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ABSTRACT

The stability of learning algorithms to changes in the training sample has been
actively studied as a powerful proxy for reasoning about generalization. Recently,
exponential generalization and excess risk bounds with near-optimal rates have
been obtained under the stringent and distribution-free notion of uniform stabil-
ity (Bousquet et al., 2020; Klochkov & Zhivotovskiy, 2021). In the meanwhile,
under the notion of Lq-stability, which is weaker and distribution dependent, ex-
ponential generalization bounds are also available yet so far only with sub-optimal
rates. Therefore, a fundamental question we would like to address in this paper
is whether it is possible to derive near-optimal exponential generalization bounds
for Lq-stable learning algorithms. As the core contribution of the present work,
we give an affirmative answer to this question by developing strict analogues of
the near-optimal generalization and risk bounds of uniformly stable algorithms
for Lq-stable algorithms. Further, we demonstrate the power of our improved Lq-
stability and generalization theory by applying it to derive strong sparse excess
risk bounds, under mild conditions, for computationally tractable sparsity estima-
tion algorithms such as Iterative Hard Thresholding (IHT).

1 INTRODUCTION

A fundamental issue in statistical learning is to bound the generalization error of a learning algorithm
for understanding its prediction performance on unseen data. It has long been recognized in literature
that one of the key characteristics that permits learning algorithms to generalize is the stability
of estimated model to perturbations in training data. The idea of using algorithmic stability as a
proxy for generalization performance analysis dates back to the seventies (Rogers & Wagner, 1978;
Devroye & Wagner, 1979). Since the seminal work of Bousquet & Elisseeff (2002), the search for
generalization bounds under various notions of algorithmic stability has been a flourishing area of
learning theory (Zhang, 2003; Mukherjee et al., 2006; Shalev-Shwartz et al., 2010; Kale et al., 2011;
Hardt et al., 2016; Celisse & Guedj, 2016; Bousquet et al., 2020).

As one may expect, the stronger an algorithmic stability criterion is, the sharper the resulting gen-
eralization bound will be. On one end, exponential generalization bounds can be guaranteed by
approaches under the most stringent notion of uniform stability (Bousquet & Elisseeff, 2002; Bous-
quet et al., 2020), which requires the change in the prediction loss to be uniformly small regardless
data distribution. Despite the strength of generalization, the distribution-free nature makes uni-
form stability too restrictive to be fulfilled, e.g., by learning rules with unbounded losses (Celisse &
Guedj, 2016). On the other end, based on some weaker and distribution dependent notions of sta-
bility such as hypothesis stability and mean-square stability, only polynomial generalization bounds
seem possible in general cases, although the corresponding stability criteria are more amenable
to verification (Bousquet & Elisseeff, 2002). These observations have prompted the development
of Lq-stability, as an in-between state, to achieve the best of two worlds (Celisse & Guedj, 2016;
Abou-Moustafa & Szepesvári, 2019): it generalizes the notion of hypothesis stability from ℓ1-norm
criterion to Lq-norm criterion for q ≥ 2 but remains distribution dependent and thus is weaker than
uniform stability; in the meanwhile it can still achieve similar exponential generalization bounds to
those of uniformly stable algorithms (Bousquet & Elisseeff, 2002).
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By far, the best known (and near-optimal) rates about exponential generalization bounds are offered
by approaches based on uniform stability and certain fine-grained concentration inequalities for sum
of functions of independent random variables (Feldman & Vondrák, 2019; Bousquet et al., 2020).
These rates are substantially sharper than those of Bousquet & Elisseeff (2002), which are implied
by a naive application of McDiarmid’s inequality, in terms of the overhead factors on stability co-
efficients. While it has long been known that the low probability of failure (over sample) can be
handled via developing modified bounded-difference inequalities (Rakhlin et al., 2005), it still re-
mains less clear how to simply adapt these existing techniques to the more sophisticated frameworks
of Feldman & Vondrák (2019); Bousquet et al. (2020) to obtain sharper exponential bounds. Partic-
ularly for Lq-stable learning algorithms, the state-of-the-art exponential generalization bounds are
derived based on the moments or exponential extensions of the Efron-Stein inequality (Celisse &
Guedj, 2016; Abou-Moustafa & Szepesvári, 2019), which yield similar rates of convergence to those
of Bousquet & Elisseeff (2002) and thus are suspected to be sub-optimal.

Given the above observed gap in rates of convergence between the generalization bounds under
uniform stability and Lq-stability, the following question is naturally raised:

Is it possible to derive sharper exponential generalization bounds for Lq-stable learning algo-
rithms that match those recent breakthrough results for uniformly stable algorithms?

As the core contribution of the present work, we give an affirmative answer to this open question
by developing strict analogues of the near-optimal generalization bounds of uniformly stable algo-
rithms for Lq-stable algorithms. The main results of our work confirm that the notion of Lq-stability
serves as a neat yet powerful tool for extending those best-known generalization bounds to a broad
class of non-uniformly stable algorithms. To illustrate the importance of our theory, we have applied
the improved analysis of Lq-stable algorithms to derive sharper exponential risk bounds for com-
putationally tractable sparsity recovery estimators, such as the Iterative Hard Thresholding (IHT)
algorithms widely used in high dimensional sparse learning (Blumensath & Davies, 2009; Foucart,
2011; Jain et al., 2014). This application also serves as a main motivation of our study.

Notation. Here we provide some notation that will be frequently used throughout the paper. Let
S = {Z1, Z2, ..., ZN} be a set of independent random data samples valued in some measurable set
Z . For any indices set I ⊆ [N ] := {1, ..., N}, we denote by SI = {Zi, i ∈ I} and SI = S \ SI .
We denote by S′ = {Z ′

1, Z
′
2, ..., Z

′
N} another i.i.d. sample from the same distribution as that of

S and we write S(i) = {Z1, ..., Zi−1, Z
′
i, Zi+1, ..., ZN}. For a real-valued random variable Y , its

Lq-norm for q ≥ 1 is defined by ∥Y ∥q = (E[|Y |q])1/q . By definition it can be verified that ∀q ≥ 2,

∥Y ∥2q = (E[|Y |q])2/q =
(
E[|Y 2|q/2]

)2/q
=
∥∥Y 2

∥∥
q/2

. (1)

Let g : ZN 7→ R be some measurable function and consider the random variable g(S) =
g(Z1, ...ZN ). For g(S) and any index set I ⊆ [N ], we define the following abbreviations:

g(SI) := E[g(S) | SI ], ∥g∥q(SI) := (E[|g(S)|q | SI ])
1/q

.

We say a real-valued function f is G-Lipschitz continuous over the domain W if

|f(w)− f(w′)| ≤ G∥w − w′∥, ∀w,w′ ∈ W.

For a pair of functions f, g ≥ 0, we use f ≲ g (or g ≳ f ) to denote f ≤ cg for some constant c > 0.
We denote by supp(w) the support of a vector w which is the index set of non-zero entries of w.

1.1 SETUP AND PRIOR RESULTS

Problem setup. We consider a statistical learning algorithm A : ZN 7→ W that maps a training
data set S to a model A(S) in a closed subset W of an Euclidean space. The population risk and
corresponding empirical risk evaluated at A(S) are respectively given by

R(A(S)) := EZ [ℓ(A(S);Z)] and RS(A(S)) :=
1

N

N∑
i=1

ℓ(A(S);Zi),

where ℓ : W × Z 7→ R+ is a non-negative and potentially unbounded loss function whose value
ℓ(w; z) measures the loss evaluated at z with parameter w. As a classic fundamental issue in statis-
tical learning, we are interested in deriving the upper bounds on the difference between population
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and empirical risks, i.e., |R(A(S)) − RS(A(S))|, which quantifies the generalization error of A.
Let R∗ := minw∈W R(w) be the optimal value of the population risk. We will also study how to
upper bound R(A(S))−R∗ (a.k.a. excess risk) which is of particular interest for understanding the
population risk minimization performance of A.

We first introduce the concept of uniform stability (Bousquet & Elisseeff, 2002) which requires the
change in the prediction loss to be uniformly small regardless the distribution of data.
Definition 1 (Uniform stability). A learning algorithm A is said to have uniform stability with
parameter γu > 0 if it satisfies the following uniform bound:

sup
S,S(i),Z∈Z

|ℓ(A(S);Z)− ℓ(A(S(i));Z)| ≤ γu, ∀i ∈ [N ].

Given that the loss function ℓ is almost surely bound by M , Bousquet & Elisseeff (2002) showed
that a large class of regularized empirical risk minimization (ERM) algorithms has uniform stability,
and using McDiarmid’s inequality yields the following exponential tail generalization bound that
holds with probability at least 1− δ over the draw of S for any δ ∈ (0, 1):

|R(A(S))−RS(A(S))| ≲ γu

√
N log

(
1

δ

)
+M

√
log (1/δ)

N
. (2)

Recently, equipped with a strong concentration inequality for sums of random functions, Bousquet
et al. (2020) established the following moments bound of uniformly stable algorithms for all q ≥ 2:

∥R(A(S))−RS(A(S))∥q ≲ qγu log(N) +M

√
q

N
. (3)

In view of the equivalence between tails and moments (see, e.g., Bousquet et al., 2020, Lemma
1), the above Lq-norm bound implies that for any δ ∈ (0, 1), the following tail bound holds with
probability at least 1− δ over the draw of S :

|R(A(S))−RS(A(S))| ≲ γu log(N) log

(
1

δ

)
+M

√
log (1/δ)

N
. (4)

This bound substantially improves the classic result in Eq. (2) by reducing the overhead factor on sta-

bility coefficient from O
(√

N log( 1δ )
)

to O(log(N) log( 1δ )). For example, in regimes such as reg-

ularized ERM where γu ≲ 1√
N

is usually the case, the convergence rate in Eq. (2) becomes vacuous

as it is not vanishing in sample size, while the bound in Eq. (4) still guarantees O
( log(N) log( 1

δ )√
N

)
rate

of convergence. Indeed, up to logarithmic factors on sample size and tail bounds, the rate in Eq. (4)
is nearly optimal in the sense of a lower bound on sums of random functions by Bousquet et al.
(2020). The bound in Eq. (4) can be extended to stochastic learning algorithms when the uniform
stability (over data) holds with high probability over the internal randomness of algorithm (Feldman
& Vondrák, 2019; Bassily et al., 2020). Under the generalized Bernstein condition (Koltchinskii,
2006) and based on the sharp concentration inequality for sums of random functions by Bousquet
et al. (2020), Klochkov & Zhivotovskiy (2021) alternatively established the following deviation op-
timal excess risk bound that holds with probability at least 1− δ over the draw of S:

R(A(S))−R∗ ≲ ∆opt + E[∆opt] + γu log(N) log

(
1

δ

)
+

(M +B) log(1/δ)

N
, (5)

where ∆opt := RS(A(S)) − minw∈W RS(w) represents the empirical risk sub-optimality of the
algorithm on training data, and B is the Bernstein condition constant as defined in Assumption 1.

