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In this paper, we describe a post-hoc explanation-by-example approach to eXplainable 
AI (XAI), where a black-box, deep learning system is explained by reference to a more 
transparent, proxy model (in this situation a case-based reasoner), based on a feature-
weighting analysis of the former that is used to find explanatory cases from the latter 
(as one instance of the so-called Twin Systems approach). A novel method (COLE-HP) for 
extracting the feature-weights from black-box models is demonstrated for a convolutional 
neural network (CNN) applied to the MNIST dataset; in which extracted feature-weights 
are used to find explanatory, nearest-neighbours for test instances. Three user studies 
are reported examining people’s judgements of right and wrong classifications made by 
this XAI twin-system, in the presence/absence of explanations-by-example and different 
error-rates (from 3-60%). The judgements gathered include item-level evaluations of 
both correctness and reasonableness, and system-level evaluations of trust, satisfaction, 
correctness, and reasonableness. Several proposals are made about the user’s mental model 
in these tasks and how it is impacted by explanations at an item- and system-level. The 
wider lessons from this work for XAI and its user studies are reviewed.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recent impressive advances in Artificial Intelligence (AI) have encountered significant challenges in concerns about 
the interpretability of AI systems (especially deep learning ones), the imposition of new data regulations (such as the 
GDPR [1,2]), and public disquiet about the fairness of these systems in making life-impacting decisions [3]. The develop-
ment of methods that provide explanations – so-called eXplainable AI (XAI) – is seen as a panacea to these problems, on 
the working assumption that people will be assured when the inner workings of these systems are revealed [4], that more 
transparent AI systems will be auditable (to meet data regulations [2]), and that these methods will help to reveal algo-
rithmic bias and unfairness [5,6]. There is now a plethora of XAI techniques that propose to “explain” black-box models; 
for instance, black-box classifiers, such as convolutional neural networks (CNNs) for image-analysis, are now “explained” 
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by saliency map visualisations of the network [7], or by re-casting the network as a rule-based decision tree [8], or by 
finding class-level prototypes for the network’s predictions [9], and so on. However, the evaluation of these XAI techniques 
in carefully-designed user studies has lagged behind technique development [10]. Most papers fail to report user studies, 
while others report pilot studies that are inconclusive, or indeed, larger studies with methodological flaws (e.g., poorly 
controlled materials, incorrect statistical analyses). This state of affairs raises the appalling vista that many popular and 
highly-cited XAI methods in the literature may not actually explain anything at all, as they may provide explanations that 
users cannot understand, find too complex, or indeed actively mislead them (e.g., if they elicit inappropriate trust). In this 
paper, we try to address this imbalance by evaluating a post-hoc explanation method for black-box, CNN classifiers, in three 
carefully-designed user-studies that attempt to assess the validity of this method. As such, we hope that the paper provides 
some guidance on how XAI user-studies might be properly conducted, while indicating some of the issues, complexities, 
and pitfalls that can arise in such tests.

Broadly speaking, XAI methods divide into those that attempt to improve interpretability by (i) directly conveying the 
workings of the model (so-called transparency), or (ii) justifying how/why the model arrived at its predictions (so-called 
post-hoc explanation) [11]. One type of post-hoc explanation involves explanation-by-example, where instances or examples 
are provided as evidence for why the model produced a given prediction. For example, a user interacting with a property-
loan system could be told you were refused the loan because your profile was the same as person-X and they were refused a loan 
for the same amount. Or, a user debugging an image-classification system could be told the system classified this test image as 
a “0”, because it looks very like this other image that was labelled as a “0” (even though the original test instance has a ground-
truth of “6”, see Fig. 1). Given the long-standing use of case-based explanations in law, business and medicine, it has been 
repeatedly-argued in AI – and specifically, in case-based reasoning (CBR) – that explanations-by-example are intuitively and 
easily understood by people [12–17]. Additionally, although this research area also suffers from a dearth of user-testing (e.g., 
one review [18] found <1% of papers in this area has user evaluations), it has been shown that such explanatory cases can 
improve people’s performance/understanding of an AI system (see e.g., [19,20]), though the method may not always be the 
best explanation strategy (see e.g., [21]).

We have advanced a framework for post-hoc explanation, called the twin systems approach [22,18], that is tested in the 
user studies reported here. This approach has been applied to a wide range of artificial neural networks (ANNs), from 
multi-layered perceptrons (MLPs) to convolutional neural networks (CNNs), for many different domains [22]. Stated sim-
ply, this approach extracts the feature-weights from an ANN and applies them to a twinned k-NN model to find the 
nearest-neighbouring explanatory cases for a prediction. Kenny and Keane [22] explored a selection of different feature-
weighting methods and found a contributions-based method to be the most accurate in reflecting the ANN’s function. It 
is a variant of this method – called COLE-HP – that is tested here in an ANN-CBR twin-system involving a CNN classifier 
operating on the popular MNIST dataset [23]. Specifically, in the context of a model-debugging task [24,25], we record users’ 
evaluations of the classifier’s performance with/without post-hoc explanations while varying the error-rates of the system; 
specifically, users are asked to rate the “correctness” and “reasonableness” of the model’s predictions, along with assessing 
their overall trust and satisfaction with the classifier [26].

A critical aspect of these studies is that they test the actual outputs of the model, the “real” errors it produces, rather 
than artificial proxy outputs (which can raise validity issues; see [20,27]). So, in the three experiments reported here, we 
evaluate how people’s understanding of the predictions of a black-box classifier and their overall assessment of that system 
(i.e., trust and satisfaction) are impacted by:

• The provision of post-hoc explanations-by-example; namely, the effects of explanation.
• Their experience of the model making errors; namely, the effects of error-rates.
• Potential interactions between explanation and error-rate effects.

1.1. Outline of paper

In Section 2 we discuss background to the current work, our notion of explanation, and previous work on post-hoc
explanations in AI systems. In addition, we also review the relevant literature related to perceptions of errors, algorithmic 
aversion, and model-debugging tasks involving the MNIST dataset. In Section 3, we review the novel feature-weighting 
method we have proposed, within the twin-systems framework for CNNs, and show how it generates post-hoc explanations-
by-example for the MNIST domain. In Section 4 we present our experimental paradigm used here to test the impact of these 
explanations and the variables explored. In Section 5, we advance a new psychological analysis of people’s mental models 
for XAI user-studies – the Tricorn User Model – and show how this model applies to the model-debugging task used in 
the current studies. Sections 6-8 report three user studies examining the effects of post-hoc explanation and error-rates in 
this debugging task. Finally, Section 9 discusses the results of the current studies and tries to tease out any possible lessons 
going forward.

2. Related work: post-hoc explanation, trust in systems, and debugging tasks

The current work brings together diverse strands of research in Artificial Intelligence, Cognitive Science, and Cognitive 
Psychology (see [28] for the broader canvas). It advances a model-agnostic method for post-hoc explanation of black-box 
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Fig. 1. The Twin-Systems Explanation Framework: A deep learning model produces a misclassification for a test image in MNIST, wrongly labelling a “6” as 
a “0”. This prediction is explained by analysing the feature-weights of the network for that prediction and applying these to a twinned k-NN to retrieve a 
nearest neighbour to the test-image in the training set. This explanatory image shows that the model relied on an image of a “0” that looks very like a “6” 
to make its prediction of a “0”. As such, though the model is “incorrect” in its classification it performs somewhat “correctly” and, possibly, “reasonably” in 
the use of the labelled-data it was given.

systems, makes novel proposals on mental models in XAI, and then tests these proposals in three user-studies involving a 
classifier-debugging task. This work draws on XAI methods using post-hoc explanation, user-studies of explanation, trust in 
automated systems, and algorithmic aversion. In the current section, we sketch the relevant findings that converge on the 
current work. So, we consider related work from five interlocking areas:

• Post-Hoc Explanation in XAI: Methods for post-hoc explanation in XAI.
• Factual, Post-Hoc Explanations: Twin-system methods for computing factual, post-hoc explanations.
• User Studies on Post-Hoc Explanation: Key findings from user-studies on post-hoc explanation.
• Trust in Automated Systems: Findings on people’s trust in automated systems and their perceptions of system-error (e.g., 

algorithmic aversion).
• User Studies on Debugging AI: Findings from tasks where people debug AI classifiers involving the MNIST dataset.

2.1. Post-hoc explanation in XAI

As an area XAI has many issues, but foremost amongst these, perhaps, is some clarity on what the term “explanation” 
actually means. Several recent XAI reviews have pointedly noted the lack of clear definitions for the notions of explana-
tion, interpretability, and transparency [29,27,12,30,31,13], echoing long-standing discussions in CBR [14,15], recommender 
systems [32], philosophy [33–35], and psychology [36]. While the exact meaning of these terms remains a matter of de-
bate, these reviews make useful taxonomic distinctions. For example, Sørmo et al. [14] emphasise the distinction between 
explaining how the system reached some answer (what they call transparency), and explaining why the answer is good 
(justification). Recently, this distinction has been echoed by dividing interpretability into (i) transparency (or simulatability) 
which tries to reflect how the AI system produced its outputs, and (ii) post-hoc interpretability which is more about why 
the AI did what it did, providing some after-the-fact rationale/evidence for system outputs [12,13]. With respect to the 
interpretability of deep neural networks (DNNs), Gilpin et al. [37] propose using a proxy model “that behaves similarly to 
the original model, but in a way that is easier to explain, or by creating a saliency map to highlight a small portion of the 
computation that is relevant” (p. 3); they identify linear proxy-models (e.g., LIME by Ribeiro et al. [5]) and decision trees 
(e.g., Frosst and Hinton [8]) as common options for such proxy models.

Post-Hoc Explanation has been further sub-divided into (i) textual explanations of system outputs, (ii) visualisations of 
learned representations or models (e.g., saliency maps [7]), and (iii) explanations-by-example (see [12,38,39]). So, post-hoc 
explainability can be cast as a type of “explanation-by-justification”, an after-the-prediction explanation step where some 
evidence/information/visualisation is given to elucidate the predictions made by the AI system. Furthermore, recently, post-
hoc explanation-by-example has been split into several different example-types, (i) factual examples, the classic case-based 
explanation method, where the user is presented with a similar case(s) (e.g., “you were refused the loan because you 
profile is similar to person-x who was also refused the loan”), (ii) counterfactual examples, where the user is presented with 
3
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contrasting cases that change the class of the prediction (e.g., “if you had a higher salary, you would have the profile of a 
person who got the loan”), or, indeed, (iii) semi-factual examples, where the user is presented with positive cases that do 
not change the class of the prediction [40] (e.g., “even if you had a higher salary, you would still not have the profile of 
a person who got the loan”). Most research in the literature has focused on factual post-hoc explanations (see next sub-
section), though there is a rapidly expanding interest in techniques to compute counterfactual explanations [1,41,30,42–45,
40]; however, there is very little research on semi-factual explanations (but see [40] for the only current example in the AI 
literature and [46] for a similar approach called a fortori reasoning). In the next sub-section, we briefly review the methods 
proposed to compute factual, post-hoc explanations.

