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Abstract001

Incorporating external knowledge is crucial for002
knowledge-intensive tasks, such as question003
answering and fact checking. However, lan-004
guage models (LMs) may ignore relevant in-005
formation that contradicts outdated parametric006
memory or be distracted by irrelevant contexts.007
While many context utilisation manipulation008
techniques (CMTs) that encourage or suppress009
context utilisation have recently been proposed010
to alleviate these issues, few have seen sys-011
tematic comparison. In this paper, we develop012
CUB (Context Utilisation Benchmark) to help013
practitioners within retrieval-augmented gen-014
eration (RAG) identify the best CMT for their015
needs. CUB allows for rigorous testing on016
three distinct context types, observed to cap-017
ture key challenges in realistic context utilisa-018
tion scenarios. With this benchmark, we eval-019
uate seven state-of-the-art methods, represen-020
tative of the main categories of CMTs, across021
three diverse datasets and tasks, applied to nine022
LMs. Our results show that most of the existing023
CMTs struggle to handle the full set of types of024
contexts that may be encountered in real-world025
retrieval-augmented scenarios. Moreover, we026
find that many CMTs display an inflated per-027
formance on simple synthesised datasets, com-028
pared to more realistic datasets with naturally029
occurring samples. Altogether, our results show030
the need for holistic tests of CMTs and the de-031
velopment of CMTs that can handle multiple032
context types.033

1 Introduction034

Context utilisation is a key component of language035

models (LMs) used for retrieval-augmented gen-036

eration (RAG), as the benefits of retrieving exter-037

nal information are only realised if the generative038

model makes adequate use of the retrieved infor-039

mation. While recent research has identified many040

benefits of augmenting LMs with retrieved infor-041

mation (Shuster et al., 2021; Hagström et al., 2023),042

it has also identified weaknesses of LMs used for043
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Figure 1: The Context Utilisation Benchmark. We eval-
uate a range of LMs under different CMTs on samples
from NQ, DRUID and CounterFact for gold, conflicting
and irrelevant contexts.

RAG, of which many are associated with context 044

utilisation. For example, LMs can easily be dis- 045

tracted by irrelevant contexts (Shi et al., 2023) or 046

ignore relevant contexts due to memory-context 047

conflicts (Xu et al., 2024). The robustness of LMs 048

to irrelevant contexts is important as information 049

retrieval systems used for RAG are not guaranteed 050

to always retrieve relevant information. Moreover, 051

as information may be updated to conflict with the 052

training data of the LM, the model should prioritise 053

the most recently updated information. 054

As a consequence, many different methods for 055

increasing or suppressing LM context utilisation, 056

henceforth referred to as CMTs (Context utilisa- 057

tion Manipulation Techniques), have been pro- 058

posed. The methods encompass a broad range 059

of approaches, from different decoding methods 060

(Shi et al., 2024; Kim et al., 2024) to fine-tuning 061

methods (Li et al., 2023), prompting (Liu et al., 062
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2023), multi-agent (Feng et al., 2024; Du et al.,063

2024), and mechanistic interventions (Ortu et al.,064

2024; Jin et al., 2024). While each method yields065

promising results in isolation, their evaluation is of-066

ten limited to narrow or idealised settings, leaving067

open the question of which approaches are applica-068

ble in real-world RAG scenarios. To address this069

evaluation gap, we develop a comprehensive CMT070

benchmark to test and compare different CMTs071

on datasets representative of different domains and072

tasks (Figure 1). Our contributions are as follows:073

• We develop CUB (Context Utilisation Bench-074

mark) to allow for a comprehensive evalua-075

tion and comparison of CMTs (§3).1 CUB076

systematically tests the sensitivity of CMTs077

to underlying model and naturally occurring078

context types (gold, conflicting and irrelevant)079

on tasks representative of synthesised and re-080

alistic RAG scenarios.081

• We evaluate a cohort of state-of-the-art CMTs082

representative of the main categories of CMTs083

(§4) on our benchmark (§6).084

• We provide a deeper analysis of what CMT085

works best for a given scenario and identify086

areas of improvement for CMTs. We find087

that CMTs struggle to optimise performance088

across all context types, e.g. one approach089

may improve robustness to irrelevant contexts090

but degrade the utilisation of relevant contexts.091

This points to the need of CMTs that work092

well across all context types.093

2 Related Work094

Context-intensive datasets We consider two095

main categories of context-intensive datasets: 1)096

datasets representing knowledge-intensive tasks, i.e.097

tasks for which access to external context is cru-098

cial, and 2) datasets designed to diagnose model099

adaptability to external knowledge. Examples100

of datasets representative of knowledge-intensive101

tasks are Natural Questions (NQ), DRUID, the102

KILT datasets and PubMedQA (Kwiatkowski et al.,103

2019; Hagström et al., 2024; Petroni et al., 2021;104

Jin et al., 2019). Examples of diagnostic datasets105

representative of the latter category are Counter-106

Fact and ConflictQA (Meng et al., 2022; Xie et al.,107

2024a). These datasets contain synthesised queries108

based on fact triplets from LAMA (Petroni et al.,109

2019) (e.g. Thomas Ong-citizen of-Singapore) for110

which contexts have been synthesised to induce111

1Dataset and code will be available upon publication.

