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Abstract

Generative models have achieved remarkable suc-
cess in state-of-the-art image and text tasks. Re-
cently, score-based diffusion models have ex-
tended their success beyond image generation,
showing competitive performance with discrimi-
native methods in image classification tasks (Zim-
mermann et al., 2021). However, their appli-
cation to classification in the graph domain,
which presents unique challenges such as com-
plex topologies, remains underexplored. We show
how graph diffusion models can be applied for
graph classification. We find that to achieve com-
petitive classification accuracy, score-based graph
diffusion models should be trained with a novel
training objective tailored for graph classification.

1. Introduction

Recent breakthroughs with generative models have enabled
outstanding performance in challenging tasks in various
modalities such as image generation (Saharia et al., 2022),
speech generation (Le et al., 2023), and natural language
processing (OpenAl et al., 2024). For text, early GPT mod-
els (Radford & Narasimhan, 2018; Radford et al., 2019)
showed that generative training not only provides excellent
text generation performance, but can be competitive to mod-
els discriminatively trained on the downstream task. Later
improvements showed that generative training significantly
outperforms all alternative approaches (Brown et al., 2020;
OpenAl et al., 2024). On the image domain, Li et al. (2023)
show that text-to-image diffusion models hold promise for
zero-shot classification on images without any additional
discriminative training. Furthermore, Zimmermann et al.
(2021) train score-based diffusion models and show compet-
itive performance with discriminative models in the CIFAR-
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10 data set. Collectively, these previous works show the
promise of generative models for classification tasks.

While there has been extensive research on the applicability
of generative models for classification on image and text do-
mains, this question has remained unexplored in the graph
domain. Therefore, it is natural to ask: Do generative mod-
els bring the same classification competitiveness to graphs?
This work takes a step toward answering this question: we
show that generative models are indeed strong baselines for
graph classification. In particular, our contributions are as
follows.

e We found that purely generatively trained graph diffu-
sion models do not perform well as zero-shot classifiers
using exact likelihood for inference. We therefore develop a
new discriminative training objective, based on the gener-
ative ELBO likelihood approximation, that leads to strong
classification performance as well as high-quality graph
generation.

e Our base diffusion model is not permutation-invariant.
We show that both training and inference can be improved
by randomly sampling adjacency matrices from the isomor-
phism class of the training/test graph.

e We observe that inference time of classification using
exact likelihood with score-based diffusion models is time-
intensive at test time, which impedes model checkpoint
selection. We propose model checkpoint selection using ap-
proximate inference rather than the exact model likelihood
for better time efficiency.

2. Background

Graph Neural Network. Graph Neural Networks (GNNs)
have emerged as effective architectures to process graph-
structured data. A simple GNN layer operates by taking
two primary inputs: a node feature matrix and an adjacency
matrix A. The node feature matrix represents the attributes
of each node in the graph, while the adjacency matrix A
encodes the graph’s structure by indicating which nodes
are connected to each other. The core operation of a GNN
layer involves updating the representation of each node. The
new node representation is updated by aggregating the in-
formation from the neighbor of each node and its own node
representation. This process mirrors the convolution oper-
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ation in the Convolutional Neural Networks (CNNs) used
for image processing. The final node representations can be
used for for downstream tasks such as graph classification.

Diffusion Models. Diffusion models operate through a
dual process comprising forward and backward steps. The
forward process involves introducing noise into the data,
with the noise level denoted by o(t) at each time step t.
Conversely, the backward process aims to denoise the data,
transitioning from a noisy state to a clean one. When a
diffusion stochastic process is appropriately defined and
trained, it enables the sampling of a data point from pure
noise using a reversed stochastic differential equation (Song
et al., 2021). Subsequently, the diffusion model facilitates
the simulation of the backward process for that data point,
ultimately yielding a data point sampled from the clean data
distribution. Moreover, Song et al. (2021) demonstrate that
when provided with a data point from the ground truth data
distribution, a diffusion model can accurately estimate its
likelihood by solving an ordinary differential equation. This
methodology has demonstrated significant success, particu-
larly in the field of image processing.

There are two basic types of diffusion models. Score-
based models learn to approximate the gradient of the
log-probability of the denoising process (Vincent, 2011).
Denoising Diffusion Models directly learn to denoise the
given input by predicting the clean image given a noised
image. Training a score network with the denoise loss
objective function is guaranteed to almost sure match the
data-generating score. The denoise loss objective function
is defined as follows:

Eg() t~U[0,1] 0y (@l) |1 Do (%, 1) — || B (1

where ¢(z) is the ground truth data distribution, Z is the
noisy data, p,+)(Z|z) is the data distribution at time step
t under noise schedule o (t), the notation Dy(Z, t) denotes
the denoise network and ||.|| ¢ is the Frobenius norm.

