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Abstract

We consider distributed parameter estimation using interactive protocols subject
to local information constraints such as bandwidth limitations, local differential
privacy, and restricted measurements. We provide a unified framework enabling
us to derive a variety of (tight) minimax lower bounds for different parametric
families of distributions, both continuous and discrete, under any `p loss. Our lower
bound framework is versatile and yields “plug-and-play” bounds that are widely
applicable to a large range of estimation problems. In particular, our approach
recovers bounds obtained using data processing inequalities and Cramér–Rao
bounds, two other alternative approaches for proving lower bounds in our setting
of interest. Further, for the families considered, we complement our lower bounds
with matching upper bounds.

1 Introduction

We consider the problem of parameter estimation under local information constraints, where the
estimation algorithm has access to only limited information about each sample. These constraints
can be of various types, including communication constraints, where each sample must be described
using a few (e.g., constant number of) bits; (local) privacy constraints, where each sample is obtained
from a different user and the users seek to reveal as little as possible about their specific data; as
well as many others, e.g., noisy communication channels, or limited types of data access such as
linear measurements. Such problems have received significant attention in recent years, motivated by
applications such as data analytics in distributed systems and federated learning.

Our main focus is on information-theoretic lower bounds for the minimax error rates (or, equivalently,
the sample complexity) of these problems. Several recent works have provided bounds that apply to
specific constraints or work for specific parametric estimation problems, sometimes without allowing
for interactive protocols. Indeed, handling interactive protocols is technically challenging, and several
results in prior work exhibit flaws in their analysis. In particular, even the most basic Gaussian mean
estimation problem using interactive communication remains, surprisingly, open.

We present general, “plug-and-play” lower bounds for parametric estimation under information
constraints that can be used for any local information constraint and allows for interactive protocols.
Our abstract bound requires very simple (and natural) assumptions to hold for the underlying
parametric family; in particular, we do not require technical “regularity” conditions that are common
in asymptotic statistics.
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We apply our general bound to canonical problems of high-dimensional mean estimation and dis-
tribution estimation, under privacy and communication constraints, for the entire family of `p loss
functions for p ≥ 1. In addition, we provide complementary schemes that show that our lower bounds
are tight for most settings of interest.

1.1 Our results

Our main contribution is a general approach to establish lower bounds in distributed information-
constrained parameter estimation. The setup is described in detail in Section 2 and is illustrated
in Fig. 1. In short, independent samples Xn = (X1, . . . , Xn) are generated from an unknown
distribution p from a parametric family PΘ = {pθ, θ ∈ Θ} of distributions. Only limited information
Yi about datum Xi is available to the algorithm. The goal is to estimate the underlying parameter
θ associated with p. Furthermore, we consider interactive estimation, wherein Yi can depend on
Y1, . . . , Yi−1. Our general lower bound, which we develop in Section 3, takes the following form:
Consider a collection of distributions {pz}z∈{−1,+1}k ⊆ PΘ contained in the parametric family. This
collection represents a “difficult subproblem” that underlies the parametric estimation problem being
considered; such constructions are often used when deriving information-theoretic lower bounds
(e.g., in Assouad’s method [33]). Note that each coordinate of z represents, in essence, a different
“direction” of uncertainty for the parameter space. The difficulty of the estimation problem can be
related to the difficulty of determining a randomly chosen z (or most of the coordinates of z), denoted
Z, by observing samples from pz . Once Z = z is fixed, n independent samples Xn = (X1, . . . , Xn)
are generated from pz and the limited information Yi about Xi is passed to an estimator.

Our most general result, stated as Theorem 1, is an upper bound for the average discrepancy, an
average distance quantity related to average probability of error in determining coordinates of Z by
observing the limited information Y n = (Y1, . . . , Yn). Our bounding term reflects the underlying
information constraints using a quantity that captures how “aligned” we can make our information
about the sample to the uncertainty in different coordinates of Z. Importantly, our results hold
under minimal assumptions. In particular, in contrast to many previous works, our results do not
require any “bounded ratio” assumption on the collection {pz}z∈{−1,+1}k , which would ask that the
density function change by at most a constant factor if we modify one coordinate of z. When we
impose additional structure for pz – such as orthogonality of the random changes in density when
we modify different coordinates of z and, more stringently, independence and subgaussianity of
these changes – we get concrete bounds which are readily applicable to different problems. These
plug-and-play bounds are stated as consequences of our main result in Theorem 2. The interested
reader can also directly consider the applications to local privacy (Corollary 1) or communication
constraints (Corollary 2).

We demonstrate the versatility of the framework by showing that it readily yields tight (and in
some cases nearly tight) bounds for parameter estimation (both in the sparse and dense cases) for
several fundamental families of continuous and discrete distributions, several families of information
constraints such as communication and local differential privacy (LDP), and for the family of `p loss
functions for p ≥ 1, all when interactive protocols are allowed. To complement our lower bounds,
we provide algorithms (protocols) which attain the stated rates, thus establishing optimality of our
results.1We discuss these results in Section 5, where we provide the corresponding statements. In
terms of the applications, our contributions are two-fold:

1. We obtain several results from a diverse set of prior works in a unified fashion as simple
corollaries of our main result: As discussed further in Section 1.2, the lower bounds for
mean estimation for product Bernoulli under `2 loss and those for estimation of discrete
distributions under `1 and `2 losses, for both communication and LDP constraints, were
known from previous work. However, our approach allows us to easily recover those results
and extend them to arbitrary `p losses, with interaction allowed, in a unified fashion.

2. Our bounds also yield new lower bounds for some canonical problems. The prototypical
example being mean estimation for high-dimensional Gaussian distributions under infor-
mation constraints. As discussed in the next section, while some prior work claimed lower
bounds for this problem, their arguments appear to be flawed – at a high level, due to the

1Up to a logarithmic factor in the case of `∞ loss, or, for some of our bounds, with a mild restriction on n
being large enough.
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“bounded ratio” assumption their techniques rely on, which Gaussian distributions do not
satisfy, and which our framework does not require. To the best of our knowledge our work
is the first to obtain those lower bounds for interactive mean estimation of high-dimensional
Gaussian distributions under communication or local privacy constraints.

1.2 Previous and related work

There is a significant amount of work in the literature dedicated to parameter estimation under various
constraints and settings. Here, we restrict our discussion to works that are most relevant to the current
paper, with a focus on the interactive setting (either the sequential or blackboard model; see Section 2
for definitions).

The work arguably closest to ours is the recent work [5], which focuses on density estimation and
goodness-of-fit testing of discrete distributions, under the `1 metric, for sequentially interactive
protocols under general local information constraints (including, as special cases, local privacy
and communication constraints, as in the present paper). This work can be seen as a significant
generalization of the techniques of [5], allowing us to obtain lower bounds for estimation in a variety
of settings, notably high-dimensional parameter estimation.

Among other works on high-dimensional mean estimation under communication constraints, [17, 10]
consider communication-constrained Gaussian mean estimation in the blackboard communication
model, under `2 loss. The protocols for the upper bounds in these works do not require interactivity
and are complemented with lower bounds which show that the bounds are tight up to constant factors
in the dense case and up to logarithmic factors in the sparse case. However, the proof of the lower
bound in [10] seems to present a gap (specifically, in the truncation argument of [10, Theorem 4.3]),
as confirmed in personal communication with the authors. Correcting the issue in the truncation
argument would lead to a result significantly weaker than the claimed lower bound, and it is unclear
whether this can be fixed using the techniques from that paper.

In this work, we present interactive protocols for the sparse case which improve over the nonin-
teractive protocols and strenghten the upper bounds by a logarithmic factor in the interactive case
(see Remark 1). Further, using our general framework, we establish a nearly-matching lower bound
for the problem, recovering the rate lower bound originally claimed in [10] up to a logarithmic factor.
In a slightly different setting, [26] considers the mean estimation problem for product Bernoulli
distributions when the mean vector is 1-sparse, under `2 loss. The lower bound in [26], too, allows
sequentially interactive protocols. In the blackboard communication model, [19] and [18] obtained
tight bounds for mean estimation and density estimation under `2 and `1 loss, respectively.

Turning to local privacy, [23] provide upper bounds (as well as some partial lower bounds) for one-
dimensional Gaussian mean estimation under LDP under the `2 loss, in the sequentially interactive
model. Recent works of [7] and [8] obtain lower bounds for mean estimation in the blackboard
communication model and under LDP, respectively, for both Gaussian and product Bernoulli distribu-
tions; as well as density estimation for discrete distributions. Their approach is based on the classic
Cramér–Rao bound and, as such, is tied inherently to the use of the `2 loss. In a recent independent
work, [25] extended these methods to obtain lower bounds under general `p loss under communication
constraints, which are tight for Gaussian mean estimation under noninteractive protocols. [14], by
developing a locally private counterpart of some of the well-known information-theoretic tools for
establishing statistical lower bounds (namely, Le Cam, Fano, and Assouad), establish tight or nearly
tight bounds for several mean estimation problems in the LDP setting.

More recently, drawing on machinery from the communication complexity literature, [13] develop
a methodology for proving lower bounds under LDP constraints in the blackboard communication
model. They obtain lower bounds for mean estimation of product Bernoulli distributions under
general `p losses which match ours (in the high-privacy regime, i.e., small ε). Similar to the results
under communication constraints [17, 10], their approach relies heavily on the assumption that the
distributions on each coordinate are independent, which fails to generalize to discrete distributions.
Further, their bounds are tailored to the LDP constraints and do not seem to extend to arbitrary
information constraints. Finally, while [13] also claims tight bounds for mean estimation of Gaussian
and sparse Gaussian distributions under `2 loss, their argument invokes the analogous (flawed) result
from [10] and thus it is unclear whether the stated lower bound can be shown using their techniques.
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Finally, we mention that very recently, following the appearance of [5], an updated version of [19]
appeared online as [21], which has similar results as ours for the high-dimensional mean estimation
problem under communication constraints. Both our work and [21] build upon the framework
presented for the discrete setting in [5]. Moreover, their work still need the “bounded ratio”, and
hence their lower bound for sparse Gaussian family only works for noninteractive protocols.

Notation. Hereafter, we write log and ln for the binary and natural logarithms, respectively. For dis-
tributions p1,p2 over X , denote their Kullback–Leibler divergence (in nats) by D(p1‖p2), and their

Hellinger distance by dH(p1,p2) := (1
2

∫
(
√

dp1

dλ −
√

dp2

dλ )2 dλ)1/2 , where we assume p1,p2 � λ

for some underlying measure λ on X . Further, we denote the Shannon entropy of a random variable
X by H(X) and the mutual information between X and Y by I(X;Y ); we will sometimes write
H(p) for the entropy of a random variable with distribution p. We refer the reader to [12] for details
on these notions and their properties, which will be used throughout. Given two functions f, g, we
write f . g if there exists an absolute constant C > 0 such that f(x) ≤ Cg(x) for all x; and f � g
if f . g and f & g both hold. Finally, we use the standard asymptotic notation O(f), Ω(f), Θ(f).

Organization. In Section 2, we formalize our setting of interactive inference under local information
constraints. The general lower bound framework and results are presented in Section 3, where
we provide implications of the general result under additional structures and specific information
constraints such as local privacy (LDP) and communication constraints. Finally, we use our framework
to readily derive lower bounds for a wide range of applications in Section 5. Due to space constraints,
all proofs, as well as our upper bounds (algorithms) are provided in the Supplement, where we also
discuss how our techniques compare with other existing approaches for proving lower bounds under
information constraints, namely, those based on strong data processing inequalities (SDPI) or on the
van Trees inequality.

2 The setup

We consider standard parametric estimation problems. For some Θ ⊆ Rd, let PΘ = {pθ, θ ∈ Θ}
be a family of distributions over some measurable space (X ,X), namely each pθ is a distribution
over (X ,X). Suppose n independent samples Xn = (X1, . . . , Xn) from an unknown pθ ∈ PΘ

are obtained. The goal in parametric estimation is to design estimators θ̂ : Xn → Θ, and form
estimates θ̂(Xn) of θ using independent samples Xn from pθ. We illustrate our results using
two specific distribution families: discrete probability mass functions (pmfs) and high-dimensional
product distributions with unknown mean vectors. We will describe the precise minimax setting in
detail later in this section.

We are interested in an information-constrained setting, where we do not have direct access to the
samples Xn from pθ. Instead, we can only obtain limited information about each datapoint Xi.
Following [3], we model these information constraints by specifying an allowed set of channelsW
with input alphabet X and some output space Y .2 Each sample Xi is passed through a channel from
W , chosen appropriately, and its output Yi is the observation we get. This setting is quite general
and captures as special cases the popular communication and privacy constraints, as we will describe
momentarily.

We now formally describe the setting, which is illustrated in Fig. 1. n i.i.d. samples X1, . . . , Xn

from an unknown distribution pθ ∈ PΘ are observed by players (users) where player t observes Xt.
Player t ∈ [n] selects a channel Wt ∈ W and sends the message Yt to a referee, where Yt is drawn
from the probability measure Wt(· | Xt, Y1, . . . , Yt−1). The referee observes Y n := (Y1, . . . , Yn)
and seeks to estimate the parameter θ.

The freedom allowed in the choice of Wt at the players gives rise to various communication protocols.
We focus on interactive protocols, where channels are chosen by one player at a time, and they can
use all previous messages to make this choice. We describe this class of protocols below, where we
further allow each player t to have a different set of constraintsWt (e.g., a different communication
budget), and Wt must be inWt. For simplicity of exposition, and as these already encapsulate most

2Formally, a channel is a Markov kernel W : Y×X → [0, 1], which we assume to be absolutely continuous
with respect to some underlying measure µ on (Y,Y). When clear from the context, we will drop the reference
to the σ-algebras X and Y; in particular, in the case of finite X or Y .

