty term for format non-compliance.

GRPO. Equipped with the rewriter πSFT obtained from
Stage 1 SDPWU and the carefully designed reward function
RIR, we adopt GRPO (Shao et al., 2024) as the specific
RL algorithm. GRPO is an efficient algorithm that elimi-
nates the need for an explicit reward model and value model.
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Through RL with Rank-Incentive Reward Shaping, an ex-
isting πθ is incentivized to explore the solution space while
rollouts {ri}i=1 ∼ πθold(·|x) are used to maximize retrieval
performance. The optimization objective is formulated as:

JGRPO(θ) =E
[∑

i

min
( πθ(ri|x)
πθold(ri|x)

Ai, clip
( πθ(ri|x)
πθold(ri|x)

,

1− ϵ, 1 + ϵ
)
Ai

)
− βDKL(πθ||πSFT )

]
,

(3)
where Ai = R(ξi,ϕi)−mean(R(ξ,ϕ))

std(R(ξ,ϕ))
represents the normal-

ized advantage of the i-th rewritten query within the current
group, calculated using our RIRS reward function. The pa-
rameter ϵ controls the clipping threshold, while β regulates
the KL divergence penalty.

4. Experimental Setup
Settings. We follow prior work (Yoon et al., 2025) in con-
figuring the datasets, retrievers, and metrics. For datasets,
we employ TopiOCQA (Adlakha et al., 2021) and QReCC
(Anantha et al., 2021), which are widely used in conver-
sational search task. For retrievers, we utilize BM25 as
the sparse retriever for all experiments and ANCE (Xiong
et al., 2020) as the dense retriever for all experiments, where
ANCE is trained on the MS-MARCO (Campos et al., 2016)
passage retrieval tasks. Notably, we do not train any re-
triever in our experiments. For metrics, we adopt MRR@3,
NDCG@3, and Recall@K (referred to as R@K in this pa-
per) for evaluation. See Appendix E.1 & E.2 for more
details.

Baselines1. We consider four categories of baselines in
our experiments. The first category comprises basic base-
lines that do not involve any query rewriting optimization,
including Human Rewrite, Raw, DS-R1-Distill-Qwen-7B,
Llama3.2-3B, and Qwen2.5-3B. The second category con-
sists of baselines that fine-tune small-scale models (e.g., T5
and BERT), including QuReTec (Voskarides et al., 2020),
T5QR (Lin et al., 2020), CONQRR (Wu et al., 2021), Con-
vGQR (Mo et al., 2023), EDIRCS (Mao et al., 2023a), Iter-
CQR (Jang et al., 2024), ADACQR (Lai et al., 2025), and
CHIQ-Fusion (Mo et al., 2024a). The third category in-
volves baselines that fine-tune LLMs (e.g., Llama2-7B) ,
including RETPO (Yoon et al., 2025) and AdaQR (Zhang
et al., 2024). The fourth category is training-free, leveraging
prompt-based methods with ChatGPT for query rewriting.
This category includes LLM4CS (Mao et al., 2023b) and
InfoCQR (Ye et al., 2023). A detailed description of each
aforementioned baseline is presented in Appendix E.3.

Implementation Details. We employ Llama3.2-3B and
Qwen2.5-3B as the backbone models for our rewrite. For
training, we utilize verl (Sheng et al., 2024), a flexible and

1We focus exclusively on the CQR and do not consider methods
designed for CDR.

efficient RLHF framework. The BM25 retriever is imple-
mented using Pyserini (Lin et al., 2021), while the ANCE
retriever is built with Faiss (Johnson et al., 2017). Evalua-
tion metrics are computed with pytrec eval (Gysel & de Ri-
jke, 2018). More implementation details can be found in
Appendix E.4.

5. Results and Analysis
5.1. Main Results

Table 1 shows the retrieval performance of various meth-
ods in dense and sparse settings, leading to the following
conclusions:

Employing a two-stage alignment framework further
enhances the final performance in the absence of exter-
nal supervised data. Directly using the current user query
(Raw) for retrieval yields the poorest performance, under-
scoring the necessity of CQR. Notably, Human Rewrite
not only fails to deliver optimal results but also performs
significantly worse than many other baselines. This sug-
gests that, in addition to the high annotation costs, hu-
man rewrites are not aligned with retriever preferences.
Furthermore, directly applying the reasoning model (i.e.,
DS-R1-Distill-Qwen-7B) to conversational search
yields even worse results than Human Rewrite. This in-
dicates that straightforward general-domain reasoning is not
a silver bullet, and even models equipped with Long-CoT
capability (i.e., R1-like models) struggle to excel in conver-
sational search scenarios. Methods that rely solely on hu-
man rewrites as supervision signals (e.g., QuReTeC, T5QR)
exhibit the lowest performance among all baselines, high-
lighting the clear limitations of human rewrites. In contrast,
approaches that utilize retrieval signals for supervision (e.g.,
CONQRR, EDIRCS, IterCQR, ADACQR, RETPO, AdaQR)
achieve notable performance improvements, yet still fall
short of our method. These results collectively demon-
strate the effectiveness of our proposed two-stage alignment
framework. Notably, compare to the baselines, ConvSearch-
R1 achieves new state-of-the-art performance across most
experimental settings without the need for any external su-
pervised data.