While implying strong generalization guarantees, the uniform stability is also most stringent in
the sense that it is distribution independent and hard to be fulfilled, e.g., by learning rules with
unbounded losses. To address such an unpleasant restrictiveness, the notion of Lq-stability was
alternatively introduced by Celisse & Guedj (2016) as a relaxation of uniform stability.
Definition 2 (Lq-Stability). For q ≥ 1, a learning algorithm A is said to have Lq-stability with
parameter γq > 0 if it satisfies the following moment bound:∥∥∥ℓ(A(S);Z)− ℓ(A(S(i));Z)

∥∥∥
q
≤ γq, ∀i ∈ [N ].
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In the above definition, the expectation associated with Lq-norm is taken over S, S(i), Z, and the
internal random bits of A, if any (such as in the case of stochastic learning algorithms). Note that
slightly different from that of Celisse & Guedj (2016), the random variable Z in the above definition
is not necessarily required to be independent of S and S(i). By definition, Lq-stability is distribution
dependent and thus is weaker than uniform stability which can be regarded as a special case of Lq-
stability with γq ≡ γ for some γ > 0. Particularly for q = 1 and q = 2, the Lq-stability reduces
to the notions of hypothesis stability (Bousquet & Elisseeff, 2002) and mean-square stability (Kale
et al., 2011), respectively. For an instance, it has been shown that the classical ridge regression
model with unbounded responses has Lq-stability for all q ≥ 1 rather than uniform stability (Celisse
& Guedj, 2016). As a novel and concrete example, we will see shortly in Section 3 that Lq-stability
plays a crucial role for deriving strong sparse excess risk bounds for sparsity estimation algorithms
such as IHT (Jain et al., 2014; Yuan et al., 2018). Alternatively, the definition of Lq-stability can
be extended to the Lq-argument-stability as

∥∥∥A(S)−A(S(i))∥
∥∥
q
≤ γq , which generalizes the

concept of uniform argument stability (Bassily et al., 2020) to the Lq-norm criterion. Obviously
Lq-argument-stability is not at all relying on the random argument Z and it implies Lq-stability for
Lipschitz losses.

The following is by far the best known moments generalization bound under Lq-stability that
holds for all q ≥ 2 and potentially unbounded losses (Celisse & Guedj, 2016; Abou-Moustafa
& Szepesvári, 2019):

∥R(A(S))−RS(A(S))∥q ≲ γq
√

Nq +

√
q

N
. (6)

As one can see that the Lq-stability generalization bound in Eq. (6) is significantly inferior to the
near-optimal uniform stability generalization bound in Eq. (3) in terms of the overhead on stability
coefficient. Such a gap in rate of convergence is indeed unsurprising: the bound in Eq. (6) was de-
rived via more or less directly applying moments or exponential extensions of Efron-Stein inequality
to generalization error (Celisse & Guedj, 2016; Abou-Moustafa & Szepesvári, 2019), and thus yields
about the same overhead factor on stability coefficient as that of the sub-optimal exponential bound
in Eq. (2) for uniformly stable algorithms. In light of these observations, we are naturally motivated
to derive sharper exponential generalization bounds for Lq-stable algorithms hopefully to match the
near-optimal bound in Eq. (3) achievable by uniformly stable algorithms.

1.2 OUR CONTRIBUTION

The core contribution of the present work is a set of substantially improved exponential generaliza-
tion bounds for Lq-stable algorithms. The key ingredient of our analysis is a sharper concentration
bound on sums of functions of independent random variables under the Lq-norm bounded difference
conditions, which generalizes a previous counterpart under the uniform bounded difference condi-
tions (Bousquet et al., 2020). With this generic concentration bound in hand, we are able to derive
sharper generalization and excess risk bounds for Lq-stable learning algorithms that match those
best known for uniform stable algorithms. The power of our results is demonstrated through de-
riving more appealing exponential sparse excess risk bounds for computationally tractable sparsity
estimation algorithms (such as IHT). The main results obtained in this work are sketched below:

• In Section 2, we first establish in Theorem 1 an Lq-norm inequality for sums of functions
of random variables with Lq-norm bounded difference. Then equipped with such a general-
purpose concentration inequality, we prove in Theorem 2 the following Lq-norm generaliza-
tion bound for Lq-stable learning algorithms for all q ≥ 2:

∥R(A(S))−RS(A(S))∥q ≲ qγq logN +Mq

√
q

N
,

where Mq is an upper bound of moments ∥ℓ(A(S);Z)∥q . Compared to Eq. (6), the preceding
bound improves the overhead factor on γq from

√
N to log(N). As another consequence of our

Lq-norm concentration inequality, we further derive in Theorem 3 the following excess risk
bound for Lq-stable algorithms under B-Bernstein-condition with M -bounded losses (where
C = M +B), or µ-quadratic-growth condition with G-Lipschitz losses (where C = G2

µ ):

∥R(A(S))−R∗ −∆opt∥q ≲ E[∆opt] + qγq log(N) +
Cq

N
.
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Based on the equivalence between moments and tails, this above result implies an identical
deviation optimal risk bound in Eq. (5) for uniformly stable algorithms.

• In Section 3, based on our Lq-stability generalization theory, we show in Theorem 4 a novel
exponential sparse excess risk bound for inexact L0-estimators. A key insight here is that L0-
estimators are in many cases “almost always” stable over any fixed supporting set, and thus
can be shown to have Lq-stability over the same supporting set, which consequently makes
our analysis techniques developed for Lq-stable algorithms applicable there. This novel appli-
cation answers a call by Celisse & Guedj (2016) for extending the range of applicability of the
Lq-stability theory beyond the unbounded ridge regression problem, and it complements other
existing applications of the Lq-stability theory including k-nearest neighbor classification and
k-folds cross-validation (Celisse & Mary-Huard, 2018; Abou-Moustafa & Szepesvári, 2019).
Last but not least, our improved Lq-stability theory can also be readily applied to the above
mentioned prior applications to obtain sharper generalization bounds.

2 SHARPER EXPONENTIAL BOUNDS FOR Lq-STABLE ALGORITHMS

2.1 A MOMENT INEQUALITY FOR SUMS OF RANDOM FUNCTIONS

We start by presenting in the following theorem a moment inequality for sums of random functions
of N independent random variables that satisfy the Lq-norm bounded difference condition. See
Appendix B.1 for its proof.
Theorem 1. Let S = {Z1, Z2, ..., ZN} be a set of independent random variables valued in Z . Let
g1, ..., gN be a set of measurable functions gi : ZN 7→ R that satisfy the following conditions for
any i ∈ [N ]:

• E [gi(S) | S \ Zi] = 0, almost surely;

• gi(S) has the following Lq-norm bounded difference property with respect to all variables in
S except Zi, i.e., ∀j ̸= i, for all q ≥ 1:∥∥∥gi(S)− gi(S

(j))
∥∥∥
q
≤ βq.

Then there exists a universal constant κ < 1.271 such that for all q ≥ 2,∥∥∥∥∥
N∑
i=1

gi(S)− E[gi(S) | Zi]

∥∥∥∥∥
q

≤ 4κqN⌈log2 N⌉βq.

Additionally, if ∥E[gi(S) | Zi]∥q ≤ Mq , then for all q ≥ 2∥∥∥∥∥
N∑
i=1

gi(S)

∥∥∥∥∥
q

≤ 2
√

2κNqMq + 4κqN⌈log2 N⌉βq.

Remark 1. Theorem 1 extends the moment inequality of Bousquet et al. (2020, Theorem 4) from
under the distribution-free uniform bounded difference property to under the Lq-norm bounded
difference property which is distribution dependent. Specially if gi(S) have uniformly bounded
difference property, then Theorem 1 reduces to the result of Bousquet et al. (2020, Theorem 4).
Remark 2. The Lq-norm boundedness condition ∥E[gi(S) | Zi]∥q ≤ Mq in our theorem allows gi
to be potentially unbounded over domain of interest, which is weaker than the corresponding almost
sure boundedness condition on |E[gi(S) | Zi]| as imposed by Bousquet et al. (2020, Theorem 4).

2.2 GENERALIZATION BOUNDS FOR Lq -STABLE ALGORITHMS

As an important consequence of Theorem 1, we can derive er the following main result on the
generalization bound of Lq-stable learning algorithms. See Appendix B.2 for a proof of this result.
Theorem 2. Let A : ZN 7→ W be a learning algorithm that has Lq-stability by γq > 0 for q ≥ 1.
Suppose that ∥ℓ(A(S);Z)∥q ≤ Mq for any Z ∈ Z . Then for all q ≥ 2,

∥R(A(S))−RS(A(S))∥q ≲ qγq logN +Mq

√
q

N
.
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Remark 3. The Lq-norm boundedness condition ∥ℓ(A(S);Z)∥q ≤ Mq allows for learning with
unbounded losses over, e.g., data distribution with sub-Gaussian or sub-exponential tail bounds.

To compare with the best-known moments generalization bound in Eq. (6) under the notion of Lq-
stability, our bound in Theorem 2 substantially improves the overhead factor on γq from

√
N to

log(N). Specially when reduced to regime of uniform stability where γq ≡ γu for all q ≥ 1, our
result revisits the moments generalization bound in Eq. (3) which is nearly tight, up to logarithmic
factors on sample size, in the sense of a lower bound on sums of random functions from Bousquet
et al. (2020). More broadly, for any δ ∈ (0, 1), suppose that the following exponential stability
bound holds with probability at least 1 − δ with a mixture of sub-Gaussian and sub-exponential
tails 1 over S, S(i), Z:∣∣∣ℓ(A(S);Z)− ℓ(A(S(i));Z)

∣∣∣ ≤ a log
(e
δ

)
+ b

√
log
(e
δ

)
. (7)

Then according to the equivalence of tails and moments, as summarized in Lemma 4 (see Ap-
pendix A), we must have that A is Lq-stable by γq = aq + b

√
q. Assume that the loss is bounded

in (0,M ] almost surely over data. Then the Lq-norm generalization bound in Theorem 2 combined
with Lemma 4 immediately implies the following generalization bound:

|R(A(S))−RS(A(S))| ≲ a log(N) log2
(
1

δ

)
+ b log(N) log1.5

(
1

δ

)
+M

√
log (1/δ)

N
.