4



X1 X2 X3
. . . Xn−2 Xn−1 Xn

W1 W2 W3
. . . Wn−2 Wn−1 Wn

Y1 Y2 Y3
. . . Yn−2 Yn−1 Yn

p

Referee

output

Figure 1: The information-constrained distributed model. In the interactive setting, Wt can depend
on the previous messages Y1, . . . , Yt−1 (dotted, upwards arrows).

of the difficulties, we focus here on the case of sequentially interactive protocols, which has been
widely considered in the literature and captures many settings of interest. However, we emphasize
that our results extend to the more general class of fully interactive protocols (see Supplement).
Definition 1 (Sequentially Interactive Protocols). Let X1, . . . , Xn be i.i.d. samples from pθ, θ ∈ Θ.
A sequentially interactive protocol Π usingWn = (W1, . . . ,Wn) involves mutually independent
random variables U,U1, . . . , Un (independent of the inputX1, . . . , Xn) and mappings gt : (U,Ut) 7→
Wt ∈ Wt for selecting the channel in round t ∈ [n]. In round t, player t uses the channel Wt to
produce the message (output) Yt according to the probability distribution Wt(· | Xt, Y1, . . . , Yt−1).
The messages Y n = (Y1, . . . , Yn) received by the referee and the public randomness U (available to
all players) constitute the transcript of the protocol Π; the private randomness U1, . . . , Un (where
Ut is local to player t) is not part of the transcript. In other words, the channel at player t as a
(randomized) mapping W : X × Yt−1 → Y , which depends on input x ∈ X and the previous t− 1
messages yt−1 ∈ Yt−1 outputs some y ∈ Y .

For concreteness, we now instantiate this definition for the two aforementioned types of information
constraints, communication and (local) privacy.

Communication constraints Let Y := {0, 1}∗ =
⋃∞
m=0{0, 1}m. For ` ≥ 1 and t ≥ 1, let

Wcomm,` := {W : X × Y∗ → {0, 1}`} (1)

be the family of channels with input alphabet X and output alphabet the set of all `-bit strings. This
captures the constraint where the message from each player can be at most ` bits long, and corresponds
to the choiceWn = (Wcomm,`, . . . ,Wcomm,`). Note that allowing a different communication budget
to each player can be done by settingWn = (Wcomm,`1 , . . . ,Wcomm,`n).

Local differential privacy constraints For ε > 0 and t ≥ 1, a channel W : X × Yt−1 → Y is
ε-locally differentially private (LDP) [16, 15, 24] if

sup
S∈Y

sup
yt−1∈Yt−1

W (S | x1, y
t−1)

W (S | x2, yt−1)
≤ eε, ∀x1, x2 ∈ X . (2)

We denote byWpriv,ε the set of all ε-LDP channels. For sequentially interactive protocols, the ε-LDP
condition is captured by settingWn = (Wpriv,ε, . . . ,Wpriv,ε). As before, one can allow different
privacy parameters for each player by settingWn = (Wpriv,ε1 , . . . ,Wpriv,εn).

Finally, we formalize the interactive parametric estimation problem for the family PΘ = {pθ, θ ∈ Θ}.
We consider the problem of estimating θ under `p loss. For p ∈ [1,∞), the `p distance between
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u, v ∈ Rd is `p(u, v) = ‖u− v‖p =
(∑d

i=1 |ui − vi|
p
)1/p

. This definition extends in a natural way

to p =∞ by taking the limit.3

Definition 2 (Sequentially Interactive Estimates). Fix d ∈ N and p ∈ [0,∞]. Given a family PΘ of
distributions on X , with Θ ⊂ Rd, an estimate for PΘ consists of a sequentially interactive protocol
Π with transcript (Y n, U) and estimator θ̂ : (Y n, U) 7→ θ̂(Y n, U) ∈ Θ. The referee observes the
transcript (Y n, U) and forms the estimate θ̂(Y n, U) of the unknown θ. Further, for n ∈ N and
γ ∈ (0, 1), (Π, θ̂) constitutes an (n, γ)-estimator for PΘ usingW under `p loss if for every θ ∈ Θ
the transcript (Y n, U) of Π satisfies

Epnθ

[
`p(θ, θ̂(Y

n, U))p
]1/p

≤ γ.

Note that the expectation is over the input Xn ∼ pnθ for the protocol Π and the randomness of Π.

3 Main result: The information contraction bound

Our main result is a unified framework to bound the information revealed about the unknown θ by
the transcript of the messages obtained via the constraints defined by the channel familyW . The
framework is versatile and provides tight bounds for several families of continuous and discrete
distributions, several families of information constraints such as communication and local differential
privacy, and for the family of `p loss functions for p ≥ 1.

Our approach at a high-level proceeds as below: We first consider the “pertubation space” Z :=
{−1,+1}k, for some suitable k. We associate with each z ∈ Z a parameter θz ∈ Θ, and refer to pθz
simply as pz . These distributions are designed in a way that the distance between θz and θz′ is large
when the Hamming distance between z and z′ is large. With this, the difficulty of estimating θ will
be captured in the difficulty of estimating the associated z. This will make our approach compatible
with the standard Assouad’s method for deriving lower bounds (cf. [33]).

Then, we let Z = (Z1, . . . , Zk) be a random variable over Z . Under some assumptions on the
distribution of Z, we will bound the information between the individual Zis and the transcript
(Y n, U) induced by a family of channelsW . Combining the two steps above provides us with the
desired lower bounds. Formally, let Z := {−1,+1}k for some k and {pz}z∈Z (where pz = pθz ) be
a collection of distributions over X , indexed by z ∈ Z . For z ∈ Z , denote by z⊕i ∈ Z the vector
obtained by flipping the sign of the ith coordinate of z. To bound the information that can be obtained
about the underlying z from the observations, we make the following assumptions:
Assumption 1 (Densities Exist). For every z ∈ Z and i ∈ [k] it holds that pz⊕i � pz , and there
exist measurable functions φz,i : X → R such that dpz⊕i

dpz
= 1 + φz,i.

The functions φz,i capture the change in density when the coordinate i is flipped. In our applications
below, we will have discrete distributions or continuous densities, and the Radon–Nikodym derivatives
above can be replaced with the corresponding ratios between the pmfs and pdfs, respectively.
Assumption 2 (Orthogonality). There exists some α2 ≥ 0 such that, for all z ∈ Z and distinct
i, j ∈ [k], Epz [φz,iφz,j ] = 0 and Epz [φ

2
z,i] ≤ α2.

Note that from Assumption 1 we have that Epz [φz,i] = 0 for each i. In conjunction with Assumption 2
this implies that for any fixed z ∈ Z , the family (1, φz,1, . . . , φz,k) is orthogonal and uniformly
bounded in L2(X ,pz). Taken together, Assumption 1 and Assumption 2 roughly say that the densities
can be decomposed into uncorrelated “perturbations” across coordinates of Z . In later sections, we
will show that for several families, such as discrete distributions, product Bernoulli distributions, and
spherical Gaussians, well-known constructions for lower bounds satisfy these assumptions.

Our first bound given in (3) only requires Assumption 1; by imposing the additional structure
of Assumption 2, we obtain the more specialized bound given in (4). Interestingly, (3) can be
strengthened further when the following subgaussianity assumption holds.

3By Hölder’s inequality, we also have `∞(u, v) ≤ `p(u, v) ≤ d1/p`∞(u, v) for all p ≥ 1 and u, v ∈ Rd,
which implies that for p := log d we have `∞(u, v) ≤ `p(u, v) ≤ 2`∞(u, v): i.e., `log d(u, v) gives a factor-2
approximation of the `∞ loss. This further extends to s-sparse vectors, with a factor s1/p instead of d1/p.
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Assumption 3 (Subgaussianity). There exists some σ ≥ 0 such that, for all z ∈ Z , the random
vector φz(X) := (φz,i(X))i∈[k] ∈ Rk is σ2-subgaussian for X ∼ pz .4

Let Z = (Z1, . . . , Zk) be a random variable over Z such that Pr[Zi = 1 ] = τ for all i ∈ [k] and the
Zis are all independent; we denote this distribution by Rad(τ)⊗k. Our main result is an upper bound
on the average amount of information that can be obtained about a coordinate of Z from the transcript
(Y n, U) of a sequentially interactive protocol, as a function of the information constraint channels
and φZ,is. This result only requires Assumption 1, and is presented below in its most general form,
suited to applications beyond those discussed in the current paper.
Theorem 1 (Information contraction bound: Technical form). Fix τ ∈ (0, 1/2]. Let Π be a se-
quentially interactive protocol usingWn, and let Z be a random variable on Z with distribution
Rad(τ)⊗k. Let (Y n, U) be the transcript of Π when the input X1, . . . , Xn is i.i.d. with common
distribution pZ , with density function pY

n

Z . Then, under Assumption 1,(
1

k

k∑
i=1

dTV

(
pY

n

+i ,p
Y n

−i

))2

≤ 7

k

n∑
t=1

max
z∈Z

max
W∈Wt

k∑
i=1

∫
Y

Epz [φz,i(X)W (y | X)]
2

Epz [W (y | X)]
dµ , (3)

where pY
n

+i := E
[
pY

n

Z

∣∣ Zi = +1
]
, pY

n

−i := E
[
pY

n

Z

∣∣ Zi = −1
]
.

We now instantiate this result, invoking Assumptions 2 and 3, to give simple “plug-and-play” bounds
which can be applied readily to several inference problems and information constraints.
Theorem 2. Fix τ ∈ (0, 1/2]. Let Π be a sequentially interactive protocol usingWn, and let Z be
a random variable on Z with distribution Rad(τ)⊗k. Let (Y n, U) be the transcript of Π when the
input X1, . . . , Xn is i.i.d. with common distribution pZ . Then, under Assumptions 1 and 2, we have(

1

k

k∑
i=1

dTV

(
pY

n

+i ,p
Y n

−i

))2

≤ 7

k
α2

n∑
t=1

max
z∈Z

max
W∈Wt

∫
Y

Varpz [W (y | X)]

Epz [W (y | X)]
dµ . (4)

Moreover, if Assumption 3 holds as well, we have(
1

k

k∑
i=1

dTV

(
pY

n

+i ,p
Y n

−i

))2

≤ 14

k
σ2

n∑
t=1

max
z∈Z

max
W∈Wt

I(pz;W ), (5)

where I(pz;W ) denotes the mutual information I(X;Y ) between the input X ∼ pz and the output
Y of the channel W with X as input.

As an illustrative and important corollary, we now derive the implications of this theorem for
communication and privacy constraints. For both constraints our tight (or nearly tight) bounds
in Section 5 follow directly from these corollaries.
Corollary 1 (Local privacy constraints). ForW =Wpriv,ε and any family of distributions {pz, z ∈
{−1,+1}k} satisfying Assumptions 1 and 2, with the notation of Theorem 2, we have(

1

k

k∑
i=1

dTV

(
pY

n

+i ,p
Y n

−i

))2

≤ 7

k
nα2

(
(eε − 1)2 ∧ eε

)
. (6)

Moreover, if Assumption 3 holds as well, we have(
1

k

k∑
i=1

dTV

(
pY

n

+i ,p
Y n

−i

))2

≤ 14

k
nσ2ε. (7)

Corollary 2 (Communication constraints). For any family of channelsW with finite output space
Y and any family of distributions {pz, z ∈ {−1,+1}k} satisfying Assumptions 1 and 2, with the
notation of Theorem 2, we have(

1

k

k∑
i=1

dTV

(
pY

n

+i ,p
Y n

−i

))2

≤ 7

k
nα2|Y|. (8)

4Recall that a r.v. Y is σ2-subgaussian if E[Y ] = 0 and E[eλY ] ≤ eσ
2λ2/2 for all λ ∈ R; and that a

vector-valued r.v. Y is σ2-subgaussian if its projection 〈Y, v〉 is σ2-subgaussian for every unit vector v.
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Moreover, if Assumption 3 holds as well, we have(
1

k

k∑
i=1

dTV

(
pY

n

+i ,p
Y n

−i

))2

≤ 14

k
nσ2 log |Y|. (9)

4 An Assouad-type bound

In the previous section we provided an upper bound on 1
k

∑k
i=1 dTV

(
pY

n

+i ,p
Y n

−i
)
. We now prove a

lower bound for this quantity in terms of the parameter estimation task we set out to solve. This is an
“Assouad’s lemma-type” bound, which when combined with Theorem 2 will establish the bounds for
n; and, reorganizing, the minimax rate lower bounds. To state the result, we require the following
assumption, which relates the `p distance between parameters θzs to the distance between zs.

Assumption 4 (Additive loss). Fix p ∈ [1,∞). For every z, z′ ∈ Z ⊂ {−1,+1}k,

`p(θz, θz′) = 4γ

(
dHam(z, z′)

τk

)1/p

,

where dHam(z, z′) :=
∑k
i=1 1{zi 6= z′i} denotes the Hamming distance.

Lemma 1 (Assouad-type bound). Let p ≥ 1 and assume that {pz, z ∈ Z}, τ ∈ [0, 1/2] satisfy As-
sumption 4. Let Z be a random variable on Z = {−1,+1}k with distribution Rad(τ)⊗k. Suppose
that (Π, θ̂) constitutes an (n, γ)-estimator of PΘ using Wn under `p loss (see Definition 2) and
PrZ [pZ ∈ PΘ ] ≥ 1− τ/4. Then the transcript (Y n, U) of Π satisfies

1

k

k∑
i=1

dTV

(
pY

n

+i ,p
Y n

−i

)
≥ 1

4
,

where pY
n

+i := E
[
pY

n

Z

∣∣ Zi = +1
]
, pY

n

−i := E
[
pY

n

Z

∣∣ Zi = −1
]
.