knowledge conflicts by promoting answers in con- 112

flict with the parametric memory of the studied LM 113

(e.g. “Pakistan” as opposed to “Singapore”). Diag- 114

nostic datasets have found widespread use for work 115

on mechanistic interpretability and the evaluation 116

of context utilisation (Meng et al., 2022; Geva et al., 117

2023; Ortu et al., 2024). 118

Previous work has typically evaluated differ- 119

ent CMTs on either of the dataset categories. 120

CUB incorporates datasets representative of both 121

knowledge-intensive tasks and diagnostic datasets, 122

thus enabling comprehensive evaluations of CMTs 123

in different settings. 124

CMTs Many context utilisation manipulation 125

techniques have recently been proposed. Exist- 126

ing CMTs can be categorised into one of four main 127

groups based on intervention level, i.e. what as- 128

pect of the model they manipulate. 1) fine-tuning 129

CMTs update model parameters to modify context 130

utilisation. For example, fine-tuning on distracting 131

contexts was found to yield improved robustness 132

to distracting contexts (Li et al., 2023; Shen et al., 133

2024; Yoran et al., 2024). Moreover, Fang et al. 134

(2024) specifically focus on different types of re- 135

trieval noise likely to be encountered in real-world 136

environments and develop a fine-tuning approach 137

to handle these. 2) prompting techniques modify 138

the input to the LM to improve context utilisation, 139

representing minimally modified settings. 3) mech- 140

anistic interventions on the LM modify certain 141

model components at inference time to alter context 142

utilisation. Examples involve attention modifica- 143

tion (Ortu et al., 2024; Jin et al., 2024) and SpARe 144

interventions (Zhao et al., 2025). Lastly, 4) decod- 145

ing methods involve a modified decoding approach, 146

applied to the output logits, to manipulate context 147

utilisation. Examples include context-aware con- 148

trastive decoding (Yuan et al., 2024; Kim et al., 149

2024; Shi et al., 2024; Wang et al., 2024; Zhao 150

et al., 2024) and lookback lens decoding (Chuang 151

et al., 2024). 152

Apart from intervention level, many of the CMTs 153

have different objectives, focused on improving one 154

or multiple aspects of context utilisation. CMTs 155

may focus on improving robustness to irrelevant 156

contexts, faithfulness to conflicting contexts, or 157

faithfulness to contexts in general. 158

Previous work has mainly focused on evaluating 159

one CMT at a time, potentially due to the lack of 160

a unified benchmark for CMTs. In this paper, we 161

evaluate representatives from each of the four main 162
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Dataset Split #samples %Gold %Conflict. %Irrel.

CounterFact dev 198 33.3 33.3 33.3
test 2,499 33.3 33.3 33.3

NQ dev 198 33.3 33.3 33.3
test 4,945 33.4 33.1 33.4

DRUID dev 198 33.3 33.3 33.3
test 4,302 43.5 56.1 0.4

Table 1: Statistics of the datasets that form CUB. ‘Con-
flict.’ denotes conflicting contexts and ‘Irrel.’ irrelevant
contexts.

