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ABSTRACT

Soft actor-critic is a successful successor over soft Q-learning. While lived under
maximum entropy framework, their relationship is still unclear. In this paper,
we prove that in the limit they converge to the same solution. This is appealing
since it translates the optimization from an arduous to an easier way. The same
justification can also be applied to other regularizers such as KL divergence.

1 PRELIMINARIES

Consider a regularized infinite-horizon discounted MDP, defined by a tuple (S,A, P, r, ρ0, γ,∆),
where S is the state space, A is the action space with finite cardinality |A|, p : S × A × S → R is
the transition probability distribution, r : S×A → R is the reward function, assumed to be bounded
ρ0 : S → R is the distribution of the initial state s0, and γ ∈ [0, 1) is the discount factor. We denote
π : S × A → [0, 1] as a stochastic policy. We restrict our attention on the regularizer ∆ : π → R,
that is, being a function of the policy. Whenever noticed, H(s) abbreviates the entropy of π(·|s).
In SAC Haarnoja et al. (2018), the soft Bellman operator T π is defined as follows

T πQ(st, at) = r(st, at) + γEst+1 [V (st+1)], (1)
where

V (st) = Eat∼π[Q(st, at)− η log π(at|st)] (2)
It is not difficult to see that T π is a contraction by modifying the reward as r(s, a)+γEs′∼p[H(s′)].

With repeatedly applying this operator over an arbitrary starting action-value function Q, it ap-
proaches to the soft value function.

2 CONVERGENCE ANALYSIS

In this section, we firstly study the regularized proxies from an optimization perspective, then state
the soft policy iteration, and finally point out the convergence result.

2.1 OPTIMIZING WITH REGULARIZATION

Define the regularized state-value function as

Ṽ π(s) = E
[ ∞∑
l=0

γl(rt+l + η∆t+l)|s0 = s
]

(3)

where η is the temperature parameter, usually positive, determining the relative importance of the
regularization term against the reward.

The optimal regularized value function Ṽ ⋆(s) should satisfy the corresponding optimal Bellman
equation1 for all s ∈ S

Ṽ ⋆(s) = sup
π

∑
a∈A

π(a|s)
[
r(s, a) + η∆(s) + γEs′∼p[Ṽ

⋆(s′)]
]

(4)

1Though we use the summation for simplicity, it can be readily replaced by the integral.
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For ∆(s) = H(π(·|s)), we have

Lemma 1. For all (s, a) ∈ S×A, the optimal value function Ṽ ⋆(s) and the optimal policy π̃⋆(a|s),
satisfy

Ṽ ⋆(s) = η log
∑
a∈A

exp
1

η

(
r(s, a) + γEs′∼p[Ṽ

⋆(s′)]
)

π̃⋆(a|s) =
exp 1

η

(
r(s, a) + γEs′∼p[Ṽ

⋆(s′)]
)∑

a∈A
exp 1

η

(
r(s, a) + γEs′∼p[Ṽ ⋆(s′)]

) (5)

from which we define an auxiliary optimal action-value function (not the true one)

Q̃⋆(s, a) = r(s, a) + γEs′∼p[Ṽ
⋆(s′)] (6)

Proposition 1. For any V : S → R that satisfies V (s) ≤ Ṽ ⋆(s) for all s ∈ S, then

Q(s, a) ≜ r(s, a) + γEs′∼p[V (s′)] ≤ Q̃⋆(s, a) (7)

2.2 SOFT POLICY ITERATION

Consider the softmax policy class Π

Lemma 2. (Soft Policy Iteration). Repeatedly application of soft policy evaluation (Haarnoja et al.,
2018, Lemma 1) and soft policy improvement (Haarnoja et al., 2018, Lemma 2) to any π ∈ Π
converges to a policy π⋆ such that Qπ⋆

(s, a) ≥ Qπ(s, a) for all π ∈ Π and (s, a) ∈ S ×A.