Compared with the uniform stability implied tail bound in Eq. (4), the preceding Lq-stability bound
is nearly identical up to slightly worse confidence tail terms which are caused by the uncertainty
of Lq-stability with respect to data distribution. We conjecture that such a slight deterioration in
tail bounds might possibly be remedied by using the exponential versions of Efron-Stein inequal-
ity (Boucheron et al., 2003; Abou-Moustafa & Szepesvári, 2019) instead of the currently used vari-
ant in moments. We leave the improvement over poly-logarithmic terms for future investigation.

2.3 EXCESS RISK BOUNDS FOR Lq -STABLE ALGORITHMS

In addition to the generalization bounds, we further apply Theorem 1 to study the excess risk bounds
of an Lq-stable learning algorithm which are of particular interest for understanding its population
risk minimization performance. Let us denote W ∗ := Argminw∈W R(w) as the optimal solution
set of the population risk. In order to get sharper risk bounds, we need to impose some struc-
tural conditions on risk functions. Particularly, the following defined generalized Bernstein condi-
tion (Koltchinskii, 2006) is conventionally used with multiple global risk minimizers allowed.
Assumption 1 (Generalized Bernstein condition). For some B > 0 and for any w ∈ W , there exists
w∗ ∈ W ∗ such that the following holds:

E
[
(ℓ(w;Z)− ℓ(w∗;Z))2

]
≤ B(R(w)−R(w∗)).

We will also consider the quadratic growth condition which is widely used as an alternative condition
for establishing fast rates of convergence in learning theory.
Assumption 2 (Quadratic growth condition). For some µ > 0 and for any w ∈ W , there exists
w∗ ∈ W ∗ such that the following holds:

R(w) ≥ R∗ +
µ

2
∥w − w∗∥2.

Remark 4. Clearly, when the loss is G-Lipschitz, the quadratic growth condition with parameter µ
implies the Bernstein condition with parameter B = 2G2

µ .

The following theorem is our main result on the excess risk bound of Lq-stable algorithms, which
extends the near-optimal exponential risk bounds of Klochkov & Zhivotovskiy (2021) from uniform
stable algorithms to Lq-stable algorithms. A proof of this result can be found in Appendix B.3.

1In an exponential tail bound, the terms associated with
√

log
(
1
δ

)
and log

(
1
δ

)
are respectively referred to

as sub-Gaussian and sub-exponential tails.
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Theorem 3. Let A : ZN 7→ W be a learning algorithm that has Lq-stability with parameter γq for
q ≥ 1.

(a) If Assumption 1 holds and ℓ(·; ·) ≤ M , then ∀q ≥ 2,

∥R(A(S))−R∗ −∆opt∥q ≲ E[∆opt] + qγq log(N) +
(M +B)q

N
.

(b) If Assumption 2 holds and ℓ(·; ·) is G-Lipschitz with respect to its first argument, then ∀q ≥ 2,

∥R(A(S))−R∗ −∆opt∥q ≲ E[∆opt] + qγq log(N) +
G2q

µN
.

Remark 5. Suppose that A satisfies the exponential stability bound in Eq. (7), and thus A has Lq-
stability by γq = aq + b

√
q. Then combined with Lemma 4, the Lq-norm risk bounds in Theorem 3

suggest that the following exponential tail bound holds:

R(A(S))−R∗ ≲ ∆opt + E[∆opt] + a log(N) log2
(
1

δ

)
+ b log(N) log1.5

(
1

δ

)
+

log (1/δ)

N
.

Remark 6. In part (a), the M -bounded-loss condition is not essential and it can be relaxed to a sub-
exponential (or sub-Gaussian) variant by alternatively using the general Bernstein-type inequalities
for sums of independent sub-exponential random variables (Vershynin, 2018). Concerning part
(b), under the quadratic growth condition, the loss is allowed to be unbounded if it is Lipschitz
continuous.

3 APPLICATION TO INEXACT L0-ERM

In this section, we demonstrate an application of our Lq-stability and generalization theory to the
following problem of high-dimensional stochastic risk minimization under hard sparsity constraint:

min
w∈W

R(w) := EZ [ℓ(w;Z)] subject to ∥w∥0 ≤ k,

where W ⊆ Rd the cardinality constraint ∥w∥0 ≤ k for k ≪ d is imposed for enhancing the
interpretability and learnability of model in situations where there are no clear favourite explanatory
variables, or the model is over-parameterized. We consider the following L0-ERM problem over
training set S = {Zi}i∈[N ]:

w∗
S,k = argmin

∥w∥0≤k

{
RS(w) :=

1

N

N∑
i=1

ℓ(w;Zi)

}
. (8)

Since the problem is known to be NP-hard (Natarajan, 1995) in general, it is computationally in-
tractable to solve it exactly in general cases. Alternatively, we consider the inexact L0-ERM oracle
as a meta-algorithm outlined in Algorithm 1. In order to avoid assuming unrealistic conditions like
restricted isometry property (RIP), it is typically needed to allow sparsity level relaxation for ap-
proximate algorithms like IHT to achieve favorable converge behavior (Jain et al., 2014; Shen &
Li, 2017; Yuan et al., 2018; Murata & Suzuki, 2018). Therefore, we are particularly interested in

Algorithm 1: Inexact L0-ERM Oracle

Input : A training data set S = {Zi}i∈[N ] and the desired sparsity level k.
Output: w̃S,k.
Compute an inexact k-sparse L0-ERM estimation w̃S,k such that

• w̃S,k is optimal over its support J̃ = supp(w̃S,k), i.e., w̃S,k = argminw∈W,supp(w)⊆J̃ RS(w);

• w̃S,k attains certain k̄-sparse sub-optimality level ∆k̄,opt ≥ 0 for some k̄ ≤ k such that
RS(w̃S,k)−RS(w

∗
S,k̄

) ≤ ∆k̄,opt.

7



Published as a conference paper at ICLR 2023

the inexact L0-ERM oracle with k̄-sparse sub-optimality ∆k̄,opt ≥ 0 for some k̄ ≤ k such that the
output w̃S,k of Algorithm 1 satisfies

RS(w̃S,k)−RS(w
∗
S,k̄) ≤ ∆k̄,opt.

It is typical that ∆k̄,opt is a random value over the training set S. For example, the sub-optimality
guarantees of IHT for empirical risk usually hold with high probability over training data (Jain
et al., 2014). Let w∗

k̄
:= argmin∥w∥0≤k̄ R(w) be the k̄-sparse minimizer of population risk for

some k̄ ≤ k. We are interested in deriving exponential upper bounds for the k̄-sparse excess risk
given by R(w̃S,k)−R(w∗

k̄
).

Our analysis also relies on the conditions of Restricted Strong Convexity (RSC) which extends the
concept of strong convexity to the analysis of sparsity recovery methods (Bahmani et al., 2013;
Blumensath & Davies, 2009; Jain et al., 2014; Yuan et al., 2020).
Definition 3 (Restricted Strong Convexity). For any sparsity level 1 ≤ s ≤ d, we say a function f
is restricted µs-strongly convex if there exists some µs > 0 such that

f(w)− f(w′)− ⟨∇f(w′), w − w′⟩ ≥ µs

2
∥w − w′∥2, ∀∥w − w′∥0 ≤ s.

Specially when s = d, we say f is µ-strongly convex if it is µd-strongly convex.

The following basic assumptions will be used in our theoretical analysis.
Assumption 3. The loss function ℓ(·; ·) is convex and G-Lipschitz with respect to its first argument.
Assumption 4. The population risk R is µ-strongly convex and the empirical risk RS is µk-strongly
convex with probability at least 1− δN over sample S for some δN ∈ (0, 1).
Assumption 5. The domain of interest is uniformly bounded such that ∥w∥ ≤ D,∀w ∈ W .
Remark 7. Assumption 3 is common in the study of algorithmic stability and generalization theory.
Assumption 4 is conventional in the sparsity recovery analysis of L0-ERM. Assumption 5 is needed
for establishing the Lq-stability of L0-ERM in Lemma 1 to follow. Similar conditions have also been
assumed in the prior work of Yuan & Li (2022).

Let w∗ := argminw∈W R(w) be the global minimizer which is unique due to the strong convexity
of R. For a given index set J ⊆ [d], let us consider the following restrictive estimator over J :

w∗
S|J := argmin

w∈W,supp(w)⊆J

RS(w). (9)

We first present the following lemma that guarantees the Lq-stability of w∗
S|J for any fixed J with

|J | = k. See Appendix C.1 for its proof.

Lemma 1. Assume that Assumptions 3, 4 and 5 hold and log(1/δN )
log(N) ≥ 2. Let J ⊆ [d], |J | = k be a

set of indices of cardinality k. Then for any q ≥ 2, the oracle estimator w∗
S|J has Lq-stability with

parameter

γq =
1

N

(
4G2

µk
+ 2GD

)
+

2GD log(N)q

log(1/δN )
.

Remark 8. For sparse linear regression models, it can be verified based on the result by Agarwal
et al. (2012, Lemma 6) that Assumptions 4 holds with δN = e−c0N for some universal positive
constant c0. Then we have log(1/δN )

log(N) = c0N
log(N) ≥ 2 for sufficiently large N , and Lemma 1 implies

that γq ≲ 1
N

(
G2

µk
+ GD log(N)q

c0

)
for all q ≥ 2.

The following theorem is our main result on the sparse excess risk of the inexact L0-ERM oracle as
defined in Algorithm 1. See Appendix C.2 for its proof which is stimulated by that of Theorem 3.

Theorem 4. Suppose that Assumptions 3, 4, 5 hold. Assume that log(1/δN )
log(N) ≥ 2. Then for any

δ ∈ (0, e−1), the following k̄-sparse excess risk bound holds with probability at least 1− δ over the
random draw of S:

R(w̃S,k)−R(w∗
k̄)

≲
GD

(
k log

(
ed
k

)
+ log

(
e
δ

))2
log2(N)

log(1/δN )
+

(
log(N)

(
G2

µk
+GD

)
+

G2

µ

)
k log

(
ed
k

)
+ log

(
e
δ

)
N

+G

√(
k log

(
ed
k

)
+ log

(
e
δ

)) (
R(w∗

k̄
)−R(w∗)

)
Nµ

+∆k̄,opt + E
[
∆k̄,opt

]
.
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Remark 9. For the IHT-style algorithms, the sparse optimization sub-optimality ∆k̄,opt can be ar-
bitrarily small (with high probability) after sufficient rounds of iteration (Jain et al., 2014).