2.2. Factual, post-hoc explanation-by-example: a history of twin systems

The current work focuses on factual, post-hoc explanation where some explanatory example or case is provided to jus-
tify why a given prediction was made by an AI classifier. This type of explanation is often called justification, and some 
distinguish it from explanation proper, though traditionally is one of the longest-standing XAI techniques in the litera-
ture [5,7,16,14]. For years, proponents of CBR have argued that k-NN models provide intuitive and plausible examples 
to explain system predictions [12,47,48,13–17]. Two decades ago, it was proposed that k-NN models could be used as 
transparent, white-box proxies for opaque, black-box neural networks (i.e., multi-layered perceptrons) by analysing the 
feature-weights of the latter and applying them to the former to find explanatory nearest-neighbours within the training-
set for test-instances (see Fig. 1; [49–53]). Kenny and Keane [22] generalised this idea in their twin-system approach, and 
applied it to deep learning models (i.e., CNNs), arguing that there are many hybrid-system options for pairing black-box 
and white-box techniques for XAI; for example, decision trees, linear models, and CBR systems have all been used as inter-
pretable counterparts for ANNs in XAI [8,54,50,5,55,9]. Kenny and Keane [18,38,22,56] focused on the pairing between ANNs 
and CBR – so-called ANN-CBR twins – and examined a selection of feature-weighting techniques to determine those which 
performed best. Here, we briefly summarise the prior work on feature-weighting techniques for explanation (for a detailed 
review see [56]).

Historically, several versions of the feature-weighting idea have previously been explored in the AI literature, going back 
as far as the 1990s. A South Korean group explored several feature-weighting schemes for describing MLPs (e.g., sensitivity, 
activity, relevance, and saliency) to find the best one to apply in k-NN to retrieve explanatory cases. Across multiple papers 
and tests in several domains they found that sensitivity and activity tended to do best [51,52]. This group also advanced an 
important distinction between global and local feature-weighting schemes, where global methods take the input space as 
isotropic, deriving a single ubiquitous feature-weight vector for the entire domain, and local methods calculate a specific 
set of weights for each test query [49]. In North America, Caruana et al. [53] described a local weighting method for MLPs 
which used a query-case’s hidden-layer activation-vector (i.e., its latent-feature representation) to find explanatory cases 
by computing the Euclidean distance between the query-vector’s latent features and all training-cases, to find explanatory 
cases with the most similar latent features. This approach was, arguably, more precise than that of the Korean group, 
as it takes full advantage of each training and test case’s individual representation. Crucially however, this method does 
not consider each latent-feature’s weighted contribution to the classification when searching for explanatory cases (which 
we subsequently found to be important [22]). Caruana et al. [53] may also lose some interpretability by considering the 
similarity between latent representations, as opposed to the input features, which are more transparent. Finally, in Europe, 
a CBR group in Ireland (see [57–59,19]), explored other local feature-weighting methods. Nugent and Cunningham [59] built 
an artificial local dataset around a query by systematically perturbing the features of it before querying labels for these 
artificial cases in the MLP. They then proceeded to build a local linear model (similar to LIME [5]) using this new local 
dataset; the coefficients of the linear model were then used to weight k-NN searches for explanatory cases. Significantly, 
this group also performed user tests of this method (see next section).

More recently, there has been a growing but distributed interest in this approach to interpretability for black-box systems. 
For example, Biswas et al. [60] revisited the Korean work to elaborate its application to unbalanced datasets. Kenny and 
Keane [22] have revisited the sensitivity method [50] and compared it to more recent methods (e.g., DeepLIFT [61] and 
LIME [5]). Similarly, in the deep-learning literature, Frosst and Hinton [8] distilled a CNN into a decision tree for the purposes 
of improved interpretability; however, they do not propose to use the tree as a proxy model, rather they use it as an 
independent model, for both accuracy and interpretability. Also, Papernot and MacDaniel [62] explain CNNs using nearest 
neighbours from the training data in a technique called Deep k-Nearest Neighbours (DkNN). However, as in [53], they use 
the penultimate latent-layer activations in the ANN to fit a k-NN for explanations, without doing feature-weight mapping. In 
the next sub-section, we consider the extent to which this computational research on post-hoc explanation has been tested 
in user studies, and whether there is any evidence that factual, example-based explanations actually work.

2.3. Post-hoc explanation-by-example: user studies

The current work concerns itself with the user evaluation of a computational method for factual, post-hoc explanations. 
This work arises out of case-based reasoning research which, historically, assumes that this method is psychologically-
intuitive and “naturally” explains predictions [16,63,14]. However, even in the CBR literature, this assumption has not been 
extensively tested in user studies (e.g., in a review of 1000+ CBR papers on explanation [18] found <1% reported user tests); 
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however, there is a growing sense that this user-testing deficit is beginning to be addressed (see e.g., [30,44,21,43,42,64,65,
25]).

So, an increasing number of studies have attempted to directly test post-hoc explanations. Nugent and Cunningham [59], 
were amongst the first to do this, reporting a small user-study on the use of case-based explanations in a blood-alcohol-
prediction domain [57–59,19,46]. They found that factual and semi-factual cases improved a user’s perception of how correct 
a prediction was for a simple binary classification model. Similarly, in an unsupervised learning domain, Kim et al. [55]
found that case-based prototypes helped users understand clusters better. Cai et al. [66] found that case-based explanations 
made users feel they had a better understanding of a system, and its capabilities to be of a higher quality.

More recently, in the last year, there have been a clutch of important studies on post-hoc explanations. Dodge et al. [21]
tested for the effects of four distinct post-hoc explanation strategies on a user’s global and local fairness evaluations of a 
machine learning model. They showed that counterfactual-explanation strategies did best and that the case-based strategy 
lagged. However, they summarised case information statistically (e.g., “the training set contained 10 individuals identical to 
X, 60% of these re-offended”), rather than presenting specific individual cases (as is done in most studies). They also found 
that case-based explanations seemed to generally make users feel a decision was less fair, but that local explanations of 
specific query instances were more effective than global ones to expose fairness issues. Yang et al. [67] tested user trust 
in example-based explanations of a classifier’s predictions for images of tree leaves (N = 33), finding that specific visual 
representations improved trust in the system (specifically, “appropriate trust”); their classifier had an accuracy of 71%, but 
notably, their participants were perhaps less expert (i.e., not botanists), and trust was assessed item-by-item.

Finally, Buçinca et al. [20] reported two experiments involving the influence of example-based explanations on an AI-
model making predictions about fatty-ingredients from pictures of food; they provided explanations in two different modes, 
based on multiple cases (four photos of similar food dishes) and a single case with highlighted features (photo of one 
food-dish with identified ingredients). They found that the provision of these explanations improved performance on the 
fat-estimating task and that the different modes had different effects on system-level measures (of trust and satisfaction). 
Specifically, they found that case-based explanations significantly impacted a participant’s trust in the system. Importantly, 
this latter study is very similar to the current ones, though the domain and task differ, in that it explains system predictions 
using image-based, nearest-neighbours to the test query.

In summary, these older and more recent studies show that examples and nearest-neighbours can indeed function as 
“explanations” to support people’s use of AI systems. Specifically, they provide evidence that post-hoc, factual examples 
can help to explain the predictions of an AI system and support improvements in user performance. However, it should 
also be said many of these studies suffer from methodological flaws in the control of materials used, providing consistent 
information to users, and properly manipulating the provision of explanations. So, some of these findings deserve closer 
scrutiny and examination. In the present studies, we attempt to better control such factors in a classifier debugging-task. 
Before that however, the next section considers a related but different literature on people’s trust in automated systems to 
see what it suggests for the current tests on error-rates.

2.4. Trust in automated systems: the effects of error

As well as considering the effects of explanations, the current work also tests for the effects of error-rates; that is, how 
people’s experience of errors being made by the AI system impacts their perception of it. Traditionally, the relevant literature 
on this topic tends to focus on how error-rates impact people’s trust in automated systems [68,26,69]. Several studies have 
assessed the extent to which people’s experience of errors impacts their evaluations of an AI system. de Vries et al. [70]
showed that people’s experience of low (20%) versus high (60%) error-rates in a route planner significantly impacted trust; 
for related work see [71–73]. Dzindolet et al. [74] presented people with items from a pseudo-computer program that 
supposedly detected camouflaged soldiers in 200 pictures; they found that, when people thought the program was making 
errors, they immediately started to distrust it, unless they received explanations as to why those errors arose. Indeed, the 
work of Dietvorst et al. [75] on algorithm aversion has shown that any forecasting error made by an automated system 
leads people to prefer their own or other people’s forecasts, even when the automated system is demonstrably better than 
the human forecasters. Ribeiro et al. [5] reported a user study with graduate students in machine learning (N = 27) that 
showed a lowering of trust for a “bad classifier” that made 2 incorrect classifications out of 10. Lastly, as an aside, it is 
also interesting to note that these findings in AI are mirrored in a great many studies in the field of human factors, on the 
effects of error-rate on performance [76].

So, overall, this research seems to show that people have a low tolerance for error in AI systems. Repeated studies show 
that error-rates of 20% significantly impacts people’s trust in a system, and some studies suggest that “any” occurrence of 
errors undermines people’s view of the model’s competence.

2.5. Debugging a classifier: user studies using MNIST

The current work explores a task in which people are, essentially, instructed to debug a black-box classifier. Several user 
studies have evaluated AI classifiers using such debugging tasks, to either assess the adequacy of datasets and/or the AI 
model itself. Often, these tests are carried out in domains where, arguably, people have high levels of expertise (e.g., in 
the deciphering of hand-written numbers [24]). While on the face of it, such debugging tasks may appear to be somewhat 
5
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specialised, they do represent a key concern in the use of opaque AI models; namely, whether the dataset being used by the 
model is adequately annotated and/or whether the model is using the data in an acceptable way (see e.g., Ribeiro et al.’s [5]
study involving LIME-explanations). So, broadly speaking, the literature takes this debugging task to be representative of 
what end-users will be doing when they are considering key dimensions of a model’s classification competence.

As in the current studies, several previous studies have specifically assessed explanations for classifiers operating over 
the MNIST dataset, using this debugging task [77,24,25,78]. Bäuerle et al. [24] built an interface to present misclassifica-
tions of MNIST items to users, grouping them together to speed-up the judgement task to aid model debugging, but their 
user study was really just a pilot (N = 10). In their study, a small user sample was tasked to debug (resolve) several 
types of errors in the MNIST labelled dataset (e.g., interpretation errors, similarity errors). Their results showed that the 
user-relabelled datasets considerably reduced the number of incorrect classifications produced by the system in subsequent 
training, showing the feasibility of a human-in-the-loop approach. The XAI DARPA program reports several groups (notably 
Rutgers University) that also carried out initial user evaluations of AI classifiers using MNIST. Glickenhaus et al. [25] pro-
vided a preliminary report on these evaluations, though the accounts are not very detailed; notably however, they report 
that explanations only impacted errors, not correct items (a finding we return to here). Also, the Rutgers group assessed the 
utility of explanation-by-example at three levels (‘most helpful, unhelpful, and random’) on the CAFÉ and MNIST datasets, 
and found that feature highlighting explanations assist users in detecting errors, as well as increasing their mental model 
understanding [25]. Finally, Ross and Doshi-Velez [78] had users (N = 11) make plausibility and reasonableness judgements 
about the robustness of different deep learning methods to adversarial attacks involving the MNIST dataset in a pilot study; 
though this was not about explanation or trust per se. However, they did ask users to make first- and second-choice pre-
dictions of the MNIST image that they expected a “reasonable classifier” to make, followed by a qualitative assessment of 
differences between classifications made by the several system-defences (or explanations).

However, it is hard to gain significant insights from this literature; many of the studies are unpublished, are reported in 
insufficient detail (e.g., no description of method, materials, or no N given) and, indeed, may be methodologically question-
able (e.g., studies with very low Ns between 2 and 10 participants). As such, we believe that the present studies provide 
a significant novel contribution, methodologically and substantively, to this literature. In the next section, prior to moving 
to the present user tests, we describe a novel feature-weighting method used to instantiate the CNN-CBR twin-system that 
was used in the current user tests.