While the baselines leverage larger language models
to achieve competitive performance, our 3B rewriter
demonstrates superior results. Many studies (e.g.,
RETPO, AdaQR, LLM4CS, InfoCQR) have attempted to
tackle the CQR task by leveraging larger language models
(such as ChatGPT). However, our 3B-parameter model sig-
nificantly outperforms these approaches and achieves new
state-of-the-art results. Both RETPO and AdaQR employ
Direct Preference Optimization (Rafailov et al., 2023) to
align the retriever’s preferences, but this strategy overlooks
the potential of enabling the model to fit preferences through
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Table 1. Results of both dense and sparse retrieval on TopiOCQA and QReCC. NE denotes no external distillation, indicating that no
external data was distilled from open-source or closed-source LLMs. NH stands for no human, meaning that no human rewrites were
utilized. Bold indicates the best result, and the rest of the tables follow the same convention. Grey indicates the improvements over
SOTA baselines.

Type Method NE NH TopiOCQA QReCC Avg
MRR@3 NDCG@3 R@10 R@100 MRR@3 NDCG@3 R@10 R@100

Sp
ar

se
(B

M
25

)

Human Rewrite - - - - - - 39.8 36.3 62.7 98.5 -
Raw - - 2.1 1.8 4.0 9.2 6.5 5.5 11.1 21.5 7.7
DS-R1-Distill-Qwen-7B - - 10.0 8.6 18.8 38.3 29.4 27.3 44.0 63.9 30.0

QuReTeC (SIGIR 2020) ✓ ✗ 8.5 7.3 16.0 - 34.0 30.5 55.5 - -
T5QR ✓ ✗ 11.3 9.8 22.1 44.7 33.4 30.2 53.8 86.1 36.4
CONQRR (EMNLP 2022) ✗ ✗ - - - - 38.3 - 60.1 88.9 -
ConvGQR (ACL 2023) ✓ ✗ 12.4 10.7 23.8 45.6 44.1 41.0 64.4 88.0 41.3
EDIRCS (ACL 2023) ✗ ✗ - - - - 41.2 - 62.7 90.2 -
IterCQR (NAACL 2024) ✗ ✓ 16.5 14.9 29.3 54.1 46.7 44.1 64.4 85.5 44.4
ADACQR (COLING 2025) ✗ ✓ 28.3 26.5 48.9 71.2 55.1 52.5 76.5 93.7 56.6
CHIQ-Fusion (EMNLP 2024) ✗ ✓ 25.6 23.5 44.7 - 54.3 51.9 78.5 - -
RETPO (NAACL 2025) ✗ ✓ 28.3 26.5 48.3 73.1 50.0 47.3 69.5 89.5 54.1
AdaQR (EMNLP 2024) ✗ ✓ 20.3 18.0 37.1 66.2 50.6 48.0 69.6 - -
LLM4CS (EMNLP 2023) ✗ ✓ 18.9 17.7 33.7 - 47.8 45,0 69.1 - -
InfoCQR (EMNLP 2023) ✗ ✓ - - - - 48.9 46.3 66.4 - -

LLama3.2-3B - - 4.8 4.0 8.6 20.7 22.5 21.0 33.7 49.8 20.6
+ ConvSearch-R1(ours) ✓ ✓ 37.8 36.2 59.6 80.1 55.9 54.3 77.2 89.0 61.3

+9.5 +9.7 +10.7 +7.0 +0.8 +1.8 -1.3 -4.7 +4.7

Qwen2.5-3B - - 8.8 7.5 17.3 36.1 27.3 25.0 42.3 64.6 28.6
+ ConvSearch-R1(ours) ✓ ✓ 35.2 33.5 57.8 79.9 56.5 54.8 76.3 88.1 60.3

+6.9 +7.0 +8.9 +6.8 +1.4 +2.3 -2.2 -5.6 +3.7

D
en

se
(A

N
C

E
)