5 Applications

We now consider three distribution families: product Bernoulli distributions and Gaussian distributions
with identity covariance matrix (and s-sparse mean vectors), and discrete distributions (multinomials),
to illustrate the generality and efficacy of our bounds. We describe these three families below, before
addressing each of them in their respective subsection. Due to space constraints, we present the proof
of the upper bounds in Appendix C, and proof of the lower bounds in Appendix G.

Sparse Product Bernoulli (Bd,s). Let 1 ≤ s ≤ d, Θ =
{
θ ∈ [−1, 1]d : ‖θ‖0 ≤ s

}
, and X =

{−1, 1}d. Let PΘ := Bd,s be the family of d-dimensional s-sparse product Bernoulli
distributions over X . Namely, for θ = (θ1, . . . , θd) ∈ Θ, the distribution pθ is equal to
⊗dj=1 Rad( 1

2 (θj + 1)): a distribution on {−1,+1}d such that the marginal distributions are
independent, and for which the mean of the jth marginal is θj .

Sparse Gaussian (Gd,s). Let 1 ≤ s ≤ d, Θ =
{
θ ∈ [−1, 1]d : ‖θ‖0 ≤ s

}
, and X = Rd. Let

PΘ := Gd,s be the family of d-dimensional spherical Gaussian distributions with bounded
s-sparse mean. That is, for θ ∈ Θ, pθ = G(θ, I) with mean θ and covariance matrix I. We
note that this general formulation assumes ‖θ‖∞ ≤ 1 (from the choice of Θ).5

Discrete distributions (∆d). Let Θ =
{
θ ∈ [0, 1]d :

∑d
i=1 θi = 1

}
⊆ Rd and X =

{1, 2, . . . , d}. Let PΘ := ∆d, where ∆d is the standard (d − 1)-simplex of all proba-
bility mass functions over X . Namely, the distribution pθ is a distribution on X , where, for
j ∈ [d], the probability assigned to the element j is pθ(j) = θj . For a unified presentation,
we view θ as the mean vector of the “categorical distribution,” namely the distribution of
vector (1{X = x}, x ∈ X ) for X with distribution pθ.

5This assumption that the mean is bounded, in our case in `∞(0, 1), is standard, and necessary in order to
obtain finite upper bounds: indeed, a packing argument shows that if the mean is assumed to be in a ball of radius
R, then a logΩ(1) R dependence in the sample complexity is necessary in both the communication-constrained
and LDP settings. Our choice of radius 1 is arbitrary, and our upper bounds can be generalized to any R ≥ 1.
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We now define our measure of interest, the minimax error rate of mean estimation.
Definition 3 (Minimax rate of mean estimation). Let P be a family of distributions parameterized
by Θ ⊆ Rd. For p ∈ [1,∞], n ∈ N, and a family of channelsW , the minimax error rate of mean
estimation for P usingWn under `p loss, denoted Ep(P,W, n), is the least γ ∈ (0, 1] such that there
exists an (n, γ)-estimator for P usingW under `p loss (see Definition 2).

We obtain lower bounds on the minimax rate of mean estimation for the different families above by
specializing our general bound. Importantly, our methodology is not specific to `p losses, and can
be used for arbitrary additive losses such as (squared) Hellinger or, indeed, for any loss function for
which an analogue of Lemma 1 can be derived.

Product Bernoulli family. We first establish the following bounds for Bd,s under privacy and
communication constraints.

Theorem 3 (Product Bernoulli). Fix p ∈ [1,∞). For 4 log d ≤ s ≤ d, ε ∈ (0,∞), and ` ≥ 1,√
ds2/p

n(ε2 ∧ ε)
∧ 1 . Ep(Bd,s,Wpriv,ε, n) .

√
ds2/p

n(ε2 ∧ 1)
(10)

and √
ds2/p

n`
∨
s2/p log 2d

s

n
∧ 1 . Ep(Bd,s,Wcomm,`, n) .

√
ds2/p

n`
∨
s2/p log 2d

s

n
(11)

For p =∞, we have the upper bounds

E∞(Bd,s,Wpriv,ε, n) = O

(√
d log s

nε2

)
and E∞(Bd,s,Wcomm,`, n) = O

(√
d log s

n`
∨ log d

n

)
,

while the lower bounds given in Eqs. (10) and (11) hold for p =∞, too.6

Remark 1. Previous work had shown, in the simpler noninteractive model, a rate lower bound scaling
as
√
ds/(n`) log(2d/s) for the specific case of `2 loss (see, for instance, [21, Theorem 7] for the

sparse Gaussian case, which implies the Bernoulli one). An analogous phenomenon was observed for
local privacy (e.g., [14]). Thus, by removing this logarithmic factor from the upper bound, our result
establishes the first (to the best of our knowledge) separation between interactive and noninteractive
protocols for sparse mean estimation under communication or local privacy constraints.
Remark 2. Although we stated for simplicity the lower bounds of Theorem 3 in the case where all n
players have a similar local constraints (i.e., same privacy parameter ε, or same bandwidth constraint
`), it is immediate to check from the application of Theorem 2 that the result extends to different
constraints for each player; replacing n(ε2∧ ε) and n` in the statement by

∑n
t=1 ε

2
t ∧ εt and

∑n
t=1 `t,

respectively. A similar remark applies to the Gaussian and discrete families.

Gaussian family. We derive a lower bound for Ep(Gd,s,W, n) under local privacy (captured by
W = Wpriv,ε) and communication (captured by W = Wcomm,`) constraints.7 Recall that for
product Bernoulli mean estimation we had optimal bounds for both privacy and communication
constraints for all finite p. For Gaussians, we will obtain tight bounds for privacy constraints for
ε ∈ (0, 1]. However, for communication constraints and privacy constraints when ε ≥ 1, our bounds
for Gaussian distributions lose a (single) logarithmic factor in some parameter regimes.

Theorem 4 (Gaussian distributions). Fix p ∈ [1,∞). For 4 log d ≤ s ≤ d, under LDP constraints,
when ε ∈ (0, 1], √

ds2/p

nε2
∧ 1 . Ep(Gd,s,Wpriv,ε, n) .

√
ds2/p

nε2
(12)

and when ε > 1, √
ds2/p

nε log (nd)
∧ 1 . Ep(Gd,s,Wpriv,ε, n) .

√
ds2/p

n
(13)

6That is, the upper and lower bounds only differ by a log s factor for p =∞.
7As in the Bernoulli case, we here focus for simplicity on the case where the communication (resp., privacy)

parameters are the same for all players, but our lower bounds easily extend.
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Under communication constraints,√
ds2/p

n` log(dn)
∨
s2/p log 2d

s

n
∧ 1 . Ep(Gd,s,Wcomm,`, n) .

√
ds2/p

n`
∨
s2/p log 2d

s

n
(14)

The same bound as in Theorem 3 hold for p =∞.

We emphasize that, as discussed in Sections 1.1 and 1.2, to the best of our knowledge our results
provides the first lower bounds for interactive Gaussian mean estimation under these constraints.

Discrete distribution estimation. We are able to derive a lower bound for Ep(∆d,W, n), the
minimax rate for discrete density estimation, under local privacy and communication constraints. In
the interest of space, we focus here on two important corollaries; first, for the case of total variation
distance (`1), where combining it with known upper bounds we obtain optimal bounds for all ε > 0.
In particular, for ε ∈ (0, 1] (high-privacy regime) we retrieve the lower bound established in [5],
which matches the upper bound from [4]. For ε > 1 (low-privacy regime), our bound matches the
upper bound for the noninteractive case, established in [32, 1], showing that even in this low-privacy
regime interactivity cannot lead to better rates, except maybe up to constant factors.
Corollary 3 (Total variation distance). For ε > 0, we have

E1(∆d,Wpriv,ε, n) �

√
d2

n((eε − 1)2 ∧ eε)
∧ 1 . (15)

For ` ≥ 1,

E1(∆d,Wcomm,`, n) �

√
d2

n(2` ∧ d)
∧ 1 . (16)

For the case of `2 estimation, we also obtain order-optimal bounds:
Corollary 4 (`2 density estimation). For ε > 0, we have

E2(∆d,Wpriv,ε, n) �

√
d

n(eε − 1)2 ∧ eε)
∧ 4

√
1

n(eε − 1)2 ∧ eε)
∧ 1 . (17)

For ` ≥ 1,

E2(∆d,Wcomm,`, n) �

√
d

n(2` ∧ d)
∧ 4

√
1

n(2` ∧ d)
∧ 1 . (18)
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A Fully interactive model

In this appendix, we describe how to extend our results, presented in the sequentially interactive model,
to the more general interactive setting. We first formally define this setting and the corresponding
notion of protocols. Hereafter, we use ∗ for the Kleene star operation, i.e., V ∗ =

⋃∞
n=0 V

n.
Definition 4 (Interactive Protocols). Let X1, . . . , Xn be i.i.d. samples from pθ, θ ∈ Θ, andW∗ be
a collection of sequences of pairs of channel families and players; that is, each element ofW∗ is
a sequence (Wt, jt)t∈N where jt ∈ [n]. An interactive protocol Π usingW∗ comprises a random
variable U (independent of the input X1, . . . , Xn) and, for each t ∈ N, mappings

σt : Y1, . . . , Yt−1, U 7→ Nt ∈ [n] ∪ {⊥}
gt : Y1, . . . , Yt−1, U 7→Wt

with the constraint that ((W1, N1), . . . , (Wt, Nt)) must be consistent with some sequence fromW∗;
that is, there exists ((Ws, js))s∈N ∈ W∗ such that Ws ∈ Ws and Ns = js for all 1 ≤ s ≤ t. These
two mappings respectively indicate (i) whether the protocol is to stop (symbol ⊥), and, if not, which
player is to speak at round t ∈ N, and (ii)) which channel this player selects at this round.

In round t, if Nt = ⊥, the protocol ends. Otherwise, player Nt (as selected by the protocol, based
on the previous messages) uses the channel Wt to produce the message (output) Yt according to the
probability measure Wt(· | XNt). We further require that T := inf { t ∈ N : Nt = ⊥ } is finite a.s.
The messages Y T = (Y1, . . . , YT ) received by the referee and the public randomness U constitute
the transcript of the protocol Π.

In other terms, the channel used by the player Nt speaking at time t is a Markov kernel

Wt : Yt ×X × Yt−1 → [0, 1] ,

with Yt ⊆ Y ; and, for player j ∈ [n], the allowed subsequences (Wt, jt)t∈N:jt=j capture the possible
sequences of channels allowed to the player. As an example, if we were to require that any single
player can speak at most once, then for every j ∈ [n] and every (Wt, jt)t∈N ∈ Wn, we would have∑∞
t=1 1{jt = j} ≤ 1.

In the interactive model, we can then capture the constraint that each player must communicate at
most ` bits in total by lettingWn be the set of sequences (Wcomm,`t

t , jt)t∈N such that

∀j ∈ [n],

∞∑
t=1

`t · 1{jt = j} ≤ ` .

In the simpler sequentially interactive model, this condition simply becomes the choice ofWn =
(Wcomm,`, . . . ,Wcomm,`).

A.1 Lower Bounds under Full Interactive Model

Next we discuss how our technique extends to the full interactive model. For any full interactive
protocol Π, let Y ∗ ∈ Y∗ be the message sequence generated by the protocol. Then, for all y∗ ∈ Y∗,
we have

Pr
Xn∼p

[Y ∗ = y∗ ] = EXn∼p

[ ∞∏
t=1

Wt

(
yt | Xσt(yt−1), y

t−1
)]
.

The following lemma states that if Xn are generated from a product distribution, the distribution of
the transcript satisfies a property similar to the “cut-and-paste” property from [6].
Lemma 2 ([20]). If Xn ∼ p = ⊗nt=1pt, the transcript of the protocol satisfies

Pr
Xn∼p

[Y ∗ = y∗ ] =

n∏
t=1

EXt∼pt [gt(y∗, Xt)], (19)

where gt(y∗, xt) =
∏∞
j=1Wj(yj | xt, yj−1)1

{
σj(y

j−1) = t
}
.

Hence, when Xn ∼ p⊗nz we have

py
∗

z := Pr
Xn∼p⊗nz

[Y ∗ = y∗ ] =

n∏
t=1

EXt∼pz [gt(y∗, Xt)].
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Here we can define a similar notion of “channel” for a communication protocol Π for the ith player
when the underlying distribution is pz by setting

W̃t,pz (y
∗ | x) = gt(y

∗, x)

∏
j 6=t

EXj∼pz [gj(y∗, Xj)]

. (20)

Then we have, for all t ∈ [n],

EXt∼pz
[
W̃t,pz (y

∗ | Xt)
]

= Pr
Xn∼p⊗nz

[Y ∗ = y∗ ].

We proceed to prove a bound similar to Theorem 1 in terms of the “channel” defined in Eq. (20), as
stated below.
Theorem 5 (Information contraction bound). Fix τ ∈ (0, 1/2]. Let Π be a fully interactive pro-
tocol using Wn, and let Z be a random variable on Z with distribution Rad(τ)⊗k. Let (Y ∗, U)
be the transcript of Π when the input X1, . . . , Xn is i.i.d. with common distribution pZ . Then,
under Assumption 1,(

1

k

k∑
i=1

dTV

(
pY
∗

+i ,p
Y ∗

−i

))2

≤ 7

k
α2

n∑
j=1

max
z∈Z

max
(Wt,jt)t∈N∈Wn

k∑
i=1

∫
y∗∈Y∗

Epz

[
φz,i(X)W̃j,pz (y

∗ | X)
]2

Epz

[
W̃j,pz (y

∗ | X)
] dµ ,

where pY
∗

+i := E
[
pY
∗

Z

∣∣ Zi = 1
]
, pY

∗

−i := E
[
pY
∗

Z

∣∣ Zi = 1
]
.