3. Related Work

Diffusion graph generative model. Motivated by the suc-
cess of diffusion models on image generation, several stud-
ies have been conducted to extend these models to the graph
domain (Jo et al. (2022); Vignac et al. (2023)). Vignac
et al. (2023) propose an equivariant discrete denoising diffu-
sion model to generate graphs. Yan et al. (2023) introduce
SwinGNN, a non-equivariant score-based diffusion model
that achieves state-of-the-art results on several benchmarks.
In this work, we show how to adapt the SwinGNN model
for classification tasks.

Diffusion generative classifier. One line of research stud-
ied how to adapt diffusion models for classification tasks in
the image domain. Zimmermann et al. (2021) add the class

label as a conditioning variable to score-based diffusion
models and take advantage of the fact that the exact com-
putation of likelihood is possible for score-based models to
perform image classification tasks. Li et al. (2023) leverage
trained text-to-image diffusion models (such as Stable Diffu-
sion (Rombach et al., 2021)) to perform zero-shot classifica-
tion. This method relies on estimating the class-conditional
likelihood by computing an evidence lower bound (ELBO)
on an image and its candidate labels. Our work is related to
both works as we consider diffusion models for classifica-
tion. It is different in 1) the modality we study (graph vs.
image/text), 2) the loss function we use to train the diffusion
model.

4. Training the Generative Model for
Classification

Let M := {(GW,y¥) |1 <i < m} be a training dataset
of size m, where the i-th example consists of an input graph
G and a discrete label ¥y € {1,2,...,C}. Our main
goal is to build a generative classifier to classify graphs. To
achieve this, we introduce a novel training objective and
model checkpoint selection method, which we explain in
this section.

4.1. Training Objective

Consider a graph-label pair (G,y) € M. Let A be the
adjacency matrix of the observed graph G. Using Bayes’
theorem, we can derive a graph class probability from a
class-conditional graph probability:
p(Aly) p(y
p(yld) = AADLU)
> P(Alyi) p(yi)
Lj := Inp(Aly;) +Inp(y;)  3)

= [Softmax(L)]; (2)

Equation (3) follows from Equation (2), with Softmax
denoting the softmax function. Uniform class priors p(y;)
can be omitted from Equations (2) and (3).

We investigate three plausible training objectives for a gen-
erative classifier model.

Lpen(A,y,0)

i= By uo,1),e~n(0,) [ Do (A + e (t),y,t) — Al|2] (4
<InPy(Aly)

Lear(A,y,0) =
— In ([Softmax (Lpex (A, 1,6) , ..., Loex (A, C,6))]y)
5
Lsum(A,y,0) := Lpen(4,y,0) + LeLr(A, v, 0) (6)

Equation (4) is a variational approximation to the class-
conditional log-likelihood of A. Equation (5) uses the ap-



From Graph Diffusion to Graph Classification

proximate class-conditional graph log-probability to de-
rive an approximate graph class log-probability via Equa-
tion (3). Equation (6) combines the generative and discrim-
inative losses so that the model generates realistic graphs
while also supporting classification.

Note that the classification objective L¢rr is a lower bound
on the training set cross-entropy. We state this claim for-
mally for binary 0/1 labels; the general case for C labels is
similar. Let AY) be the adjacency matrix of GU). Then

m

Sy (In Po(y = 1]A4;) + (1 — y;) (In(1 — Po(y = 1]4;))) >

j=1

m

5. Classification Model

Let G be a graph to be classified with adjacency matrix
A. We use the Bayes’ theorem formula Equation (2) to
derive class probabilities P(y|A) from class-conditional
probabilities P(A]y). We investigate two basic methods for
estimating P(Aly).

Approximate Inference uses the variational approximation
to the class-conditional graph log-likelihood, as in the Lcy
of Equation (5):

In P(Aly) ~ Leer(A, y,0) @)

Exact Inference One of the strengths of a score-based diffu-

Z y; In(Softmax(Lpex(A, y1,6), - . ., Lopn (A, i, 9))j)§_1¢m model is that exact likelihood computation is possible.

j=1
(1 - yj) 111(1 - SOftmaX(LDEN(A7 Y1, 9)) ey LDEN(Aa Yk,

4.2. Training-time Permutations

During training, we observed that our model tended to over-
fit rapidly, impairing its ability to generalize to the validation
or test sets. Since the SwinGNN architecture is not a permu-
tation equivariant architecture (i.e. , different permutations
of the adjacency matrix give different outputs), one natural
approach to prevent overfitting is to augment the dataset
by considering random permutations of graphs. Therefore,
we randomly permute the input adjacency matrices for each
training batch so the batch is trained on a set of permuted
adjacency matrices.