3. Twin systems: feature weighting to find post-hoc explanations

The present user studies assess a twin-system – pairing a CNN with a k-NN – to find factual, post-hoc explanations-
by-example for predictions made by this black-box classifier using the MNIST dataset (i.e., an instance of an ANN-CBR 
twinning). Kenny and Keane [22] explored a selection of historical feature-weighting methods for this problem as well as 
developing a novel, contributions-based method – called COLE (Contributions Oriented Local Explanations) – and showed 
that this method generated the best twinnings across many different domains. One novelty of this work was its extension to 
deep learning models, specifically CNNs. They showed how to extract feature weights from CNNs with several hidden fully-
connected layers in their output classifier. However, most recent CNN architectures have moved away from these types of 
outputs because of their tendency to overfit, caused by the massive number of parameters required to train the model [79]. 
Additionally, the techniques used required saliency maps that rely on heuristics in the feature-weighting calculations. Here, 
we rectify these issues by proposing a precise computational method to implement our previous weighting algorithm COLE 
on these CNNs without relying on saliency maps or heuristics. In the current section, we briefly describe this technique 
and how it was applied to the MNIST dataset, to generate explanations for the right and wrong classifications used in the 
present user studies.

3.1. Contributions Oriented Local Explanations (COLE)

Our previous work has shown how COLE can successfully weight a CNN system with multiple fully-connected layers in its 
output classifier [22,80]. Here, the technique is briefly reviewed and expanded upon to be applicable to recent advances in 
CNN architectures such as ResNets [81], which typically have a linear output classifier. The COLE feature-weighting method 
is based on the idea that the contributions of features to a model’s predictions are the best source of information for finding 
explanatory cases. In essence, the method abstracts the CNN function into a more comprehensible k-NN one, which favours
similar cases for explanations based on how the learned features contributed to the prediction [22].

To understand COLE formally, consider a linear regression model f with n input features and a weight vector �w ∈ I Rn . 
The contribution vector �c of an instance �x is:

�c = 〈x1.w1, x2.w2...xn.wn〉 (1)

where xi .wi calculates ci (i.e., the contribution of feature i to the final prediction). We want to find explanatory cases with 
similarity metrics using �c, rather than �x or �w , because �c closer represents the actual predictive logic of f , as the output 
logit is ultimately given by Linear(

∑n
i=1 ci + Bias).

When using saliency maps to derive �c, this method is applicable to many modern CNN architectures such as VGG-
16 [80,22]. However, the use of multiple fully-connected-layers in the classifier output of networks such as VGG requires 
6
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more parameters in the network to be trained, which in turn can lead to over-fitting problems. In the light of this issue, 
there has been a move in the computer vision community towards simpler classification outputs for CNNs. A good example 
of this are ResNet models [81], a popular architecture that, typically, uses global average pooling (GAP) to condense the 
convolutional output matrix into a single dimensional feature vector. This layer is then followed by a single dense output-
layer into a SoftMax function for its classification output. This step turns the CNN classifier half into a linear model and 
COLE can be calculated similarly using Eq. (1). However, it should be noted that a slight modification is required when 
dealing with multi-class classification problems (see Section 3.2 and Algorithm 1).

Algorithm 1 COLE-HP feature-weighting extraction for CNN classifiers.
Input: D ∈ I Rm , training data.
Input: g(.), feature extractor half of CNN to explain.
Input: f (.), classifier half of CNN to explain (a linear classifier).
Input: W ∈ I Rc,n , the weight matrix in f , where c is the number of output classes and n the number of extracted features in layer X (here the penultimate 
CNN layer after applying GAP).
Output: C , the contributions of features to the training data predictions for the CNN, these are used to fit a k-NN classifier for the CBR twin.

1: C ← Empty Array ∈ I Rm,n

2: for i in range D do
3: Ii ← D[i]
4: ŷ ← f (g(Ii))

5: �xi ← g(Ii)

6: C[i] ← �xi � W [ ŷ]
7: end for
8: return C

3.2. COLE Hadamard Product (COLE-HP)

Formally, a CNN is typically divided into two main parts, (i) a feature extractor network g(I) which extracts a set of 
latent features �x from the input image tensor I , and (ii) a classification network f (�x) which gives the probabilities of all 
classes in the output Y , given an extracted input feature vector �x. Hence, as Goyal et al. [64] note, all networks can be 
defined as:

P (Y |I) = f (g(I)) (2)

where P (Y |I) is the probability of all individual classes, given the input tensor image I . Here f consists of two layers, and 
its first layer will be referred to as X (the final latent representation of I before classification). This layer X is the result of 
applying GAP on the final convolutional output matrix C , which works by taking the average of all the activations in each 
individual feature map in C as each extracted feature in �x.

Due to the simple linear architecture in f , which only consists of the original latent representation in layer X , and an 
output SoftMax layer [i.e., there is no hidden layer(s)], it is possible to implement COLE and calculate feature contributions 
(i.e., �c) of an instance �x by taking the Hadamard product of:

�c = �x � �wc (3)

where � is a Hadamard product, and �wc the weight vector connecting the feature layer X to the predicted class c in the 
output SoftMax layer. This product (Eq. (3)) is taken for all training data and used to fit a k-NN classifier to implement COLE-
Hadamard-product (henceforth COLE-HP), the same product is then taken for any new query, allowing nearest neighbour
explanations to be found as shown in Fig. 2. In all the present work, we used Euclidean Distance as the distance metric in 
our k-NN classifiers.

3.3. Running COLE-HP on MNIST

Algorithm 1 was run on a CNN trained on the MNIST dataset to generate post-hoc explanations for the materials de-
ployed in Expt. 1, whilst our previous approach using saliency maps was used for Expts. 2-3.1 Many CNNs were trained to 
obtain a sufficient number of materials, with the classifier generally obtaining an accuracy of ∼ 99.5% on the test dataset. 
Fig. 2 presents some of the sample explanations to illustrate the system outputs for both right and wrong classifications. 
Examples of classifications that the CNN got right are shown for queries using the numbers “7” and “6”, along with the 

1 On computational costs, using saliency map techniques as in [22] took ∼40 seconds derive weighting for the Connect-4 dataset (67, 557 training and 
testing instances with 126 features), whilst it took ∼6613 seconds for CIFAR-10 (60, 000 training and testing instances with 1000 extracted features). The 
experiments used a MacBook Pro; processor: 2.9 GHz Intel Core i5; memory: 16 GB 2133 MHz LPDDR3. Subsequent queries took <30 seconds to derive a 
single query’s weighting and <0.05 seconds to find explanatory cases for both tabular and image data. Regarding the use of COLE-HP for MNIST in Expt. 1, 
a query took <1 second to find its weighting and an explanation due to the relative simplicity of the calculation compared to the use of saliency maps.
7
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Fig. 2. Example Explanations of Twin-Systems Using COLE-HP Feature-Weighting for Right and Wrong Classifications on MNIST: (A) Two right classifications 
by the CNN are shown with three, nearest explanatory cases from the training set (i.e., their feature contributions were the most similar). (B) Two wrong 
classifications by the same CNN, again with three, nearest explanatory cases, where an alternate-labelling of a very similar image was used.

three explanatory cases retrieved from the weighted k-NN system acting over the training set (see Fig. 2a). For these right 
classifications, the explanatory examples show the training cases with the most similar classification logic to the query (i.e., 
the most similar feature contributions). Classifications that the CNN got wrong are shown for queries using the numbers “8” 
and “9” along with the three explanatory nearest-neighbours found in the training set (see Fig. 2b). Here, the CNN classifies 
the “8” as a “3” using examples that are quite similar the “8” but which were labelled in the dataset as “3s”; so while the 
prediction is wrong it appears “reasonable”, and perhaps “more correct”, given the labelled-data given to the model. A sim-
ilar argument can be made for the wrong classification of the “9” as a “4”, given the explanatory nearest-neighbours found. 
It is these sorts of predictions that we examine in the three user studies reported here, were people are asked to make 
correctness and reasonableness judgements about the CNN’s right and wrong classifications. However, before reporting on 
these studies we consider the user models people may rely on when doing these tasks.

4. User tests of post-hoc explanations: an experimental paradigm

In the previous section, we saw the post-hoc, example-based explanations that the COLE-HP algorithm finds for CNN’s 
classifications in MNIST (see Fig. 2). In this section, we present the experimental paradigm used here to test for the impact 
of these post-hoc explanations and error-rates on people’s mental models. So, we begin by laying out the materials used in 
our studies and the main independent variables explored. Then, we consider the different measures used to assess changes 
in people’s mental models of the task. In the next main section (Section 5), we advance a theoretical analysis of this 
experimental paradigm with reference to three conceptual frameworks for XAI: a taxonomy of XAI user-tests (see [27], and 
Section 5.1), the DARPA model of explanation (see [26]; see Section 5.2), and a new proposal called the Tricorn User Model 
of XAI (see Section 5.3).

4.1. The current paradigm: task context and variables tested

The current experimental paradigm is a debugging-a-classifier task, in which participants are asked to evaluate the pre-
dictions made by a “computer program” (the CNN-CBR MNIST twin-system; see Section 3) to assess the correctness and 
reasonableness of the classifications made. Specifically, the people were told that “the program labelled the number this way 
because of what it learned from the human-labelled numbers it was shown”. In all the experiments reported here, participants 
worked their way through 25-30 different classifications made by the system. In the present experiments, three key ma-
nipulations to these items were explored: the presence/absence of the explanations (i.e., Explanation), the presentation of 
right/wrong classifications (i.e., Classification-Type), and the relative proportions of right/wrong classifications (i.e., Error-
Rate).

Explanation. In all the current experiments, we manipulated the presence or absence of explanations for the classifications 
presented. Fig. 3 shows samples of the matched materials seen by participants for this manipulation. Fig. 3A shows an 
explanation-present item, where a correct classification of a “7” by the CNN is shown with an explanation saying that 
it made this prediction “because of what it learned from these labelled numbers it was shown”, followed by the three 
nearest-neighbours of the test-instance found by the COLE-HP algorithm. Fig. 3B shows an explanation-absent item where, 
again, a correct classification of a “7” by the CNN is shown with the statement “the program labelled the numbers this 
way because of what it learned from the human-labelled numbers it was shown”. This could be called a “non-explanation 
8
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Fig. 3. Examples of Correct Classifications presented in the Experiments: Showing a correct prediction made by the CNN in the (A) Explanation-Present 
condition with a 3-example explanation and (B) Explanation-Absent condition with a “non-explanation explanation”. Note, tasks 3 and 4 present the rating 
scales for Correctness and Reasonableness judgements, respectively.

explanation”; it just says “X occurred because of some unspecified Y”. Note, also, that in these explanation-absent items, 
participants complete a separate sub-task, where they are asked to note the labels of three-unrelated images that have no 
explanatory relationship to the classification. This sub-task ensures that the materials are matched with explanation-present-
items both visually and in the time participants spend considering the presented information. Then, in both manipulations, 
participants are asked to perform two rating tasks to evaluate the classification shown at the top of the page; they are 
tasked to rate the “correctness” and “reasonableness” of the classification shown on a 5-point, Likert-type scale (from “I 
disagree strongly” to “I agree strongly”).