Human Rewrite - - - - - - 38.4 35.6 58.6 78.1 -
Raw - - 4.1 3.8 7.5 13.8 10.2 9.3 15.7 22.7 10.9
DS-R1-Distill-Qwen-7B - - 21.0 19.9 36.4 53.4 28.4 25.9 43.9 59.0 36.0

QuReTeC (SIGIR 2020) ✓ ✗ 11.2 10.5 20.2 - 35.0 32.6 55.0 - -
T5QR ✓ ✗ 23.0 22.2 37.6 54.4 34.5 31.8 53.1 72.8 41.2
CONQRR (EMNLP 2022) ✗ ✗ - - - - 41.8 - 65.1 84.7 -
ConvGQR (ACL 2023) ✓ ✗ 25.6 24.3 41.8 58.8 42.0 39.1 63.5 81.8 47.1
EDIRCS (ACL 2023) ✗ ✗ - - - - 42.1 - 65.6 85.3 -
IterCQR (NAACL 2024) ✗ ✓ 26.3 25.1 42.6 62.0 42.9 40.2 65.5 84.1 48.6
ADACQR (COLING 2025) ✗ ✓ 38.5 37.6 58.4 75.0 45.8 42.9 67.3 83.8 56.2
CHIQ-Fusion (EMNLP 2024) ✗ ✓ 38.0 37.0 61.6 - 47.2 44.2 70.7 - -
RETPO (NAACL 2025) ✗ ✓ 30.0 28.9 49.6 68.7 44 41.1 66.7 84.6 51.7
AdaQR (EMNLP 2024) ✗ ✓ 38.1 36.6 61.3 79.9 43.4 40.8 65.6 - -
LLM4CS (EMNLP 2023) ✗ ✓ 27.7 26.7 43.3 - 44.8 42.1 66.4 - -
InfoCQR (EMNLP 2023) ✗ ✓ - - - - 43.9 41.3 65.6 - -

LLama3.2-3B - - 12.8 11.7 22.6 38.1 19.1 17.4 30.4 44.1 24.5
+ ConvSearch-R1(ours) ✓ ✓ 50.5 50.1 72.0 86.3 50.2 48.1 70.6 82.8 63.8

+12.0 +12.5 +10.4 +6.4 +3.0 +3.9 -0.1 -2.5 +7.6

Qwen2.5-3B - - 19.2 18.3 33.0 46.7 29.3 27.2 44.2 59.0 34.6
+ ConvSearch-R1(ours) ✓ ✓ 51.4 51.3 72.0 85.7 49.7 47.7 69.8 81.6 63.7

+12.9 +13.7 +10.4 +5.8 +2.5 +3.5 -0.9 -3.7 +7.5

trial and error. In contrast, ConvSearch-R1 utilizes RL with
a Rank-Incentive Reward, which allows the model to ex-
plore and refine preference alignment through iterative trial
and error, ultimately leading to a more optimal solution
for retriever preference modeling with reduced parameter
usage.

5.2. Generalization on Unseen Datasets

For the evaluation of generalization ability, we trained mod-
els on the TopiOCQA training set and evaluated them on the
QReCC test set, and vice versa. As shown in Table 2, our
method demonstrates superior generalization performance
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Table 2. Performance on unseen datasets.

Method TopiOCQA QReCC

MRR@3 NDCG@3 MRR@3 NDCG@3

Sparse(BM25)

IterCQR 13.7 12.2 44.9 42.4
ADACQR 14.0 12.6 - -
RETPO 17.2 - 40.1 -

ConvSearch-R1 (LLama) 27.6 25.8 49.9 47.6
ConvSearch-R1 (Qwen) 24.0 22.1 46.2 43.9

Dense(ANCE)

IterCQR 17.8 16.4 40.1 37.4
ADACQR 20.1 18.6 - -
RETPO 23.2 - 40.9 -

ConvSearch-R1 (LLama) 36.8 35.4 42.8 40.2
ConvSearch-R1 (Qwen) 35.2 34.2 41.5 39.0
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Figure 3. Model scale analysis on TopiOCQA using Qwen2.5 Se-
ries.

compared to other approaches. This significant improve-
ment in generalization can be primarily attributed to our use
of RL with a Rank-Incentive Reward. By employing a well-
designed reward function, our training paradigm encourages
the model to interact with a broader and more diverse set
of high-quality data through trial and error, thereby enhanc-
ing its ability to generalize across different datasets. See
Appendix Table 8 for a full comparison.