Specially for sparse linear regression models in which Assumptions 4 holds with δN =

e−c0N (Agarwal et al., 2012), we have that log(1/δN )
log(N) = c0N

log(N) ≥ 2 can always be fulfilled for
sufficiently large sample size N , and the sparse excess risk bound in Theorem 4 roughly scales as

R(w̃S,k)−R(w∗
k̄) ≲

(k log (d) + log (1/δ))2 log2(N)

N

+

√
(k log (d) + log (1/δ))

(
R(w∗

k̄
)−R(w∗)

)
N

+∆k̄,opt + E
[
∆k̄,opt

]
.

Generally for misspecified sparsity models, the dominant rate in the above bound matches the
O
(

1√
N

)
sparse excess risk bound of Yuan & Li (2022, Theorem 1) for IHT under similar conditions.

Compared to the O
(

1
N

)
bound available in that paper (Yuan & Li, 2022, Theorem 3), the preceding

bound is generally slower in rate but more broadly applicable without imposing any strong-signal or
bounded-loss conditions as required in the analysis of Yuan & Li (2022).

For well-specified k̄-sparse models such that R(w∗
k̄
) = R(w∗), i.e., the population minimizer is

truly k̄-sparse, the preceding bound improves to

R(w̃S,k)−R(w∗
k̄) ≲

(k log (d) + log (1/δ))2 log2(N)

N
+∆k̄,opt + E

[
∆k̄,opt

]
.

Therefore, our bound is more appealing in the sense that it naturally adapts to well-specified models
to attain an improved O( 1

N ) rate. In contrast, the regularization technique used by Yuan & Li (2022,
Theorem 1) needs an optimal choice of penalty strength of scale O( 1√

N
) which leads to an overall

slow rate of convergence, though the analysis is relatively simpler.

We further comment on the role of Lq-stability played in deriving the improved bound of The-
orem 4. The O( 1

N ) fast-rate component of the bound is indeed rooted from the Lq-stability co-
efficient as established in Lemma 1 and an application of Lemma 6. The relatively slow O( 1√

N
)

component, which is controlled by the oracle factor R(w∗
k̄
)−R(w∗), is mainly due to a careful anal-

ysis customized for handling the combinatorial optimization nature of L0-ERM. Such a slow-rate
term would be vanished if the global minimizer w∗ is truly k̄-sparse. Therefore, we confirm that the
fast-rate component attributes to our Lq-stability theory, while the slow but adaptive rate component
mainly attributes to the optimization property of L0-ERM. Finally, we comment in passing that our
improved Lq-stability theory can also be applied to some prior applications such as unbounded ridge
regression and k-folds cross-validation to obtain sharper generalization bounds.

4 CONCLUSION

In this paper, we presented an improved generalization theory for Lq-stable learning algorithms.
There exits a clear discrepancy between the recently developed near-optimal generalization bounds
for uniformly stable algorithms and the best known yet sub-optimal bounds for Lq-stable algorithms.
Aiming at closing such a theoretical gap, we for the first time derived a set of near-optimal exponen-
tial generalization bounds for Lq-stable algorithms that match those of uniformly stable algorithms.
As a concrete application of our Lq-stability theory, we have applied the developed analysis tools to
derive strong exponential risk bounds for inexact sparsity-constrained ERM estimators under milder
conditions. To conclude, Lq-stable algorithms generalize almost as fast as uniformly stable algo-
rithms, though the distribution-dependent notion of Lq-stability is weaker than uniform stability.
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A PRELIMINARIES

In this section, we collect some preliminary results that will be used in our analysis. We start by
introducing the following Lq-norm generalization of the celebrated Efron-Stein inequality, which is
a corollary of Boucheron et al. (2005, Theorem 2).
Proposition 1 (Generalized Efron-Stein inequality (Celisse & Guedj, 2016)). Let S = {Z1, ..., ZN}
be a set of independent random variables valued in Z and g : ZN 7→ R be some measurable
function. Then there exists a universal constant κ < 1.271 such that for all q ≥ 2,

∥g(S)− E[g(S)]∥q ≤
√
2κq

√√√√∥∥∥∥∥
N∑
i=1

(
g(S)− g(S(i))

)2∥∥∥∥∥
q/2

.

The following result is an immediate consequence of Proposition 1 when applied to sum of inde-
pendent random variables, which revisits a version of Marcinkiewicz-Zygmund inequality (Chow &
Teicher, 2003).
Proposition 2. Let Z1, ..., ZN be a set of independent centered random variables. Then for all
q ≥ 2, ∥∥∥∥∥

N∑
i=1

Zi

∥∥∥∥∥
q

≤ 2
√

2κq

√√√√∥∥∥∥∥
N∑
i=1

Z2
i

∥∥∥∥∥
q/2

.

The following lemma is simple yet useful in our analysis.
Lemma 2. Let S = {Z1, ..., ZN} be a set of independent random variables valued in some measure
space Z and g : ZN 7→ R be some measurable function. Then for all I ⊆ [N ] and q ≥ 1, we have

∥g(SI)∥q ≤ ∥g(S)∥q = ∥∥g∥q(SI)∥q.

Proof. Recall g(SI) = E[g(S) | SI ]. Then using Jensen’s inequality we can show that

∥g(SI)∥q = (E [|E[g(S) | SI ]|q])1/q ≤ (E [E[|g(S)|q | SI ]|])1/q = (E[|g(S)|q])1/q = ∥g(S)∥q.

By definition we can also express ∥g(S)∥q = (E [E[|g(S)|q | SI ]|])1/q = ∥∥g(S)∥q(SI)∥q .

As a direct consequence of Lemma 2, the following result indicates that conditional expectation
does not expand the differences in Lq-norm.
Lemma 3. Let S = {Z1, ..., ZN} be a set of independent random variables valued in some measure
space Z and g : ZN 7→ R be some measurable function. Let I ⊆ [N ] be an index set. Then for all
i ∈ I and q ≥ 1, ∥∥∥g(SI)− g(S

(i)
I )
∥∥∥
q
≤
∥∥∥g(S)− g(S(i))

∥∥∥
q
.

Proof. For each i ∈ I , by applying Lemma 2 to g(S) − g(S(i)) we can show that ∥g(SI) −
g(S

(i)
I )∥q ≤ ∥g(S)− g(S(i))∥q , which gives the desired result.

We also need the following lemma about the equivalence between tails and moments (see, e.g.,
Bousquet et al., 2020).
Lemma 4. Let Y be a real-valued random variable.

• Suppose that Y satisfies the following inequality for some a, b ≥ 0 with probability at least
1− δ for any δ ∈ (0, 1),

|Y | ≤ a log
(e
δ

)
+ b

√
log
(e
δ

)
.

Then, for any q ≥ 1 it holds that

∥Y ∥q ≤ 3aq + 9b
√
q.
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• Suppose that Y satisfies ∥Y ∥q ≤ f(q) for any 1 ≤ ql ≤ q < qu and some non-negative real
function f . Then the following holds with probability at least 1− δ for any δ ∈ (e1−qu , e1−ql ]:

|Y | ≤ ef
(
log
(e
δ

))
.

Proof. We only prove the second part which slightly generalizes the corresponding result of Bous-
quet et al. (2020, Lemma 1). For any δ ∈ (e1−qu , e1−ql ], we choose q = log(e/δ) ∈ [ql, qu). Using
the condition ∥Y ∥q ≤ f(q) and Markov’s inequality yields

P
(
|Y | > ef

(
log
(e
δ

)))
≤ P (|Y | > e∥Y ∥q) ≤

E[|Y |q]
eq∥Y ∥qq

=
δ

e
≤ δ.

This proves the desired bound in the second part.

Remark 10. Suppose that for any δ ∈ (0, 1), the following inequality holds with probability at least
1− δ over S, S(i), Z:∣∣∣ℓ(A(S);Z)− ℓ(A(S(i));Z)

∣∣∣ ≤ a log
(e
δ

)
+ b

√
log
(e
δ

)
.

Then according to the first part of Lemma 4 we have that A is Lq-stable by γq = 3aq + 9b
√
q.

Remark 11. Specially if ql = 1 and qu = ∞ is allowed, then the second bound in Lemma 4 holds
with an arbitrary tail bound δ ∈ (0, 1).

Finally, we present the following technical lemma about self-bounding inequalities to be used for
showing fast rates of excess risk bounds under Bernstein or quadratic growth conditions.

Lemma 5. Let x, a, b, c be a set of non-negative quantities satisfying x ≤ a +
√
b(x+ c). Then it

must hold that x ≤ 3a+2b+c
2 .

Proof. If x ≤ a, then the claim holds trivially. In the complementary case of x > a, by condition
we must have (x− a)2 ≤ b(x+ c), which then implies

x ≤
2a+ b+ 2

√
b(a+ c)

2
≤ 3a+ 2b+ c

2
,

where we have used the basic fact 2
√
b(a+ c) ≤ b+ a+ c.

B PROOFS FOR SECTION 2

B.1 PROOF OF THEOREM 1

The proof is a generalization of the sample-splitting arguments of Feldman & Vondrák (2019);
Bousquet et al. (2020) under the considered property of Lq-norm bounded difference. For the sake
of completeness, we reproduce below the relatively simpler arguments of Bousquet et al. (2020,
Theorem 4), with proper modifications made to adapt to our setting via using the generalized Efron-
Stein inequality in places of McDiarmid’s inequality.

Proof of Theorem 1. Consider k such that 2k−1 < N ≤ 2k. If N < 2k, we pad the training set S
with extra zero-functions so that N = 2k. Consider the partition I0, I1, ..., Ik of [N ] given by

I0 = {{1}, ..., {2k}}, I1 = {{1, 2}, {3, 4}..., {2k − 1, 2k}}, Ik = {{1, ..., 2k}}.
For any i ∈ [N ] and l = 0, ..., k, we denote by I l(i) ∈ Il the only set from Il that contains i and
consider the following random variables

gli = E
[
gi | Zi, SIl(i)

]
.

In particular, g0i = gi and gki = E[gi | Zi]. Clearly we have the following telescope sum:

gi =

k−1∑
l=0

(gli − gl+1
i ) + E[gi | Zi].
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It follows that ∥∥∥∥∥
N∑
i=1

gi − E[gi | Zi]

∥∥∥∥∥
q

≤
k−1∑
l=0

∥∥∥∥∥
N∑
i=1

gli − gl+1
i

∥∥∥∥∥
q

. (10)

We need to upper bound the right hand side of the above inequality. To this end, it can be verified
that

gl+1
i = E

[
gi | Zi, SIl+1(i)

}
]
= E

[
gli | Zi, SIl+1(i)

]
.