Classification-Type. In all the current experiments, the classifications presented were manipulated on the basis of being 
right or wrong across the 25-30 items shown (in Expt. 1 two error-types were considered; see Fig. 4). Right Classifications
are predictions made by the CNN that agree with the ground truth (e.g., see Fig. 3). Fig. 2A and 3 show examples of right 
classifications; for example, the CNN labelled the image as a “7” and the ground truth tells us that “7” was the correct label 
for that item (see Fig. 3A). Wrong Classifications are predictions made by the CNN that disagree with the ground truth (e.g., 
see Fig. 4). Fig. 2B and 4 show instances of wrong classifications; where, a “6” was labelled as a “0” and a “3” labelled as an 
“8” (where an explanation is presented). Within this manipulation, two distinct classes of error were deployed, depending on 
the explanatory nearest-neighbours presented: alternate-labelling errors and majority-voting errors. Alternate-labelling errors
are classification errors where the explanatory cases found have a visually-similar image, that is labelled as a different class 
to the ground truth (e.g., see Fig. 3b); arguably, these are “reasonable” errors as the CNN is using the experience it was given, 
appropriately. Majority-voting errors are classification errors where the explanatory cases found show two alternate-labelled
images and one image labelled with the same class as the ground truth (e.g., see Fig. 4b); this explanation suggests the 
prediction error arose from a majority vote for the wrong class, even though there was some support for the ground-truth 
class. Again, people may find these to be “reasonable” errors as, arguably, the CNN appears to be using the experience 
it was given in a “rational” way. We expect these errors to interact with the explanation-variable; specifically, when the 
explanation is absent people just see a wrong classification by the model, whereas when the explanation is present people 
are given evidence for considering these errors as being different based on the explanatory-examples provided.

Error-Rates. In all the current experiments, people were presented with different proportions of right/wrong items (i.e., 
percent error-rates). Over the three experiments, we varied errors-levels between 3-60% to determine how this variable 
impacted their perception of the system. As we saw in the related work, people appear to have a low tolerance for prediction 
error in automated systems, so on the basis of previous research one might expect rising error-rates to impact people’s 
overall trust and satisfaction with the system.

As we shall see later, across three experiments these variables were systematically varied. Expt. 1 tested for effects of 
providing explanations using three classification-types (right classifications, alternate-labelling, and majority-voting errors) 
in the context of a 20% error-rate. Expt. 2 tested for effects of providing explanations using two classification-types (right 
and wrong predictions) across three error-rates (3%, 30%, and 60%). Expt. 3 tested for effects of providing explanations 
9
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Fig. 4. Examples of Wrong Classifications presented in Expt. 1 (Explanation-Present condition): Showing a prediction error made by the CNN that is (A) an 
alternate-labelling-error with its 3-case explanation, and (B) a majority-voting-error with its 3-case explanation.

across two classification-types (right and wrong predictions) for four different error-rates (4%, 12%, 20%, and 28%). In the 
next section, we outline the different measures used in these user studies.

4.2. Current paradigm: item-level and system-level measures

Several different measures were used in the above experimental paradigm involving this classifier-debugging task, mea-
sures that are directed at different levels of analysis: item-level measures (i.e., people’s judgements of correctness and 
reasonableness for each presented classification) and system-level measures (people’s evaluations of trust and satisfaction 
in the overall system2). Note, in the use of these measures we did not attempt to define the meanings of “correctness” and 
“reasonableness” in the instructions given; the aim being to let participants interpret them using their “normal” meanings, 
rather than to provide experimenter-defined ones. As we shall see, when people have clear agreed understandings of a term, 
in context, there tends to be a lot less variance in responding (as is the case for “correctness”), though when there is less 
agreement, or some ambiguity, a lot more variance in responding occurs (as, we shall see, seems to occur with the term 
“reasonableness”).

Item-level measures assess individual predictions made by a system (e.g., when a loan-application is refused and the 
applicant is told “If you had a higher salary then you would receive the loan”). System-level measures assess the overall 
adequacy of the system; that is, how trust/satisfaction with system as a whole is evaluated by users after interacting with 
it. For instance, many of the DARPA evaluations have a system-level focus, where they aim to assess whether the system as 
a whole, is perceived by users to be more trustworthy/satisfactory based on the explanations provided [65,25,64]; indeed, 
Hoffman et al. [26] have defined standardised survey-questions to assess explanation satisfaction and system trust (that are 
used here; see e.g., Table 1).

Traditionally, in the ergonomics of automated systems, the human in-the-loop using a system would be evaluated car-
rying out some key task (e.g., sorting letters with an automated post-code reader) by using various performance measures 
(e.g., accuracy/speed completing an item or some defined task with many items); as we shall see, the DARPA framework for 
explanation proposes an XAI version of this approach (see Section 5 and Fig. 5). Typically, in these evaluations, item-level 
effects (e.g., a person’s decision time on a single item) are generally assumed to aggregate to produce overall system-level 
effects (i.e., faster performance on the overall task involving many items). However, as we shall see later, in the use of 
explanations, item-level effects may not necessarily aggregate to be reflected in system-level effects; mainly because the 
measures used may tap different aspects of people’s mental models. In the next section, we turn to a consideration of such 
issues with a theoretical analysis of the current studies, by considering (i) a taxonomy of XAI tasks, (ii) people’s mental 
models in XAI tasks, and (iii) people’s mental models in the present experimental tasks.

2 Note, in Expt. 3 we also asked people to judge the “overall” correctness and reasonableness of the system.
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Fig. 5. A conceptual model showing how the impact of explanations on user mental models and user performance can be measured by different types of 
tests in an XAI study (from Hoffman et al. [26]).

5. Mental models in XAI: taxonomies, frameworks, and theory

Earlier, we sketched prior work on user studies of XAI, on trust in automated systems, and on the classifier-debugging 
task used here (see Section 2). These literatures show that, from a user testing and psychological perspective, XAI is still a 
very inchoate area (as noted by [65,26,30,31,10]). So, there are still significant theoretical gaps in how to characterise XAI 
tasks and people’s mental models in these tasks. In this section, we consider several proposals on such issues along with 
a new framework for mental models in XAI tasks. We also apply these proposals to the current experimental paradigm, 
to elucidate the psychological basis for the current work. So, in this section, we review (i) a proposed taxonomy for XAI 
tasks [27], (ii) the DARPA conceptual model for evaluating explanation [65,26], and (iii) the present proposals on the Tricorn 
User Model of XAI.

5.1. A taxonomy of XAI tasks

Doshi-Velez and Kim [27] have advanced an influential taxonomy for XAI user studies. They propose a three-levelled
taxonomy for XAI evaluations: (i) application grounded evaluation, where human end-users (typically with some domain ex-
pertize) are tested using the complete AI model in the task for which it was built; (ii) human-grounded evaluation, where 
human end-users (who may not be domain experts) test selective aspects of the “real” application task with the AI model; 
(iii) functionally-grounded evaluation, where the evaluation is based on some computational-proxy for an actual human evalu-
ation (i.e., no human testers). As we have seen, most of the current XAI literature is carried out using functionally-grounded 
evaluations rather than tests involving users. In this taxonomy of tasks, end-user engagement reduces across the three 
levels; beginning with end-users evaluating “real” explanations generated by the complete system, moving to end-users 
responding to general aspects of explanation (or localised system performance) and, finally, to no user involvement at all. 
Implicit, perhaps, in this analysis is the view that the results of these different evaluations needs to be weighted by the 
level of user-engagement with the actual system.

The present experimental paradigm mainly belongs to the first level of this taxonomy (i.e., we have human experts 
evaluating the outputs of the AI model), though some aspects of it shade into the second level (i.e., people are not debugging 
a running system, as in [24]). Rather, people in our studies are making judgements about the system, evaluating actual 

Table 1
Survey Questions of Hoffman et al. [26] for Trust in an AI System.

Q1. I am confident in the system. I feel that it works well.
Q2. The outputs of the system are very predictable.
Q3. The system is very reliable. I can count on it to be correct all the time.
Q4. I feel safe that when I rely on the system, I will get the right answers.
Q5. The system is efficient in that it works quickly.
Q6. I am wary of the system.
Q7. The system can perform the task better than a novice human user.
Q8. I like using the system for decision making.
11
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outputs from the AI system on several dimensions (i.e., correctness, reasonableness, trust, and satisfaction), as indirect 
measures of an explanation’s impact while performing a debugging-task on system outputs.

5.2. DARPA’s explanation model

As part of the DARPA XAI Program, Hoffman et al. [26] proposed a conceptual model of how explanations might impact a 
user’s mental model as they interact with an AI system (see Fig. 5). They propose that, faced with an AI system, users have 
some initial mental model, partly informed by the instructions they receive about the system. Then, as the user interacts 
with explanations of the system’s operation, their user model is updated and develops, leading to better performance 
(presumably, if the explanation is effective). They point out that, at the outset, the user may have inappropriate trust (or 
indeed distrust) in the system, but that if the explanation strategy works, then appropriate trust will emerge from these 
interactions. Finally, they propose that there are a number of junctures where different measures can be applied to test 
the goodness of the explanation/system, the status of the mental model (in comprehension tests), and the impact of the 
developing mental model on performance (in performance tests). For example, with respect to trust, they proposed an 
8-question trust survey consisting of questions about the explanation facilities of the system (see [26] and Table 1).

This framework is useful in laying out some of the key steps in mental model development, especially in contexts where 
we expect the provision of explanations to improve a users’ performance with the system. However, at this level of analysis, 
it presents the user’s mental model of the system as a single undifferentiated entity, when there are grounds for thinking 
that mental models needs to be further differentiated. As we shall see, this mental model can be further sub-divided into 
the user’s knowledge of (i) the domain, (ii) the AI techniques being used by the system, and (iii) the explanation strategy. So, 
in the next subsection, we present an extension to this explanation framework that involves a more multi-faceted mental 
model for XAI tasks.

Having said this, the current experimental paradigm can be parsed using the DARPA framework, as it sits in the central 
portions of the conceptual model (see Fig. 5). The instructions given to participants convey an initial mental model of the 
task and, as they make judgements about the system’s classifications, they encounter the explanations of the XAI system. 
The “goodness criteria” could be aligned with the correctness and reasonableness judgements. We assume that participant’s 
experience with the system’s classifications (and their explanation) impacts the user’s mental model in some way, though 
we do not have explicit tests for performance improvements on the debugging task (though one could easily imagine using 
user-feedback on error-items to fine-tune the AI model). However, we do consider measures of “appropriate trust” (in our 
use of the DARPA Trust and Satisfaction surveys). In the next subsection, we push this analysis further by considering how 
the user’s mental model can be further partitioned to better understand how it might be deployed in XAI tasks.

5.3. Tricorn user model of XAI

We have seen that the DARPA framework for explanation casts XAI tasks as involving the development of an undifferen-
tiated mental model that emerges from a user’s interaction with a system in some task/goal context. At one level of analysis 
this makes sense; however, a more detailed level of analysis is also possible if we divide the mental model into sub-models 
that capture a user’s knowledge of (i) the domain, (ii) the AI model’s operation, and (iii) the explanation strategy. Indeed, 
this partitioning of a user’s mental model also implies that each of these sub-models could develop in different ways, based 
on a user’s experience with the overall system (e.g., a given explanation strategy could impact one sub-model more than 
another). Hence, we advance this Tricorn User Model, that divides the user’s mental model into three distinct sub-models 
(see Fig. 6):

• User Model of the Domain (UMD). The user has some understanding of the domain, they may know very little (low 
expertise) or be experts (high expertise), and this understanding may develop as they interact with AI system and 
explanation strategy; for instance, most people in the general population would be non-experts in a legal-sentencing 
domain (e.g., see [82]), whereas most of us are deep experts in written letters/numbers after years of schooling and 
deciphering bad handwriting (as in the current MNIST dataset).