We can see the bound is in identical form to Theorem 1 except that we replace each player’s channel
with the W̃j,pz (y

∗ | X) we defined. Other similar bounds in Section 3 can also be derived under
additional assumptions and specific constraints. We present the proof for Theorem 5 below and omit
the detailed statements and proof for other bounds.

Proof. Analogously to Eq. (36), we can get

1

k

(
k∑
i=1

dTV

(
pY
∗

+i ,p
Y ∗

−i

))2

≤ 14

n∑
t=1

EZ

[
k∑
i=1

dH

(
pY
∗

Z ,pY
∗

t←Z⊕i
)2
]

(21)

For all z ∈ {−1,+1}k and i, t, by the definition of Hellinger distance and Eq. (19), we have

2dH

(
pY
∗

z ,pY
∗

t←z⊕i
)2

=

∫
y∗∈Y∗

∏
1≤j≤n
j 6=t

EXj∼pz [gj(y∗, Xj)]

(√
EXt∼pz⊕i [gt(y

∗, Xt)]−
√
EXt∼pz [gt(y∗, Xt)]

)2

dµ

≤
∫
y∗∈Y∗

(∏
j 6=t

EXj∼pz [gj(y∗, Xj)]
)( (EXt∼pz [gt(y∗, Xt)]− EXt∼pz⊕i [gt(y

∗, Xt)])
2

EXt∼pz [gt(y∗, Xt)]

)
dµ ,

Proceeding from above, we get under Assumption 1,

2dH

(
pY
∗

z ,pY
∗

t←z⊕i
)2

≤ α2

∫
y∗∈Y∗

∏
j 6=t

EXj∼pz [gj(y∗, Xj)]

(EXt∼pz [φz,i(Xt)gt(y
∗, Xt)]

2

EXt∼pz [gt(y∗, Xt)]

)
dµ

= α2

∫
y∗∈Y∗

EXt∼pz
[
φz,i(Xt)gt(y

∗, Xt)
∏
j 6=t EXj∼pz [gj(y∗, Xj)]

]2
EXt∼pz

[
gt(y∗, Xt)

∏
j 6=t EXj∼pz [gj(y∗, Xj)]

] dµ

= α2

∫
y∗∈Y∗

EXt∼pz
[
φz,i(Xt)W̃t,pz (y

∗ | X)
]2

EXt∼pz
[
W̃t,pz (y

∗ | X)
] dµ .

Plugging the above bound into Eq. (21), we can obtain the bound in Theorem 5 by taking the
maximum over all z ∈ {−1,+1}k and all possible channel sequences.
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B A measure change bound

We here provide a variant of Talagrand’s transportation-cost inequality which is used in deriv-
ing Eq. (5) (under Assumption 3) in the second part of Theorem 2. We note that this type of result
is not novel, and can be derived from standard arguments in the literature (see, e.g., [9, Chapter 8]
or [27, Chapter 4]). However, the lemma below is specifically tailored for our purposes, and we
provide the proof for completeness. A similar bound was derived in [2], where Gaussian mean testing
under communication constraints was considered.
Lemma 3 (A measure change bound). Consider a random variable X taking values in X and with
distribution P . Let Φ: X → Rk be such that the random vector Φ(X) is σ2-subgaussian. Then, for
any function a : X → [0,∞) such that E[a(X)] <∞, we have

‖E[Φ(X)a(X)]‖22
E[a(X)]

2 ≤ 2σ2E[a(X) ln a(X)]

E[a(X)]
+ 2σ2 ln

1

E[a(X)]
.

Proof. By an application of Gibb’s variational principle (cf. [9, Corollary 4.14]) the following holds:
For a random variable Z and distributions P and Q on the underlying probability space satisfying
Q� P (that is, such that Q is absolutely continuous with respect to P ), we have

λEQ[Z] ≤ lnEP
[
eλZ

]
+ D(Q‖P ).

To apply this bound, set P to be the distribution of X and let Q � P be defined using its density
(Radon–Nikodym derivative) with respect to P given by

dQ

dP
=

a(X)

EP [a(X)]
.

Now, note that for any unit vector v, we have, setting Z = vᵀΦ(X) and using the σ2-subgaussianity
of Φ(X), that

λEQ[vᵀΦ(X)] ≤ lnEP
[
eλv

ᵀΦ(X)
]

+ D(Q‖P ) ≤ σ2λ2

2
+ D(Q‖P ).

In particular, for λ = 1
σ

√
2D(Q‖P ), we get

EQ[vᵀΦ(X)] ≤ σ
√

2D(Q‖P ).

Applying this to the unit vector v :=
EQ[Φ(X)]
‖EQ[Φ(X)]‖2

then yields

‖EQ[Φ(X)]‖2 ≤ σ
√

2D(Q‖P ).

To conclude, it then suffices to observe that

D(Q‖P ) =
EP [a(X) ln a(X)]

EP [a(X)]
+ ln

1

EP [a(X)]
.

The proof is completed by combining the bounds above, as EQ[Φ(X)] = EP [Φ(X)a(X))]
EP [a(X)] .

C Upper bounds

We now describe and analyze the interactive algorithms for the estimation tasks we consider.

C.1 Product Bernoulli Distributions

Recall that Bd,s, the family of d-dimensional s-sparse product Bernoulli distributions, is defined as

Bd,s :=


d⊗
j=1

Rad(
1

2
(µj + 1)) : µ ∈ [−1, 1]d, ‖µ‖0 ≤ s

 . (22)

We now provide the interactive protocols achieving the upper bounds of Theorem 3 for sparse product
Bernoulli mean estimation under LDP and communication constraints .

Our protocols has two ingredients described below:
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• Estimating non-zero mean coordinates.In this step we will start with S0 = [d], the set of
all possible coordinates. Then we will iteratively prune the set S0 → S1 → . . .→ ST , such
that |ST | = 3s (this step is skipped if s ≥ d/3) is a good estimate for the set of coordinates
with non-zero mean.

• Estimating the non-zero means. We then estimate the means of the coordinates in ST ,
which is equivalent to solving a dense mean estimation problem in 3s dimensions.

In the next two sections, we provide the details of the algorithm that matches the lower bounds
obtained in Section 5 for interactive protocols under LDP and communication constraints respectively.

C.1.1 LDP constraints

In this subsection, we will focus on the case ε ∈ (0, 1] (high-privacy regime). For the case ε > 1,
we rely a privatization of the communication-limited algorithm, which will be discussed at the end
of Appendix C.1.2. Our protocol for Bernoulli mean estimation under LDP constraints is described
in Algorithm 1. As stated above, in each round t = 1, . . . , T , for each j ∈ St−1 a new group of
players apply the well known binary Randomized Response (RR) mechanism [29, 24] to their jth
coordinate. Using these messages we then guess a set of coordinates with highest possible means (in
absolute value) and prune the set to St. This is done in Lines 2-6 of Algorithm 1.

In Lines 7-12, the algorithm uses the same approach to estimate the means of coordinates within ST
and sets remaining coordinates to zero.

The privacy guarantee follows immediately from that of the RR mechanism, and further, this only
requires one bit of communication per player.

Algorithm 1 LDP protocol for mean estimation for the product of Bernoulli family
Require: n players, dimension d, sparsity parameter s, privacy parameter ε.

1: Set T := log3
d
3s , α := eε

1+eε , S0 = [d], N0 := n
6d .

2: for t = 1, 2, . . . , T do
3: for j ∈ St−1 do
4: Get a group of new players Gt,j of size Nt = N0 · 2t.
5: Player i ∈ Gt,j , upon observing Xi ∈ {−1,+1}d sends the message Yi ∈ {−1,+1}

such that

Yi =

{
(Xi)j w.p. α,
−(Xi)j w.p. 1− α.

(23)

6: Set Mt,j :=
∑
i∈Gt,j Yi. Let St ⊆ St−1 be the set of the |St−1|/3 indices with the

largest |Mt,j |.
7: for j ∈ ST do
8: Get a group of new players GT,j , j ∈ ST of size NT+1 = N0 · 2T .
9: Player i ∈ GT,j , sends the message Yi ∈ {−1,+1} according to Eq. (23) and MT,j :=∑

i∈GT,j Yi

10: for j ∈ [d] do
11:

µ̂j =

{
Mj,T

(2α−1)NT+1
if j ∈ ST ,

0 otherwise.

12: return µ̂.

The performance guarantee of Algorithm 1 is stated below, which matches the lower bounds obtained
in Section 5.

Proposition 1. Fix p ∈ [1,∞]. For n ≥ 1 and ε ∈ (0, 1], Algorithm 1 is an (n, γ)-estimator

usingWε under `p loss for Bd,s with γ = O

(√
pds2/p

nε2

)
for p ≤ 2 log s and γ = O

(√
d log s
nε2

)
for

p > 2 log s.
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Proof. The total number of players used by Algorithm 1 uses is
T+1∑
t=1

|St−1| ·Nt = |S0| ·N0 ·
T+1∑
t=1

2t

3t−1
≤ 6|S0| ·N0 = n.

To prove the utility guarantee, we bound the estimation error in the estimated set ST and the error
outside the set ST in the following lemma.

Lemma 4. Let ST be the subset obtained from the first stage of Algorithm 1. Then,

max

E

∑
j /∈ST

|µj − µ̂j |p
,E

∑
j∈ST

|µj − µ̂j |p
 = O

(
s

(
pd

nε2

)p/2)
.

The proposition follows directly from the lemma. Indeed, for p > 2 log s, by monotonicity of `p
norms we have ‖µ− µ̂‖p ≤ ‖µ− µ̂‖p′ for all p′ ≤ p, and thus choosing p′ := 2 log s is sufficient to
obtain the stated bound.

Proof of Lemma 4. We prove the bound on each term individually. The first term captures the
performance of our estimator within coordinates in ST and the second term states that we do not
“prune” too many coordinates with high non-zero means.

Bounding the first term. For j /∈ ST , we output µ̂j = 0. Therefore,

E

∑
j /∈ST

|µj − µ̂j |p
 =

∑
j

E[|µj − µ̂j |p · 1{j /∈ ST }] =
∑
j

|µj |p · Pr[ j /∈ ST ].

Since µ is s-sparse, it will suffice to show that for all j with |µj | > 0,

|µj |p · Pr[ j /∈ ST ] = O

((
pd

nε2

)p/2)
. (24)

Let

H := 20

√
d

n(2α− 1)2
.

Note that for ε ∈ (0, 1], we have 2α− 1 ≥ e−1
e+1ε. Therefore, if |µj | ≤ H , then Eq. (24) holds since

Pr[ j /∈ S ] ≤ 1. We hereafter assume |µj | > H , and let µj = βjH with βj > 1. Let Et,j be the
event that coordinate j is removed in round t given that j ∈ St−1. Then we have

Pr[ j /∈ ST ] ≤
T∑
t=1

Pr[Et,j ].

We proceed to bound each Pr[Et,j ] separately. Note that for i ∈ Gt,j , Yi ∈ {−1,+1} and by Eq. (23)

E[Yi] = (2α− 1) · µj = (2α− 1)βjH. (25)

Let at,j be the number of coordinates j′ with µj′ = 0 and |Mt,j′ | ≥ 1
2Nt(2α − 1)βjH . Since we

select the |St−1|/3 coordinates with the largest magnitude of the sum, for j /∈ St to happen at least
one of the following must occur: (i) at,j > 1

3 |St−1| − s, or (ii) Mt,j <
1
2Nt(2α− 1)βjH .

By Hoeffding’s inequality, we have

Pr

[
Mt,j <

1

2
Nt(2α− 1)βjH

]
≤ exp

(
−1

8
Nt((2α− 1)βjH)

2

)
< exp

(
−5 · 2tβ2

j

)
.

Let pt,j := e−5·2tβ2
j . Similarly, for any j′ such that µj′ = 0,

Pr

[
|Mt,j′ | ≥

1

2
Nt(2α− 1)βjH

]
≤ 2pt,j .
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Since all coordinates are independent, at,j is binomially distributed with mean at most 2pt,j |St−1|.
By Markov’s inequality, we get

Pr

[
at,j >

1

3
|St−1| − s

]
≤ E[at,j ]

|St−1|/3− s
≤ pt,j ,

recalling that |St−1| = d3t−1 ≥ 9s. By a union bound and summing over t ∈ [T ], we get

Pr[ j /∈ ST ] ≤
T∑
t=1

Pr[Et,j ] ≤
T∑
t=1

3pt,j = 3

T∑
t=1

exp
(
−2t · 5β2

j

)
≤ 6 exp

(
−5β2

j

)
.

Not that for x > 0, xpe−x
2 ≤

(
p
2e

)p/2
. Hence

|µj |p · Pr[ j /∈ ST ] ≤ 6Hpβpj e
−5β2

j ≤
(
C
pd

nε2

)p/2
,

for some absolute constant C > 0, completing the proof.

Bounding the second term. Note that ST is a random variable itself. We show that the bound holds
for any realization of ST . We need the following result which follows from standard moment bounds
on binomial distributions.

Fact 1. Let p ≥ 1,m ∈ N, 0 ≤ q ≤ 1, andN ∼ Bin(m, q). Then, E[|N −mq|p] ≤ 2−p/2mp/2pp/2

.

Applying this with m = NT ≥ n
6d , the transformation from Bernoulli to {−1,+1}, and the scaling

by 2α− 1, yields for j ∈ ST , and using Eq. (25)

E[|µj − µ̂j |p] ≤
(

p

(n/6d)(2α− 1)2

)p/2
.