Since gi has a bounded Lq-difference by βq with respect to all variables except the i-th variable, it
is known from Lemma 3 that so is gli for each l = 0, ..., k. Conditioned on Zi, SIl+1(i)

, invoking
Proposition 1 to gli yields

∥gli − gl+1
i ∥q

(
Zi, SIl+1(i)

)
≤
√
2κq2lβq,

as there are 2l indices in I l+1(i) \ I l(i). It follows from Lemma 2 that

∥gli − gl+1
i ∥q =

∥∥∥∥gli − gl+1
i ∥q(Zi, SIl+1(i)

)
∥∥∥
q
≤
√

2κq2lβq.

Now consider any I l ∈ Il. Since for each i ∈ Il, gli − gl+1
i depends only on Zi, SIl , these terms are

independent and centered conditioned on S
Il . Therefore, applying Proposition 2 yields∥∥∥∥∥∥

∑
i∈Il

gli − gl+1
i

∥∥∥∥∥∥
q

(
S
Il

)
≤ 2
√
2κq2l ×

√
2κq2lβq = 4κq2lβq,

which according to Lemma 2 implies that∥∥∥∥∥∥
∑
i∈Il

gli − gl+1
i

∥∥∥∥∥∥
q

≤ 4κq2lβq.

Then based on the triangle inequality we get∥∥∥∥∥∥
∑
i∈[N ]

gli − gl+1
i

∥∥∥∥∥∥
q

≤
∑
Il∈Il

∥∥∥∥∥∥
∑
i∈Il

gli − gl+1
i

∥∥∥∥∥∥
q

≤ 2k−l × 4κq2lβq = 4κq2kβq < 4κqNβq.

Finally, the right hand side of Eq. (10) can be bounded as∥∥∥∥∥
N∑
i=1

gi − E[gi | Zi]

∥∥∥∥∥
q

≤
k−1∑
l=0

∥∥∥∥∥
N∑
i=1

gli − gl+1
i

∥∥∥∥∥
q

≤ 4κqN⌈log2 N⌉βq, (11)

which gives the first desired bound. In view of Eq. (11) and the triangle inequality we have∥∥∥∥∥
N∑
i=1

gi

∥∥∥∥∥
q

≤

∥∥∥∥∥
N∑
i=1

E[gi | Zi]

∥∥∥∥∥
q

+ 4κqN⌈log2 N⌉βq. (12)

Since ∥E[gi(S) | Zi]∥q ≤ Mq and E[gi(S) | S \ Zi] = 0, it follows from Proposition 2 that the first
term at the right hand side of Eq. (12) can be bounded as∥∥∥∥∥

N∑
i=1

E[gi | Zi]

∥∥∥∥∥
q

≤ 2
√
2κNqMq. (13)

The second desired bound is obtained by plugging Eq. (13) into Eq. (12).
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B.2 PROOF OF THEOREM 2

The proof technique follows that of Bousquet et al. (2020, Lemma 7) developed for uniformly stable
algorithms, with natural adaptation to the distribution-dependent notion of Lq-stability.

Proof. Let us consider

hi(S) := R(A(S))− ℓ(A(S);Zi), gi(S) = EZ′
i

[
R(A(S(i)))− ℓ(A(S(i));Zi)

]
.

Then the Lq-norm of the generalization gap can be bounded as

∥R(A(S))−RS(A(S))∥q =
1

N

∥∥∥∥∥
N∑
i=1

hi(S)

∥∥∥∥∥
q

≤ 1

N


∥∥∥∥∥

N∑
i=1

gi(S)

∥∥∥∥∥
q︸ ︷︷ ︸

A

+

∥∥∥∥∥
N∑
i=1

(hi(S)− gi(S))

∥∥∥∥∥
q︸ ︷︷ ︸

B

 .

(14)
We next respectively upper bound the two terms A and B in Eq. (14). To bound the term A, by
definition it holds that E[gi(S) | S \ Zi] = 0. Based on the triangle inequality we can show that

∥E[gi(S) | Zi]∥q ≤∥gi(S)∥q

=
∥∥∥EZ′

i
[EZ [ℓ(A(S(i));Z)]]− EZ′

i

[
ℓ(A(S(i));Zi)

]∥∥∥
q

≤∥ℓ(A(S(i));Z)∥q + ∥ℓ(A(S(i));Zi)∥q ≤ 2Mq,

where in the first and second inequalities we have twice used Lemma 2. Next we further show that
gi has a bounded Lq-norm difference by 2γq with respect to all variables in S except Zi. Indeed, for
each j ̸= i it can be verified that∥∥∥gi(S)− gi(S

(j))
∥∥∥
q

≤
∥∥∥EZ′

i

[
R(A(S(i)))−R(A((S(i))(j)))

]∥∥∥
q
+
∥∥∥EZ′

i

[
ℓ(A(S(i));Zi)− ℓ(A((S(i))(j));Zi)

]∥∥∥
q

=
∥∥∥EZ′

i
EZ [ℓ(A(S(i));Z)− ℓ(A((S(i))(j));Z)]

∥∥∥
q
+
∥∥∥EZ′

i
[ℓ(A(S(i));Zi)− ℓ(A((S(i))(j));Zi)]

∥∥∥
q

≤
∥∥∥ℓ(A(S(i));Z)− ℓ(A((S(i))(j));Z)

∥∥∥
q
+
∥∥∥ℓ(A(S(i));Zi)− ℓ(A((S(i))(j));Zi)

∥∥∥
q
≤ 2γq,

where in the last but one inequality we have used Lemma 2, while in the last equality we have used
the Lq-stability assumption on the algorithm A. Therefore, {gi} satisfy the conditions of Theorem 1
and thus

A =

∥∥∥∥∥
N∑
i=1

gi(S)

∥∥∥∥∥
q

≤ 4
√

2κNqMq + 8κqN⌈log2 N⌉γq. (15)

Now we proceed to bound the term B. It can be verified that

B ≤

∥∥∥∥∥
N∑
i=1

EZ′
i

[
R(A(S))−R(A(S(i)))

]∥∥∥∥∥
q

+

∥∥∥∥∥
N∑
i=1

EZ′
i

[
ℓ(A(S);Zi)− ℓ(A(S(i));Zi)

]∥∥∥∥∥
q

=

∥∥∥∥∥
N∑
i=1

EZ′
i
EZ

[
ℓ(A(S);Z)− ℓ(A(S(i));Z)

]∥∥∥∥∥
q

+

∥∥∥∥∥
N∑
i=1

EZ′
i

[
ℓ(A(S);Zi)− ℓ(A(S(i));Zi)

]∥∥∥∥∥
q

≤
N∑
i=1

∥∥∥ℓ(A(S);Z)− ℓ(A(S(i));Z)
∥∥∥
q
+

N∑
i=1

∥∥∥ℓ(A(S);Zi)− ℓ(A(S(i));Zi)
∥∥∥
q
≤ 2Nγq,

(16)
where in the last but one inequality we have used Lemma 2, and in the last equality we have used
the Lq-stability assumption. Plugging bounds Eq. (15) and Eq. (16) into Eq. (14) and preserving
leading terms yields the desired result.
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B.3 PROOF OF THEOREM 3

We need the following lemma which plays a fundamental role in proving the main result.
Lemma 6. Let A : ZN 7→ W be a learning algorithm that has Lq-stability by γq for q ≥ 1.
Suppose that ∥ℓ(A(S);Z)∥q ≤ Mq for any Z ∈ Z . Let S′ be an independent copy of S. Then the
following bound holds for all q ≥ 2:∥∥∥∥∥R(A(S))−RS(A(S))− E[R(A(S))] +

1

N

N∑
i=1

E[ℓ(A(S′);Zi) | Zi]

∥∥∥∥∥
q

≲ qγq log(N).

Proof. Let us again consider gi(S) = EZ′
i

[
R(A(S(i)))− ℓ(A(S(i));Zi)

]
. Then using similar proof

arguments to those of Theorem 2 we can show that∥∥∥∥∥N(R(A(S))−RS(A(S)))−
N∑
i=1

gi(S)

∥∥∥∥∥
q

≤

∥∥∥∥∥
N∑
i=1

EZ′
i

[
R(A(S))−R(A(S(i)))

]∥∥∥∥∥
q

+

∥∥∥∥∥
N∑
i=1

EZ′
i

[
ℓ(A(S);Zi)− ℓ(A(S(i));Zi)

]∥∥∥∥∥
q

=

∥∥∥∥∥
N∑
i=1

EZ′
i
EZ

[
ℓ(A(S);Z)− ℓ(A(S(i));Z)

]∥∥∥∥∥
q

+

∥∥∥∥∥
N∑
i=1

EZ′
i

[
ℓ(A(S);Zi)− ℓ(A(S(i));Zi)

]∥∥∥∥∥
q

≤
N∑
i=1

∥∥∥ℓ(A(S);Z)− ℓ(A(S(i));Z)
∥∥∥
q
+

N∑
i=1

∥∥∥ℓ(A(S);Zi)− ℓ(A(S(i));Zi)
∥∥∥
q
≤ 2Nγq,

which implies ∥∥∥∥∥R(A(S))−RS(A(S))− 1

N

N∑
i=1

gi(S)

∥∥∥∥∥
q

≤ 2γq.

Also, gi(S) satisfies the conditions of Theorem 1 with βq = 2γq and it follows from the second
bound of Theorem 1 that for all q ≥ 2,∥∥∥∥∥ 1

N

N∑
i=1

(gi(S)− E[gi(S) | Zi])

∥∥∥∥∥
q

≤ 8κqγq⌈log2 N⌉.

Combining the above two yields∥∥∥∥∥R(A(S))−RS(A(S))− 1

N

N∑
i=1

E[gi(S) | Zi]

∥∥∥∥∥
q

≲ qγq log(N).

The desired result follows by noting that

E[gi(S) | Zi] = E[R(A(S′))]− E[ℓ(A(S′);Zi) | Zi] = E[R(A(S))]− E[ℓ(A(S′);Zi) | Zi].

This completes the proof.

With Lemma 6 in place, we are ready to prove the main result of Theorem 3.

Proof of Theorem 3. Consider any w∗ ∈ W ∗. It is standard to decompose and bound the excess risk
as

R(A(S))−R∗

=R(A(S))−RS(A(S)) +RS(A(S))−RS(w
∗) +RS(w

∗)−R∗

≤∆opt +R(A(S))−RS(A(S))− (R∗ −RS(w
∗))

=∆opt + Γ(S) + E[R(A(S))]− 1

N

N∑
i=1

E[ℓ(A(S′);Zi) | Zi]− (R∗ −RS(w
∗)),

(17)
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where

Γ(S) = R(A(S))−RS(A(S))− E[R(A(S))] +
1

N

N∑
i=1

E[ℓ(A(S′);Zi) | Zi].