• User Model of the AI System (UMAI). The user also has some understanding of the AI model that is separate from the 
domain model, some conception of how the AI model works; for example, people will have views about an AI classifier 
that it, in some sense, “learns” from experience or that it “just follows rules”.

• User Model of the Explanation (UMXP). The user will also have an understanding of how an explanation strategy ex-
plains the system; for example, if post-hoc explanatory cases are being used, people understand that the explanation is 
asserting an evidential dependency between the nearest neighbouring examples and the query. Similarly, if the expla-
nation is a saliency map then people will be using their knowledge of such visualisations.

The final part of this framework is the task-goal context in which these sub-models are being applied. End-users may 
be interacting with the system to debug it, to gain some causal insight into a domain, to make a decision, and so on (see 
Lipton’s desiderata [83]). So, these different mental models could develop differently depending on the task-goal context 
even when the items being considered are the same (see Fig. 6). This tripartite view of the user model has a number of 
significant implications for how we approach evaluations of XAI systems.
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Fig. 6. Tricorn User Model of XAI: The user model has three distinct sub-models for the Domain (UMD), AI System (UMAI), and the Explanation strategy 
(UMXP), all of which may be different in different task-goal contexts.

First, in every XAI user-study, though researchers may state that they are just evaluating the AI model, they are actually 
assessing all three of these sub-models. So, unless they specifically separate these sub-models in their independent variables 
(by controlling them or counterbalancing), their behavioural measures will reflect some complex interaction of changes to 
all three sub-models. So, for example, if some improvement in performance is observed on an AI system, that improvement 
may not reflect an improvement in the user’s model of the AI (or indeed the domain); it may rather reflect their better 
understanding of the explanation strategy being used (e.g., a user coming to understand what the saliency map actually 
shows). So, without some consideration of these sub-models, we cannot be really sure what it is that we are evaluating in 
XAI user studies.

Second, people may have different levels of expertise in each of these sub-models in a given user study. People may 
know nothing about a domain (e.g., what criteria judges use in sentencing) or they may be experts (e.g., in deciphering 
handwritten numbers). Similarly, people may have less expertise about one explanatory method (e.g., a saliency map) than 
another method (e.g., an example-based explanation). Moreover, some people may have no idea about how the AI model 
works at all (the “it-just-follows-rules” person), whereas others may have precise ideas about how it works (e.g., the ML 
PhDs in Ribeiro et al.’s [5] studies). So, the relative level of expertise with respect to each sub-model needs to be factored 
into any user study.

Third, it needs to be realised that any or all of these sub-models may change and evolve in the course of a user study; 
users may come to a better understanding of the domain, they could gain a new insight in how the AI works or, indeed, 
they could learn more about an unfamiliar explanatory method (e.g., a saliency map). So, the dependent measure in the 
user study needs not to conflate the potential changes to all three sub-models together (as for example, many simple 
performance measures might do). Researchers need to select dependent measures that specifically address the sub-model 
they wish to assess; for instance, if the claim is that using an AI model improves decision making by informing users about 
the causal-dependencies in the domain, then the dependent measure in the user study needs to specifically test that causal 
knowledge, not some filtered version of that knowledge through the “dark glass” of some overall performance with the 
system.

Fourth, we need to remember, that the dynamics of change and interaction between these three sub-models will vary 
depending on the task-goal context. Trivially, if I am assessing the fairness of the AI system’s decision-making as opposed 
to its causal-accuracy in an ill-defined domain, then my interaction with the system will be very different; users will learn 
about different aspects of the system and form very different mental models from their experience within different task-
goal contexts. However, there also will be many more subtle interactions where (apparently minor) changes to the task-goal 
context will significantly impact what people learn or take from their interaction with the system; for instance, small 
instructional changes, or modifications in the way a problem is represented can lead to large, unforeseen changes in what 
people may take from the interaction. This is just a truism that emerges from decades of research in cognitive psychology 
and human-computer interaction.

Finally, this tricorn analysis points up the need for designers of XAI user-studies to think about which sub-model they 
are targeting with their explanation method. They need to decide whether the goal of the explanation is to improve the 
user’s understanding of the domain or to improve their trust in the AI, or indeed, is it just about improving their ability to 
explain what the AI model is doing (or it is some mixture of all of these requirements).

Applying the Tricorn User Model to the Current Paradigm. As such, this framework can be applied to the current experimental 
paradigm. Indeed, its application suggests that most of the mental-model development in our participants should be focused 
on the AI model and how it is operating. If we map the current paradigm into this framework it suggests the following:
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• User Model of the Domain (UMD). We assume that users are deep experts in the domain of recognising written numbers 
(as used in the MNIST dataset) after years of schooling and deciphering handwriting. Hence, the impact on people’s 
mental models of the domain within the task should be minimal; that is, we would not expect them to “learn” anything 
more about the identification of written numbers from doing our experiments.

• User Model of the Explanation (UMXP). We also assume that any observed effects are unlikely to be due to changes in 
their understanding of the explanation strategy; people are somewhat used to example-based explanations, and while 
there may be some early adjustment to the way explanatory items are presented in the materials, for the most part 
this portion of the model should not change radically.

• User Model of the AI System (UMAI). This means that most of the impact on the user’s mental model should fall on 
their understanding of the AI model (arguably, where we want it to be). So, in making judgements of correctness and 
reasonableness, people’s mental models of the AI should be changed (in some way) that presumably may be reflected 
in item-level measures (of correctness and reasonableness), and in system-level measures (of trust and satisfaction).

Finally, the task context here is the debugging-task, in the sense that participants are being asked to make judgements about 
the classifications of the CNN; the focus is on evaluating the correctness and reasonableness of the system’s operation. With 
this theoretical analyses in mind, we now turn to reporting the results of the three experiments performed using the current 
experimental paradigm (see Sections 6, 7, and 8).

6. Experiment 1: post-hoc explanations of a CNN classifier

Using the experimental paradigm described previously, the first experiment involved a straight test of the provision of 
post-hoc, example-based explanations for the CNN’s classifications, based on the optimal feature-weighting method (COLE-
HP) found in our computational experiments [22]. So, the study used 30 classifications from the CNN operating on the 
MNIST dataset, where 80% of predictions made where right (24 items) and 20% were wrong [of these errors, 10% were 
alternate-labelling errors (3 items) and 10% were majority-voting errors (3 items); see also Fig. 7]. Note, that even though 
all of these errors were “real” misclassifications made by the CNN (over many runs) the model actually does much better; 
typically, the CNN was correct in over 99.5% of the its predictions. Here, we used a 20% error-rate to increase the CNN’s 
error-rate for testing purposes, while still presenting the system as being relatively successful.

Participants were randomly assigned to two groups where the explanation was either present or absent (as described 
in Section 4). So, the study had a mixed design involving a 2 Explanation (present v. absent) x 3 Classification-Type (right-
classification v. alternate-labelling-error v. majority-voting-error) structure, with Explanation being a between-participants 
variable and Classification-Type being a repeated measures, within-participants variable. We predicted that the provision 
of the post-hoc, example-based explanations would impact people’s mental model of the classifier, in item-level measures, 
reflecting their perceived correctness and reasonableness of wrong classifications. Note, we did not expect explanations 
to impact the people’s perception of right classifications, because we assume that explanations only play a role when 
things go wrong. Recall, some of the DARPA evaluations showed that explanations only impacted errors [25]. Thus, we 
expected an interaction between the Explanation and Prediction-Type variables. Overall, we also expected that the provision 
of explanations should impact the system-level measures of trust and satisfaction; but, we accepted that such effects could 
be tempered by the 20% error-rate used in this study.

6.1. Experiment 1: method

6.1.1. Participants and design
One hundred and two people were randomly assigned to the two groups in the study, the Explanation-Present (N =

51) and Explanation-Absent (N = 51) conditions. Using GPOWER [84], the power analysis for two separate one-way t-tests, 
assuming a moderate effect size for each (d = .50), shows that an N = 102 for this design ensures an alpha of .05 and 
power of .80. It should be noted that in all the current experiments the sample sizes used were those indicated by an 
appropriate power analysis designed to balance the probabilities of Type I and Type II errors. Specifically, in all the studies, 
GPOWER [84] was used, with the assumption of a moderate effect size. As such, there are no grounds for supposing that 
over- or under-sampling occurred in the studies reported. This study passed review by the university’s ethics board (ref. 
LS-E-19-148-Kenny-Keane).

6.1.2. Materials
Each participant received 30 items to judge, from the classifications made by the CNN model for the MNIST dataset, 

selected from the outputs of the model (described earlier). As the model produces very few incorrect predictions, several 
runs were made to get the 6 error items (3 alternate-labelling errors and 3 majority-voting errors), giving an 80:20 ratio 
between right and wrong items. The order of these items were randomised for each participant.

6.1.3. Procedure
The study was run on the Prolific (www.prolific .com) crowd-sourcing platform with filters to select native English speak-

ers in the United States, United Kingdom, and Ireland. Participants were paid a nominal fee for their participation. In the 
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Fig. 7. Experiment 1: A plot of the mean correctness ratings for the 30 matched classification-items presented in the Explanation-Present and Explanation-
Absent conditions, showing right classifications (green circles) and wrong/error classifications (red and yellow circles). (For interpretation of the colours in 
the figure(s), the reader is referred to the web version of this article.)

introductory pages to the study, instructions asked people to look at each item and complete four simple tasks, as well 
as to rate their satisfaction and trust in the program at the end of the study. For each item, they were asked to rate the 
prediction on its correctness “The program’s labelling of the number in Task 1 is correct” and reasonableness “The program’s 
labelling of the number in Task 1 is reasonable” on a 5-point Likert-scale from I disagree strongly (1) to I agree strongly (5). 
After rating the items, participants were given the sixteen survey questions on trust and satisfactions in blocks of eight (not 
reported here in detail). After they had completed the study they were given a debriefing page that said, “This study is 
being conducted to determine the effect of the use of explanations for the outputs of computer programs. Your responses 
will be used to compare the perceived correctness and reliability of computer programs such as this used with and without 
explanations. Thank you for taking our survey. Your response is very important to us.” Finally, at the very end of the ses-
sion, participants were asked to give some verbal feedback on the experience of the study; in their own words, they were 
asked to respond to the following question: “You may have noticed that sometimes the program did not seem to label the 
numbers correctly. Can you state, in your own words, in as much detail as possible, why you think the program failed on 
these items?”.

6.2. Expts. 1-3: qualitative analysis of verbal reports

Before considering the quantitative results it is perhaps informative to consider a qualitative analysis, across all three 
studies, based on people’s verbal reports about the program in response to a final question in which they were asked to say 
“why you think the program failed”. Most participants gave 1-2 sentence replies to this question reflecting their opinions 
of the program: for example, participants’ replies included (i) “it failed because the human examples were different from 
each other so it had no solid example to use”, (ii) “I think the numbers in some of the examples were written in such 
an unclear way, that the computer couldn’t clearly make out which number it was”, (iii) “The program probably has an 
algorithm that takes too much assumption (sic) on what the user is trying to do with mis-marks”, (iv) “It failed as it could 
not recognise”. Content-wise, these responses divide into those that (i) blamed-the-data (i.e., the numbers were unclear 
or labelled poorly by human annotators), (ii) blamed-the-program (i.e., the system failed to recognise or properly process 
the images), (iii) blamed-both (i.e., the data is poor and the model failed), and (iv) blamed-neither (i.e., where some other 
fault is mentioned or the blame is unclear). To get a qualitative sense of people’s conscious perception of the model’s 
15
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Table 2
Expt. 1-3 Results Summary: ANOVA Analyses for misclassifications, for all measures tested on the Explanation and Error-Rate Variables [n.b., for Expt. 1 the 
correctness and reasonableness ratings cover the three classification-types used in that experiment].

