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Abstract

Reinforcement learning (RL) has been widely used in text generation to alleviate
the exposure bias issue or to utilize non-parallel datasets. The reward function plays
an important role in making RL training successful. However, previous reward
functions are typically task-specific and sparse, restricting the use of RL. In our
work, we propose a task-agnostic approach that derives a step-wise reward function
directly from a model trained with teacher forcing. We additionally propose a
simple modification to stabilize the RL training on non-parallel datasets with our
induced reward function. Empirical results show that our method outperforms self-
training and reward regression methods on several text generation tasks, confirming
the effectiveness of our reward function.1

1 Introduction

Teacher forcing [7] is the common training method for text generation models. Although this
practice has been widely applied [7, 13, 58], there are two main issues: 1) Teacher-forcing training
is data-hungry because parallel datasets are usually expensive to obtain. On the other hand, there
are numerous unlabeled, non-parallel datasets available. This poses an urge to efficiently exploit
non-parallel data. 2) Teacher forcing introduces a discrepancy between training and inference because
the model learns to predict the next word based on the partial groundtruth reference during training,
whereas in inference the model predicts the next word based on its self-generated previous words.
This undesired discrepancy is known as exposure bias [44, 6, 28, 59].

To address the first problem, a straightforward method is to generate pseudo-parallel sentences
for data augmentation, such as self-training [2], sequence-level knowledge distillation [23], and
back-translation [49]. However, the exposure bias remains in such cases.

To address the second problem, the model should be trained on self-generated sentences. Common
solutions are often based on reinforcement learning (RL). In text generation, however, there does not
exist a naturally defined reward function for RL. Researchers have proposed various heuristic scores
as the reward, such as BLEU [38] for translation and ROUGE [31] for summarization. These reward
functions are task-specific and not generalizable to other tasks. Further, these rewards require parallel
data, failing to address the first problem above; they are typically sparse (only non-zero at the end of
a sentence), making RL training difficult.

The goal of this paper is to address these two problems in one framework with a learned, dense reward
function. Our approach has two steps: we first train a sequence-to-sequence (seq2seq) model on the
parallel dataset and induce a reward function from the model. Then, we apply RL on non-parallel
data based on our induced reward function.

1Our code is publicly available at https://github.com/MANGA-UOFA/LMReward
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Our method is task-agnostic and does not require handcrafted engineering or heuristics. Further, our
reward function provides dense (step-wise) training signals, which makes RL training much easier
than sparse rewards. Additionally, the reward function derived from the seq2seq model does not
directly participate in the generation, which allows the model to explore based on its own prediction
and thus alleviates the exposure bias.

We conduct experiments on dialogue generation and paraphrase generation. The empirical results
suggest that our method leads to better performance compared with several baselines, including
self-training and task-specific heuristic reward learning, on both tasks. This confirms the effectiveness
and generality of our framework.

2 Approach

Our approach trains the seq2seq model on non-parallel data with reinforcement learning, whose
foundation is the Markov decision process (MDP). In this section, we first introduce the MDP
formulation for text generation. Then we describe our method to derive the reward function from a
seq2seq model trained by teacher forcing. Finally, we describe the policy gradient method used in RL
training with our induced reward function.

2.1 Reinforcement Learning Formulation of Text Generation

Text Generation as a Markov Decision Process (MDP). We formulate the text generation process
as an (undiscounted) MDP, which can be represented as a tuple (S,A, T, r). At every step, a decision
a 2 A is made based on its state s 2 S. The transition dynamic T (s0|s, a) is the probability of the
next state being s0, given the current state s and the action a. A function r : S ⇥A! R defines the
reward based on a state and an action.

Typically, the decision making is assisted by a policy ⇡, which is a predicted distribution over actions
and is trained to maximize the expected total reward, also known as an action value function:

q⇡(s, a) := E
at⇠⇡(·|st)

st+1⇠T (·|st,at)

"
HX

t=1

r(st, at)|s1 = s, a1 = a

#
, (1)

where H is the number of steps. Theoretical results show that the optimal policy ⇡⇤ satisfies the
Bellman optimality equation:

q⇡
⇤
(s, a) = r(s, a) +

X

s02S
T (s0|s, a)max

a0
q⇡

⇤
(s0, a0). (2)

For text generation, the MDP state can be defined as the partial generated sequence y<t :=
(y1, · · · , yt�1), and the action as the next token yt in the vocabulary V . The transition dynamic
T (·|s, a) here is deterministic, since every state–action pair (y<t, yt) leads to a unique state y<t+1

for the next step.