5.3. Scaling Behavior of Model Performance

To further validate the generalizability of our approach
across models of varying parameter scales, we conducted ex-
periments on the TopiOCQA dataset using the Qwen2.5 Se-
ries models, as shown in Figure 3. Our results demonstrate
that our method consistently outperforms SOTA baseline
across almost all model sizes. Notably, as the model size
increases, the performance gap between our method and the
SOTA baseline becomes increasingly pronounced. Interest-
ingly, even when using a relatively small 0.5B parameter
model under dense (ANCE) retrieval, our approach still
significantly surpasses the SOTA baseline. These findings
indicate that ConvSearch-R1 exhibits strong generalizability
across models of any scale.
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Figure 4. Warm-up analysis using Qwen2.5-3B

5.4. Ablation Study

Overall Analysis. ConvSearch-R1 is a two-stage align-
ment framework. In Stage 1 (§ 3.3), an initial preference-
aligned rewriter is obtained through self-distillation and
preference-based filtering. In Stage 2 (§ 3.4), reinforce-
ment learning with carefully designed rewards is employed
to further align the rewriter with retriever preferences. To
validate the effectiveness of each component, we conduct
ablation studies. As shown in Table 3, each component in
ConvSearch-R1 plays a critical role across different retriev-
ers and datasets, demonstrating the rationality and effective-
ness of our framework’s design.

Warm-Up Analysis. To validate the necessity of Stage
1 (§ 3.3), we selected checkpoints from various steps dur-
ing the training process using different retrievers and on
different datasets. These checkpoints were then evaluated
accordingly. As shown in Figure 4, as the number of train-
ing steps increases, the MRR@3 score gradually improves
and eventually reaches a plateau. At every training step,
ConvSearch-R1 consistently outperforms the RIRS-only
model (i.e., the model trained without Stage 1) in terms
of MRR@3. These results provide strong evidence for the
essential role of Stage 1 in enhancing model performance.

Reward Analysis. To further validate the necessity of
reward shaping in stage 2 (§ 3.4), we conducted compar-
ative experiments on different reward functions using the
Qwen2.5-3B model with a dense retriever architecture. As
shown in Figure 5, the rewriter utilizing Rank-Incentive
Reward Shaping consistently achieved the best performance
across all settings. These results provide strong evidence
for the necessity of reward shaping in our task.

5.5. Case Study

Why does ConvSearch-R1 lead to significant perfor-
mance improvements? To answer this question, we ana-
lyze a specific case selected from the QReCC test set, as
shown in Appendix Table 9. In this case, the user asks
two questions within a single query, both involving coref-
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Table 3. Ablation results for both dense and sparse retrieval on the TopiOCQA and QReCC with full metrics. SDPWU and RIRS denote
the stage1 (§ 3.3) and stage2 (§ 3.4) of ConvSearch-R1, respectively.

Type Method SDPWU RIRS TopiOCQA QReCC

MRR@3 NDCG@3 R@10 R@100 MRR@3 NDCG@3 R@10 R@100

Sparse(BM25)

Qwen2.5-3B ✗ ✗ 8.8 7.5 17.3 36.1 27.3 25.0 42.3 64.6
+ w/ SDPWU ✓ ✗ 14.8 13.0 27.8 50.9 47.6 45.5 64.3 79.8
+ w/ RIRS ✗ ✓ 32.6 31.0 56.2 79.0 51.7 49.9 71.9 85.8
+ ConvSearch-R1 ✓ ✓ 35.2 33.5 57.8 79.9 56.5 54.8 76.3 88.1

Dense(ANCE)

Qwen2.5-3B ✗ ✗ 19.2 18.3 33.0 46.7 29.3 27.2 44.2 59.0
+ w/ SDPWU ✓ ✗ 22.2 20.6 38.7 58.3 39.9 37.5 59.3 73.8
+ w/ RIRS ✗ ✓ 49.2 48.6 70.4 84.8 47.7 45.6 68.3 80.7
+ ConvSearch-R1 ✓ ✓ 51.4 51.3 72.0 85.7 49.7 47.7 69.8 81.6
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Figure 5. Comparison of different reward functions for dense retrieval on the TopiOCQA and QReCC datasets.

erence to previous context. In the early stages of training,
the alignment between the rewriter and the retriever’s pref-
erences is limited. We observe that, during the reasoning
process, the rewriter abandons the reformulation of the first
question, resulting in a final rewrite that only addresses the
second question. Consequently, the gold passage is not
retrieved within the top 100 results. In the later stages of
training, after extensive trial and error, the rewriter achieves
a much higher degree of alignment with the retriever’s pref-
erences. We find that the rewriter repeatedly considers both
user questions during reasoning and generates a rewrite that
successfully resolves the coreference for both. Notably,
the rewriter even generates pseudo-passages to supplement
missing information. Thanks to this comprehensive consid-
eration and the generation of pseudo-passages, the rewriter
is able to retrieve the gold passage at the top-1 position
for this case in the later training stage. These findings pro-
vide strong evidence that our method can effectively align
with the retriever’s preferences and achieve state-of-the-art
performance on the benchmark.