categories of CMTs on CUB, comparing a total of163

seven CMTs.164

Benchmarks To the knowledge of the authors,165

there is not yet a benchmark for CMTs. The closest166

examples of existing benchmarks are RAG-Bench167

by Fang et al. (2024), KILT by Petroni et al. (2021)168

and AxBench by Wu et al. (2025). The first evalu-169

ates the retrieval-noise robustness of LMs, the sec-170

ond performance of RAG systems as a whole, and171

the latter steering techniques for LMs, focusing on172

safety and reliability. CUB takes inspiration from173

these benchmarks to create a comprehensive and174

relevant benchmark for the evaluation of CMTs.175

3 CUB: A Context Utilisation Benchmark176

Given a CMT, CUB is designed to test the tech-177

nique across different datasets, models and metrics.178

To unify the tests, CUB also incorporates a pre-179

defined method for the hyperparameter search of180

the CMT.181

3.1 Language Models182

CUB evaluates the model sensitivity of CMTs on183

up to nine different LMs. The open-sourced models184

covered by the benchmark are GPT-2 XL, Pythia185

(6.9B), Qwen2.5 1.5B, Qwen2.5 7B, Qwen2.5 32B186

(Radford et al., 2019; Biderman et al., 2023; Yang187

et al., 2024). For the Qwen models we include188

the instruction-tuned variants. We also evaluate189

the API-based LLM Cohere Command A with190

111B parameters.2 The model selection is per-191

formed to enable comparisons across model fami-192

lies, model sizes, instruction-tuning and API-based193

LLMs. However, all LMs are not compatible with194

all CMTs evaluated on CUB – the selection of LMs195

onto which a CMT is applied depends on the CMT,196

further explained in Section 4. In addition, we197

adapt the prompts in CUB with prompt templates198

2https://cohere.com/blog/command-a

compatible with each model type under considera- 199

tion (base, instruction-tuned and chat-API). 200

3.2 Datasets 201

To evaluate how CMTs respond to different types of 202

contextual information, CUB evaluates each CMT 203

on CounterFact, NQ and DRUID (see Table 1). The 204

inclusion of these datasets is based on three key cri- 205

teria: (i) diversity in task difficulty, (ii) diversity in 206

realistic and synthesised RAG scenarios, and (iii) 207

high utilisation in related work. CounterFact rep- 208

resents a causal language modelling task based on 209

a controlled setup with simple counterfactual con- 210

texts synthesised to conflict with model memory. 211

NQ represents a popular, and more realistic setup, 212

focused on RAG for open-domain QA of greater 213

difficulty with contexts sampled from Wikipedia. 214

DRUID is a fairly new dataset, representing an- 215

other important RAG task – that of automated fact- 216

checking; this requires a greater level of reasoning 217

based on naturally occurring claims and evidence 218

sampled from the internet. While DRUID has yet to 219

see widespread use in studies of context utilisation, 220

we include it in CUB as it is one of few datasets 221

closely aligned with real-world RAG scenarios. 222

For each dataset, we curate samples represen- 223

tative of the three types of contexts that may be 224

encountered in realistic RAG scenarios: 1) gold 225

contexts that are relevant and do not contradict LM 226

memory, 2) conflicting contexts that are relevant 227

but contradict LM memory or gold labels, and 3) 228

irrelevant contexts that should be ignored by the 229

LM (Fang et al., 2024). For each dataset, we sam- 230

ple validation and test splits. To allow for fair and 231

unified comparisons between CMTs, the validation 232

set is used to tune potential hyperparameters of the 233

CMT under evaluation. The test split is used for 234

the final evaluation. More details on the datasets 235

can be found in Appendix B. 236

CounterFact To construct a CounterFact dataset 237

with counterfactual contexts, we first identify sam- 238

ples from LAMA that have been memorised by 239

Pythia 6.9B, following the approach by Saynova 240

et al. (2025). We base the CounterFact dataset on 241

Pythia to obtain a set of samples likely to have 242

been memorised by all CUB models, since LMs 243

have been found to memorise more facts as they 244

grow in size (Saynova et al., 2025). We confirm 245

this in Appendix B; all CUB LMs are found to 246

have memorised at least 70% of the CounterFact 247

samples. Based on the known fact triplets, we sam- 248
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ple conflicting contexts following the approach of249