Upon summing over j ∈ ST , we obtain

E

∑
j∈ST

|µj − µ̂j |p
 ≤ 3s ·

(
6(e+ 1)2d

(e− 1)2nε2

)p/2
≤ 3 · 6p · s

(
pd

nε2

)p/2
.

C.1.2 Communication constraints

In Algorithm 2 we propose a protocol to estimate the mean of product Bernoulli distributions under
`-bit communication constraints. As mentioned in the previous subsection, the ε-LDP algorithm with
ε > 1 will follow from a simple modification of the communication-constrained one; we discuss
how to privatize the latter to obtain the former at the end of the section. As in the LDP case when
ε ∈ (0, 1], in 2–10 the algorithm iteratively prunes an initial set S0 = [d] to obtain a set ST of size
max{3s, `}, which denotes the set of potential non-zero coordinates. We then estimate the mean
of coordinates in ST . If ` > 3s, then we can directly send the values of all coordinates in ST and
use it for estimation; otherwise, when 3s > `, we again partition ST into sets of size ` and each
player sends the bits of its sample in this set. This is done in Lines 11–18. We state the performance
of Algorithm 2 below.

Proposition 2. Fix p ∈ [1,∞]. For n ≥ 1 and ` ≤ d, we have Algorithm 2 is an (n, γ)-estimator

using W` under `p loss for Bd,s with γ = O

(√
pds2/p

n` + (p+log(2`/s))s2/p

n

)
for p ≤ 2 log s and

γ = O

(√
d log s
n` + log `

n

)
for p > 2 log s.

When ` ≤ 3s, the bound we get is γ .
√

pds2/p

n` . The analysis is almost identical to the case under
LDP constraints, since in both cases, the information we get about coordinate j are samples from a
Rademacher distribution with mean (2α− 1)µj . There are only two differences. (i) α = 1 instead of
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Algorithm 2 `-bit protocol for estimating product of Bernoulli family
Require: n players, dimension d, sparsity parameter s, communication bound `.

1: Set T := log3(d/max{3s, `}), S0 := [d], N0 := n`
18d .

2: for t = 1, 2, . . . , T do
3: Set P := d

3t−1` , and partition St−1 into P subsets St−1,1, . . . , St−1,P , each of size `.
4: for j = 1, 2, . . . , P do
5: Get a group of new players Gt,j of size Nt = N0 · 2t.
6: Player i ∈ Gt,j , upon observing Xi ∈ {−1,+1}d sends the message Yi =
{(Xi)x}x∈St−1,j

.
7: For x ∈ St−1,j , let Mt,x :=

∑
i∈Gt,j (Xi)x.

8: Set St ⊆ St−1 to be the set of indices with the largest |Mt,x| and |St| = |St−1|/3.
9: if ` ≤ 3s then

10: Partition ST into 3s/` subsets of size ` each, ST,j , j ∈ [3s/`].
11: for j = 1, . . . , 3s/` do
12: Get a new group GT+1,j of players of size n`/(6s).
13: Player i ∈ GT+1,j , sends the message Yi = {(Xi)x}x∈ST,j .
14: For x ∈ ST,j , let MT+1,x =

∑
i∈GT+1,j

(Xi)x. Set

µ̂x :=
6s

n`
MT+1,x,

15: For x /∈ ST , set µ̂x = 0.
16: if ` > 3s then,
17: Get n/2 new players GT+1 and for i ∈ GT+1, player i sends Yi = {(Xi)x}x∈ST . This can

be done since |ST | = ` if ` > 3s.
18: For x ∈ ST , let MT+1,x =

∑
i∈GT+1,j

(Xi)x. Set ST+1 ⊆ ST to be the set of indices with
the largest |MT+1,x| and |ST+1| = 3s. For all x ∈ ST+1, set

µ̂x :=
2

n
MT+1,x,

and for all x /∈ ST+1, µ̂x = 0.
19: return µ̂.

Θ
(
ε2
)
. (ii) There is a factor of ` more players in the corresponding groups. Combing both factors,

we can obtain the desired bound by replacing ε2 by `. We omit the detailed proof in this case.

When ` > 3s, after T � log(d/`) rounds, we can find a subset ST of size ` which contains most of
the coordinates with large biases. The protocol then asks new players to send all coordinates within
ST using ` bits. In this case, it would be enough to prove Lemma 5 since for the coordinates outside
ST , we can show the error is small following exactly the same steps as the proof for bouding the first
term in Lemma 4 as we explained in the case when ` ≤ 3s.
Lemma 5. Let ST be the subset obtained from the first stage of Algorithm 2, we have

E

∑
j∈ST

|µj − µ̂j |p
 = O

s(p+ log 2`
s

n

)p/2.
Proof. Similar to Lemma 4, we will prove that the statement is true for any realization of ST , which
is a stronger statement than the claim.

E

∑
j∈ST

|µj − µ̂j |p
 = E

∑
j∈ST

|µj − µ̂j |p1{j ∈ ST+1}

+ E

∑
j∈ST

|µj |p1{j /∈ ST+1}


≤ E

 ∑
j∈ST+1

|µj − µ̂j |p
+

∑
j∈ST

|µj |p Pr[ j /∈ ST+1 ].
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Fix ST+1. For each j ∈ ST+1, MT+1,j is binomially distributed with mean µj and n/2 trials. By
similar computations as Lemma 4, we have

E

 ∑
j∈ST+1

|µj − µ̂j |p
 = O

(
s
( p
n

)p/2)
. (26)

Next we show for all j ∈ ST such that µj 6= 0,

|µj |p Pr[ j /∈ ST+1 ] ≤ 2

(
p ∨ 64 ln 2`

s

n

)p/2
. (27)

If |µj | ≤ H ′ := 8

√
ln 2`

s

n , Eq. (27) always holds since Pr[ j /∈ S ] ≤ 1. Hence we hereafter assume
that |µj | > H ′, and write µj = βjH

′ for some βj > 1.

Let aT+1,j be the number of coordinates j′ with µj′ = 0 and |MT+1,j′ | ≥ n
2 ·

βjH
′

2 . Then since
ST+1 contains the top 3s coordinates with the largest magnitude of the sum, we have j /∈ ST+1

happens only if at least one of the following occurs (i) aT+1,j > 2s, or (ii) MT+1,j <
n
2 ·

βjH
′

2 .

By Hoeffding’s inequality, we have

Pr

[
MT+1,j <

n

2
· βjH

′

2

]
≤ exp

(
−1

2
· n

2
·
(
βjH

′

2

)2
)

=

(
2`

s

)−4β2
j

:= pT+1,j .

Similarly, for any j′ such that µj′ = 0,

Pr

[
|MT+1,j′ | ≥

n

2
· βjH

′

2

]
≤ 2pT+1,j .

Since all coordinates are independent, aT+1,j is binomially distributed with mean at most 2pT+1,j`,
and therefore, by Markov’s inequality,

Pr[ aT+1,j > 2s ] ≤ 2pT+1,j`

2s
≤
(

2`

s

)1−4β2
j

≤
(

2`

s

)−3β2
j

the last step since βj > 1. By a union bound, we have

Pr[ j /∈ ST ] ≤ Pr[ aT+1,j > 2s ] + Pr

[
MT+1,j <

1

4

n

2
· βjH

′

2

]
≤ 2

(
2`

s

)−3β2
j

.

Using the inequality xpa−x
2 ≤

(
p

2e ln a

)p/2
which holds for all x > 0, we get overall

|µj |p · Pr[ j /∈ ST ] ≤ 2H ′pβpj

(
2`

s

)−4β2
j

≤ 2
( p
en

)p/2
,

establishing Eq. (27). Combining Eq. (26) and Eq. (27) concludes the proof Lemma 5 since there are
at most s unbiased coordinates.

Algorithm under LDP with ε > 1 To get a ε-LDP algorithm in the regime ε > 1 (low-privacy
regime), we perform the following changes to obtain a private algorithm from Algorithm 2:

• Each user independently flips each coordinate of their local sample to get Zi where, for all
x ∈ [d], (Zi)x = (Xi)x with probability e

e+1 and (Zi)x = 1− (Xi)x with probability 1
e+1

(note that this corresponds to applying Randomized Response independently to each bit
with privacy parameter 1).

• Users then follow Algorithm 2 with the setting ` = bεc and local data {Zi}i∈[n], and obtain
estimate µ̂.

• The final estimate is then e+1
e−1 µ̂.
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The privacy guarantee of the algorithm comes from the fact that Algorithm 2 sends at most ` = bεc
coordinates of each Zi, and for any S with |S| ≤ bεc

Pr[ {(Zi)x}x∈S | Xi ]

Pr[ {(Zi)x}x∈S | X ′i ]
=
∏
x∈S

Pr[ (Zi)x | (Xi)x ]

Pr[ (Zi)x | (X ′i)x ]
≤ ebεc.

The utility guarantee follows from observing that µZ = e−1
e+1µ and hence any `p error guarantee will

be preserved up to a constant.

C.2 Gaussian Mean Estimation

Recall that Gd,s denotes the family of d-dimensional spherical Gaussian distributions with s-sparse
mean in [−1, 1]d, i.e.,

Gd,s = { G(µ, I) : ‖µ‖∞ ≤ 1, ‖µ‖0 ≤ s } . (28)
We will prove the following results for LDP and communication constraints, respectively.
Proposition 3. Fix p ∈ [1,∞]. For n ≥ 1 and ε ∈ (0, 1], there exists an (n, γ)-estimator using

Wε under `p loss for Gd,s with γ = O

(√
pds2/p

nε2

)
for p ≤ 2 log s and γ = O

(√
d log s
nε2

)
for

p > 2 log s.
Proposition 4. Fix p ∈ [1,∞]. For n ≥ 1 and ` ≤ d, there exists an (n, γ)-estimator using

W` under `p loss for Gd,s with γ = O

(√
pds2/p

n` + (p+log(2`/s))s2/p

n

)
for p ≤ 2 log s and γ =

O

(√
d log s
n` + log `

n

)
for p > 2 log s.

We reduce the problem of Gaussian mean estimation to that of Bernoulli mean estimation and then
invoke Propositions 1 and 2 from the previous section. At the heart of the reduction is a simple idea
that was used in, e.g., [10, 2, 11]: the sign of a Gaussian random variable already preserves sufficient
information about the mean. Details follow.

Let p ∈ Gd,s with mean µ(p) = (µ(p)1, . . . , µ(p)d). For X ∼ p, let Y = (sign(Xi))i∈[d] ∈
{−1,+1}d be a random variable indicating the signs of the d coordinates of X . By the independence
of the coordinates of X , note that Y is distributed as a product Bernoulli distribution (in Bd) with
mean vector ν(p) given by

ν(p)i = 2 Pr
X∼p

[Xi > 0 ]− 1 = Erf

(
µ(p)i√

2

)
, i ∈ [d], (29)

and, since |µ(p)i| ≤ 1, we have ν(p) ∈ [−η, η]d, where η := Erf
(
1/
√

2
)
≈ 0.623. Moreover, it

is immediate to see that each player, given a sample from p, can convert it to a sample from the
corresponding product Bernoulli distribution. We now show that a good estimate for ν(p) yields a
good estimate for µ(p).
Lemma 6. Fix any p ∈ [1,∞), and p ∈ Gd. For ν̂ ∈ [−η, η]d, define µ̂ ∈ [−1, 1]d by µ̂i :=√

2 Erf−1(ν̂i), for all i ∈ [d]. Then

‖µ(p)− µ̂‖p ≤
√
eπ

2
· ‖ν(p)− ν̂‖p .

Proof. By computing the maximum of its derivative,8 we observe that the function Erf−1 is
√
eπ
2 -

Lipschitz on [−η, η]. By the definition of µ̂ and recalling Eq. (29), we then have

‖µ(p)− µ̂‖pp =

d∑
i=1

|µ(p)i − µ̂i|p = 2p/2 ·
d∑
i=1

∣∣Erf−1(νi)− Erf−1(ν̂i)
∣∣p ≤ (eπ

2

)p/2
·
d∑
i=1

|νi − ν̂i|p,

where we used the fact that ν, ν̂ ∈ [−η, η]d.
8Specifically, we have that maxx∈[−η,η] Erf

−1(x) = 1/
√
2 by definition of η and monotonicity of Erf .

Recalling then that, for all x ∈ [−η, η], (Erf−1)′(x) = 1
Erf′(Erf−1(x))

=
√
π

2
e(Erf−1(x))2 ≤

√
π

2
e

1
2 , we get the

Lipschitzness claim.
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As previously discussed, combining Lemma 6 with Propositions 1 and 2 (with γ′ :=
√

2
eπγ)

immediately implies Propositions 3 and 4 for p ∈ [1,∞].
Remark 3. Note that for the Gaussian family, we also consider the linear measurement constraint.
Under linear measurement constraints, we can use the linear measurement matrix to obtain r out of d
coordinates and perform the above reduction to product of Bernoulli family. The obtained bound will
be same as that under communication constraints.

D Relation to other lower bound methods

We now discuss how our techniques compare with other existing approaches for proving lower bounds
under information constraints. Specifically, we clarify the relationship between our technique and
the approach using strong data processing inequalities (SDPI) as well as that based on van Trees
inequality (a generalization of the Cramér–Rao bound).