6. Conclusion
In this paper, we propose ConvSearch-R1, a novel two-stage
alignment framework for CQR that operates without the
need for any external supervised data (reference rewrite).
Specifically, we employ a self-distillation and rank-based
data filtering strategy to construct high-quality training data
for SFT. Subsequently, we leverage RL with rank-incentive
reward shaping to further refine the model through trial
and error. This enables the rewriter to align its output with
the retriever’s preferences through reasoning process. To
the best of our knowledge, we are the first to tackle the
CQR task without relying on any form of external supervi-
sion. Experimental results demonstrate that ConvSearch-R1
achieves state-of-the-art performance on both in-domain and
out-of-domain datasets. Furthermore, our method exhibits
a consistent scaling law with respect to model size, and
ablation studies confirm that each component of our frame-
work contributes substantially to the overall performance
improvement.
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A. ConvSearch-R1 VS Prior Works
As depicted in Figure 9, the distinction of ConvSearch-R1 from previous studies lies in the approach to obtaining rewrites.
Prior research has always relied on external sources (e.g., human rewrites or powerful LLMs) to generate rewrites and has
failed to endow the rewriter with reasoning capability. In contrast, ConvSearch-R1 acquires rewrites through self-distillation
and RL, utilizing trial and error, and equips the rewriter with reasoning ability.

B. Data Collection
We performed self-distillation on Qwen2.5-3B and Llama3.2-3B using the prompts specified in Figure 6 on the training set
of TopiOCQA (Adlakha et al., 2021) and QReCC (Anantha et al., 2021). We retained only those samples that conformed
to the required format and for which the rewritten query resulted in the gold passage being ranked first. The number of
qualified samples for each model on the TopiOCQA and QReCC datasets is summarized in Table 4.

Table 4. The number of samples obtained using the SDPWU (§ 3.3) on TopiOCQA and QReCC datasets for both Qwen2.5-3B and
Llama3.2-3B models.

Model TopiOCQA QReCC

Sample Nums Sample Nums

Qwen2.5-3B 5892 7759
Llama3.2-3B 6034 6623

Prompt for few-shot learning:

Given a query and its context, you must first think about the reasoning process in the mind to decontextualize the query by
resolving coreference and omission issues. Then, provide the user with a rewrite that retains its original meaning and is as
informative as possible to help search engines retrieve relevant documents effectively. The reasoning process and rewrite
should be enclosed within <think></think>and <rewrite></rewrite>tags, respectively, i.e., <think>reasoning process here
</think>\n<rewrite>rewrite here </rewrite>.

Here is an example for your reference:
### Example Begin ###
{example}
### Example End ###

### Context Begin ###
{context}
### Context End ###

Query: {query}

Figure 6. Prompt for few-shot learning

C. Results on Llama2-7B
To ensure a fair comparison, we followed the experimental protocols of Yoon et al. (2025) (using Llama2-7B) and Zhang
et al. (2024) (using Mistral-7B), applying our method on the Llama2-7B2 model under the same experimental settings. As
shown in Table 5, ConvSearch-R1 consistently achieves state-of-the-art performance on Llama2-7B. This result provides
strong evidence for the effectiveness and generalizability of ConvSearch-R1 across different models. It is worth noting that
Llama2-7B heavily relies on SFT to acquire robust format adherence capability; without SFT, the stability of RL training
can be significantly compromised, resulting in worse performance.

2https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
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Prompt for training and inference:

Given a query and its context, you must first think about the reasoning process in the mind to decontextualize the query by
resolving coreference and omission issues. Then, provide the user with a rewrite that retains its original meaning and is as
informative as possible to help search engines retrieve relevant documents effectively. The reasoning process and rewrite
should be enclosed within <think></think>and <rewrite></rewrite>tags, respectively, i.e., <think>reasoning process here
</think>\n<rewrite>rewrite here </rewrite>.

### Context Begin ###
{context}
### Context End ###

Query: {query}
Rewrite:

Figure 7. Prompt for training and inference

Table 5. Results of ConvSearch-R1 using Llama2-7B as a backbone of the rewriter. For comparison, Baseline SOTA refers to the best
performance achieved by any baseline method on each respective metric.