Meng et al. (2022). We also sample gold contexts250

that simply state the correct triplet. For the irrel-251

evant contexts, we randomly sample fact triplets252

unrelated to the sample query.253

NQ The gold context samples are simply the orig-254

inal NQ samples. For the collection of samples255

with conflicting contexts, we follow a substitution256

approach inspired by the method of Longpre et al.257

(2021). We create conflicting contexts that promote258

a different answer simply by taking the gold con-259

text and substituting the gold answer in the context.260

The substitute answer is sampled to yield coherent261

conflicting contexts, and to have a different mean-262

ing compared to the gold answer. For the collection263

of samples with irrelevant contexts, we apply a LM264

re-ranker to identify the most relevant non-gold265

paragraph from the Wikipedia page in which the266

gold context was found. With this approach, we col-267

lect irrelevant contexts representative of real-world268

RAG scenarios.269

DRUID The <claim, evidence> samples of270

DRUID have been manually annotated for stance271

of the evidence (supports, refutes, insufficient or272

irrelevant). We map stance to context type as de-273

scribed in Appendix B. No context synthesis is nec-274

essary for the DRUID samples as they, by virtue of275

utilising naturally occurring samples from a RAG276

pipeline, already contain samples representative of277

gold, conflicting and irrelevant contexts. Moreover,278

since DRUID represents a reasoning task, asking279

the model whether provided evidence supports the280

claim under consideration (True or False), or is in-281

sufficient (None), the output space for the DRUID282

samples is limited to three tokens (True, False or283

None).284

3.3 Metrics285

Similarly to Jin et al. (2024) we use a binary score286

to measure context utilisation. We refer to it as the287

binary context utilisation (BCU) score and define288

it as follows. For relevant contexts (gold and con-289

flicting) the score is 1 if the LM prediction is the290

same as the token promoted by the context, tC , and291

0 otherwise. For irrelevant contexts the score is 1292

if the LM prediction is the same as the memory293

token, tM , (i.e. the prediction made by the model294

before any context has been introduced) and 0 oth-295

erwise. We report the averaged BCU score per296

context type. To assess the relative effectiveness of297

CMTs, we also report the net gain of each CMT,298

Methods Objective Level
Tuning

Cost
Inference

Cost

Fine-tuning Both Fine-tuning High Low
Prompting Both Prompt. Low Mid

Multi-agent Both Prompt. None High
PH3 +context Faith Mech. High Low

COIECD Faith Decoding Mid Mid
PH3 +memory Robust Mech. High Low

ACD Robust Decoding None Mid

Table 2: Comparison of CMTs by objective, interven-
tion level, and cost. The CMTs are coloured by objective
with warm colours for ‘Both’, blue for ‘Faith’ and green
for ‘Robust’. ‘Mech.’ denotes mechanistic interven-
tions.

compared to when no CMT is applied, using BCU 299

score (∆ = BCUCMT − BCURegular). We also con- 300

sider continuous context utilisation, CCU, a more 301

fine-grained metric that measures the change in out- 302

putted token probabilities as context is introduced. 303

Appendix C contains more details on the metric. 304

We also measure the accuracy of each method. 305

For CounterFact and DRUID, accuracy is measured 306

based on whether the first generated token is the 307

same as the first gold token. For NQ, for which the 308

correct answer may be different permutations of the 309

same set of tokens, we measure accuracy based on 310

whether the first output token (e.g. “July”) matches 311

any of the tokens in the answer (e.g. “15 July”). 312

3.4 Hyperparameter Search 313

For CMTs requiring hyperparameter tuning, we use 314

the validation set of each dataset to select values 315

that maximise the average BCU across all context 316

types, unless a method-specific tuning procedure 317

is explicitly specified. This ensures a fair compari- 318

son between CMTs. Further details are shown in 319

Appendix D. 320

4 Context Utilisation Manipulation 321

Techniques 322

We benchmark a total of seven different CMTs on 323

CUB, all of which are state-of-the-art representa- 324

tives from the main categories of CMTs. Table 2 325

summarises the key characteristics of the CMTs, 326

including their main objective, intervention level, 327

and cost in terms of tuning and inference. As a 328

baseline, we also evaluate regular LMs on the same 329

input, with no CMT applied (Regular). 330

Fine-tuning We adapt the approach of Li et al. 331

(2023), which fine-tunes LMs to ensure the usage 332

of relevant contexts. It considers four different 333
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Figure 2: Overview of the multi-agent approach.

types of contexts: relevant, irrelevant, empty, and334

counterfactual contexts. To align the domain with335

our evaluation data, we curate the fine-tuning data336

with two QA datasets (Joshi et al., 2017; Rajpurkar337

et al., 2018), one FC dataset (Schlichtkrull et al.,338

2023), and one sentence completion dataset (Mar-339

janovic et al., 2024). Before fine-tuning each LM,340

we elicit its parametric answers by querying with-341

out contexts. We then select the questions that the342

LM answered correctly and pair them with irrele-343

vant and empty contexts. The fine-tuning data thus344

contains contexts that can be irrelevant, counterfac-345

tual, or empty. During fine-tuning, we train the LM346

to generate answers aligned with the provided con-347

text. When the context is irrelevant, we train the348

LM to be robust, i.e. ignore the context and output349

its parametric answer. Due to the computational350

costs associated with fine-tuning billion-sized LMs,351

we use the Low-Rank Adaptation method (Hu et al.,352

2021). Additional details can be found in Ap-353

pendix E.354

Prompting We curate a set of 12 prompts for355

each evaluation dataset and optimise the prompt356

selection to each evaluated model. Each set of357

prompts is based on 6 prompts curated by a human,358

similarly to the approach by Jin et al. (2024), and359

6 prompts generated by a LLM,3 similarly to the360

approach by Wu et al. (2025).361

Multi-agent Inspired by LM agents and self-362

refinement (Du et al., 2024; Feng et al., 2024;363

Madaan et al., 2023), which are widely adopted364

techniques in reasoning tasks, we decompose con-365

text utilisation into two components – relevance366

and context faithfulness – and assign each as a sep-367

arate task to an individual LM agent. We aim to368

examine whether LMs are capable of accurately369

evaluating context relevance and answer faithful-370

ness, to subsequently self-correct themselves for371

improved faithfulness to relevant contexts. As il-372

lustrated in Figure 2, we first assess relevance us-373

3Mainly by ChatGPT, but also by Microsoft Co-pilot.