Measure Classification Error Type Explanation Error-Rate

df F partial η2 df F partial η2

Expt. 1 Correctness Alternate-Labelling 1, 100 ***11.13 0.10 - - -
Majority-Voting 1, 100 ***9.15 0.08

Reasonableness Alternate-Labelling 1, 100 3.68 0.04 - - -
Majority-Voting 1, 100 0.94 0.01 - - -

Trust 1, 100 0.79 0.01 - - -
Satisfaction 1, 100 1.39 0.01 - - -

Expt. 2 Correctness 1, 159 *4.91 0.03 2, 159 ***31.61 0.28
Reasonableness 1, 159 3.40 0.02 2, 159 2.51 0.03
Trust 1, 159 0.00 0.00 2, 159 ***15.95 0.17
Satisfaction 1, 159 0.13 0.00 2, 159 0.84 0.01

Expt. 3 Correctness 1, 176 **8.24 0.05 3, 176 ***7.11 0.11
Reasonableness 1, 176 1.41 0.01 3, 176 0.15 0.00
Global Correctness 1, 175 1.47 0.01 3, 175 ***15.34 0.21
Global Reasonableness 1, 175 0.04 0.00 3, 175 ***10.87 0.16
Trust 1, 176 1.00 0.01 3, 176 ***6.89 0.11
Satisfaction 1, 176 2.79 0.02 3, 176 0.05 0.00

*p <.05; **p <.01; ***p <.001. Italicised measures are item-level measures of misclassifications, all others being system-level measures.

performance we content-analysed their verbal responses; two raters (MQ and CF) classified all the responses across our 
three studies (N = 452) into one of these four categories (differences were resolved by discussion, and agreement on 
the categorisations was good; Cohen’s K = 0.6, p < .001). While the majority of people blamed-the-data for the errors 
occurring rather than blaming-the-program, there is a shift in the Explanation-Present conditions (N = 226) towards more 
people blaming-the-model/blaming-both and away from blaming-the-data than in the Explanation-Absent conditions (N 
= 226), that is reliably different, χ 2(3) = 11.094, p = .01. In the Explanation-Absent conditions the verbal responses 
were blamed-the-data (68%), blamed-the-model (9%), blamed-both (18%), blamed-neither (5%). In the Explanation-Present 
conditions the verbal responses were blamed-the-data (53%), blamed-the-model (15%), blamed-both (25%), and blamed-
neither (7%). Clearly, the explanations focus people’s attention on the operation of the model, leading to an increased focus 
on seeing it as the source of error and a decreased focus on the data as the source of difficulties. So, this qualitative result 
shows that, overall, people’s assessment of the system was clearly impacted by the explanations given (though, as we shall 
see, not necessarily in a positive way).

6.3. Experiment 1 results: quantitative

As predicted, post-hoc explanations produced by the system had a significant effect on people’s perception of the cor-
rectness of the model’s predictions (unlike reasonableness). Stated simply, people view errors made by the system as being 
more correct (or less incorrect) when explanations are present than when such explanations are absent (see Table 2 and 
Fig. 8a/b). Interactions were found between the Explanation and Classification-Type variables for both the correctness and 
reasonableness ratings. However, the item-level and system-level measures differed; people’s trust/satisfaction in the overall 
system was not impacted by the provision of explanations. So, while explanations impacted people’s evaluations of items, 
these effects do not aggregate into overall improvements in trust/satisfaction. In short, one could say, the explanations did 
not “explain away” the 20% error-rates manifested by the system (note, this error-rate is > 19% higher than the “real” 
error-rate of the CNN, which was < 1%).

6.3.1. Correctness ratings
Participants’ correctness ratings for the 30 predictions were collated and analysed (n.b., on the 5-point correctness 

scale, where 1 is low on correctness and 5 is high). A 2 (Explanation: present v. absent) x 3 (Classification-Type: right 
v. alternate-labelling-error v. majority-voting-error) ANOVA with repeated measures on the second variable was applied to 
the mean correctness ratings of the presented items.3 This analysis revealed main effects of Explanation (p < .001; see 
Table 2), and Classification-Type F (2, 200) = 1235.9, p < .001, partial η2 = 0.93; as well as a reliable interaction between 
Explanation and Classification-Type, F (2, 200) = 5.4, p = .005, partial η2 = 0.05.

Fig. 7 presents one view of this interaction, showing the mean correctness ratings for the 30 matched item-classifications 
in the experiment, by plotting Explanation-Present by the Explanation-Absent conditions (and dividing them into right 

3 All analyses in Expt. 1 used mixed effects ANOVAs with Type III Sums of Squares, as this seemed most appropriate. In Expts. 2 and 3 we led with 
MANOVA analyses of each measure as they seemed more appropriate; though for comparative purposes, in Table 2, we report univariate ANOVA analyses 
for all experiments.
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Fig. 8. Experiment 1: Mean ratings for (A) Correctness and (B) Reasonableness for the three Classification-Types (right, alternate-labelling error, and 
majority-voting error) in the Explanation Present/Absent conditions (Standard Error bars are shown).

and wrong classifications). So, the points on/close-to the diagonal are classifications where the correctness-rating is the 
essentially the same in both conditions (i.e., Explanation-Present = Explanation-Absent) and points below the diago-
nal are classifications where the correctness-rating is higher when the explanation is present (i.e., Explanation-Present 
> Explanation-Absent). The figure also shows us that the effect of the explanation really only occurs for the wrong-
classifications (see red/yellow circles in Fig. 7) and how the right classifications differ from the wrong classifications in 
showing no effect of explanation and receiving much higher ratings (see green circles in Fig. 7).

Fig. 8a shows another view of the Explanation by Classification-Type interaction with the means for each classification-
type in the experiment; we can see that explanations have little impact on the right-classifications, but the perceived 
correctness of wrong-classifications increases when the explanation is provided. Specifically, for right classifications, the 
correctness ratings in the Explanation-Present (M = 4.821, S D = 0.32) and in Explanation-Absent (M = 4.828, S D = 0.34) 
conditions were almost identical and do not differ reliably (see Fig. 8a). In contrast, for error classifications the explanation 
conditions differ; for alternate-labelling-errors, the correctness ratings in the Explanation-Present condition (M = 1.72, S D
= 0.70) are higher than in the Explanation-Absent condition (M = 1.29, S D = 0.58) and are reliably different (using Tukey 
HSD test, p < .001; see Fig. 8a). Similarly, for majority-voting-errors, the correctness ratings in the Explanation-Present 
condition (M = 1.90, S D = 0.75) are higher than those in the Explanation-Absent condition (M = 1.49, S D = 0.64) 
and are reliably different (Tukey HSD test, p < .003; see Fig. 8a). These results show that the provision of example-based 
explanations lead people to view the classification-errors of the program as being more correct (or less incorrect), presumably 
because they get some insight into why the model is making these errors. Notably, with respect to the right classifications, 
99% of participants rated them higher than wrong-classifications (i.e., only one participant out of 102 gave a mean rating 
of the errors that was higher than that given for the right classifications). Hence, we can conclude that outliers did not 
substantially skew these correctness results.

To put it simply, explanations seem to mainly have an effect when things go wrong, when errors arise and outputs 
diverge from what a user expects/desires (as was found in some of the DARPA evaluations [25]). This account seems reason-
able for now, though it probably requires further exploration. Glickenhaus et al. [25] have queried whether this phenomenon 
may be due to a ceiling effect; that is, as people’s ratings are already high for the right items, there is very little headroom 
for ratings to go higher when explanations are provided.

6.3.2. Reasonableness ratings
Participants’ reasonableness ratings for the 30 predictions were also collated and analysed (n.b., on the 5-point reason-

ableness scale, where 1 is low on reasonableness and 5 is high). A 2 (Explanation: present v. absent) x 3 (Classification-Type: 
right v. alternate-labelling-error v. majority-voting-error) ANOVA with repeated measures on the second variable was ap-
plied to the mean reasonableness ratings of the presented items. This analysis revealed a main effect of Classification-Type, 
F (2, 200) = 335.3, p < .001, partial η2 = 0.77; as well as a reliable interaction between Explanation and Classification-
Type, F (2, 200) = 3.84 p < .05, partial η2 = .037. However, the main effect for the Explanation variable was not statistically 
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significant (p > .05; see Table 2). Based on the reliable interaction, we explored the planned pairwise comparisons between 
conditions.

Fig. 8b shows that this interaction mainly reflects the differences between the right and wrong classifications. Impor-
tantly, all the differences within the classification-types for the explanation manipulation are not reliable when using the 
Tukey HSD tests for right classifications (ns), alternate-labelling errors (p = .058), and majority-voting errors (ns). So, the 
pattern of results for the reasonableness measure does not parallel that found for the correctness measure.

This failure to find effects in the reasonableness rating may in part be due to people’s high expertise in this domain; 
people are domain experts in reading cursive script and, as such, may be quite unforgiving when a program does not 
manifest the same level of expertise. We have not found other XAI user studies that have rated reasonableness in this way. 
As we shall see in our other experiments, it does not always reveal clear effects, suggesting that it may be also interpreted 
differently by different participants in this task.

6.3.3. Trust and satisfaction
Participants were also asked a number of system-level questions based on the DARPA surveys for Trust and Satisfaction 

(see Table 1; [26]). Statistical analyses of each of these surveys revealed no main effects of Explanation or reliable inter-
actions between the Explanation and Trust/Satisfaction-Question variables (as one would expect if explanations increased 
trust/satisfaction in the system). A 2 (Explanation: present v. absent) x 8 (Trust-Question) ANOVA, with repeated measures 
on the second variable, showed a main effect of Trust-Question (p < .0001), but no effect of Explanation (p = .38; see 
Table 2). Similarly, the 2 (Explanation: present v. absent) x 8 (Satisfaction-Question) ANOVA, with repeated measures on 
the second variable, showed a main effect of Satisfaction-Question (p < .0001), but not for Explanation (p = .24; see Ta-
ble 2). Here, the effects seen for the Trust- and Satisfaction-Question variables, merely tell us that some of these questions 
differ from others in their scores, which is not a focus for the present analysis. The effect-of-interest was the interaction 
between the Explanation and Trust/Satisfaction-Question variables, which was not found. So, on the face of it, these results 
suggest that though explanations produce item-level effects impacting people’s mental models of the misclassifications they 
encounter, they do not “explain away” the overall performance of the system to improve people’s assessment of it. That 
is, the provision of explanations does not change people’s judgements of trust and satisfaction with a system that has a 
20% error-rate. Recall, the literature on algorithmic aversion showed that people were quite intolerant, even of very low 
error-rates. This, of course, raises questions about what error-rates might be acceptable. Hence, in the next two studies we 
address this issue by systematically varying the error-rates people encounter, while also continuing to examine the effects 
of explanations.