Type Method TopiOCQA QReCC Avg
MRR@3 NDCG@3 R@10 R@100 MRR@3 MRR@3 R@10 R@100

Sparse(BM25)
Baseline SOTA 28.3 26.5 48.9 73.1 55.1 52.5 78.5 93.7 57.1

ConvSearch-R1 35.1 33.8 58.0 79.3 55.7 54.0 76.8 88.1 60.1
w/o SFT 13.5 11.9 25.1 48.4 34.0 31.5 51.7 74.4 36.3

Dense(ANCE)
Baseline SOTA 38.5 37.6 61.6 79.9 47.2 44.2 70.7 85.3 58.1

ConvSearch-R1 49.2 49.0 70.5 84.8 49.0 47.1 69.8 82.3 62.7
w/o SFT 23.7 22.8 38.1 54.8 33.6 31.7 50.6 62.5 39.7

D. Rank-Incentive Reward
To further evaluate the generalizability of the Rank-Incentive Reward (RIR) across different types of functions, we designed
experiments involving three distinct categories of functions. The formulations of these functions are as follows:

Reward(rank) =


a ∗ rank + b, Piecewise Linear Func
e1−rank, Exponential Decay Func

1
rank , Reciprocal Func

(4)

The experimental results on Qwen3.2-3B are presented in Table 6. As shown, all methods achieve comparable performance,
and each surpasses the baselines, reaching state-of-the-art results on TopiOCQA. In this paper, we use the Piecewise Linear
Function as Rank-Incentive Reward to present the main results.
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Table 6. Results of different Rank-Incentive Rewards. Baseline SOTA refers to the best performance achieved by any baseline method on
each respective metric.

Type Method TopiOCQA Avg
MRR@3 NDCG@3 R@10 R@100

Sparse(BM25)

Baseline SOTA 28.3 26.5 48.9 73.1 44.2

Piecewise Linear Func 35.2 33.5 57.8 79.9 51.6
Exponential Decay Func 36.8 35.5 58.2 79.6 52.5

Reciprocal Func 34.8 33.3 57.6 78.6 51.1

Dense(ANCE)

Baseline SOTA 38.5 37.6 61.6 79.9 54.4

Piecewise Linear Func 51.4 51.3 72.0 85.7 65.1
Exponential Decay Func 50.4 50.0 70.6 85.5 64.1

Reciprocal Func 50.6 50.2 72.0 85.5 64.6

E. Experimental Details
E.1. Datasets Details

We use QReCC and TopiOCQA as our datasets in the experiments: (1) QReCC focuses on query rewriting. The overall task
is relatively simple, and it provides human-rewritten queries. (2) TopiOCQA emphasizes topic shifts within conversations. It
generally involves more conversation turns than QReCC and poses a higher level of difficulty. However, it does not provide
human-rewritten queries.

For all datasets, we remove samples that lack gold passages. In the case of QReCC, some samples have gold passages but no
corresponding answers for the queries. Following TopiOCQA, we assign UNANSWERABLE as the answer for such queries.
For detailed dataset statistics, please refer to Table 7. All datasets used in this paper are supported for academic research.

Table 7. Statistics of conversational search datasets.

Dataset Split #Conv. #Turns(Qry.) #Collection

TopiOCQA train 3,509 45,450 25Mtest 205 2,514

QReCC train 10,823 29,596 54Mtest 2,775 8,124

E.2. Metrics Details

In this study, we employ three widely used metrics to evaluate the performance of our method: Mean Reciprocal Rank at
K (MRR@K), Normalized Discounted Cumulative Gain at K (NDCG@K), and Recall at K (Recall@K). These metrics
provide complementary perspectives on ranking quality and retrieval effectiveness.

MRR@K measures the average reciprocal rank of the first relevant item within the top K results across all queries. It
emphasizes the importance of retrieving a relevant item as high as possible in the result list, rewarding systems that return
relevant results earlier.

NDCG@K evaluates the ranking quality by considering both the position and the graded relevance of items within the top K
results. This metric assigns higher importance to relevant items appearing higher in the ranking and accounts for scenarios
where relevance is not binary, thus providing a more nuanced assessment of ranking effectiveness.

Recall@K quantifies the proportion of relevant items that are successfully retrieved within the top K results. It reflects the
system’s ability to cover as many relevant items as possible in the truncated result list, providing insight into the coverage of
relevant content.
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E.3. Baselines Details