ing the relevance agent to determine whether the 374

provided context should be used. Then, the faith- 375

fulness agent provides feedback on the model re- 376

sponse that was generated with context. If the feed- 377

back indicates that the initial answer is unfaithful, 378

the model generates a self-refined answer based 379

on that feedback. Given that these tasks require 380

instruction-following capabilities, we restrict our 381

evaluation to instruction-tuned or chat LMs. Fur- 382

ther details can be found in Appendix F. 383

Mechanistic interventions: PH3 We adopt the 384

PH3 method by Jin et al. (2024). The method is 385

implemented in two steps: 1) identification of at- 386

tention heads responsible for context or memory 387

reliance via path patching and 2) pruning the iden- 388

tified attention heads for increased memory or con- 389

text usage. To identify attention heads, we use the 390

CounterFact datasets with samples that elicit exact 391

fact recall in each studied model (Saynova et al., 392

2025). For the evaluation on our studied datasets, 393

we tune the number of heads to prune on the vali- 394

dation splits of each evaluation dataset, similarly 395

to the approach by Jin et al. (2024). PH3 can be 396

used in two different modes – suppressing context 397

attention heads or suppressing memory attention 398

heads. We tune the attention head configuration for 399

each mode and report the results (PH3 +context 400

enhances context utilisation by the suppression of 401

memory heads, and vice versa for PH3 +memory). 402

Context-aware contrastive decoding: ACD and 403

COIECD Contrastive decoding approaches ad- 404

just the model’s output distribution based on two 405

distributions: one for which only the query is given 406

as input and one for which the context also is 407

included. Among them, contextual information- 408

entropy constraint decoding (COIECD; Yuan et al., 409

2024) is designed to detect the presence of knowl- 410

edge conflicts and selectively resolve them, aiming 411

to improve faithfulness to conflicting context with- 412

out compromising performance when no conflict 413

exists. In contrast, adaptive contrastive decoding 414

(ACD; Kim et al., 2024) addresses the challenge of ir- 415

relevant context by using entropy-based weighting 416

to adaptively ensemble parametric and contextual 417

distributions. We test both on CUB to cover the 418

nuance in decoding approaches. 419

5 Features Impacting Context Utilisation 420

To deepen our understanding of the results on CUB, 421

we complement the benchmark with an analysis of 422
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features likely to impact context utilisation. Our423