In previous RL-based text generation, there lacks a naturally defined reward function r(s, a). While
researchers have applied various heuristics as the reward [1, 50], they suffer from several shortcomings
(e.g., sparsity and task specificity) as mentioned in Section 1. To address these problems, we propose
to induce a reward function for text generation tasks in a principled approach by inverse reinforcement
learning.

Inverse Reinforcement Learning (IRL). The goal of IRL is to learn a reward function r(s, a).
Especially, we wish the resulting action value function q computed by Eqn. (1) could satisfy q(s, a) �
q(s, a0) for every a0 2 A and every (s, a) pair in the training set D. In other words, the decisions in
D are made greedily by argmax

a
q(s, a) given any state s. Unfortunately, Ng and Russell [36] show

that this is an ill-posed problem since the desirable reward function r is not unique. Therefore, we
follow a common assumption [4, 43, 69] to resolve the ambiguity:
Assumption 1. Given an action value function q, the policy ⇡ takes the form of ⇡q(a|s) :=
exp(q(s, a))/

P
a0 exp(q(s, a0)).
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In traditional IRL [4, 43, 69], reward learning is difficult and this assumption does not directly yield
a reward function due to the stochastic state transition T (s0|s, a). However, our insight is that the
transition is deterministic for text generation tasks, and thus we may utilize Assumption 1 to induce
an action value function q, and then a reward function r, from some learned policy ⇡, as explained in
the next part.

2.2 Teacher Forcing Recovers IRL

One of our main contributions is that we show the seemingly complicated reward learning in
Section 2.1 can be recovered by teacher forcing, the de facto common practice of supervised text
generation. Our discovery leads to a convenient approach that derives a step-wise reward function
simply from general seq2seq models, without the need for task-specific heuristics. This makes RL
more general for text generation, and our step-wise reward largely simplifies RL training.

Maximum Likelihood Estimation (MLE) for IRL. Following Assumption 1, we let the policy
⇡q! (·|s) / exp(q!(s, ·)), where q! is a parameterized action value function. Under such a policy, the
probability of each trajectory ⌧ := ((s1, a1), . . . , (s|⌧ |, a|⌧ |)) in the dataset is given by the trajectory
distribution P⇡q! . The likelihood of the dataset is given by

PIRL(D|!) :=
Y

⌧2D
P⇡q! (⌧). (3)

Teacher-Forcing Training. For text generation, the standard teacher-forcing seq2seq training is to
minimize the loss:

LTF(!;D) := �
X

y2D

|y|X

t=1

log p!(yt|y<t), (4)

where the predicted probability of the next token being v is p!(v|y<t) =
exp(f!(y<t,v))P

v02V exp(f!(y<t,v
0)) for

the logit function f! with parameters !. In seq2seq training, an additional input x may be added to
the conditional probabilities but is omitted here for simplicity.

The below theorem shows their equivalence up to an additional constant.
Theorem 1. Suppose the value function q in Eqn. (3) and the seq2seq model f in Eqn. (4) have the
same parametrization !, we have

LTF(!;D) = � logPIRL(D|!) + const . (5)

Proof. For the MLE of IRL under Assumption 1, the Ionescu–Tulcea theorem [22] asserts that there
exists a unique trajectory distribution P⇡

µ
satisfying

P⇡

µ
(s1) = µ(s1),

P⇡

µ
(s1, a1, . . . , st, at) = P⇡

µ
(s1, a1, . . . , st)⇡(at|st),

P⇡

µ
(s1, a1, . . . , st, at, st+1) = P⇡

µ
(s1, a1, . . . , st, at)T (st+1|st, at)

for any t � 1, given the initial state distribution µ, transition probability T , and policy ⇡.