Since we have the freedom to choose w∗, let us specify it in the above as w∗(S′) ∈ W ∗ which is
the minimizer that satisfies the Bernstein condition in Assumption 1 associated with A(S′). Then,
it follows from Eq. (17) that

R(A(S))−R∗ −∆opt

≤Γ(S) + E[R(A(S))]− 1

N

N∑
i=1

E[ℓ(A(S′);Zi) | Zi]− (R∗ − E[RS(w
∗(S′)) | S]).

Consequently,

∥R(A(S))−R∗ −∆opt∥q

≤∥Γ(S)∥q +

∥∥∥∥∥ 1

N

N∑
i=1

E [ℓ(w∗(S′);Zi)− ℓ(A(S′);Zi) | Zi]− (R∗ − E[R(A(S′))])

∥∥∥∥∥
q

ζ1

≲qγq log(N) +

∥∥∥∥∥ 1

N

N∑
i=1

E [ℓ(w∗(S′);Zi)− ℓ(A(S′);Zi) | Zi]− (R∗ − E[R(A(S′))])

∥∥∥∥∥
q︸ ︷︷ ︸

T

,

(18)

where in “ζ1” we have applied Lemma 6 to obtain ∥Γ(S)∥q ≤ qγq log(N), and the fact
E[R(A(S))] = E[R(A(S′))].

Part (a): To bound the term T , using Bernstein’s inequality for sum of independent bounded vari-
ables 2 together with the generalized Bernstein condition we can show (see the proof arguments
of Klochkov & Zhivotovskiy (2021, Theorem 1.1) for the details) that

T ≲

√
qBE[R(A(S))−R∗]

N
+

qM

N
=

√
qB(E[R(A(S))−R∗ −∆opt] + E[∆opt])

N
+

qM

N

≤
√

qB(∥R(A(S))−R∗ −∆opt∥q + E[∆opt])

N
+

qM

N
,

where the last inequality is due to Jensen’s inequality. Therefore, combining the above and Eq. (18)
yields that for some universal constant C:

∥R(A(S))−R∗−∆opt∥q ≤ C

(
qγq log(N) +

√
qB(∥R(A(S))−R∗ −∆opt∥q + E[∆opt])

N
+

qM

N

)
.

By invoking Lemma 5 to the above self-bounding inequality with x = ∥R(A(S)) − R∗ −∆opt∥q ,
a = C(qγq log(N) + qM

N ), b = qB
N , and c = E[∆opt] we immediately obtain that

∥R(A(S))−R∗ −∆opt∥q ≲ E[∆opt] + qγq log(N) +
(M +B)q

N
.

This gives the desired bound in part (a).

Part (b): Under the given conditions in part (b), we can bound the term T in Eq. (18) as follows for
q ≥ 2:

2It is possible to relax the M -boundedness condition on the loss function ℓ to its sub-Gaussian or sub-
exponential counterparts by alternatively applying general Bernstein-type inequalities for sums of independent
sub-Gaussian or sub-exponential random variables (Vershynin, 2018) in this part of proof. For the sake of
simplicity and transparency of exposition, here we choose to work on the bounded loss while keeping in mind
that the requirement is not essential.
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T =

∥∥∥∥∥ 1

N

N∑
i=1

E [ℓ(w∗(S′);Zi)− ℓ(A(S′);Zi) | Zi]− (R∗ − E[R(A(S′))])

∥∥∥∥∥
q

ζ1
≤2

√
2κq

N

√√√√∥∥∥∥∥
N∑
i=1

(E [ℓ(w∗(S′);Zi)− ℓ(A(S′);Zi) | Zi]− (R∗ − E[R(A(S′))]))
2

∥∥∥∥∥
q/2

≤
4
√
κq

N

√√√√ N∑
i=1

∥∥∥E2 [ℓ(w∗(S′);Zi)− ℓ(A(S′);Zi) | Zi] + (R∗ − E[R(A(S′))])
2
∥∥∥
q/2

≤
4
√
κq

N

√√√√ N∑
i=1

∥E2 [ℓ(w∗(S′);Zi)− ℓ(A(S′);Zi) | Zi]∥q/2 +NE2[R(w∗(S′))−R(A(S′))]

ζ2
≤
4
√
κq

N

√√√√ N∑
i=1

∥E2 [G∥w∗(S′)−A(S′)∥ | Zi]∥q/2 +NE2 [G∥w∗(S′)−A(S′)∥]

ζ3
≤4G

√
2κq√
N

√
E [∥w∗(S′)−A(S′)∥2]

ζ4
≤
8G

√
κq

√
N

√
1

µ
E [R(A(S′))−R∗] =

8G
√
κq

√
Nµ

√
E [R(A(S′))−R∗ −∆opt] + E[∆opt]

≤
8G

√
κq

√
Nµ

√
∥R(A(S))−R∗ −∆opt∥q + E[∆opt]

where in “ζ1” we have used Proposition 2, in “ζ2” we have used the Lipschitz-loss condi-
tion, in “ζ3” we have used

∥∥E2 [G∥w∗(S′)−A(S′)∥ | Zi]
∥∥
q/2

= E2 [G∥w∗(S′)−A(S′)∥] ≤
G2E

[
∥w∗(S′)−A(S′)∥2

]
, in “ζ4” we have used Assumption 2, and the last inequality is due to

Jensen’s inequality. Then, plugging the above bound of term T into Eq. (18) yields that for some
universal constant C:

∥R(A(S))−R∗−∆opt∥q ≤ C

(
qγq log(N) +G

√
q

Nµ

√
∥R(A(S))−R∗ −∆opt∥q + E[∆opt]

)
.

Invoking Lemma 5 to the above inequality with x = ∥R(A(S))−R∗ −∆opt∥q , a = Cqγq log(N),
b = qG2

µN , and c = E[∆opt] yields

∥R(A(S))−R∗ −∆opt∥q ≲ E[∆opt] + qγq log(N) +
qG2

µN
.

This gives the desired bound in part (b). The proof is completed.
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C PROOFS FOR SECTION 3

C.1 PROOF OF LEMMA 1

Proof. Let us consider the following event about the restricted strong convexity of RS :

E : RS is µk-strongly convex.

Let Y = 1E be the indication random variable associated with E . Then by Assumption 4 we have
P(Y = 1) ≥ 1− δN . Suppose that E occurs such that Y = 1. Then,

RS(w
∗
S(i)|J)−RS(w

∗
S|J)

=
1

N

∑
j ̸=i

(
ℓ(w∗

S(i)|J ;Zj)− ℓ(w∗
S|J ;Zj)

)
+

1

N

(
ℓ(w∗

S(i)|J ;Zi)− ℓ(w∗
S|J ;Zi)

)
=RS(i)(w∗

S(i)|J)−RS(i)(w∗
S|J) +

1

N

(
ℓ(w∗

S(i)|J ;Zi)− ℓ(w∗
S|J ;Zi)

)
− 1

N

(
ℓ(w∗

S(i)|J ;Z
′
i)− ℓ(w∗

S|J ;Z
′
i)
)

≤ 1

N

∣∣∣ℓ(w∗
S(i)|J ;Zi)− ℓ(w∗

S|J ;Zi)
∣∣∣+ 1

N

∣∣∣ℓ(w∗
S(i)|J ;Z

′
i)− ℓ(w∗

S|J ;Z
′
i)
∣∣∣

≤2G

N

∥∥∥w∗
S(i)|J − w∗

S|J

∥∥∥ ,
where we have used the optimality of w∗

S(i)|J with respect to RS(i)(w) and the Lipschitz continuity
of loss. Since E occurs by assumption, RS is µk-strongly convex. Since w∗

S|J is optimal for RS(w)

over the supporting set J , we have

RS(w
∗
S(i)|J) ≥ RS(w

∗
S|J) +

µk

2

∥∥∥w∗
S(i)|J − w∗

S|J

∥∥∥2 .
Combing the preceding two inequalities yields

∥∥∥w∗
S(i)|J − w∗

S|J

∥∥∥ ≤ 4G
µkN

. Consequently from the
Lipschitz continuity of ℓ we have that for any Z ∈ Z , the following holds conditioned on Y = 1:∣∣∣ℓ(w∗

S(i)|J ;Z)− ℓ(w∗
S|J ;Z)

∣∣∣ ≤ G
∥∥∥w∗

S(i)|J − w∗
S|J

∥∥∥ ≤ 4G2

µkN
. (19)

In the complementary case of Y = 0, in view of Assumption 5, it always holds that

|ℓ(w∗
S(i)|J ;Z)− ℓ(w∗

S|J ;Z)| ≤ G
∥∥∥w∗

S(i)|J − w∗
S|J

∥∥∥ ≤ 2GD. (20)

Let us consider qu :=
log

(
1

δN

)
log(N) . By assumption qu ≥ 2. Then for 2 ≤ q ≤ qu, it can be verified that

E
[∣∣∣ℓ(w∗

S(i)|J ;Z)− ℓ(w∗
S|J ;Z)

∣∣∣q]
=P(Y = 1)E

[∣∣∣ℓ(w∗
S(i)|J ;Z)− ℓ(w∗

S|J ;Z)
∣∣∣q | Y = 1

]
+ P(Y = 0)E

[∣∣∣ℓ(w∗
S(i)|J ;Z)− ℓ(w∗

S|J ;Z)
∣∣∣q | Y = 0

]
≤
(
4G2

µkN

)q

+ δN (2GD)q =

(
4G2

µkN

)q

+
1

Nqu
(2GD)q ≤

(
4G2

µkN

)q

+
1

Nq
(2GD)q.

It follows that for all 2 ≤ q ≤ qu∥∥∥ℓ(w∗
S(i)|J ;Z)− ℓ(w∗

S|J ;Z)
∥∥∥
q
≤
((

4G2

µkN

)q

+
1

Nq
(2GD)q

)1/q

≤ 1

N

(
4G2

µk
+ 2GD

)
,

where we have used aq+ bq ≤ (a+ b)q for a, b > 0 and q ≥ 2. For the complementary case q > qu,
it is trivial to show that ∥∥∥ℓ(w∗

S(i)|J ;Z)− ℓ(w∗
S|J ;Z)

∥∥∥
q
≤ 2GD ≤ 2GD

qu
q.