goal is to better understand why certain CMTs and424

LMs work well or not. We study features on a425

model and input level, described below.426

5.1 Model Features427

By virtue of the large LM coverage in CUB, we428

are able to measure multiple salient model fea-429

tures. We analyse model size, whether the model430

is instruction-tuned and strength of model mem-431

ory. To control for external confounders related to432

model family and implementation, we only mea-433

sure correlations with model size and instruction-434

tuning across Qwen models. Strength of model435

memory is measured as the softmaxed logits for436

the top token predicted by the LM when only the437

query is provided (without context).438

5.2 Input Features439

We measure multiple input characteristics found to440

impact context utilisation for humans and/or LMs.441

By considering context length and Flesch reading442

ease score, we aim to measure whether the context443

is difficult to understand (Gao et al., 2024; Vladika444

and Matthes, 2023). Using distractor rate, we445

aim to measure whether the context contains dis-446

tracting information (Shaier et al., 2024). With447

query-context overlap we also aim to measure448

query-context similarity (Wan et al., 2024). Lastly,449

we check the answer position (Liu et al., 2024)450

and if the evaluated LMs find the context relevant.451

More details on the detection of the features can be452

found in Appendix G.453

5.3 Metric for Feature Impact454

By virtue of the unified setup of CUB, we can study455

correlation coefficients to investigate the impact of456

different input and model features with a low risk of457

confounders. We use Spearman’s ρ to measure the458

impact of features on context utilisation, proxied459

by BCU.460

6 Main Results on CUB461

The CUB results can be found in Figures 3 and 4,462

CCU scores and more detailed results can be found463

in Appendix A. We structure the results analysis464

around a set of main findings.465

6.1 Overall Trends466

We first note that the BCU and CCU scores in467

Figures 3 and 5, respectively, support the same468

trends and focus the analysis on the BCU results.469

Context utilisation improves with model size. 470

From Figure 3, we note how larger Regular LMs 471

generally outperform smaller LMs when all con- 472

text types are taken into consideration for NQ 473

and DRUID. On NQ, the best performing model 474

is Qwen 32B, and on DRUID the best perform- 475

ing model is Command A. Notably, applying a 476

CMT to a small LM can lead to context utilisa- 477

tion on par with that of a regular larger LM, such 478

as Fine-tuning Qwen 7B compared to Regular 479

Qwen 32B on NQ. Meanwhile, on CounterFact, we 480

observe how Regular model performance across 481

all contexts generally decreases when model size is 482

increased. This is counter-intuitive and we attribute 483

the phenomena to the artificial nature of the dataset, 484

which likely confuses the larger LMs. In addition, 485

we know the NQ and DRUID datasets to be more 486

difficult, demanding greater model capacity. This 487

shows how it is insufficient to evaluate context util- 488

isation only on simple datasets like CounterFact. 489

Most CMTs show an inflated performance on 490

conflicting CounterFact contexts. All LMs that 491

do not already have a perfect BCU score on the con- 492

flicting CounterFact contexts improve to a perfect 493

score of 1.0 under Prompting, PH3 +context, and 494

Fine-tuning. However, similar improvements 495

cannot be observed for the same CMTs on NQ or 496

DRUID. These results show how CMTs proven to 497

work well in simpler settings are not guaranteed to 498

work equally well in more complex settings, prov- 499

ing the necessity of holistic tests. A deeper analysis 500

of the inflated CMT performance on CounterFact 501

is provided in Appendix A. 502

6.2 CMT Comparsion 503

We further assess whether the CMTs consistently 504

outperform Regular across different context types. 505

Figure 4 shows the average ∆ of each CMT, ag- 506

gregated over all evaluated models. A value above 507

zero indicates that the CMT yields a net improve- 508

ment over Regular, whereas a negative value high- 509

lights cases where the CMT degrades performance. 510

There is a conflict between optimising for utilisa- 511

tion of relevant contexts and robustness to irrel- 512

evant contexts. As each CMT exhibits trade-offs 513

across context types or only marginal differences 514

from Regular, the overall CMT ∆ values (To- 515

tal) converge to near zero across NQ and DRUID. 516

Consequently, we find no CMT that is superior. 517

For instance, PH3 +context shows consistent im- 518

provements over Regular in conflicting contexts, 519
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Figure 3: BCU scores for the evaluated context utilisation manipulation methods applied to the evaluated models
and datasets. ‘Total’ denotes the averaged performance across all context types. A high BCU score is desirable
regardless of context type.
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Figure 4: Model-averaged relative performance (∆) of
each CMT compared to Regular across datasets and
context types. The horizontal bars represent the standard
deviation.

but underperforms when applied to irrelevant con- 520

texts. Conversely, ACD, which handles irrelevant 521

context effectively, performs worse in the conflict- 522

ing context setting. Unsurprisingly, these findings 523

highlight that the effectiveness of each CMT is 524

closely tied to the alignment between the objective 525

of the CMT and the type of context being provided. 526

RAG practitioners knowing beforehand that their 527

retrieval system is e.g. prone to return irrelevant 528

information, may prioritise robustness over strong 529

context utilisation and can select e.g. ACD as the 530

CMT most suitable to their needs. 531

Prompting-based CMTs, such as Prompting and 532

Multi-agent, show relatively stable performance 533

across context types, without substantial drops in 534

∆. Compared to other CMTs, they offer this robust- 535

ness with lower optimisation and implementation 536

costs. Multi-agent shows clear gains in irrelevant 537

contexts but limited efficacy in gold and conflicting 538
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settings. This suggests that LMs are capable of539