4.3. Model Checkpoint Selection

Our training strategy comprised model checkpoint selection:
For each fold, we train the model for a fixed amount of
computation time 7', then select the best model generated
through its accuracy on the validation set. However, evalu-
ating the validation set accuracy with exact inference (see
5 below), requires solving ODEs and is time-consuming.
For instance, evaluating the accuracy of a checkpoint on the
validation set takes approximately 20 minutes, for one fold
on the IMDB-B dataset. While it is desirable to evaluate
many model checkpoints, this time cost allows us to utilize
only a small number of checkpoints.

On the other hand, evaluating the variational approxima-
tion loss L¢pr of Equation (5) is fast, because approximate
inference is much faster compared to solving ODE. For in-
stance, evaluating the classification loss on the validation
set takes approximately 0.5 second. This translates to more
than 2000 times the speed up in the checkpoint selection
speed compared to ODE solving. So utilizing approximate
inference supports selecting from many checkpoints the one
that performs the best on the validation set.

)

) bE can be used as zero-shot classifiers with impressive

n the image domain, Zimmermann et al. (2021) show how
a trained class conditional score-based diffusion model with

classification accuracy. Given a trained class-conditional
SwinGNN Dy, the exact likelihood computation based on
ODE is as follows:

T
log p(Aly) = logpr <A+/O fo(A(t),t,y) dt)
(®)

T ~
+ / V- fo(A(t), t,y) dt,
0

with

fo(A() 1,y = A= DAD:LY),

&)

where A is the adjacency matrix of the input graph, A(t) is
the adjacency matrix at time ¢ of the stochastic process, y
is the graph class label and Dy (A, y, 1) is the output of the
class-conditioned denoising network.

Test-time Permutations Recall that the SwinGNN model is
not permutation-invariant. We can view the class probability
of a graph as the expectation of the class probability of the
adjacency matrices that represent it:

p(Gly) = Eacn(e)lp(Aly)] where II(G) is the isomor-
phism class of the graph’s adjacency matrices. Our use
of permutations during training can be viewed as approxi-
mating the training graph probability by sampling from the
isomorphism sets of the training graphs.

At test time, we propose to utilize a similar permutation trick,
and predict the class label based on several permutations of
the graph. The predictions from different permutations are
combined via majority vote to output the final solution. The
majority vote avoids sensitivity to outlier permutations that
might produce extreme probabilities. The exact working
mechanism of permutation sampling is shown in Algorithm
1.
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Algorithm 1 Classification Inference with Sampling
1: Input: Adjacency matrix A, number of permutations P
Output: Predicted label ¢
Initialize ClassifiedList < ||
for i =1to P do
A; + randomPermute(A) {Randomly permutes the
eraph}
6:  ClassifiedList <+ ClassifiedList + [Classify(4;))]
{Classifies the permuted graph using Eq. (??)}
7: end for
8: return majority Vote(ClassifiedList) {Returns the most
frequent classification}

We apply permutation sampling with both approximate and
exact inference.

6. Experiments

Datasets. We consider two datasets (1) a synthetic K-
regular graph dataset (i.e. , in each graph all nodes have the
same degree K). Graphs fall into a category of 4-regular
and 6-regular, and the task is binary graph classification into
the two classes. (2) IMDB-B (Yanardag & Vishwanathan,
2015) dataset, which consists of ego-graphs of IMDB ac-
tors/actresses. In each graph, two nodes are connected
if their corresponding actors/actresses have occurred in a
movie. The task is binary classification of graphs into two
Genres of Action and Romance. For IMDB-B, we use the
same split as Errica et al. (2019) to ensure a fair comparison
with the GNN baselines.

Baselines. For IMDB-BINARY, we follow the same strat-
egy as Errica et al. (2019), and include the discriminative
baselines therein.

Our three training objectives ( ??) and two inference meth-
ods ( Section 5) define a space of 6 possible designs. One
of these designs is a zero-shot classifier baseline that has
been previously applied to images. The combination of
using Lpgy as a training objective with exact inference for
classification is analogous to the approach of (Zimmermann
et al., 2021) for image classification.

6.1. Results

Generative classifier is competitive with discriminative
baselines. Table 2 shows the comparison of our method
with various baselines. As shown in the Table, For IMDB-
BINARY without node feature, our method achieves better
average compared to the best discriminative model (Graph-
SAGE), while showing higher variance. When we train with
node feature, our method shows both better average and
lower variance then previous SOTA (GIN). This competi-
tive performance shows promise in generative models for

classification tasks.