D.1 Strong data processing inequalities

We note first that the bound in Eq. (5) can be interpreted as a strong data processing inequality. Indeed,
the average discrepancy on the left-side of inequality can be viewed as the average information Y n
reveals about each bit of Z. Here the information is measured in terms of total variation distance.
The information quantity on the right-side denotes the information between the input Xn and the
output Y n of the channels. Since the Markov relation Zn — Xn — Y n holds, the inequality is
thus a strong data processing inequality with strong data processing constant roughly σ2/k. Such
strong data processing inequalities were used to derive lower bounds for statistical estimation under
communication constraints in [34, 10, 31]. We note that our approach recovers these bounds, and
further applies to arbitrary constraints captured byW .

D.2 Connection to the van Trees inequality

The average information bound in (3), in fact, allows us to recover bounds similar to the van Trees
inequality-based bounds developed in [7] and [8].

For Θ ⊂ Rk and a parametric family9 PΘ = {pθ, θ ∈ Θ}, recall that the Fisher information matrix
J(θ) is a k × k matrix given by, under some mild regularity conditions,

J(θ)i,j = −Epθ

[
∂2 logpθ
∂θi∂θj

(X)

]
, i, j ∈ [k].

In particular, the diagonal entries equal

J(θ)i,i = Epθ

[(
1

pθ(X)
· ∂pθ
∂θi

(X)

)2
]
, i ∈ [k].

For our application, given a channel W ∈ W , we consider the family PWΘ := {pWθ , θ ∈ Θ} of
distributions induced on the output of the channel W when the input distributions are from PΘ. We
denote the Fisher information matrix for this family by JW (θ), which we compute next under a
refined version of our Assumption 1 described below.

Let θ be a point in the interior of Θ and pθ be differentiable at θ. We set θz := θ+ γ
2 z, z ∈ {−1,+1}k,

and make the following assumption about the structure of the parametric family of distribution: For
all z ∈ {−1,+1}k and i ∈ [k],

dpz⊕i

dpz
= 1 + γξγz,i + γ2ψγz,i, (30)

where Epz

[
ξγz,i(X)2

]
and Epz

[
ψγz,i(X)2

]
are assumed to be uniformly bounded for γ sufficiently

small; for concreteness, we assume Epz

[
ψγz,i(X)2

]
≤ c2 for a constant c, for all γ sufficiently small.

Let ξz,i(x) := limγ→0 ξ
γ
z,i(x), for all x.

9We assume that each distribution pθ has a density with respect to a common measure ν, and, with a slight
abuse of notation, denote the density of pθ also by pθ(X).
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In applications, we expect the dependence of ξγz,i on γ to be “mild,” and, in essence, the assumption
above provides a linear expansion of the term αz,iφz,i from Assumption 1 as a function of the
perturbation parameter γ. Assuming that the densities are differentiable as a function of θ, for the
distribution pWθ of the output of a channel W with input X ∼ pθ, we get

∂pWθ (y)

∂θi
= zi lim

γ→0

pWθz (y)− pWθz⊕i
(y)

γ

= zi lim
γ→0

Epz

[
(ξγz,i(X) + γψγz,i(X))W (y | X)

]
= ziEpθ [ξz,iW (y | X)],

where we used Eq. (30), the fact that limγ→0 θz = θ, the fact that Epz

[
ψγz,i(X)W (y | X)

]
≤

c
√

Epz [W (y | X)2] ≤ c, and the dominated convergence theorem. Thus, we get

Tr
(
JW (θ)

)
=

k∑
i=1

∫
Y

Epθ [ξz,i(X)W (y | X)]
2

Epθ [W (y | X)]
dµ . (31)

Our information contraction bound will be seen later (Section 5) to yield lower bounds for expected
estimation error. For concreteness, we give a preview of a version here. We assume for simplicity
thatWt =W for all t and consider the `2 loss function for the dense (τ = 1/2) case. By following
the proof of Lemma 1 below, given an (n, γ)-estimator θ̂ = θ̂(Y n, U) of PΘ usingWn under `2 loss,
we can find an estimator Ẑ = Ẑ(Y n, U) such that

γ2
k∑
i=1

Pr
[
Ẑi 6= Zi

]
= E

[∥∥θZ − θẐ∥∥2

2

]
≤ 4γ2,

whereby

1

k

k∑
i=1

dTV

(
pY

n

+i ,p
Y n

−i

)
≥ 1− 2

k

k∑
i=1

Pr
[
Ẑi 6= Zi

]
≥ 1− 8γ2

kγ2
.

Upon setting γ := 4γ/
√
k, we get that the left-side of Eq. (3) is bounded below by 1/4. For the same

γ and under Eq. (30), the right-side evaluates to

4γ2n

k
max
z∈Z

max
W∈W

k∑
i=1

∫
Y

Epz

[
(ξγz,i(X) + γψγz,i(X))W (y | X)

]2
Epz [W (y | X)]

dµ

≤ 8γ2n

k
max
z∈Z

max
W∈W

k∑
i=1

∫
Y

Epz

[
ξγz,i(X)W (y | X)

]2
+ γ2Epz

[
ψγz,i(X)W (y | X)

]2
Epz [W (y | X)]

dµ

≤ 128γ2n

k2

(
max
z∈Z

max
W∈W

k∑
i=1

∫
Y

Epz

[
ξγz,i(X)W (y | X)

]2
Epz [W (y | X)]

dµ+ c2γ2

)
,

where we used (a+ b)2 ≤ 2(a2 + b2) and∫
Y

Epz

[
ψγz,i(X)W (y | X)

]2
Epz [W (y | X)]

dµ ≤
∫
Y
Epz

[
ψγz,i(X)2W (y | X)

]
dµ = Epz

[
ψγz,i(X)2

]
≤ c2.

Therefore, Eq. (3) yields

γ2 ≥ k2

256 · n
(

maxz∈Z maxW∈W
∑k
i=1

∫
Y

Epz [ξ
γ
z,i(X)W (y|X)]

2

Epz [W (y|X)] dµ+ c2
) .

This bound is, in effect, the same as the van Trees inequality with Tr
(
JW (θ)

)
replaced by

g(γ) :=

k∑
i=1

∫
Y

Epz [φz,i(X)W (y | X)]
2

Epz [W (y | X)]
dµ .
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In fact, in view of Eq. (31), Tr
(
JW (θ)

)
= limγ→0 g(γ) =: g(0). Thus, our general lower

bound will recover van Trees inequality-based bounds when Eq. (30) holds and g(γ) ≈ g(0).
We note that Eq. (30) holds for all the families considered in this paper (see Eq. (40) for product
Bernoulli, Eq. (42) for Gaussian, and Eq. (50) for discrete distributions). We close this discussion by
noting that results in Section 3 are obtained by deriving bounds for g(γ) which apply for all γ and,
therefore, also for g(0) = Tr

(
JW (θ)

)
.

E Missing proofs in Section 3

E.1 Proof of Theorem 1

Consider Z = (Z1, . . . , Zk) ∈ {−1, 1}k where Z1, . . . , Zk are i.i.d. with Pr[Zi = 1 ] = τ . For a
fixed i ∈ [k], let

pY
n

+i := EZ
[
pY

n

Z | Zi = +1
]

=
∑

z:zi=+1

(∏
j 6=i

τ
1+zj

2 (1− τ)
1−zj

2

)
pY

n

z

pY
n

−i := EZ
[
pY

n

Z | Zi = −1
]

=
∑

z:zi=−1

(∏
j 6=i

τ
1+zj

2 (1− τ)
1−zj

2

)
pY

n

z ,

the partial mixtures of message distributions conditioned on Zi. We will rely on the following
lemma, which relates the desired average discrepancy between the pY

n

+i and pY
n

−i ’s to the sum of n
“local” discrepancy measures (in the form of Hellinger distances between local messages). Each local
measure can then be easily bounded in terms of the density pz and the channel W to get the desired
bound.

Lemma 7. With the notation of Theorem 1, we have(
1

k

k∑
i=1

dTV

(
pY

n

+i ,p
Y n

−i

))2

≤ 14

k

n∑
t=1

max
z∈Z

max
W∈Wt

k∑
i=1

dH

(
pWz ,p

W
z⊕i

)2
, (32)

where pWz denotes the distribution of Y ∼W (· | X) when X ∼ pz .

The proof of the lemma is rather involved and constitutes the core of the argument. We defer it to the
end of the section and show first how it implies Theorem 1. For all z and W , we have

dH

(
pWz ,p

W
z⊕i

)2
=

1

2

∫
y∈Y

(√
Epz [W (y | X)]−

√
Epz⊕i

[W (y | X)]

)2

dµ

=
1

2

∫
Y

 Epz [W (y | X)]− Epz⊕i
[W (y | X)]√

Epz [W (y | X)] +
√

Epz⊕i
[W (y | X)]

2

dµ

≤ 1

2

∫
Y

(Epz [W (y | X)]− Epz⊕i
[W (y | X)])2

Epz [W (y | X)]
dµ . (33)

Moreover, under Assumption 1; for any W ∈ Wt and y ∈ Y ,

Epz⊕i
[W (y | X)] = Epz

[
dpz⊕i

dpz
·W (y | X)

]
= Epz [(1 + φz,i(X)) ·W (y | X)] .

Plugging this back into (33), we get

dH

(
pWz ,p

W
z⊕i

)2 ≤ 1

2

∫
Y

Epz [φz,i(X)W (y | X)]
2

Epz [W (y | X)]
dµ .

Combining this with Lemma 7 concludes the proof of Theorem 1.
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Proof of Lemma 7. Our first step is to use the Cauchy–Schwarz inequality, followed by an inequality
relating total variation and Hellinger distances:

1

k

(
k∑
i=1

dTV

(
pY

n

+i ,p
Y n

−i

))2

≤
k∑
i=1

dTV

(
pY

n

+i ,p
Y n

−i

)2

≤ 2

k∑
i=1

dH

(
pY

n

+i ,p
Y n

−i

)2

≤ 2

k∑
i=1

EZ
[
dH

(
pY

n

Z ,pY
n

Z⊕i

)2

| Zi = +1

]

= 2

k∑
i=1

EZ
[
dH

(
pY

n

Z ,pY
n

Z⊕i

)2
]
, (34)

where the last inequality uses joint convexity of squared Hellinger distance, and the final
identity is due to independence of each coordinate of Z and symmetry of Hellinger whereby
EZ
[
dH

(
pY

n

Z ,pY
n

Z⊕i

)2 | Zi = +1
]

= EZ
[
dH

(
pY

n

Z ,pY
n

Z⊕i

)2 | Zi = −1
]
.

In order to bound the resulting terms of the sum, we will rely on the so-called cut-paste property of
Hellinger distance [6]. Before doing so, we will require an additional piece of notation: for fixed
z ∈ Z , i ∈ [k], t ∈ [n], let pY

n

t←z⊕i denote the message distribution where player t gets a sample from
pz⊕i and all other players get samples from pz . That is, for all yn ∈ Yn, the density of pY

n

t←z⊕i with
respect to the underlying product measure µ⊗n is given by

dpY
n

t←z⊕i

dµ⊗n
(yn) = EXt∼pz⊕i

[
W yt−1

(yt | Xt)
]
·
∏
j 6=t

EXj∼pz
[
W yj−1

(yj | Xj)
]
. (35)

The following lemma, due to [22], allows us to relate dH

(
pY

n

z ,pY
n

z⊕i

)
, the distance between mes-

sage distributions when all players get observations from pz , or all from pz⊕i , to the distances
dH

(
pY

n

z ,pY
n

t←z⊕i
)

where only one of the n players gets a sample from pz⊕i .

Lemma 8 ([22, Theorem 7]). There exists cH > 0 such that for all z ∈ Z and i ∈ [k],

dH

(
pY

n

z ,pY
n

z⊕i

)2

≤ cH
n∑
t=1

dH

(
pY

n

z ,pY
n

t←z⊕i
)2

.

Moreover, one can take cH = 2
∏∞
t=1

1
1−2−t < 7.