In our experiments, we compare the following baselines: (1) Human Rewrite: Manually annotated query rewrites; (2)
Raw: The user’s original query within the dialogue context; (3) DS-R1-Distill-Qwen-7B: A reasoning model distilled
from DeepSeek-R1; (4) QuReTeC(Voskarides et al., 2020): A bidirectional transformer model for resolving underspecified
queries in multi-turn conversational search, using distant supervision for training data generation; (5) T5QR(Lin et al.,
2020): A sequence-to-sequence model based on T5, fine-tuned for conversational question reformulation; (6) CONQRR(Wu
et al., 2021): A reinforcement learning-based approach that rewrites conversational queries to optimize retrieval with any
retriever; (7) ConvGQR(Mo et al., 2023): Combines query rewriting and expansion using generative pre-trained models,
incorporating knowledge infusion for better retrieval; (8) EDIRCS(Mao et al., 2023a): A non-autoregressive, text-editing
model that selects most rewrite tokens from dialogue context, trained with search-oriented objectives for efficient query
reformulation; (9) IterCQR(Jang et al., 2024): Iteratively optimizes query reformulation based on information retrieval
signals without human supervision; (10) ADACQR(Lai et al., 2025): Aligns reformulation models with both sparse and
dense retrievers via a two-stage training strategy; (11) CHIQ-Fusion(Mo et al., 2024a): Improves conversational history
quality with open-source LLMs before query generation; (12) RETPO(Yoon et al., 2025): Fine-tunes a language model
using large-scale retriever feedback to generate rewrites aligned with retrieval preferences; (13) AdaQR(Zhang et al., 2024):
Trains query rewriting models with limited annotations by using conversational answer probability as a reward, eliminating
the need for passage labels; (14) LLM4CS(Mao et al., 2023b): Uses LLMs to generate and aggregate multiple query rewrites
and hypothetical responses, robustly representing user intent; (15) InfoCQR(Ye et al., 2023): Utilizes LLMs as query
rewriters and editors, then distills their capabilities into smaller models for efficiency; (16) Qwen2.5-3B: A lightweight
multi-modal AI model from Alibaba Cloud, delivering strong performance with fewer parameters; (17) Llama2.5-3B:
A compact version of Meta’s Llama, optimized for efficient, edge-device processing with robust text understanding and
generation.

E.4. Implementation Details

All experiments are conducted based on the verl(Sheng et al., 2024). The training process consists of two main stages:
SFT and RL. During the SFT stage, we apply the following hyperparameters across all experiments: a batch size of 64, a
maximum sequence length of 3072, 2 training epochs, and a learning rate of 1e-5. For the RL stage, the hyperparameters are
set as follows for all experiments: a batch size of 128, a maximum prompt length of 1536, a maximum response length of
1024, a learning rate of 1e-6, 100 learning rate warmup steps, a clipping ratio of 0.2, a KL loss coefficient of 0.001, and a
rollout sample size of n=8 with a sampling temperature of 0.7. The number of training epochs is set to 6 for TopiOCQA and
9 for QReCC, respectively.

For evaluation, we follow the protocol described in Zhang et al. (2024). The BM25 parameters are set to k1 = 0.9 and b =
0.4 for TopiOCQA, and k1 = 0.82 and b = 0.68 for QReCC. The lengths of the query, concatenated input, and passage are
truncated to 64, 512, and 384 tokens, respectively.

In this paper, we use the Instruct-tuned versions of Llama3.2-3B3 and Qwen2.5-3B4 for all experiments.

F. Additional Experimental Results
Due to space limitations, we present only a subset of the results regarding generalization performance in the main text. For
the generalization on unseen datasets, the complete results are provided in Table 8. The additional results included in this
table further confirm that our method exhibits strong generalization capability.

3https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
4https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
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Conversational Search Session

Context: 
Q1: What's the prince's name in Beauty and  the Beast?
A1: The Beast from the film Beauty and the  Beast is 
also known as Prince Adam and Master of the Castle.
Q2: Does the character appear anywhere else?
A2: Beast also appears in the film's two direct-to-video 
followups Beauty and the Beast: The Enchanted 
Christmas and Belle's Magical World.

Query:
Q3: What is the origin of the character?

Previous Work ConvSearch-R1

Session Rewriter Retriever Session Rewriter Retriever

Data Source Train

What is the origin of the character Beast from Beauty and the Beast?

Rewriter Output

❌   No Human ❌   No External Distillation ❌   Think

Data Source

Self-Driven Policy Trial & Error

Train

<think> ......... </think>\n<rewrite> ......... </rewrite>
Rewriter Output

✅   No Human ✅   No External Distillation ✅   Think

Figure 9. Comparison of ConvSearch-R1 with previous works.

Table 8. Performance on unseen datasets with full metrics.