More inference-time permutations improve test accu-
racy. Table 1 demonstrates how increasing the number of
permutations increase accuracy on IMDB-BINARY dataset,
where we achieve from 2% to more than 10% gain across
the board by increasing the number of permutations from 1
to 5.

Approximate Inference is good when we have Lpgn in
training objective. Table 1 also shows that approximate
inference generally perform better within the two columns
that has Lpgy, i.e. Lpgn and Lgyy, this may suggest that
when our model still has Lpgy or still weighs a certain
degree of sampling quality or denosing quality, using fast
approximating inference will be a better choice.

7. Conclusion

Our study demonstrates the significant potential of gen-
erative models for graph classification tasks, thereby ex-
panding the applications of generative approaches beyond
the text and image domains explored so far. We presented
a novel training objective that preserves generative capa-
bilities while enhancing classification performance. Our
proposed inference technique, involving graph random-
permutation majority voting, was shown to improve classifi-
cation accuracy. Furthermore, we addressed the challenge
of utilizing exact inference for score-based diffusion models
during training by utilizing a variational likelihood approx-
imation, which allows more efficient and more powerful
model selection. We hope that our study encourages fur-
ther research into generative models for graph classification
and inspires new methodologies that take advantage of the
unique strengths of generative classifiers in different do-
mains.
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Table 3. mean and standard deviation of 10 SwinGNN model trained using the 10-fold splits

DEGREE ORBIT CLUSTER AVERAGE SPECTRAL
0.02935 £ 0.00613 0.10185 +0.02141  0.22099 £ 0.07809 0.10438 +0.02717 0.05833 £ 0.01694

A. Appendix
A.1. Experiment Detail

For the backbone model of our experiments, we use the exact same architecture as SwinGNN (Yan et al., 2023), except for
the class conditioning, we add a embedding layer for each label. The class label embedding would sum up with the noise
embedding before passing to each layer.

For K-regular dataset, we generate five hundred 4-regular graphs and 6-regular graphs, we use a split ratio of 1/1/8 for
test/validation/train set for this synthetic dataset, and a training of 3 hours lead to us a perfect classification accuracy.

For IMDBB, We use the same split as (Errica et al., 2019), where we also use the 10-fold CV for model selection and
evaluation, however, as training generative model is more expensive and especially in our case, which we randomly permuted
the training set resulting the cost of training the model more expansive, we slightly modify some of the setting, which would
only make our performance sub-optimal in trade of time and resource. We did not do hyper-parameter tuning for each fold,
instead, we only experiment a few hyper-parameter setting on one fold, and then use the better set of hyper-parameter for all
the folds. In Erricas’ work, in each fold, they randomly do a 90/10 split three times and train three times and perform early
stopping to select their model to evaluate on a test set for each fold. Although in our case, it is expansive to train three times,
so instead, we only do this once, which would bring us at the risk of higher variance of our result.

During inference time to calculate accuracy, we did not let the ODE solver solve the whole process from clean data to data
with the maximum noisy level o(t) of ¢ = 80. Instead, we test t=4 is good enough, there is no need for solver to solve
for highly noisy data as they are less accurate and more time consuming. All experiments of this work use this setting for
likelihood computation,

For approximate inference, we choose to sample 300 times noise data from each clean data, classify 300 times and choose to
take majority vote of the 300 classification as our prediction. Future research could also investigate the effect of the number
of sampling.

A.2. Generation

Our model is not just a good classifier, it is also a good generative model, we provide the sampling here; these sampling
comes from the checkpoint that gives us the best test set accuracy. See Figure 1

We also provide the mean and standard deviation of the MMD score across 10-fold for an experiment, see Table 3
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e=406, n=29, label =1 e=58, n=14,label=1 e=84, n=24,label=0 e=99, n=19, label=0 e=41,n=12, label =0

e=68, n=16, label =0 e=27,n=12,label=1 e=49, n=14, label=0 e=102, n=30, label =0 e=65, n=25, label =1

e=45, n=14, label =0 e=50, n=15,label=0 e=54,n=12,label=0 e=36,n=12,label=0 e=66,n=12, label =0

e=43,n=13,label=1 e=103, n=31, label=0 e=53,n=14,label=0 e=28,n=12,label=1 e=90, n=23, label =0

Figure 1. Sampling from out trained SwinGNN model trained with Lsuwm, it captures some structure of the IMDB-BINARY dataset.