The likelihood can thus be factorized by the multiplication of µ, T , and ⇡:

PIRL(D|!) =
Y

⌧2D
P

⇡q!
µ (⌧) =

Y

⌧2D


µ(s1)⇡q! (a1|s1)

|⌧ |Y

t=2

T (st|st�1, at�1)⇡q! (at|st)
�
.

As mentioned, text generation has a deterministic transition, i.e., T (s0|s, a) = 1 for the next state
s0 = s+ [a]. Taking the µ terms out, we have

� logPIRL(D|!) = � log
Y

⌧2D

|⌧ |Y

t=1

⇡q! (at|st)� log
Y

⌧2D
µ(s1), (6)

where the second term is a constant in terms of !. In Section 2.1, text generation is modeled as
an MDP with st = y<t and at = yt. Therefore, the first term of Eqn. (6) is the same as Eqn. (4)
under the parametrization ⇡q! = p!, concluding the equivalence between MLE for IRL and the
teacher-forcing training of a seq2seq model.
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Inducing the Reward Function. Theorem 1 shows that seq2seq training with teacher forcing
actually learns an IRL model. Thus, we may derive a reward function assuming the action value
function is well trained:

r(s, a) = q!(s, a)�
X

s02S
T (s0|s, a)max

a02A
q!(s

0, a0) = f!(s, a)�max
a02A

f!(s+ [a], a0), (7)

where the first equality is due to the Bellman optimality condition (2); the second equality is due
to the parametrization of q! = f! and the deterministic transition T (s0|s, a) = 1 for s0 being the
concatenation of the prefix s and token a.
Remark 1. It is easy to notice that f!(s, ·) may be arbitrarily shifted by a constant cs without changing
⇡! . This also shifts the derived reward r(s, a) by cs � cs+[a]. However, it does not affect the optimal
policy. We will prove this in Theorem 3 after introducing policy gradient methods.

Our use of the Bellman optimality condition is different from classic RL, where the reward is well-
defined and the action value function is thus learned [55]. Instead, we induce the underlying reward
assuming the action value function is known (given by Assumption 1). The following diagram shows
the whole process of our derivation.

D
Teacher Forcing
���������!⇡

Assumption 1
���������! q

Eqn. (7)
���������! r

In real-world applications, the learned action value function might be imperfect; in this case, we may
bound the error of our induced reward with the following theorem.
Theorem 2. Let r⇤ be an underlying true reward function and q⇤ be the corresponding optimal
value function. Given an approximate value function q, we denote by r the reward function derived
from Eqn. (7). Then, we must have kr � r⇤k1 bounded by O(kq � q⇤k1). Here, k · k1 takes the
maximum absolute value over all s 2 S and a 2 A.

Proof. See Appendix A.

2.3 Periodically Synchronized Behavior Policy in Policy Gradient

In text generation, a neural network can be viewed as a policy ⇡ that predicts the word distribution
given the state of a decoding step. The reward induced from Section 2.2 can be used to improve
the policy through RL. To stabilize training, we propose a variant of off-policy policy gradient
methods [10] with a periodically synchronized behavior policy.

Our RL training adopts the off-policy REINFORCE [63] as the backbone of our algorithm. Let ⇡' be
the model policy (i.e., the model’s prediction) to be optimized, and ⇡b be the behavior policy (i.e., the
sampling distribution during training). Through importance sampling, the gradient of the expected
total reward with respect to ' can be obtained by the off-policy policy gradient theorem [10]

r' E
⇡'

X

t

r(st, at)

�
= E

⇡b

X

t

⇢tq̂r(st, at)r' log ⇡'(at|st)
�
, (8)

where ⇢t := ⇡'(at|st)/⇡b(at|st) is the importance weight, and q̂r(st, at) :=
P

i�t
r(si, ai) is the

total reward of the trajectory. In practice, off-policy REINFORCE (⇡' 6= ⇡b) is more exploratory than
the on-policy one (⇡' = ⇡b), since the model policy ⇡' would become more concentrated during
optimization and does not explore much, whereas ⇡b is typically chosen to cover more trajectories.
However, Degris et al. [10] adopt a fixed behavior policy ⇡b, which does not perform exploitation
according to the current model policy. The lack of exploitation might lead to less informative training.