Combining Eq. (34) and Lemma 8, we get

1

k

(
k∑
i=1

dTV

(
pY

n

+i ,p
Y n

−i

))2

≤ 14

k∑
i=1

n∑
t=1

EZ
[
dH

(
pY

n

Z ,pY
n

t←Z⊕i
)2
]

= 14

n∑
t=1

EZ

[
k∑
i=1

dH

(
pY

n

Z ,pY
n

t←Z⊕i
)2
]
. (36)
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In view of bounding the RHS of (36) term by term, fix j ∈ [n] and z ∈ Z . Recalling the expression
of pY

n

t←z⊕i from (35), unrolling the definition of Hellinger distance, and recalling (35), we have

2

k∑
i=1

dH

(
pY

n

z ,pY
n

t←z⊕i
)2

=

k∑
i=1

∫
Yn

√dpY
n

z

dµ⊗n
−

√
dpY

n

t←z⊕i

dµ⊗n

2

dµ⊗n

=

k∑
i=1

∫
Yn

∏
j 6=t

Epz

[
W yj−1

(yj | X)
](√

Epz

[
W yt−1(yt | X)

]
−
√
Epz⊕i

[
W yt−1(yt | X)

])2

︸ ︷︷ ︸
:=fi,t(yt−1,yt)

dµ⊗n

=

k∑
i=1

∫
Yt−1

∏
j<t

Epz

[
W yj−1

(yj | X)
] ∫
Y
fi,t(y

t−1, yt)

∫
Yn−t

∏
j>t

Epz

[
W yj−1

(yj | X)
]

dµ⊗(t−1) dµdµ⊗(n−t)

=

k∑
i=1

∫
Yt−1

∏
j<t

Epz

[
W yj−1

(yj | X)
] ∫
Y
fi,t(y

t−1, yt)
(∫
Yn−t

∏
j>t

Epz

[
W yj−1

(yj | X)
]

dµ⊗(n−t)
)

dµ⊗(t−1) dµ

=

k∑
i=1

∫
Yt−1

∏
j<t

Epz

[
W yj−1

(yj | X)
] ∫
Y
fi,t(y

t−1, yt) dµdµ⊗(t−1)

=

∫
Yt−1

∏
j<t

Epz

[
W yj−1

(yj | X)
] k∑
i=1

∫
Y
fi,t(y

t−1, yt) dµdµ⊗(t−1) ,

where the second-to-last identity uses the observation that, for any fixed yt ∈ Yt,∫
Yn−t

∏
j>t

Epz

[
W yj−1

(yj | X)
]

dµ⊗(n−t) = 1,

which in turn follows upon taking marginal integrals for each coordinate. We then get from the
pointwise inequality

∑k
i=1

∫
Yt−1 fi,t(y

t−1, yt) dµ ≤ supy′∈Yt−1

∑k
i=1

∫
Y fi,t(y

′, yt) dµ that

2

k∑
i=1

dH

(
pY

n

z ,pY
n

t←z⊕i
)2

≤
∫
Yt−1

∏
j<t

Epz

[
W yj−1

(yj | X)
]

sup
y′∈Yt−1

k∑
i=1

(∫
Y
fi,t(y

′, yt) dµ

)
dµ⊗(t−1)

=

(
sup

y′∈Yt−1

k∑
i=1

∫
Y
fi,t(y

′, yt) dµ

)∫
Yt−1

∏
j<t

Epz

[
W yj−1

(yj | X)
]

dµ⊗(t−1)

= sup
y′∈Yt−1

k∑
i=1

∫
Y

(√
Epz [W

y′(y | X)]−
√
Epz⊕i

[W y′(y | X)]

)2

dµ

≤ sup
W∈Wt

k∑
i=1

∫
Y

(√
Epz [W (y | X)]−

√
Epz⊕i

[W (y | X)]

)2

dµ

= 2 · sup
W∈Wt

k∑
i=1

dH

(
pWz ,p

W
z⊕i

)2
. (37)

the second identity follows upon taking marginal integrals, and by replacing fi,t by its definition;

and the second inequality using that
{
W y′ : y′ ∈ Yt−1

}
⊆ Wt, so that we are taking a supremum

over a larger set.

Plugging this back into (36) and upper bounding the inner expectation by a maximum concludes the
proof of the lemma.
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E.2 Proof of Theorem 2

Our starting point is Eq. (3) which holds under Assumption 1. We will bound the right-hand-
side of Eq. (3) under assumptions of orthogonality and subgaussianity to prove the two bounds
in Theorem 2.

First, under orthogonality (Assumption 2), we apply Bessel’s inequality to Eq. (3). For a fixed
z ∈ Z , write ψz,i =

φz,i√
Epz [φ2

z,i]
, and complete (1, ψz,1, . . . , ψz,k) to get an orthonormal basis B for

L2(X ,pz). Fix any W ∈ W and y ∈ Y , and, for brevity, define a : X → R as a(x) = W (y | x).
Then, we have

k∑
i=1

E[φz,i(X)a(X)]
2 ≤ α2

k∑
i=1

E[ψz,i(X)a(X)]
2

= α2
k∑
i=1

〈a, ψz,i〉2 = α2
k∑
i=1

〈a− E[a], ψz,i〉2

≤ α2
∑
ψ∈B

〈a− E[a], ψ〉2 = α2 Var[a(X)],

where for the second identity we used the assumption that 〈E[a], ψz,i〉 = 0 for all i ∈ [k] (since 1
and ψz,i are orthogonal). This establishes Eq. (4).

Turning to Eq. (5), suppose that Assumption 3 holds. Fix z ∈ Z , and consider anyW ∈ W and y ∈ Y .
Upon applying Lemma 4 of the Supplement (See Supplement (Appendix B) for the precise statement
and proof) to the σ2-subgaussian random vector φz(X) and with a(x) set to W (y | x) ∈ [0, 1], we
get that

k∑
i=1

Epz [φz,i(X)W (y | X)]
2

= ‖Epz [φz(X)W (y | X)]‖22

≤ 2σ2Epz [W (y | X)] · Epz

[
W (y | X) log

W (y | X)

Epz [W (y | X)]

]
Integrating over y ∈ Y , this gives∫

Y

∑k
i=1 Epz [φz,i(X)W (y | X)]

2

Epz [W (y | X)]
dµ ≤ 2σ2 ·

∫
Y
Epz

[
W (y | X) log

W (y | X)

Epz [W (y | X)]

]
dµ

= 2σ2I(pz;W ),

which yields the claimed bound.

E.3 Proof of Corollary 1

For any W ∈ Wpriv,ε, the ε-LDP condition from Eq. (2) can be seen to imply that, for every y ∈ Y ,

W (y | x1)−W (y | x2) ≤ (eε − 1)W (y | x3), ∀x1, x2, x3 ∈ X .

By taking expectation over x3 then again either over x1 or x2 (all distributed according to pz), this
yields

|W (y | x)− Epz [W (y | X)]| ≤ (eε − 1)Epz [W (y | X)], ∀x ∈ X .
Squaring and taking the expectation on both sides, we obtain

Varpz [W (y | X)] ≤ (eε − 1)2 Epz [W (y | X)]
2
.

Dividing by Epz [W (y | X)], summing over y ∈ Y , and using
∫
Y Epz [W (y | X)] dµ = 1 gives∫

Y

Varpz [W (y | X)]

Epz [W (y | X)]
dµ ≤ (eε − 1)2

∫
Y
Epz [W (y | X)] dµ = (eε − 1)2,

thus establishing (6). For the bound of eε, observe that, for all y ∈ Y ,

Varpz [W (y | X)] ≤ Epz

[
W (y | X)2

]
≤ eε min

x∈X
W (y | x)Epz [W (y | X)].
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Hence∫
Y

Varpz [W (y | X)]

Epz [W (y | X)]
dµ ≤ eε

∫
Y

min
x∈X

W (y | x) dµ ≤ eε ·min
x∈X

∫
Y
W (y | x) dµ = eε.

The bound (7) (under Assumption 3) will follow from (5), and the relation between differential privacy
and KL divergence. Indeed, the mutual information I(pz;W ) can be rewritten as the expected (over
X ∼ pZ) KL divergence between the distribution pW,X := W (· | X) over Y induced by the
channel W on input X , and the distribution pWZ := EX′∼pz [W (· | X ′)] over Y induced by the input
distribution pz and the channel W :

I(pz;W ) = EX∼pz
[
D
(
pW,X‖pWz

)]
= EX∼pz

[
EY∼pW,X

[
ln

W (Y | X)

EX′∼pz [W (Y | X ′)]

]]
;

but the ε-LDP condition from Eq. (2) guarantees that the log-likelihood ratio in the inner expectation
is (almost surely) at most ε, so that I(pz;W ) ≤ ε for every z and W ∈ Wpriv,ε. This yields (7).

E.4 Proof of Corollary 2

In view of (4), to establish (8), it suffices to show that Varpz [W (y|X)]
Epz [W (y|X)] ≤ 1 for every y ∈ Y . Since

W (y | x) ∈ (0, 1] for all x ∈ X and y ∈ Y , so that

Varpz [W (y | X)] ≤ Epz

[
W (y | X)2

]
≤ Epz [W (y | X)].

The second bound (under Assumption 3) will follow from (5). Indeed, recalling that the entropy of
the output of a channel is bounded below by the mutual information between input and the output,
we have I(pz;W ) ≤ H(pWz ), where pWz := Epz [W (· | X)] is the distribution over Y induced by
the input distribution pz and the channel W . Using the fact that the entropy of a distribution over Y
is at most log |Y| in (5) gives (9).

F Missing proofs in Section 4

F.1 Proof of Lemma 1

Given an (n, γ)-estimator (Π, θ̂), define an estimate Ẑ for Z as

Ẑ := argmin
z∈Z

∥∥∥θz − θ̂(Y n, U)
∥∥∥
p
.

By the triangle inequality,∥∥θZ − θẐ∥∥p ≤ ∥∥∥θZ − θ̂(Y n, U)
∥∥∥
p

+
∥∥∥θẐ − θ̂(Y n, U)

∥∥∥
p
≤ 2
∥∥∥θ̂(Y n, U)− θZ

∥∥∥
p
.

Since (Π, θ̂) is an (n, γ)-estimator under `p loss for PΘ,

EZ
[
EpZ

[∥∥θZ − θẐ∥∥pp]] ≤ 2pγp Pr[pZ ∈ PΘ ] + max
z 6=z′
‖θz − θz′‖pp Pr[pZ /∈ PΘ ]

≤ 2pγp + 4pγp
1

τ
· τ

4
(38)

≤ 3

4
4pγp, (39)

where Eq. (38) follows from Assumption 4 and Pr[pZ ∈ PΘ ] ≥ 1 − τ/4. Next, for p ∈ [1,∞),
by Assumption 4,

∥∥θZ − θẐ∥∥pp ≥ 4pγp

τk

∑k
i=1 1

{
Zi 6= Ẑi

}
. Combining with Eq. (39) this shows

that 1
τk

∑k
i=1 Pr

[
Zi 6= Ẑi

]
≤ 3

4 .

Furthermore, since the Markov relation Zi − (Y n, U) − Ẑi holds for all i, we can lower bound
Pr
[
Zi 6= Ẑi

]
using the standard relation between total variation distance and hypothesis testing as
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follows, using that τ ≤ 1/2 in the second inequality:

Pr
[
Zi 6= Ẑi

]
≥ τ Pr

[
Ẑi = −1

∣∣∣ Zi = 1
]

+ (1− τ) Pr
[
Ẑi = 1

∣∣∣ Zi = −1
]

≥ τ
(

Pr
[
Ẑi = −1

∣∣∣ Zi = 1
]

+ Pr
[
Ẑi = 1

∣∣∣ Zi = −1
])

≥ τ
(

1− dTV

(
pY

n

+i ,p
Y n

−i

))
.

Summing over 1 ≤ i ≤ k and combining it with the previous bound, we obtain

3

4
≥ 1

τk

k∑
i=1

Pr
[
Zi 6= Ẑi

]
≥ 1− 1

k

k∑
i=1

dTV

(
pY

n

+i ,p
Y n

−i

)
and reorganizing proves the result.

G Missing statements and proofs in Section 5

G.1 Proof of Theorem 3

Fix p ∈ [1,∞). Let k = d, Z = {−1,+1}d, and τ = s
2d ; and suppose that, for some γ ∈ (0, 1/8],

there exists an (n, γ)-estimator for Bd,s under `p loss. We fix a parameter γ ∈ (0, 1/2], which will be
chosen as a function of γ, d, p later. Consider the set of 2d product Bernoulli distributions {pz}z∈Z ,
where µ(pz) = µz := 1

2γ(z + 1d) (so the sparsity of the mean vector is equal to the number of
positive coordinates of z). We have, for z ∈ Z ,

pz(x) =
1

2d

d∏
i=1

(
1 +

1

2
γ(zi + 1)xi

)
, x ∈ X .

It follows for z ∈ Z and i ∈ [d] that

pz⊕i(x) =
1 + 1

2γ(1− zi)xi
1 + 1

2γ(1 + zi)xi
pz(x) =

(
1− γ zixi

1 + 1
2γ(1 + zi)xi

)
pz(x) = (1 + φz,i(x))pz(x)

(40)

where φz,i(x) := − γzixi
1+ 1

2γ(1+zi)xi
. We can verify that, for i 6= j,

Epz [φz,i(X)] = 0, Epz

[
φz,i(X)2

]
=

γ2

1− 1
2γ

2(1 + zi)
, and Epz [φz,i(X)φz,j(X)] = 0,

so that Assumptions 1 and 2 are satisfied for α2 := 2γ2. Moreover, using, e.g., Hoeffding’s
lemma (cf. [9]), for γ < 1, the random vector φz(X) = (φz,i(X))i∈[d] is γ2

(1−γ2)2 -subgaussian.
Thus, Assumption 3 holds as well, and we can invoke both parts of Theorem 2.

Let ‖z‖+ := |{i ∈ [d] | zi = 1}|, so that ‖µz‖0 =
∑d
i=1

1
2 (1 + zi) = ‖z‖+. The next claim, which

follows from standard bounds for binomial random variables, states that when Z ∼ Rad(τ)⊗d, µZ is
s-sparse with high probability.
Fact 2. Let Z ∼ Rad(τ)⊗d, where τd ≥ 4 log d. Then Pr

[
‖Z‖+ ≤ 2τd

]
≥ 1− τ/4.

Hence the construction satisfies PrZ [pZ ∈ Bd,s ] ≤ 1− τ/4, as required in Lemma 1.

We now choose γ = γ(p) := 4γ
(s/2)1/p

∈ (0, 1/2], which implies that Assumption 4 holds since

`p(µ(pz), µ(pz′)) = γ dHam(z, z′)
1/p

= 4γ

(
dHam(z, z′)

τd

)1/p

.

Therefore, we can apply Lemma 1 as well. ForWpriv,ε, we prove the two parts of the lower bound
separately, depending on whether ε ≤ 1. First, upon combining the bounds obtained by Corollary 1
and Lemma 1 (specifically, for the former, (6)), we get

d ≤ 112nα2(eε − 1)2,
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whereby, upon recalling that α2 = 2γ2, and using the value of γ = γ(p) above, it follows that

1

3584
· d(s/2)

2
p

n(eε − 1)2
≤ γ2.

Thus, Ep(Bd,s,Wpriv,ε, n) = Ω

(√
ds2/p

nε2

)
for ε ∈ (0, 1]. For the second part of the bound, which

dominates for ε > 1, observe that Assumption 3 holds with σ2 := γ2

(1−γ2)2 ≤ 2γ2; allowing us to
apply the second part of Corollary 1, (7), which as before combined with Lemma 1 yields

d ≤ 224nσ2ε ≤ 448nγ2ε,

and again from the setting of γ we get Ep(Bd,s,Wpriv,ε, n) = Ω

(√
ds2/p

nε

)
.