7. Experiment 2: explanations and high-end error-rates

Experiment 1 found that explanations only impact people’s correctness judgements of the CNN’s misclassifications. 
Specifically, it found that when misclassifications were explained using post-hoc examples, people rated them as signifi-
cantly more correct (or less incorrect). However, it also found that providing item-level explanations did not impact people’s 
overall trust and satisfaction in the system (at least, when faced with error-rates of 20%). So, while the explanations made 
the errors at the item-level more “correct”, at the system-level they did not “explain away” the overall error performance 
of the system. Clearly, this result invites further exploration on what error-rate might indeed be acceptable; a question 
that is common to all AI systems where people encounter system-errors. So, in this experiment, we explored a very low 
error-baseline (3% errors, which is very close the “real” error-rate of 1% for this CNN) contrasting it with very high levels 
of error (30% and 60%). This Error-Rate variable was crossed with the Explanation variable, using the same measures as 
in Expt. 1 (namely, judgements of correctness, reasonableness, and the trust/satisfaction surveys). So, the design was a 2 
(Explanation: present v. absent) x 3 (Error-Rate: 3% v. 30%, v. 60%) x 2 (Classification-Type: Right v. Wrong) with Explanation 
and Error-Rate being between-participants variables and Classification-Type being a within-participant variable.

7.1. Experiments 2: method

7.1.1. Participants
One hundred and sixty-five people were randomly assigned to the 6 groups in the study with roughly equal numbers in 

each condition (Ns = 27). All participants were aged over 18, native English speakers and lived in the USA, UK, or Ireland. 
Exclusion criteria were participation in previous studies by the lab and inattentive answering (3 people were excluded for 
failing to notice misclassifications noted by all other participants). Using GPOWER [84], the power analysis showed this N 
to be appropriate for a moderate effect-size. This study was also passed in a review by the university’s ethics board (ref. 
LS-E-19-148-Kenny-Keane).

7.1.2. Materials
Thirty materials were generated from the CNN classifier using the MNIST dataset as before. The misclassifications were 

actual errors produced by the model (i.e., query-items where the classification made differed from the ground truth): 3% 
error-rate (had 1 wrong classification), 30% error-rate (had 9 wrong classifications), and 60% error-rate (had 18 wrong 
classifications). All errors were alternate-labelling errors in which the model gave a close but incorrect classification (see 
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Fig. 9. Experiments 1-3 Combined Results: Mean correctness ratings of right and wrong classifications when Explanations are present or absent for each 
Error-Rate (Standard Error bars are shown).

Fig. 4); note, majority-voting errors were too rare to test in this experiment. Explanations were presented as in Expt. 1 using 
the three nearest-neighbour images for the test-instance, from the MNIST training-set (see Fig. 3 and Fig. 4 for examples).

7.1.3. Procedure, measures, and analyses
The procedure was identical to that used in Expt. 1. As before, measures were correctness and reasonableness ratings 

(on 5-point scales). After rating all of the presented classifications, participants filled out the DARPA trust (8 questions) and 
satisfaction surveys (8 questions). MANOVAs were computed for the independent variables (Explanation and Error-Rate) 
involving the dependent variables of (i) right/wrong classifications for correctness ratings, (ii) right/wrong classifications for 
reasonableness ratings, (iii) 8 trust-question ratings, and (iv) 8 satisfaction-question ratings.

7.2. Experiment 2: quantitative results

Again it was found that when example-based explanations were given people perceive misclassifications as being more 
correct (replicating Expt. 1); people rate wrong classifications as more correct, with an explanation, presumably because 
it shows the model working consistently but with mislabelled data (see Fig. 9). As before, explanations were found not to 
impact reasonableness ratings. Increasing error-rates negatively impact people’s ratings of correctness, reasonableness, and 
trust; notably, models with error-rates of 30-60%, are trusted significantly less than ones with a 3% error-rate.

7.2.1. Correctness ratings
The MANOVA analyses of correctness ratings revealed significant effects for Explanation, F (2,158) = 3.129, p < .05, 

Wilks’ � = 0.962, partial η2 = 0.04, and Error-Rate, F (4, 316) = 14.976, p < .001, Wilks’ � = 0.707, partial η2 = 0.16. The 
interaction was not statistically significant. However, all of these effects occur in people’s ratings of wrong classifications, 
not in right classifications. Univariate analyses for the wrong classifications showed main effects for the Explanation (p <

.05; see Table 2), and Error-Rate variables (p < .001; see Table 2). The analyses for right classifications show no significant 
effects (all p > .30). Interestingly, Tukey HSD post-hoc comparisons showed people rate the wrong classifications as being 
more correct in the Explanation-Present (M = 1.82, S D = 0.72) than in the Explanation-Absent (M = 1.62, S D = 0.58) 
condition (p < .05). In contrast, people’s ratings of the right classifications are not reliably different (Explanation-Present, 
M = 4.73, S D = 0.37; Explanation-Absent, M = 4.67, S D = 0.48; see Fig. 9). Error-Rate also impacts correctness ratings 
for wrong classifications, F (2, 159) = 31.61 p < .001, partial η2 = .284, but not right classifications, F (2, 159) = 1.45, p
> .20, partial η2 = .018 (see Table 2 and Fig. 9). However, the effect is somewhat counter-intuitive; as people see more 
misclassifications (30% or 60% versus 3%) they tend to rate the misclassifications as being marginally more correct; 3% (M
= 1.23, S D = 0.50), 30% (M = 1.93, S D = 0.54), 60% (M = 1.99, S D = 0.64). Tukey HSD comparisons for these wrong 
classifications show the differences between the 3-30% and 3-60% conditions to be reliable (all p < .001). None of the 
pairwise comparisons for the right classifications were reliably different.
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7.2.2. Reasonableness ratings
The pattern of results for reasonableness ratings is less clear. The MANOVA analyses of reasonableness ratings revealed 

a significant interaction between Explanation and Error-Rate, F (4, 316) = 2.53, p < .05, Wilks’ � = .94, partial η2 =
0.03. No main effects were statistically significant. Univariate analyses showed this Explanation x Error-Rate interaction 
occurs only for the right classifications, F (2, 159) = 4.27, p < .05, partial η2 = .05; this interaction was specifically due 
to people rating the 60%-error condition as being more reasonable in the Explanation-Present (M = 4.78, S D = .09) than 
in the Explanation-Absent (M = 4.38, S D = .08) condition, a difference that is statistically reliable (p < .05). It is hard to 
interpret this finding. Expt. 1 found that reasonableness ratings were not impacted by the provision of explanations when 
the error-rate was 20%. As such, reasonableness may not be a robust measure; it may suffer from different people having 
quite different interpretations of what reasonableness means.

7.2.3. Trust
The MANOVA analyses of the trust survey revealed a significant effect of Error-Rate, F (16, 304) = 5.234, p < .001, 

Wilks’ � = 0.616, partial η2 = 0.22. There was no main effect or interaction of Explanation. Univariate main effects for 
Error-Rate were found in all questions (all p < .05), except for Question 7 (“The system can perform the task better than a 
novice human user”; see Table 1 for a list of all questions). Two interesting post-hoc Tukey HSD comparisons indicated that 
overall people in the 3%-error conditions reported the highest level of confidence in the system (M = 4.28, S D = .67), and 
rated the classifications as most predictable (M = 4.21, S D = .82). Also, users in the 3%-error condition enjoyed using the 
system (M = 3.11, S D = .96) significantly more than the people in the 60%-error one (M = 2.55, S D = 1.15). In summary, 
trust is mainly impacted by the error-rates people encounter rather than the provision of an explanation. The explanation 
seems to act at an item-level, affecting people’s perception of the correctness of misclassifications, but those explanations 
do not “explain away” the perception of those failures at the system-level. Trust is impacted by rising error-rates, though 
not linearly; from this study, it appears that trust levels decrease sharply at 30%-errors (relative to 3%-errors) and then stay 
around this level for 60%-errors.

7.2.4. Satisfaction
The MANOVA analyses of satisfaction ratings of the overall system revealed a significant effect for Error-Rate, F (16, 304) 

= 1.755, p < .05, Wilks’ � = .838, partial η2 = .085. Pairwise comparisons indicated that Questions 6 and 7 (“This expla-
nation of how the program works is useful to my goals,” and “This explanation of the program shows me how accurate the 
program is”) were significant at the 30% and 60% Error-Rates, p < .05 for each question. The satisfaction survey questions 
do not tell us much in this test context (similar results were found in Expt. 1). It is unclear whether this is an issue with 
the measures or this particular task. Part of the problem here may be that the satisfaction questions (unlike the trust ones) 
seem to range over a number of distinctly different issues, and treating them as a unitary set is not sensible [85].

8. Experiment 3: the effects of explanation and low-end error-rates

Expt. 2 tested the impacts of post-hoc explanations and error-rates for high-end error-rates (30% and 60%, compared to 
3%). Expt. 3 (N = 184) tested the Explanation and Error-Rate variables using low-end error-rates to gain a fuller pro-
file of error-rate effects. So, the design was a 2 (Explanation: present v. absent) x 4 (Error-Rate: 4% v. 12% v. 20% v. 
28%) x 2 (Classification-Type: Right v. Wrong) with Explanation and Error-Rate being between-participants variables and 
Classification-Type being a within-participant one. It also introduced two new system-level measures, “overall correctness” 
and “overall reasonableness”; so, after participants had seen all the items, they were asked to rate the system as a whole, 
on both measures.

8.1. Experiment 3: method

8.1.1. Participants
One hundred and eighty-four people were randomly assigned to the 8 groups in the study with roughly equal numbers 

in each condition (Ns = 23). As before, all participants were aged over 18, native English speakers, and lived in the USA, 
UK, or Ireland. Exclusion criteria were participation in previous studies by the lab and inattentive answering (1 person 
excluded). Using GPOWER [84], the power analysis showed this N to be appropriate for a moderate effect-size. This study 
was also passed in a review by the university’s ethics board (ref. LS-E-19-148-Kenny-Keane).

8.1.2. Materials
Twenty-five materials were generated from the CNN classifier using the MNIST dataset as before: 4% error-rate (had 

1 wrong classification), 12% error-rate (had 3 wrong classifications), 20% error-rate (had 5 wrong classifications), and 28% 
error-rate (had 7 wrong classifications). All errors were alternate-labelling errors in which the model gave a close but 
incorrect classification (see Fig. 4). As in the previous experiments, explanations used the three nearest-neighbour images, 
from the MNIST training-set (see Fig. 3 and Fig. 4 for examples).
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8.1.3. Procedure, measures, and analyses
The procedure was identical to that used the previous experiments. As before, measures were correctness and reason-

ableness ratings (on 5-point scales). After rating all of the presented classifications, participants filled out the DARPA trust (8 
questions) and satisfaction surveys (8 questions). In this experiment two new system-level measures were used; before com-
pleting these surveys, participants also rated the system’s overall correctness and reasonableness on the presented items. 
This measure was designed to assess people’s system-level sense of the model on correctness and reasonableness. As in 
Expt. 2, MANOVAs were computed for the independent variables (Explanation and Error-Rate) involving the dependent vari-
ables of (i) right/wrong classifications for correctness ratings, (ii) right/wrong classifications for reasonableness ratings, (iii) 
overall system-level correctness/reasonableness ratings, (iv) 8 trust-question ratings, and (v) 8 satisfaction-question ratings.

8.2. Experiment 3: quantitative results

The results replicate the patterns of results found for the Explanation and Error-Rate variables on the correctness and 
trust measures (in Expt. 1 and 2) and, again, showed few/no effects for the reasonableness and satisfaction measures. 
However, the ratings of the system’s overall correctness and overall reasonableness provided interesting converging evidence.