To balance exploration and exploitation, we would like the behavior policy to be close to the model
policy but stay exploratory at the same time. We thus propose a periodically updating schedule,
where the behavior policy is frozen for a long period to encourage exploration but keeps track of the
current model policy to enhance exploitation. Particularly, we synchronize the behavior policy with
the model policy for every k gradient updates of the latter (e.g., k = 5000). Our remedy is a simple
method overcoming the instability of REINFORCE. It shares a common ground with a number of
policy gradient methods like the proximal policy optimization (PPO) [48], especially in that both
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methods involve multiple updates with a fixed behavior policy. As the main contribution of this
paper is reward induction, we resort to this simple fix and leave the mathematical connection as an
interesting future direction.

Algorithm 1 summarizes our approach. Our implementation is able to execute the loops in parallel,
which speeds up the training process. Our periodically synchronized behavior policy further enables
us to parallelize sampling and model updates to reduce the awaiting time.

2.4 Application to Semi-Supervised Learning

Our approach naturally aligns with the paradigm of semi-supervised learning, as it involves training a
seq2seq model to induce the reward function, which requires (at least a small volume of) parallel data
Dp. Additionally, we assume there is a non-parallel dataset Du containing input sentences only for
RL training with the induced reward.

Our semi-supervised approach consists of two stages. We first train a seq2seq model f! on the parallel
dataset Dp to induce the reward function r by Eqn. (7). The procedure is described in Section 2.2.
The reward function then facilitates RL training on the non-parallel dataset Du, which is shown in
Algorithm 1.

Algorithm 1: Our Algorithm
Input: A non-parallel dataset Du, learned logit (value) function f! , policy ⇡' with the initial

parameter ', total update steps U , and synchronizing period k
Output: A policy ⇡' parameterized by '
begin

for i 1...U do
if i ⌘ 0 (mod k) then

⇡b  ⇡' ; . Behavior policy update
Sample a source sentence x 2 Du

Construct the initial state s (x, [BOS]) ; . [BOS] is the beginning token
Sample a trajectory ⌧ from the behavior policy ⇡b

q̂r
h+1  0 and g  0

for t |⌧ |...1 do
if t = |⌧ | then

rt  f!(st, at) ; . Termination step, no st+1

else
rt  f!(st, at)�maxa0 f!(st+1, a0) ; . By Eqn. (7)

q̂r
t
 rt + q̂r

t+1 ; . Accumulating rewards
⇢t  ⇡'(at|st)/⇡b(at|st) ; . Importance weight
g  g + ⇢tq̂rtr' log ⇡'(at|st) ; . By Eqn. (8)

' '+ ⌘g ; . Gradient ascent
return ⇡'

As mentioned in Remark 1, the reward r(s, a) can be arbitrarily shifted by cs � cs+[a]. We show that
this shift does not affect the optimal policy.
Theorem 3. Suppose r0(s, a) = r(s, a) + cs � cs+[a]. Then the learned policies under r0(s, a) and
r(s, a) are the same.

Proof. By Eqn. (1), function q returns the expected total reward. In Algorithm 1, we sample it by

q̂r
0

t
(st, at) :=r0(st, at) + r0(st+1, at+1) + · · ·+ r0(s|⌧ |, a|⌧ |)

=r(st, at) + cst �⇠⇠⇠cst+1 + r(st+1, at+1) +⇠⇠⇠cst+1 � cst+2 + · · ·+ r(s|⌧ |, a|⌧ |) +��cs|⌧|

=cst + r(st, at) + r(st+1, at+1) + · · ·+ r(s|⌧ |, a|⌧ |) =: q̂r(st, at) + cst .

The last line suggests the constant plays a role as the baseline in policy gradient, which is shown to
be irrelevant to the optimal policy [55].
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Table 1: Main results. "/#The higher/lower, the better. †Quoted from Wen et al. [62] on deduplicated
dialogue datasets. ‡Quoted from [29]. §Quoted from [11]. For the paraphrase generation metric, we
have iBLEU = (1� ↵) BLEU �↵ SBLEU.

(a) Dialogue generation.