identifying irrelevant contexts, but remain limited540

in effectively utilising relevant ones.541

In realistic RAG scenarios, it will not be known542

beforehand what types of context will be provided543

to the LM. Therefore, it is important that CMTs544

work optimally across all context types. Our work545

shows that while we have CMTs that work well546

for relevant or irrelevant contexts alone, there cur-547

rently are no CMTs that handle both relevant and548

irrelevant contexts well.549

6.3 Impact of Model and Input Features550

See Tables 6 and 7 for Spearman’s ρ between BCU551

and the features described in Section 5. Results are552

averaged across models.553

Larger LMs perform better on NQ and DRUID.554

Corroborating our findings in Section 6.1, we555

observe a positive correlation with model size556

(ρ ≈ 0.3) on DRUID gold contexts. Multi-agent557

also works significantly better with bigger LMs on558

DRUID gold contexts (ρ = 0.42). In addition, we559

observe a positive correlation with model size on560

NQ gold contexts (ρ ∈ [0.20, 0.37]). For Counter-561

Fact, we observe how model size does not correlate562

with performance.563

Instruction-tuning is beneficial for conflicting564

and irrelevant DRUID contexts. We note how565

instruction tuning generally correlates with im-566

proved performance on conflicting and irrelevant567

DRUID contexts (ρ ∈ [0.29, 0.77] depending on568

CMT). The conflicting DRUID contexts frequently569

require the LM to be able to abstain (i.e. re-570

spond with a ‘None’) when presented with insuf-571

ficient contexts, which is something instruction-572

tuned models may be more adept at.573

Conversely, instruction-tuning is clearly detri-574

mental for conflicting CounterFact contexts (ρ ≤575

−0.36), potentially because the LMs have been576

more tuned to be critical of unreliable information,577

as opposed to following a pure causal language578

modelling objective.579

A strong model memory corresponds to high580

performance on irrelevant contexts from NQ581

and CounterFact. We observe high correlations582

(ρ ≈ 0.36) between memory strength and robust-583

ness to irrelevant contexts for Regular on Coun-584

terFact and NQ. These correlations increase when585

Fine-tuning, ACD or Prompting is applied. Fur-586

thermore, we observe for CounterFact how strong587

Regular model memory correlates with low perfor- 588

mance on conflicting contexts (ρ = −0.44). This 589

is expected – previous work has already shown how 590

LMs are resistant to synthesised contexts that con- 591

tradict the internal model memory (Longpre et al., 592

2021; Xie et al., 2024a). 593

Answer position matters little for context utilisa- 594

tion. We measure low correlation values (below 595

0.3) across all settings for answer position in the 596

context and Flesch reading ease score, and have 597

thus omitted them in Table 7. Previous work has al- 598

ready found the Flesch reading ease score to show 599

low correlations with LM context utilisation; our 600

work further supports this finding (Hagström et al., 601

2024). Liu et al. (2024) found the answer posi- 602

tion impactful for the utilisation of long contexts. 603

CUB does not contain equally long contexts, which 604

potentially explains why we do not see the same 605

impact of answer position. 606

Context utilisation on gold NQ contexts is de- 607

graded on long contexts with high distractor 608

rates. We measure weak negative correlations 609

with context length (ρ = −0.23) and distractor rate 610

(ρ = −0.19) with respect to Regular performance 611

on gold NQ contexts. This is expected – long gold 612

contexts or contexts with a high rate of distractors 613

should be more difficult to process and utilise. We 614

hypothesise the fairly low correlation levels are a 615

consequence of each feature alone not being suffi- 616

ciently predictive of model performance. 617

7 Conclusion 618

We introduce CUB, a benchmark that evaluates 619

CMTs across diverse context types, datasets, and 620

models. Under CUB, we evaluate a representative 621

set of CMTs, covering varying context utilisation 622

objectives and techniques. Results on CUB reveal 623

a trade-off across most CMTs between robustness 624

to irrelevant context and faithful utilisation of rel- 625

evant context. Our analysis of features impacting 626

context utilisation highlights the strong influence 627

of model features, while input features have lim- 628

ited impact when analysed in separation . Overall, 629

our findings highlight the need for holistic testing, 630

as tests on synthesised datasets may show inflated 631

performance, and the need for CMTs that can adapt 632

to varied context conditions. Taken together, our 633

work paves the way for the development of more 634

effective RAG systems. 635
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Limitations636

CUB only incorporates contexts with lengths of637

up to that of a paragraph. It would also be relevant638

to evaluate CMTs in long-context settings. The639

long-context setting was not included in CUB, and640

left for future work, as it is fundamentally different641

from the normal context setting studied in CUB,642

posing new challenges for context utilisation and643

its evaluation, associated with a different set of644

CMTs (Shaham et al., 2023; Zhang et al., 2024a;645

Min et al., 2023; Zhang et al., 2024b).646

While the dataset selection for CUB was per-647

formed to cover a wide span of task difficulty and648

RAG scenarios, the insights provided by CUB649

are limited to those derived from the underlying650

datasets. Moreover, all datasets are in English,651

leaving open the question of whether the findings652

generalise across languages (Chirkova et al., 2024).653

Lastly, CUB does not explicitly consider654

datasets involving temporal dynamics, while it655

would be interesting to study. Time-sensitive in-656

formation may lead to naturally occurring conflicts657

in context, adding nuance to the analysis of con-658

text utilisation (Loureiro et al., 2022; Xiong et al.,659

2024).660

References661

Stella Biderman, Hailey Schoelkopf, Quentin Gregory662
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-663
lahan, Mohammad Aflah Khan, Shivanshu Purohit,664
USVSN Sai Prashanth, Edward Raff, et al. 2023.665
Pythia: A suite for analyzing large language mod-666
els across training and scaling. In International667
Conference on Machine Learning, pages 2397–2430.668
PMLR.669