Combining all the aforementioned statements, we formally arrive at

Theorem 2. For any initial policy π0 and corresponding action-value function Qπ0 , the convergent
points induced by SPI 2 satisfy Qπ⋆

(s, a) = Q̃⋆(s, a) and π⋆ = π̃⋆.

Proof. The backward direction is obvious as shown in (Haarnoja et al., 2018, proof of Theorem 1),
that is, Qπ⋆ ≥ Q̃⋆. We only need show the other direction. Since Qπ⋆

is the fixed point of the soft
Bellman operator T π⋆

, thus it must satisfy the Bellman equation as defined in Equation 7 with a
value function V π⋆

. And since V ⋆ is the regularized value function that at most can be obtained,
it must have V π⋆ ≤ V ⋆. By Proposition 1, it follows that Qπ⋆ ≤ Q̃⋆. And since π⋆ ∈ Π, it
immediately follows that π⋆ = π̃⋆.

This theorem connects LogSumExp optimization to policy evaluation and improvement, providing
an alternative approach. It links SQL Haarnoja et al. (2017) and SAC, with SAC being superior in
optimization. It allows for optimizing regularizers like KL divergence using a different procedure.
With a prior π̄ on the policy, setting ∆(s) = −DKL(π|π̄) allows us to derive conservative optimal
points and define the conservative Bellman operator, using similar justifications

V π⋆

(s) = η log
∑
a∈A

π̄(a|s) exp 1

η

(
r(s, a) + γEs′∼p[V

π⋆

(s′)]
)

π⋆(a|s) =
π̄(a|s) exp 1

η

(
r(s, a) + γEs′∼p[V

π⋆

(s′)]
)∑

a∈A
π̄(a|s) exp 1

η

(
r(s, a) + γEs′∼p[V π⋆(s′)]

) (8)

T πQ(st, at) = r(st, at) + γEst+1
[V (st+1)],

V (st) = Eat∼π[Q(st, at)− η log
π(at|st)
π̄(at|st)

]
(9)

Intervening between policy evaluation based on the conservative Bellman operator, and policy im-
provement with the softmax policy of the conservative action-value function, we are guaranteed to
converge to the optimal policy.
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A PROOF OF LEMMA 1

Following the sketch of Azar et al. (2012), we define the Lagrangian function L(s;λ) : S → R

L(s;λ) =
∑
a∈A

π(a|s)
[
r(s, a) + γEs′∼p[Ṽ

⋆(s′)]
]
+ ηH(s)− λ(

∑
a∈A

π(a|s)− 1) (10)

Since the objective is linear and H is strictly-concave in π, and the probability simplex is at least
non-empty, thus slater condition is satisfied, which implies the optimum by solving

0 =
∂L(s;λ)
∂π(a|s)

= r(s, a) + γEs′∼p[Ṽ
⋆(s′)]− η log π(a|s)− η − λ (11)

The solution is
π⋆ = exp (−λ

η
− 1) exp

1

η
(r(s, a) + γEs′∼p[Ṽ

⋆(s′)]) (12)

With the equality constraint ∑
a∈A

π⋆(a|s) = 1 (13)

by applying log transformation on both sides, we can solve for the multiplier as

λ = η log
∑
a∈A

exp
1

η

(
r(s, a) + γEs′∼p[Ṽ

⋆(s′)]
)
− η (14)

inserting which into Equation 12, we get

π̃⋆(a|s) =
exp 1

η

(
r(s, a) + γEs′∼p[Ṽ

⋆(s′)]
)∑

s∈A
exp 1

η

(
r(s, a) + γEs′∼p[Ṽ ⋆(s′)]

) (15)

And finally plug this result into Equation 4, we get

Ṽ ⋆(s) = η log
∑
a∈A

exp
1

η

(
r(s, a) + γEs′∼p[Ṽ

⋆(s′)]
)

(16)
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