Method BLEU2" BLEU4"

Parallel DailyDialog

AdaLabel† [60] 6.72 2.29
DialogBERT† [16] 5.42 2.16
T5-Base [42] 8.96 3.69

+ Parallel OpenSubtitles

[T5-Base] Fully Supervised 8.75 3.06

+ Non-Parallel OpenSubtitles

[T5-Base] Self-Training 9.10 3.73
[T5-Base] R-Regression 10.34 4.18
[T5-Base] Ours 11.02 4.30

(b) Paraphrase generation. “Copy” refers to direclty copying
the input sentence.

Method BLEU4" SBLEU4# iBLEU4"

Copy 29.88 100.0 16.89

Parallel Quora Generation

Dagger‡ [12] 28.42 66.98 18.88
RL-NN‡ [40] 20.98 40.52 14.83
T5-Base [42] 30.83 44.77 23.27

+ Non-Parallel Quora Generatoin

LTSL§ [11] 29.25 71.25 19.20
[T5-Base] Self-Training 31.39 48.02 23.44
[T5-Base] R-Regression 30.77 44.23 23.27
[T5-Base] Ours 31.47 45.43 23.78

3 Experiments

3.1 Datasets and Metrics

Dialogue Generation. We adopt two widely used datasets, DailyDialog [30] and OpenSubti-
tles [57], for the dialogue experiment. The DailyDialog dataset is constructed from English dialogues
crawled from the Internet, whereas the OpenSubtitles dataset is constructed from movie subtitles
based on IMDB identifiers. A dialogue session is split into single-turn context–response pairs in
our experiment. For semi-supervised learning, we use the smaller dataset, DailyDialog, as the
parallel corpus Dp, and the larger dataset, OpenSubtitles, as the non-parallel corpus Du (i.e., we
only retain the context sentence in the OpenSubtitles dataset). This follows the common setup for
semi-supervised learning, where the unlabeled dataset is larger than the labeled one.

It should be emphasized that a recent study [62] shows more than 20% of test samples are identical
to some training samples in both DailyDialog and OpenSubtitles. This results in meaningless
comparison and inflated performance of previous methods, e.g., a BLEU4 of 11.01 in AdaLabel [60]
and 14.61 in DialogBERT [16]. Therefore, we use the deduplicated datasets in [62], containing
60K/6.5K/7K samples for training/validation/test in DailyDialog and 1M non-parallel samples in
OpenSubtitles. Although our scores will be lower than previous inflated ones, we follow the correct
setting for research.

We use BLEU scores [38] as main evaluation metrics, which are widely used in dialogue gener-
ation [62]. In particular, BLEU-n evaluates the geometric average of i-gram precision scores for
i = 1, · · · , n. Following previous work [62], we lowercase all sentences and tokenize them with the
NLTK library [33].

Paraphrase Generation. We follow previous studies [11, 32, 34] and use the Quora Question Pair
dataset2 for the paraphrasing experiment. The Quora dataset is originally designed for paraphrase
classification, containing both paraphrase and non-paraphrase pairs. The paraphrase pairs naturally
form a parallel dataset for the generation purpose; following the common practice [34], we split it
into 124K/4K/20K samples for training/validation/test. The non-paraphrase pairs, containing 510K
sentences, are discarded in previous work, but we are able to utilize them in a semi-supervised
manner.

We use the standard iBLEU score [54] as the main evaluation metric. It involves a penalty of Self-
BLEU (SBLEU) between the generated and input sentences, as the paraphrasing task requires using

2
https://www.kaggle.com/c/quora-question-pairs
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Figure 1: The distributions of token-level estimation of future rewards (q̂r
t

in Algorithm 1) on the
DailyDialog validation set. The BLEU score of a sentence is shared among tokens in the same
sentence.

different lexicons. Specifically, it is calculated by iBLEU = (1 � ↵) BLEU �↵ SBLEU, where ↵
is typically set to 0.1 [11, 32, 34]. For clarity, we also report BLEU and S-BLEU scores in our
experiment.

3.2 Settings and Competing Methods

For each task, we first fine-tune a T5-Base model [42] on the parallel data by Eqn. (4). Then we
apply our proposed method to induce the reward and further train the model by Algorithm 1 on the
non-parallel data. We compare our approach with the following semi-supervised methods.