Assembling the preceding two bounds yields the desired Lq-stability bound.
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C.2 PROOF OF THEOREM 4

Let us denote a+ = max{a, 0}. We need the following key result in our analysis, whose proof idea
draws large inspiration from that of Theorem 3 with proper modifications for handing the challenges
imposed by the combinatorial optimization nature of L0-ERM.

Lemma 7. Suppose that Assumptions 3, 4, 5 hold. Assume that log(1/δN )
log(N) ≥ 2. Then for any

δ ∈ (0, e−1), it holds with probability at least 1− δ that

sup
J⊆[d],|J|=k

R(w∗
S|J)−R(w∗

k̄)

≲
GD

(
k log

(
ed
k

)
+ log

(
e
δ

))2
log2(N)

log(1/δN )
+

(
log(N)

(
G2

µk
+GD

)
+

G2

µ

)
k log

(
ed
k

)
+ log

(
e
δ

)
N

+G

√(
k log

(
ed
k

)
+ log

(
e
δ

)) (
R(w∗

k̄
)−R(w∗)

)
Nµ

+
(
RS(w

∗
S|J)−RS(w

∗
S,k̄)

)
+

+ E
[(

RS(w
∗
S|J)−RS(w

∗
S,k̄)

)
+

]
.

Proof. Given a fixed index set J ⊆ [d] with |J | = k, we can show that the following holds for any
q ≥ 1:

∥∥∥R(w∗
S|J)−RS(w

∗
S|J) +RS(w

∗)−R(w∗)
∥∥∥
q

=

∥∥∥∥∥ΓS|J + E[R(w∗
S|J)]−

1

N

N∑
i=1

E[ℓ(w∗
S′|J ;Zi) | Zi] +RS(w

∗)−R(w∗)

∥∥∥∥∥
q

≤
∥∥ΓS|J

∥∥
q
+

∥∥∥∥∥E[R(w∗
S|J)]−

1

N

N∑
i=1

E[ℓ(w∗
S′|J ;Zi) | Zi]−R(w∗) +RS(w

∗)

∥∥∥∥∥
q︸ ︷︷ ︸

T

,

(21)

where

ΓS|J = R(w∗
S|J)−RS(w

∗
S|J)− E[R(w∗

S|J)] +
1

N

N∑
i=1

E[ℓ(w∗
S′|J ;Zi) | Zi].

In view of Lemma 1 we have that w∗
S|J has Lq-stability by

γq =
1

N

(
4G2

µk
+ 2GD

)
+

2GD log(N)q

log(1/δN )
.

Then invoking Lemma 6 over the supporting set J yields

∥∥ΓS|J
∥∥
q
≲ qγq log(N) =

q log(N)

N

(
4G2

µk
+ 2GD

)
+

2GD log2(N)q2

log(1/δN )
. (22)

21



Published as a conference paper at ICLR 2023

We now bound the term T in Eq. (21) as follows:

T =

∥∥∥∥∥ 1

N

N∑
i=1

E
[
w∗;Zi)− ℓ(w∗

S′|J ;Zi) | Zi

]
− (R(w∗)− E[R(w∗

S′|J)])

∥∥∥∥∥
q

ζ1
≤2

√
2κq

N

√√√√∥∥∥∥∥
N∑
i=1

(
E
[
ℓ(w∗;Zi)− ℓ(w∗

S′|J ;Zi) | Zi

]
− (R(w∗)− E[R(w∗

S′|J)])
)2∥∥∥∥∥

q/2

≤
4
√
κq

N

√√√√ N∑
i=1

∥∥∥∥E2
[
ℓ(w∗;Zi)− ℓ(w∗

S′|J ;Zi) | Zi

]
+
(
R(w∗)− E[R(w∗

S′|J)]
)2∥∥∥∥

q/2

≤
4
√
κp

N

√√√√ N∑
i=1

∥∥∥E2
[
ℓ(w∗;Zi)− ℓ(w∗

S′|J ;Zi) | Zi

]∥∥∥
q/2

+NE2
[
R(w∗)−R(w∗

S′|J)
]

ζ2
≤
4
√
κp

N

√√√√ N∑
i=1

∥∥∥E2
[
G
∥∥∥w∗ − w∗

S′|J

∥∥∥ | Zi

]∥∥∥
q/2

+NE2
[
G
∥∥∥w∗ − w∗

S′|J

∥∥∥]
ζ3
≤4G

√
2κp√
N

√
E
[∥∥∥w∗ − w∗

S′|J

∥∥∥2]
ζ4
≤
8G

√
κq

√
N

√
1

µ
E
[
R(w∗

S′|J)−R(w∗)
]
=

8G
√
κq

√
Nµ

√
E
[
R(w∗

S|J)−R(w∗)
]
,

(23)

where in “ζ1” we have used Proposition 2, in “ζ2” we have used the Lipschitz-loss as-
sumption, in “ζ3” we have used

∥∥∥E2
[
G∥w∗ − w∗

S′|J∥ | Zi

]∥∥∥
q/2

= E2
[
G∥w∗ − w∗

S′|J∥
]

≤

G2E
[
∥w∗ − w∗

S′|J∥
2
]
, in “ζ4” we have used the strong convexity condition in Assumption 4. Plug-

ging Eq. (22) and Eq. (23) into Eq. (21) yields that for any q ≥ 2,∥∥∥R(w∗
S|J)−R(w∗)−RS(w

∗
S|J) +RS(w

∗)
∥∥∥
q

≤q log(N)

N

(
4G2

µk
+ 2GD

)
+

2q2GD log2(N)

log(1/δN )
+ 8G

√√√√κqE
[
R(w∗

S|J)−R(w∗)
]

Nµ
.

(24)

Next we need to upper bound the factor E
[
R(w∗

S|J)−R(w∗)
]

in the second term of the above
bound. To do so, let us consider q = 2 in Eq. (24). It follows from the optimality of w∗ and w∗

S|J
that

E
[
R(w∗

S|J)−R(w∗)−RS(w
∗
S|J) +RS(w

∗)
]

≤
∥∥∥R(w∗

S|J)−R(w∗)−RS(w
∗
S|J) +RS(w

∗)
∥∥∥
2

Eq. (24)

≤ log(N)

N

(
8G2

µk
+ 4GD

)
+

8GD log2(N)

log(1/δN )
+ 8G

√√√√2κE
[
R(w∗

S|J)−R(w∗)
]

Nµ

≤ log(N)

N

(
8G2

µk
+ 4GD

)
+

8GD log2(N)

log(1/δN )
+

E
[
R(w∗

S|J)−R(w∗)
]

2
+

64κG2

Nµ
,

where in the first inequality we have used Cauchy-Schwarz inequality, and in the last inequality we
have used the fact

√
ab ≤ a

2t +
bt
2 for any a, b, t > 0. Rearranging both sides of the above inequality
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with simple algebra leads to

E
[
R(w∗

S|J)−R(w∗)
]

≤2E
[
RS(w

∗
S|J)−RS(w

∗)
]
+

log(N)

N

(
16G2

µk
+ 8GD

)
+

16GD log2(N)

log(1/δN )
+

128κG2

Nµ

=2E
[
RS(w

∗
S|J)−RS(w

∗
k̄) +RS(w

∗
k̄)−RS(w

∗)
]

+
log(N)

N

(
16G2

µk
+ 8GD

)
+

16GD log2(N)

log(1/δN )
+

128κG2

Nµ

=2E
[
RS(w

∗
S|J)−RS(w

∗
k̄)
]
+ 2(R(w∗

k̄)−R(w∗))

+
log(N)

N

(
16G2

µk
+ 8GD

)
+

16GD log2(N)

log(1/δN )
+

128κG2

Nµ

≤2E
[
RS(w

∗
S|J)−RS(w

∗
S,k̄)

]
+ 2(R(w∗

k̄)−R(w∗))

+
log(N)

N

(
16G2

µk
+ 8GD

)
+

16GD log2(N)

log(1/δN )
+

128κG2

Nµ

≤ 2E
[(

RS(w
∗
S|J)−RS(w

∗
S,k̄)

)
+

]
︸ ︷︷ ︸

T1

+2
(
R(w∗

k̄)−R(w∗)
)︸ ︷︷ ︸

T2

+
log(N)

N

(
16G2

µk
+ 8GD

)
+

16GD log2(N)

log(1/δN )
+

128κG2

Nµ︸ ︷︷ ︸
T3

.

(25)

Plugging Eq. (25) into Eq. (24) yields that for any q ≥ 2

∥∥∥R(w∗
S|J)−R(w∗)−RS(w

∗
S|J) +RS(w

∗)
∥∥∥
q

≤q log(N)

N

(
4G2

µk
+ 2GD

)
+

2GDq2 log2(N)

log(1/δN )
+ 8G

√
κq(T1 + T2 + T3)

Nµ

≤q log(N)

N

(
4G2

µk
+ 2GD

)
+

2GDq2 log2(N)

log(1/δN )
+ 8G

√
κq(T1 + T3)

Nµ
+ 8G

√
κqT2

Nµ

ζ1
≤q log(N)

N

(
4G2

µk
+ 2GD

)
+

2GDq2 log2(N)

log(1/δN )
+ 8G

√
κqT2

Nµ
+ T1 + T3 +

16κqG2

Nµ

≲
q log(N)

N

(
G2

µk
+GD

)
+

GDq2 log2(N)

log(1/δN )
+

qG2

Nµ
+ E

[(
RS(w

∗
S|J)−RS(w

∗
S,k̄)

)
+

]

+G

√
q
(
R(w∗

k̄
)−R(w∗)

)
Nµ

,

(26)

where in “ζ1” we have again used the fact
√
ab ≤ a

2t +
bt
2 for a, b, t > 0. Now we are in the position

to finally upper bound the desired sparse excess risk with respect to w∗
k̄
, which can be decomposed
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in the following way:

R(w∗
S|J)−R(w∗

k̄) =R(w∗
S|J)−R(w∗)−RS(w

∗
S|J) +RS(w

∗) +RS(w
∗
S|J)−RS(w

∗
k̄)

+RS(w
∗
k̄)−RS(w

∗) +R(w∗)−R(w∗
k̄)

≤R(w∗
S|J)−R(w∗)−RS(w

∗
S|J) +RS(w

∗) +RS(w
∗
S|J)−RS(w

∗
S,k̄)

+RS(w
∗
k̄)−RS(w

∗) +R(w∗)−R(w∗
k̄)

≤R(w∗
S|J)−R(w∗)−RS(w

∗
S|J) +RS(w

∗)︸ ︷︷ ︸
T ′
1

+
(
RS(w

∗
S|J)−RS(w

∗
S,k̄)

)
+

+RS(w
∗
k̄)−RS(w

∗) +R(w∗)−R(w∗
k̄)︸ ︷︷ ︸

T ′
2

,

(27)
where in the first inequality we have used the fact RS(w

∗
S,k̄

) ≤ RS(w
∗
k̄
). We are going to bound the

above two terms T ′
1 and T ′

2 respectively with high probability. Concerning T ′
1, since Eq. (26) holds

for all q ≥ 2, in view of the second part of Lemma 4 (with ql = 2 and qu = ∞) we can show that
the following holds with probability at least 1− δ

2 for any δ ∈ (0, e−1):

T ′
1 =R(w∗

S|J)−R(w∗)−RS(w
∗
S|J) +RS(w

∗)

≤
∣∣∣R(w∗

S|J)−R(w∗)−RS(w
∗
S|J) +RS(w

∗)
∣∣∣

≲
GD log2

(
e
δ

)
log2(N)

log(1/δN )
+

(
log(N)

(
G2

µk
+GD

)
+

G2

µ

)
log
(
e
δ

)
N

+G

√
log
(
e
δ

) (
R(w∗

k̄
)−R(w∗)

)
Nµ

+ E
[(

RS(w
∗
S|J)−RS(w

∗
S,k̄)

)
+

]
.