Similarly, forWcomm,`, again since Assumption 3 holds with σ2 ≤ 2γ2, upon combining the bounds
obtained by Corollary 2 and Lemma 1, we get

ds
2
p

28672n`
≤ γ2,

which gives Ep(Bd,s,Wcomm,`, n) = Ω
(√

ds2/p

n` ∧ 1
)
. Finally, note that for ` ≥ d, the lower

bound follows from the minimax rate in the unconstrained setting, which can be seen to be
Ω
(√

s2/p log(2d/s)/n
)

[28, 30]. This completes the proof.

This handles the case p ∈ [1,∞). For p =∞, the lower bounds immediately follow from plugging
p = log s in the previous expressions, as discussed in Footnote 3.

G.2 Proof of Theorem 4

We denote the mean by µ instead of θ, denote the estimator by µ̂, and consider the minimax error rate
Ep(Gd,s,W, n) of mean estimation for PΘ = Gd,s usingW under `p loss.

Proof of Theorem 4. Let ϕ denote the probability density function of the standard Gaussian dis-
tribution G(0, I). Fix p ∈ [1,∞). Let k = d, Z = {−1,+1}d, and τ = s

2d ; and suppose that,
for some γ ∈ (0, 1/8], there exists an (n, γ)-estimator for Gd,s under `p loss. We fix a param-
eter γ := γ(p) := 4γ

(s/2)1/p
∈ (0, 1/2], and consider the set of distributions {pz}z∈Z of all 2d

spherical Gaussian distributions with mean µz := γ(z + 1d), where z ∈ Z . Again, note that
‖µz‖0 =

∑d
i=1 1{zi = 1} = ‖z‖+, and Fact 2 applies here too. Then by the definition of Gaussian

density, for z ∈ Z ,

pz(x) = e−γ
2‖µz‖22/2 · eγ〈x,z+1d〉 · ϕ(x). (41)

Therefore, for z ∈ Z and i ∈ [d], we have

pz⊕i(x) = e−2γxizie2γ2zi · pz(x) = (1 + φz,i(x)) · pz(x), (42)

where φz,i(x) := 1− e−2γxizie2γ2zi . By using the Gaussian moment-generating function, for i 6= j,

Epz [φz,i(X)] = 0, Epz

[
φz,i(X)2

]
= e4γ2

− 1, and Epz [φz,i(X)φz,j(X)] = 0,

so that Assumptions 1 and 2 are satisfied for α2 := e4γ2 − 1. By our choice of γ and the assumption
on γ, one can check that Assumption 4 holds:

`p(µ(pz), µ(pz′)) = 4γ

(
dHam(z, z′)

τd

)1/p

.

Moreover, similar to the product of Bernoulli case, using Fact 2, we can show that PrZ [pZ ∈ Gd,s ] ≤
1− τ/4. This allows us to apply Lemma 1.
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G.2.1 Privacy constraints for ε ∈ (0, 1)

ForWpriv,ε, upon combining the bounds obtained by Corollary 1 and Lemma 1, we get

d ≤ 112nα2(eε − 1)2,

whereby, upon noting that α2 = e4γ2 − 1 ≤ 8γ2 holds since γ ≤ 1/2, and using the value of
γ = γ(p) above, it follows that

γ2 ≥ d(s/2)
2
p

14336 · n(eε − 1)2
.

Thus, Ep(Gd,s,Wpriv,ε, n) = Ω

(√
ds2/p

nε2 ∧ 1

)
. This establishes the lower bounds for Wpriv,ε.

(Recall that the bound for p =∞ then follows from setting p = log d.)

G.2.2 Communication constraints, and privacy constraints for ε ≥ 1

For these cases, to prove a lower bound with the desired dependence on ε or `, we will need to use
the tighter bounds in Corollaries 1 and 2 which hold only under Assumption 3. This, however, leads
to an issue: the random vector φz(X) = (φz,i(X))i∈[d] is not subgaussian, due to the one-sided
exponential growth, and therefore Assumption 3 does not hold.

To overcome this and still obtain a linear dependence on ` (or ε) (instead of the suboptimal 2` (or
eε)), we will consider instead the class of “truncated” Gaussian distributions, whose corresponding φ
functions are subgaussian; and argue that these truncated distributions are close enough to the original
Gaussian distributions such a lower bound in the truncated case implies one in the original Gaussian
case.

In particular, we consider the following collection of truncated Gaussian distributions. For z ∈ Z , let
pz be the density function of a spherical Gaussian distribution with mean µz as defined in Eq. (41).
For a truncation bound B, let pz,B be the distribution of X ∼ pz conditioned on the event that
‖X‖∞ ≤ B. That is, we have, for x ∈ Rd,

pz,B(x) = Czpz(x)1{‖X‖∞ ≤ B},

where Cz = 1/PrX∼pz [ ‖X‖∞ ≤ B ]. Then the following bound follows from standard Gaussian
concentration bound on each dimension and a union bound over all dimensions.

Fact 3. Setting B := 4
√

ln(dn), we have, for every z ∈ Z , dTV(pz,B ,pz) ≤ 1
d7n8 .

Let pY
n

z,B be the distribution of the messages obtained by executing the protocol when each user gets a
sample from pz,B and let the corresponding mixtures be denoted by pY

n

+i,B and pY
n

−i,B . Then we have

dTV

(
pY

n

+i ,p
Y n

−i

)
≤ dTV

(
pY

n

+i,B ,p
Y n

−i,B

)
+ dTV

(
pY

n

+i ,p
Y n

+i,B

)
+ dTV

(
pY

n

−i,B ,p
Y n

−i

)
≤ dTV

(
pY

n

+i,B ,p
Y n

−i,B

)
+ max

z

{
dTV

(
pY

n

z ,pY
n

z,B

)
+ dTV

(
pY

n

z,B ,p
Y n

z

)}
≤ dTV

(
pY

n

+i,B ,p
Y n

−i,B

)
+ 2 max

z
dTV

(
p⊗nz,B ,p

⊗n
z

)
≤ dTV

(
pY

n

+i,B ,p
Y n

−i,B

)
+ 2nmax

z
dTV(pz,B ,pz)

≤ dTV

(
pY

n

+i,B ,p
Y n

−i,B

)
+

2

d7n7
.

The third inequality follows from data processing inequality and the fourth inequality follows from
subadditivity of TV distance.

Combining this with Lemma 1, for any protocol that correctly learns the Gaussian family, we must
have

1

d

d∑
i=1

dTV

(
pY

n

+i,B ,p
Y n

−i,B

)
≥ 1

8
. (43)
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Next we show that the φ functions corresponding to pz,B’s are subgaussian and establish the
corresponding upper bounds on the average information bound above. Note that

φBz,i(x) :=
pBz⊕i(x)

pBz (x)
− 1 =

Cz⊕i

Cz
e−2γxizie2γ2zi1{‖x‖∞ ≤ B} − 1 (44)

By the inequality |ab− 1| ≤ |a| · |b− 1|+ |a− 1|, we have have, for all z ∈ Z ,∣∣∣∣Cz⊕iCz
− 1

∣∣∣∣ ≤ 1

Cz
|Cz⊕i − 1|+

∣∣∣∣ 1

Cz
− 1

∣∣∣∣ ≤ ∣∣∣∣ 1

PrX∼pz⊕i [ ‖X‖∞ ≤ B ]
− 1

∣∣∣∣+

∣∣∣∣ Pr
X∼pz

[ ‖X‖∞ ≤ B ]− 1

∣∣∣∣
≤ 10

d7n7
.

Moreover, for all z ∈ Z , for γ ≤ 1
3B ,∣∣∣e−2γxizie2γ2zi1{‖x‖∞ ≤ B} − 1

∣∣∣ ≤ ∣∣∣e2γ2+2γB − 1
∣∣∣ ≤ ∣∣e3γB − 1

∣∣ ≤ 6γB. (45)

Hence, applying the inequality |ab − 1| ≤ |a| · |b − 1| + |a − 1| again on Eq. (44), we have for
γ ≤ 1

3B ,

|φBz,i(x)| ≤ 12γB +
10

d7n7
.

Thus, we get that for all z ∈ Z, i ∈ [d], φBz,i is subgaussian with proxy σB = 12γB + 10
d7n7 .

Under communication constraints, applying Corollary 2, we get(
1

d

d∑
i=1

dTV

(
pY

n

+i,B ,p
Y n

−i,B

))2

≤ 14

d
σ2
Bn`.

To conclude, we observe that by plugging our setting of γ = γ(p) in the above inequality, we must
have

γ2 ≥ d(s/2)
2
p

14336 · n ·B2`
in order to satisfy Eq. (43), hence proving the desired lower bound. The lower bound for LDP with
ε > 1 follows similarly by applying Corollary 1.

G.3 Detailed results for discrete family

We derive a lower bound for Ep(∆d,W, n), the minimax rate for discrete density estimation, under
local privacy and communication constraints.
Theorem 6. Fix p ∈ [1,∞). For ε > 0, and ` ≥ 1, we have

Ep(∆d,Wpriv,ε, n) &

√
d2/p

n((eε − 1)2 ∧ eε)
∧
(

1

n((eε − 1)2 ∧ eε)

) p−1
p

∧ 1 (46)

and

Ep(∆d,Wcomm,`, n) &

√
d2/p

n2`
∧
(

1

n2`

) p−1
p

∧ 1 . (47)

In particular, for n
(
(eε − 1)2 ∧ eε

)
≥ d2 and n(2` ∧ d) ≥ d2, the first term of the corresponding

lower bounds dominates. Before turning to the proof of this theorem, we note that Corollary 3 and
Corollary 4 are direct corollaries of the theorem.

We now establish Theorem 6.

Proof of Theorem 6. Fix p ∈ [1,∞), and suppose that, for some γ ∈ (0, 1/16], there exists an
(n, γ)-estimator for ∆d under `p loss. Set

D := d ∧

⌊(
1

16γ

) p
p−1

⌋
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and assume, without loss of generality, that D is even. By definition, we then have γ ∈
(0, 1/(16D1−1/p)] and D ≤ d; we can therefore restrict ourselves to the first D elements of the
domain, embedding ∆D into ∆d, to prove our lower bound.

Let k = D
2 , Z = {−1,+1}D/2, and τ = 1

2 ; and suppose that, for some γ ∈ (0, 1/(16D1−1/p)],
there exists an (n, γ)-estimator for ∆D under `p loss. (We will use the fact that γ ≤ 1/(16D1−1/p)
for Eq. (49) to be a valid distribution with positive mass, as we will need |γ| ≤ 1

D ; and to bound α2

later on, as we will require |γ| ≤ 1
2D .) Define γ = γ(p) as

γ(p) :=
4 · 21/pγ

D1/p
, (48)

which implies γ ∈ [0, 1/(2D)]. Consider the set of D-ary distributions PγDiscrete = {pz}z∈Z defined
as follows. For z ∈ Z , and x ∈ X = [D]

pz(x) =

{
1
D + γzi, if x = 2i,
1
D − γzi, if x = 2i− 1.

(49)

For z ∈ Z and i ∈ [D/2], we have

pz⊕i(x) =

(
1− 2Dγzi

1 +Dγzi
1{x = 2i}+

2Dγzi
1−Dγzi

1{x = 2i− 1}
)
pz(x)

= (1 + φz,i(x))pz(x), (50)

where

φz,i(x) := zi ·
2Dγ

1−D2γ2
((1 +Dγzi)1{x = 2i− 1} − (1−Dγzi)1{x = 2i}).

Once again, we can verify that for i 6= j

Epz [φz,i(X)] = 0, Epz

[
φz,i(X)2

]
=

8γ2D

1− γ2D2
, and Epz [φz,i(X)φz,j(X)] = 0,

so that Assumptions 1 and 2 are satisfied for α2 := 16γ2D (using that Dγ ≤ 1/2 to simplify the
bound).10 Thus, we can invoke the first part of Theorem 2. Note that Assumption 4 holds, since

`p(pz,pz′) = γ dHam(z, z′)
1/p

= 4γ

(
dHam(z,z′)

τD

)1/p

. Therefore, we can apply Lemma 1 as well.

ForWpriv,ε, by combining the bounds obtained by Corollary 1 and Lemma 1, we get

D ≤ 56nα2
(
(eε − 1)2 ∧ eε

)
,

whereby, upon recalling the value of α2 and using the setting of γ = γ(p) from Eq. (48), it follows
that

γ2 ≥ D
2
p

7168 · 22/p · n((eε − 1)2 ∧ eε)
� d2/p ∧ γ−2/(p−1)

n((eε − 1)2 ∧ eε)
.

Thus we obtain the bound Eq. (46) as claimed.

Similarly, for Wcomm,`, upon combining the bounds obtained by Corollary 2 and Lemma 1 and
recalling that |Y| = 2`, we get

γ2 ≥ D
2
p

7168 · 22/p · n2`
,

which gives Ep(∆D,Wcomm,`, n) = Ω

(√
d2/p

n2`
∧
(

1
n2`

) p−1
p

)
,11 concluding the proof.

10It is worth noting that Assumption 3 will not hold for any useful choice of the subgaussianity parameter.
11Finally, note that we could replace the quantity 2` above by 2` ∧ d, or even 2` ∧D, as for 2` ≥ D there is

no additional information any player can send beyond the first log2 D bits, which encode their full observation.
However, this small improvement would lead to more cumbersome expressions, and not make any difference for
the main case of interest, p = 1.
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