Self-Training. We apply the supervised model to the non-parallel dataset and generate pseudo-target
sentences, which are used to continue training the model. This is a commonly used semi-supervised
approach in text generation literature [21, 68].

R-Regression. Wu et al. [66] propose a reward regression (R-Regression) approach, where the reward
is defined as the BLEU score. Since their reward is the same as the evaluation metric, such a method
may achieve higher BLEU scores without actually improving the generation quality. By contrast, our
reward is induced in a principled way and is agnostic to evaluation metrics. In our experiment, we
replicate the R-regression method, which constitutes a controlled comparison to our approach, as the
only difference is the reward function.

Appendix B provides implementation details and hyperparameters of our approach.

3.3 Main Results

Results of Dialogue Generation. Table 1a shows the results of the dialogue generation task.
We notice that our fine-tuned T5-Base model [42] has already outperformed dedicated methods,
AdaLabel [60] and DialogBERT [16]. This is consistent with the findings of [62, 61] in that the
alleged “state-of-the-art” dialogue systems do not outperform standard pretrained language models
on deduplicated datasets, highlighting the importance of working with the correct setting.

We then apply semi-supervised learning (Self-Training, R-Regression, and our approach) with the
non-parallel OpenSubtitles dataset. We achieve higher performance than T5-Base trained only on
parallel DailyDialog. Interestingly, the fully supervised model—trained on both parallel DailyDialog
and parallel OpenSubtitles—does not achieve high performance, even lower than the one trained with
DailyDialog only. It is noticed that the OpenSubtitles dataset is noisy [8], which likely causes the
performance degradation. This signifies the need of semi-supervised learning.

Among semi-supervised approaches, RL-based methods (R-Regression and ours) are generally
better than Self-Training. This is within our expectation because Self-Training learns from its own
generation and may be overconfident, whereas RL approaches are able to explore different parts of
the data space, being a more effective way of semi-supervised learning.

Moreover, our approach outperforms RL with R-Regression, where the reward is the only difference.
The controlled experiment confirms that the reward induced from models trained with teacher forcing
is effective for RL training. It is also worth noting that R-Regression uses the evaluation metric as
the reward, and thus may deliberately improve the metric rather than text quality. By contrast, our
reward is induced in a principled manner and is agnostic to evaluation metrics, and our approach still
achieves higher performance even with such a disadvantage.

7



Table 2: Comparing sparse and dense reward functions.

(a) Dialogue generation.

Sparse Method BLEU2" BLEU4"

- Self-Training [23] 9.10 3.73

Yes R-Regression [66] 9.45 3.73
Induced-R 9.75 3.99

No R-Regression [66] 10.34 4.18
Induced-R 11.02 4.30

(b) Paraphrase generation.

Sparse Method BLEU4" SBLEU# iBLEU4"

- Self-Training [23] 31.39 48.11 23.44

Yes R-Regression [66] 30.78 44.32 23.27
Induced-R 31.28 45.22 23.63

No R-Regression [66] 30.77 44.23 23.27
Induced-R 31.47 45.43 23.78

In general, our approach achieves the best performance in both metrics. In particular, it significantly
improves DailyDialog-trained T5-Base by +2.06 (+23.0%) in BLEU2 and +0.61 (+16.5%) in BLEU4.
It also outperforms the second-best method, R-Regression, by 0.68 (+6.6%) in BLEU2 and 0.12
(+2.9%) in BLEU4, verifying the effectiveness of our approach.

Figure 2: The learning curves
by choosing different values of k.
Scores are measured on the valida-
tion set of DailyDialog. Training is
terminated when the BLEU4 score
drops below 3.5.

Results of Paraphrase Generation. The results of para-
phrase generation are shown in Table 1b. As seen, directly
copying the input already achieves a high BLEU score against
the reference. iBLEU addresses this by penalizing the Self-
BLEU score (against input) and is considered the main metric.