8.2.1. Correctness and reasonableness ratings
The MANOVA analyses of correctness ratings revealed significant effects for Explanation, F (2, 175) = 4.12, p < .05, 

Wilks’ � = 0.955, partial η2 = 0.045, and Error-Rate, F (6, 350) = 3.89, p = .001, Wilks’ � = 0.879, partial η2 = .063. The 
interaction was not statistically significant. As before, all of these effects occurred in people’s ratings of wrong classifications, 
not of right classifications. Univariate main effects for the wrong classifications were found for the Explanation (p < .01; see 
Table 2) and Error-Rate variables (p < .001; see Table 2). But, no significant effects were found for these variables on right 
classifications (all p > .30). For example, overall people in the Explanation-present condition rated wrong classifications 
as more correct (M = 1.40, S D = 0.41) than those in the Explanation-absent condition (M = 1.24, S D = 0.37), but 
both conditions were almost identical for right classifications. Similarly, the Error-Rate variable’s effects all occur in wrong 
classifications (p < .001; see Table 2), not right classifications, F (3, 176) = 1.23, p > .30, partial η2 = 0.02. Indeed, this 
analysis echoed the result from Expt. 2; namely, that the more errors people see, the more they rated them as being 
correct. Post-hoc Tukey HSD comparisons revealed a significant 0.31 mean increase (p = .001) from the 4% to the 20%-error 
conditions, as well as a 0.27 mean increase (p < .05) from the 4% to 28%-error conditions. There was also a significant 0.27 
mean increase (p < .01) from the 12%-error to the 20%-error condition (see Fig. 9). MANOVA analyses of reasonableness 
revealed no reliable effects.

8.2.2. System-level measures: overall correctness and overall reasonableness
The MANOVA analyses of overall correctness and reasonableness ratings revealed significant effects for Error-Rate, F (6, 

348) = 9.43, p < .001, Wilks’ � = 0.74, partial η2 = 0.14. No statistically significant effects were found for Explanation 
or the interaction. The Error-Rate effect was significant both for the overall correctness score (p < .001; see Table 2); as 
well as for the overall reasonableness score (p < .001; see Table 2). However, most of this effect can be attributed to the 
4%-error condition. Post-hoc Tukey HSD comparisons revealed a higher overall correctness and reasonableness ratings for 
the system in the 4%-error condition versus all others. So, this system-level measure of correctness (like the trust measure) 
shows that the item-level effects for Explanation do not persist into a system-level evaluation of correctness. The Error-
Rate’s variable was also found to impact overall correctness and overall reasonableness; see Table 2), showing people are 
sensitive to changes in error-rates from 4% to 12% and 28%.

8.2.3. Trust and satisfaction
The MANOVA analyses of trust ratings of the overall system also revealed a significant effect for Error-Rate, F (24, 490) 

= 1.85, p = .009, Wilks’ � = 0.78, partial η2 = 0.08. No statistically significant effects were found for Explanation or an 
interaction (for ANOVA analyses see Table 2). Univariate main effects for Error-Rate were found in for half of the 8 questions 
(1, 2, 4, 6). Overall, people in the 4%-error condition reported the highest level of confidence in the system (M = 4.43, S D
= 0.54), found the system to be more reliable (M = 3.24, S D = 1.02) and reported trusting the system to make accurate 
classifications (M = 3.93, S D = 0.8) than for other Error-Rate levels. In contrast, the MANOVA analyses of satisfaction 
ratings show no main effects or interaction, although there were pair-wise differences for specific questions under the 
Explanation variable. Specifically, the Explanation-Present group rated Question 1 (“From the explanation, I understand how 
the program works”), Question 3 (“This explanation of how the program works has sufficient detail”), and Question 5 (“This 
explanation of how the program works tells me how to use it”) significantly higher than the Explanation-Absent group, all 
p < .05.

9. General discussion and conclusions

In this paper, we have presented an end-to-end treatment of a model-agnostic solution to the problem of eXplainable 
AI (XAI) involving post-hoc explanations. Specifically, we have advanced a new computational method for finding example-
based explanations, within a twin-systems approach, implementing this method in a CNN-CBR twin using the MNIST dataset. 
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Then, we systematically tested for the impact of these explanations on right and wrong classifications across three user-
studies, where we also varied the error-rates encountered by users. As such, we hope that this work provides a potential 
methodological blueprint for how to evaluate XAI techniques. To summarise, the main contributions are:

• User’s mental models can be differentiated into sub-models of the domain, AI-system, and explanation strategy. These 
can then be used to “parse” an experimental paradigm to better understand where mental model development is 
occurring.

• A feature-weighting technique – COLE-HP – can capture an ANN’s feature-weights and use them in a CBR-system to find 
post-hoc explanatory examples for a twinned, ANN-CBR system (n.b., [22] have applied this technique to many different 
datasets and domains).

• These post-hoc example-based explanations impact people’s mental models of misclassifications made by a black-box 
AI model; people judge individual errors to be more correct when explanations are given, an item-level effect that is 
replicable across three experiments (albeit with small-to-medium effect sizes). Hence, people view the AI model to 
be acting in a way that is more correct (or, at least, less incorrect) when given an explanation (which makes sense, as 
often it is the data which is in error, not the model). In short, there is evidence (qualitiative and quantitive) that these 
explanations impact people’s understanding of the causal role the model plays in misclassifications.

• The present evidence shows that explanations mainly impact people’s judgements of errors, not correct items. This 
result could be taken to suggest that correct classifications do not require explanation. However, we do not think such 
a conclusion is warranted; the effect we see here may be due to people’s high-expertise with the domain and the 
measures used. To put it another way, we believe there may well be circumstances in which these explanations play a 
role with correct items too; though these circumstances remain to be demonstrated.

• Error-rates also impact people’s perceptions of the overall system’s competence (in system-level measures of trust, 
overall correctness, and overall reasonableness); as error-rates increase, anywhere above a low threshold of 3-4%, people 
trust the system less and discount its overall correctness/reasonableness (see Fig. 9). Indeed, the effects of error-rates 
look more like a step-function than a trend across when one views the relative changes in key measures (see Fig. 9).

• The item-level effects of these explanations (on correctness judgements of errors) do not aggregate into overall improve-
ments in people’s system-level evaluations of the model (e.g., in trust or satisfaction); indeed, a qualitative analysis of 
people’s verbal reports on the model suggest that being given explanatory-examples may simply serve to highlight 
weaknesses in the model’s operation (i.e., they blame-the-system more).

• Reasonableness and Satisfaction measures appear not to be as informative as the other measures; both seem to engen-
der very different interpretations in the user population. Although several satisfaction questions reached a significant 
difference between groups, the findings were not replicated across experiments.

In conclusion, the present studies present a rich set of findings for wider consideration of the dynamics of user interac-
tions with explanation-strategies and error-rates in XAI research. This work also adds significantly, to the (now) small pool 
of carefully-controlled user studies on how explanations and error-rates impact AI systems. It also suggests a number of 
lessons for future work that we try to extract and generalise in the next sub-section.

9.1. Lessons learned for user tests in XAI

From the present concerted effort to develop a new XAI technique and then evaluate it in a series of user studies, a 
number a lessons present themselves.

Excellent Computational Explanations May Not Be Good Psychological Explanations. At present, a whole slew of XAI techniques 
are being developed and, without user studies, it is not at all clear whether any of them are psychologically valid. Here, 
we have tested a long-heralded XAI technique, using post-hoc explanation-by-example, and found that these explanations 
have quite circumscribed impacts on people’s mental models. Just as vaccines go through successive primary, secondary, 
and tertiary trials before being used, it might be good to have similar stages in assessing XAI methods (perhaps with health 
warnings on trust-appropriateness and fairness).

Item-level Impacts May Not Sum to System-level Impacts. In the present work, a distinction was made between item-level 
impacts and system-level impacts that deserves some consideration; it is generally assumed that the item-level impacts of 
explanation provision (e.g., speed-up for a user on an item or changed perception of an item) aggregate into some overall 
system-level impact (e.g., overall performance is faster or overall trust in the system is better); however, we have seen 
that item-level impacts may not necessarily aggregate to system-level effects. Many current studies in XAI show item-level 
effects or explore a small number of items in tests, without necessarily assessing whether the effects found aggregate to 
overall system-level impacts; assessments at both levels are clearly needed.

People’s Tolerance of Failure is Low. The overwhelming evidence from this work (and previous studies) is that people’s 
tolerance of failure in automated systems is low (aka algorithmic aversion). This growing body of evidence suggests that the 
bar for using predictive AI models is very high; basically, if the model is not near-perfect then it is highly likely that users 
will have trust issues or an adverse response (though, the influence of expertise in the domain being used, needs to be 
assessed).
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Testing as Close to the “Real” Task-Context is Critical. Earlier, we reviewed a threefold taxonomy of XAI evaluation from 
application-grounded, to human-grounded, to functionally-grounded evaluations [27] where from first-to-last one moves 
further away from the user and the “real” use-case for the system. Given the observed complexities of the interactions 
seen here between task demands, presented classification types, relative proportions of errors, and the presence/absence of 
explanations, it is hard to see how diverging from the “real” use-case could tell one much about the utility of a given XAI-
technique/model. Recently, Buccinca et al. [20] made similar arguments about what they call, “proxy” user-testing scenarios 
(i.e., ones less like the human-grounded evaluations), after showing that they generate different behaviour in users than 
“real” use-case scenarios, making them questionable for evaluation purposes (though there were some methodological issues 
with their tests).

Paradigm Templates Would Help. People’s understanding of these AI systems is based on a multi-faceted mental model 
with at least three component sub-models (i.e., for the domain, the AI method, and explanation strategy, wrapped in a task-
goal context) and user tests need to control and/or carefully vary interventions to impact these models; here, we advanced 
a paradigm in which the domain and explanation sub-models were held relatively constant allowing us some insight into 
how people’s mental model of system was impacted. XAI needs a set of template, benchmark paradigms of this sort to 
guide future testing (e.g., [21] provide another good template where they vary the bias of the dataset systematically and 
also compare multiple explanation strategies on the same task).

Robust Benchmark Measures Are Needed. This research area needs to identify reliable and robust benchmark measures for 
assessing the impact of explanation strategies; we have seen that correctness ratings seem to consistently assess people’s 
evaluations of model predictions, whereas reasonableness ratings did not (perhaps because people have different under-
standings of what is reasonable). There are probably a relatively small number of benchmark measures that work in these 
user studies that should be identified by the field and then re-used (e.g., the DARPA trust questions used here seem quite 
robust, whereas the satisfaction questions seemed less informative).

9.2. Future directions

There are at least four main directions in which future research could be taken. Firstly, the present twin-systems only 
build explanations based on factual cases (a.k.a., nearest neighbours); yet, we know that people find semi-factual and coun-
terfactual cases very compelling [41,46,40,86]. Considering this, the current twin-system framework could be extended to 
include these other forms of case-based explanations (see e.g., Keane and Smyth [45]). Secondly, we have shown how 
twin-systems can be applied to one type of deep learning method; other deep learning techniques could be explored (e.g., 
BERT-CBR for NLP and GAN-CBR twins for generative tasks). Thirdly, the twinning approach may have some potential to pro-
vide global explanations for CNNs by summarising feature activation maps [22] for a class similar to other approaches [87]. 
Lastly, there is a larger research program of user testing of all XAI techniques needed to determine whether many popular 
current methods hold up to an examination of their psychological validity.
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