Type Method TopiOCQA QReCC

MRR@3 NDCG@3 R@10 R@100 MRR@3 NDCG@3 R@10 R@100

Sparse(BM25)

IterCQR 13.7 12.2 - - 44.9 42.4 - -
ADACQR 14.0 12.6 - - - - - -
RETPO 17.2 - 32.0 59.1 40.1 - 62.2 86.5

ConvSearch-R1(ours, Llama3.2-3B) 27.6 25.8 48.3 74.5 49.9 47.6 72.0 87.2
ConvSearch-R1(ours, Qwen2.5-3B) 24.0 22.1 42.4 69.2 46.2 43.9 68.5 83.8

Dense(ANCE)

IterCQR 17.8 16.4 - - 40.1 37.4 - -
ADACQR 20.1 18.6 - - - - - -
RETPO 23.2 - 40.0 59.4 40.9 - 61.9 79.9

ConvSearch-R1(ours, Llama3.2-3B) 36.8 35.4 58.8 78.4 42.8 40.2 63.5 78.7
ConvSearch-R1(ours, Qwen2.5-3B) 35.2 34.2 57.0 75.4 41.5 39.0 61.8 76.6
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Table 9. Case study on a example from QReCC using Qwen2.5-3B as a backbone.

Conversation

### Context Begin ###
Q1: What was Wallis’ relationship with Edward?
A1: In January 1934, while Lady Furness was away in New York City, Wallis Simpson allegedly became Prince Edward’s mistress.
Q2: Were they romantically involved?
A2: Edward denied this to his father, despite his staff seeing them in bed together as well as evidence of a physical sexual act.
Q3: When did they marry?
A3: Edward VIII married Wallis Simpson in France on 3 June 1937, after her second divorce became final. Later that year, the couple toured Germany.
Q4: How did Wallis and Earl meet?
A4: In April 1916, Wallis Simpson met Earl Winfield Spencer Jr., a U.S. Navy aviator, at Pensacola, Florida, while visiting her cousin Corinne Mustin.
Q5: Did Earl have to leave due to World War I?
A5: After the United States entered the First World War in 1917, Earl Spencer was posted to San Diego.
Q6: Where did Earl and Wallis live during this time?
A6: Earl Spencer was posted to San Diego; they remained there until 1921.
Q7: Was their marriage happy?
A7: By September 1925, Wallis Simpson and her husband Earl Spencer were living apart.
### Context End ###

Query: Did they stay together or did they eventually get divorced?

ConvSearch-R1 (Initial Stage)

<think> According to A7, Wallis Simpson and Earl Spencer were living apart by September 1925. While the context does not explicitly state that they divorced, their
separation suggests the end of their marriage. Since the original question asks whether they stayed together or eventually divorced, and we know they separated by 1925,
it is reasonable to refine the question based on available information. </think>
<rewrite> Did Wallis Simpson and Earl Spencer eventually get divorced? </rewrite> (Not Found)

ConvSearch-R1 (Final Stage)

<think> The user is asking about the relationship and eventual outcome of Wallis Simpson and Earl Spencer’s marriage. The previous context mentions their first
meeting and that Wallis visited her cousin in Pensacola, Florida, in 1916. It also notes that Earl Spencer was a U.S. Navy aviator and their marriage was unhappy. Wallis
and Earl’s marriage eventually led to a divorce as Wallis had her second divorce by 1936, when she became involved with Edward VIII. The question seeks information
about whether they were together at all or if they ultimately divorced. Context mentions their marriage was unhappy and they lived apart by 1925. There are no direct
statements about getting divorced, but their separation led to their eventual divorce.</think>
<rewrite> Did Wallis Simpson and Earl Spencer’s marriage last? Wallis Simpson was first introduced to Earl Spencer Jr. in 1916 when she visited her cousin in
Pensacola, Florida. After the United States entered World War I in 1917, Earl Spencer was posted to San Diego. Wallis and Earl were married in 1928, but their marriage
was described as unhappy. By 1925, Wallis and her husband separated and by 1936, they were living apart. Wallis had her second divorce in 1936, leading to her
marriage to Prince Edward VIII in 1937. Did Wallis and Earl’s marriage eventually end in divorce? Wallis and Earl Spencer’s marriage was unhappy and they eventually
separated and lived apart. Their first marriage was dissolved by 1936, with Wallis taking her second divorce. She and Earl did not stay together. Later, during her
relationship with Prince Edward VIII, Wallis and Earl’s whereabouts were not known publicly. They were living apart by 1935-1936, which led to their divorce. Did
their marriage end with a divorce, and how did their relationship with each other and with each other’s families fare during this period? In 1921, the couple moved to
England, but eventually, their marriage broke down. Wallis and Earl’s marriage was not happy, and they lived separately for a long time. After their divorce in 1928, they
maintained a cordial relationship, but their marriage was indeed marked by separation and eventually divorce. After their divorce, Earl moved to the United States
and later returned to England, where he died in 1954. Wallis Simpson went on to marry Prince Edward VIII in 1937, and the couple toured Germany in the same
year.</rewrite> (rank 1)
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