We consider another semi-supervised baseline LTSL [11]. It
performs retrieval-based paraphrase expansion and meta op-
timization, thus being task specific. We see that LTSL has
an extremely high Self-BLEU, suggesting the generated para-
phrase largely resembles the input. It achieves a lower iBLEU
score than other semi-supervised approaches.

We also see that RL approaches generally achieve lower Self-
BLEU than Self-Training. This is because Self-Training learns
from its own predictions, which overlap the input more than
groundtruth paraphrases do (Self-BLEU of groundtruth: 29.87);
as a result, Self-BLEU increases to 48.02 from 44.77 of T5-
Base. By contrast, RL learns by exploring different possible
paraphrases and is able to retain low Self-BLEU.

Overall, our approach achieves the highest BLEU and a rea-
sonably low Self-BLEU, yielding the best iBLEU among all
competing methods. The results are consistent with Table 1a,
showing the generality of our approach.

3.4 Analyses

Step-Wise Reward. In Figure 1, we show the distributions of different reward functions. As
seen, the BLEU score is mostly concentrated at 0, providing little information for training. R-
Regression consequently suffers from a similar problem, as it is trained by the groundtruth BLEU
scores. The distribution of our induced reward, on the other hand, has the lowest peak and is the most
wide-spreading one.

We conduct another analysis to show the importance of step-wise rewards for RL training. We
compare our approach with a sparse reward function that defers all rewards to the end of a sentence.
In other words, the last step’s reward is the sum of our step-wise rewards, whereas all previous steps
have a reward of 0. This constitutes a rigorous analysis, as the total reward and thus the training
objective are the same in both cases. Results in Table 2 show that our step-wise reward outperforms
the sparse reward in all cases. This suggests our approach serves as a meaningful credit assignment
of the total reward, which is beneficial for RL training.
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The Effect of the Synchronizing Period. We analyze the effect of the synchronizing period k
introduced in Section 2.3. In Figure 2, we see that the training is unstable if k = 1 (on-policy), in
which case the model generates uninformative and meaningless sentences (illustrated in Appendix D).
When k = 1000, the performance increases quickly at the beginning, but it starts to decrease with
further training. We hypothesize that this is due to the lack of exploration (Section 2.3). When k is
infinitely large (the behavior policy is fixed), the performance grows slowly and stops improving after
a certain number of steps. Based on this analysis, we choose k = 5000 to balance exploitation and
exploration. Although the experiment is conducted only on DailyDialog due to the limit of time and
resources, we directly apply the setting to other experiments, showing the robustness of our approach.

Data Efficiency. In Figure 3, we analyze data efficiency by sampling different numbers of data
points from the non-parallel corpus. As shown, our method consistently outperforms self-training,
even with only 0.1% (the leftmost points) of the training set. Additionally, the performance of our
method quickly increases with more data, whereas self-training grows slowly. This is expected
because RL training explores different parts of the sentence space and learns from their rewards,
whereas self-training only learns from the single generated sentence by the model itself given an
input.

We also investigate how performance changes according to the size of the parallel dataset, which
reflects the quality of the learned policy. Results are shown in Figure 4, Appendix C.

4 Related Work

Figure 3: Trends of self-training
and our method given different
sizes of the non-parallel data.
Scores are measured on the Daily-
Dialog test set.

Semi-Supervised Learning for Text Generation. In text
generation, popular ways to utilize both parallel and
non-parallel data include self-training [21, 68] and back-
translation [49]. Both methods first train a model on the parallel
data and then generate pseudo-parallel pairs for the non-parallel
sentences. The difference is that self-training generates pseudo-
parallel pairs from source to target, whereas back-translation
generates from target to source. We mainly consider self-
training as a baseline because it does not require an additional
model in the reversed direction, making the comparisons fairer.
Our implementation of self-training is also similar to sequence-
level knowledge distillation [23, 15, 20], except that the latter
augments the parallel data instead of the non-parallel ones. In
Figure 3, we show that self-training cannot efficiently utilize
the data because of the lack of exploration. Additionally, the
exposure bias issue remains because they are trained with the
teacher-forcing objective.