(28)

Regarding the term T ′
2, similar to the argument of Eq. (23), we can bound its Lq-norm for any q ≥ 2

as follows:

∥T ′
2∥q =

∥∥∥∥∥ 1

N

N∑
i=1

(
ℓ(w∗

k̄;Zi)− ℓ(w∗;Zi)
)
− (R(w∗

k̄)−R(w∗))

∥∥∥∥∥
q

≤2
√
2κq

N

√√√√∥∥∥∥∥
N∑
i=1

(
ℓ(w∗

k̄
;Zi)− ℓ(w∗;Zi)− (R(w∗

k̄
)−R(w∗))

)2∥∥∥∥∥
q/2

≤
4
√
κq

N

√√√√ N∑
i=1

∥∥∥(ℓ(w∗
k̄
;Zi)− ℓ(w∗;Zi)

)2
+
(
R(w∗

k̄
)−R(w∗)

)2∥∥∥
q/2

≤
4
√
κq

N

√√√√ N∑
i=1

∥∥∥(ℓ(w∗
k̄
;Zi)− ℓ(w∗;Zi)

)2∥∥∥
q/2

+N
(
R(w∗

k̄
)−R(w∗)

)2
≤4

√
2κq

N

√
NG2

∥∥w∗
k̄
− w∗

∥∥2
≤
8G

√
κq

√
Nµ

√
R(w∗

k̄
)−R(w∗).

By invoking the second part of Lemma 4 with ql = 2 and qu = ∞ we can translate the above
moment bound into the following exponential tail bound that holds with probability at least 1 − δ

2

for any δ ∈ (0, e−1):

T ′
2 ≲ G

√
log
(
e
δ

) (
R(w∗

k̄
)−R(w∗)

)
Nµ

. (29)
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By plugging Eq. (28) and Eq. (29) into Eq. (27) and applying union probability argument we obtain
that the following holds with probability at least 1− δ for any δ ∈ (0, e−1):

R(w∗
S|J)−R(w∗

k̄)

≲
GD log2

(
e
δ

)
log2(N)

log(1/δN )
+

(
log(N)

(
G2

µk
+GD

)
+

G2

µ

)
log
(
e
δ

)
N

+G

√
log
(
e
δ

) (
R(w∗

k̄
)−R(w∗)

)
Nµ

+
(
RS(w

∗
S|J)−RS(w

∗
S,k̄)

)
+
+ E

[(
RS(w

∗
S|J)−RS(w

∗
S,k̄)

)
+

]
.

This proves the desired sparse excess risk bound over the supporting set J .

As the final step, since there are at most
(
d
k

)
≤
(
ed
k

)k
different J with |J | = k, by union probability

we can show that the following holds with probability 1− δ for any δ ∈ (0, e−1):

sup
J⊆[d],|J|=k

R(w∗
S|J)−R(w∗

k̄)

≲
GD

(
k log

(
ed
k

)
+ log

(
e
δ

))2
log2(N)

log(1/δN )
+

(
log(N)

(
G2

µk
+GD

)
+

G2

µ

)
k log

(
ed
k

)
+ log

(
e
δ

)
N

+G

√(
k log

(
ed
k

)
+ log

(
e
δ

)) (
R(w∗

k̄
)−R(w∗)

)
Nµ

+
(
RS(w

∗
S|J)−RS(w

∗
S,k̄)

)
+

+ E
[(

RS(w
∗
S|J)−RS(w

∗
S,k̄)

)
+

]
.

This completes the proof.

Now we are in the position to prove the main result in Theorem 4.

Proof of Theorem 4. Let us consider J̃ = supp(w̃S,k). By definition we have w̃S,k = w∗
S|J̃ . Then

invoking Lemma 7 yields that for any δ ∈ (0, e−1), the following holds with probability at least
1− δ:

R(w̃S,k)−R(w∗
k̄) = R(w∗

S|J̃)−R(w∗
k̄)

≲
GD

(
k log

(
ed
k

)
+ log

(
e
δ

))2
log2(N)

log(1/δN )
+

(
log(N)

(
G2

µk
+GD

)
+

G2

µ

)
k log

(
ed
k

)
+ log

(
e
δ

)
N

+G

√(
k log

(
ed
k

)
+ log

(
e
δ

)) (
R(w∗

k̄
)−R(w∗)

)
Nµ

+
(
RS(w

∗
S|J̃)−RS(w

∗
S,k̄)

)
+

+ E
[(

RS(w
∗
S|J̃)−RS(w

∗
S,k̄)

)
+

]
.

≲
GD

(
k log

(
ed
k

)
+ log

(
e
δ

))2
log2(N)

log(1/δN )
+

(
log(N)

(
G2

µk
+GD

)
+

G2

µ

)
k log

(
ed
k

)
+ log

(
e
δ

)
N

+G

√(
k log

(
ed
k

)
+ log

(
e
δ

)) (
R(w∗

k̄
)−R(w∗)

)
Nµ

+∆k̄,opt + E
[
∆k̄,opt

]
.

This proves the desired sparse excess risk bound.
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D OTHER RELATED WORK

Uniform stability and exponential generalization. Stimulated by a recent landmark work of Hardt
et al. (2016), there is a renewed interest in the use of uniform stability for deriving generaliza-
tion bounds for various learning algorithms and paradigms including stochastic gradient descent
(SGD) (Kuzborskij & Lampert, 2018; Charles & Papailiopoulos, 2018; Lei & Ying, 2020), stochas-
tic model based optimization (Wang et al., 2017; Deng & Gao, 2021), optimization based meta
learning (Zhou et al., 2019), and differential privacy stochastic optimization (Bassily et al., 2019;
Feldman et al., 2020). Compared to other stability arguments, uniform stability is notorious for im-
plying high-probability generalization bounds in addition to the traditional in-expectation bounds.
Until very recently, the basic result of Bousquet & Elisseeff (2002), as expressed in Eq. (2), remains
the best known exponential generalization bound for uniformly stable algorithms. Using some ele-
gant proof techniques from adaptive data analysis, Feldman & Vondrák (2018) managed to replace

the first term in Eq. (2) by
√
γu log(

1
δ ), which leads to an improvement whenever γu ≳ 1

N . Soon
after, a series of breakthrough results were obtained (Feldman & Vondrák, 2019; Bousquet et al.,
2020) using tighter concentration bounds for sum of random functions, which eventually improve
the stability dependent rate to a near-optimal one γu log(N) log

(
1
δ

)
as shown in Eq. (4). Addition-

ally under the generalized Bernstein condition, these state-of-the-art results lead to O( 1
N ) excess

risk bounds for uniformly stable algorithms (Klochkov & Zhivotovskiy, 2021).

Non-uniform stability and exponential generalization. More broadly for non-uniformly stable
algorithms, exponential generalization bounds have also been shown to be possible under various
weaker and distribution-dependent notions of stability. As an early work in this line, Kutin & Niyogi
(2002) showed that under the so called “almost-everywhere” stability, which is a high-probability
counterpart of uniform stability, generalization bounds that hold with overwhelming probability are
still possible in view of certain modified McDiarmid’s inequality (Kutin, 2002). Later, Rakhlin et al.
(2005) revisited the bounded-difference results of Kutin & Niyogi (2002) in a more straightforward
manner by using a powerful moment extension of Efron-Stein inequality (Boucheron et al., 2005).
Recently for general Lq-stable algorithms, the exponential leave-one-out generalization bounds were
derived using moment or exponential extensions of Efron-Stein inequality, with applications found
in ridge regression, k-nearest neighbor classification and k-folds cross-validation (Celisse & Guedj,
2016; Celisse & Mary-Huard, 2018; Abou-Moustafa & Szepesvári, 2019). However, when it comes
to the recent break-through bounds of Feldman & Vondrák (2019); Bousquet et al. (2020), it is much
less obvious how to easily extend these near-optimal bounds under the almost-everywhere stability
via simply incorporating the low probability failure events into concentration inequality. This is
actually in sharp contrast to what have been done by Feldman & Vondrák (2019, Theorem 4.5)
and Bassily et al. (2020, Theorem 2.1) for stochastic learning algorithms with uniform stability (over
the randomness of data) holding with high probability over the internal randomness of algorithm. We
refer the interested readers to Boucheron et al. (2013); Kontorovich (2014); Combes (2015); Warnke
(2016); Maurer & Pontil (2021) for more results on concentration inequalities beyond bounded-
difference conditions, which are fundamental for deriving exponential bounds for non-uniformly
stable algorithms.

Generalization analysis of ℓ0-estimators. We further briefly review some prior results on the
generalization guarantees for statistical learning under cardinality constraints, which is the theme of
the application part of our work. For the ℓ0-ERM estimator as expressed in Eq. (8), provided that the
solution is exactly known, a series of uniform excess risk bounds were derived over binary prediction
classes (Chen & Lee, 2018; 2020) and bounded liner prediction classes (Foster & Syrgkanis, 2019).
The exact solutions of ℓ0-ERM, however, is computationally intractable in general high-dimensional
cases due to the NP-hardness of problem. Therefore, it is more realistic and desirable to establish
generalization bounds for approximate ℓ0-estimators such as the IHT-style algorithms (Yuan et al.,
2018; Garg & Khandekar, 2009; Li et al., 2016). Particularly for misspecified sparsity models, a set
of sparse excess risk bounds with slow and fast rates were established through the lens of uniform
stability theory under proper regularity conditions (Yuan & Li, 2022).
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