Text Generation beyond Teacher Forcing. Teacher forcing
is known to have the exposure bias issue. A line of work uses the
generative adversarial network (GAN) [14] to alleviate the issue.
For example, Yu et al. [67] and Guo et al. [18] propose to use
GAN-style training to generate text similar to the training set
in an on-the-fly manner. This practice reduces the discrepancy
between training and inference because GAN sends its own generation as inputs rather than using
groundtruth sentences during training. Shi et al. [51] further formulate the adversarial training using
the IRL interpretation. These GAN-style methods are different from ours in two main ways. First,
GAN-style training requires parallel corpora and thus cannot be directly applied to semi-supervised
learning on non-parallel datasets. Second, GAN-style training involves the optimization of an
adversarial objective, making the training unstable, e.g., suffering from mode collapse [14].

Another paradigm to alleviate the exposure bias is RL. For instance, Sokolov et al. [53] and Kreutzer
et al. [26] leverage the bandit-structured prediction framework for text generation with BLEU as
the heuristically defined reward. Bahdanau et al. [1] and Shen et al. [50] utilize different variants
of policy gradient for RL training. However, these methods are task-specific and suffer from the
problem of sparse rewards, as mentioned in Section 3.4. More importantly, these approaches require
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parallel data to calculate the reward and cannot utilize non-parallel data either. To address this, Wu
et al. [66] propose to learn a reward regression model on the parallel dataset and perform RL on the
non-parallel data with the learned reward. As mentioned, such a method is still task-specific because
it requires the human heuristics of the task to define the proper reward function. Additionally, it
suffers from the reward-sparsity problem, as seen in Figure 1 and Table 2.

Search is also a popular way to replace teacher forcing. The Learning to Search (L2S) framework [5, 9]
enables the model to search for a better score during learning and is widely applied to text generation.
For example, Wiseman and Rush [64] propose to optimize the beam search results through training.
Li et al. [29] develop an unsupervised learning approach to text generation based on local search. In
addition to the L2S framework, Leblond et al. [27] leverage the Monte Carlo tree search [25, 52] to
select better tokens in a step from the sampled generation. These methods are different from ours
since they need either heuristically defined scoring functions or parallel data, limiting their methods
to certain tasks or to the supervised paradigm. However, given the success of these methods, we
consider the search-based approach an interesting future extension of our work.

Imitation Learning. The intuition behind our work is also related to imitation learning methods in
general. Typically, these methods aim to obtain a good policy given a dataset containing state–action
pairs. The easiest approach is behavior cloning [39], which greedily imitates the demonstration.
Similar to the exposure bias, behavior cloning also faces the problem of compounding errors [46].
SMILe [46] and DAgger [47] mitigate the problem by querying an expert. In text generation, Du
and Ji [12] empirically verify that imitation learning methods are helpful. Recently, Pang and He
[37] frame the text generation task as an offline reinforcement learning problem, which learns from a
dataset containing tuples of state, action, and reward. Compared with our method, these approaches
rely on parallel sentence pairs and cannot effectively make use of non-parallel datasets.

5 Conclusion

Summary. In this paper, we show that a reward function can be derived from a model trained with
teacher forcing. The derivation does not rely on human heuristics for certain tasks. Additionally, the
derived reward function assigns step-wise scores and makes the RL training easier. Our approach
leads to a training algorithm in a semi-supervised manner and utilizes both parallel and non-parallel
data. We conduct experiments on the dialogue and paraphrase generation tasks. The empirical results
show that the performance of our approach is better compared with the baselines: self-training and
reward regression. We further analyze our reward function and show the benefits of our approach.

Limitation and Future Work. First, the scale of the experiments in this paper is restricted by
computational resources. It is interesting to see if our approach could obtain better performance with
large models [3, 41] and larger datasets.

We also notice that Assumption 1 has a deep connection with entropy-regularized RL [17, 19, 45].
Our approach can be easily extended to such cases in the future.

Another interesting direction would be using the reward as an interface between humans and the
model to control the generation. Specifically, the current seq2seq models treat data as the ground
truth, but the data may be contaminated with undesired or harmful information. We hope that our
approach provides a way for humans to apply additional rules to the reward function to avoid the
model generating harmful information.

Appendices
The full paper, including appendices, is available at https://arxiv.org/abs/2210.08708.
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