Nadezhda Chirkova, David Rau, Hervé Déjean, Thibault670
Formal, Stéphane Clinchant, and Vassilina Nikoulina.671
2024. Retrieval-augmented generation in multi-672
lingual settings. In Proceedings of the 1st Work-673
shop on Towards Knowledgeable Language Models674
(KnowLLM 2024), pages 177–188, Bangkok, Thai-675
land. Association for Computational Linguistics.676

Yung-Sung Chuang, Linlu Qiu, Cheng-Yu Hsieh, Ran-677
jay Krishna, Yoon Kim, and James R. Glass. 2024.678
Lookback lens: Detecting and mitigating contextual679
hallucinations in large language models using only680
attention maps. In Proceedings of the 2024 Con-681
ference on Empirical Methods in Natural Language682
Processing, pages 1419–1436, Miami, Florida, USA.683
Association for Computational Linguistics.684

Yilun Du, Shuang Li, Antonio Torralba, Joshua B.685
Tenenbaum, and Igor Mordatch. 2024. Improving686
factuality and reasoning in language models through687

multiagent debate. In Proceedings of the 41st Inter- 688
national Conference on Machine Learning, ICML’24. 689
JMLR.org. 690

Feiteng Fang, Yuelin Bai, Shiwen Ni, Min Yang, Xiao- 691
jun Chen, and Ruifeng Xu. 2024. Enhancing noise 692
robustness of retrieval-augmented language models 693
with adaptive adversarial training. In Proceedings 694
of the 62nd Annual Meeting of the Association for 695
Computational Linguistics (Volume 1: Long Papers), 696
pages 10028–10039, Bangkok, Thailand. Association 697
for Computational Linguistics. 698

Shangbin Feng, Weijia Shi, Yike Wang, Wenxuan Ding, 699
Vidhisha Balachandran, and Yulia Tsvetkov. 2024. 700
Don‘t hallucinate, abstain: Identifying LLM knowl- 701
edge gaps via multi-LLM collaboration. In Proceed- 702
ings of the 62nd Annual Meeting of the Association 703
for Computational Linguistics (Volume 1: Long Pa- 704
pers), pages 14664–14690, Bangkok, Thailand. As- 705
sociation for Computational Linguistics. 706

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, 707
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang, 708
and Haofen Wang. 2024. Retrieval-augmented gener- 709
ation for large language models: A survey. Preprint, 710
arXiv:2312.10997. 711

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir 712
Globerson. 2023. Dissecting recall of factual associa- 713
tions in auto-regressive language models. In Proceed- 714
ings of the 2023 Conference on Empirical Methods in 715
Natural Language Processing, pages 12216–12235, 716
Singapore. Association for Computational Linguis- 717
tics. 718

Lovisa Hagström, Denitsa Saynova, Tobias Norlund, 719
Moa Johansson, and Richard Johansson. 2023. The 720
effect of scaling, retrieval augmentation and form on 721
the factual consistency of language models. In Pro- 722
ceedings of the 2023 Conference on Empirical Meth- 723
ods in Natural Language Processing, pages 5457– 724
5476, Singapore. Association for Computational Lin- 725
guistics. 726

Lovisa Hagström, Sara Vera Marjanović, Haeun Yu, 727
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A Additional results 1034

A.1 CUB results 1035

The exact CUB results can be found in Tables 3 1036

and 4. CCU scores can be found in Figure 5. For 1037

the CCU scores, we note that they generally follow 1038

the same trends as the BCU scores in Figure 3; 1039

some CMTs perform better on gold, conflicting or 1040

irrelevant contexts, while none are superior when 1041

all context types are taken into consideration. The 1042

only disparate trend at odds with the BCU scores 1043

is that Fine-tuning Qwen models that have been 1044

instruction-tuned stand out by performing extra 1045

poorly with respect to CCU score. We hypothe- 1046

sise that this is a consequence of an increase in 1047

PM (tC |Q) (i.e. prediction probability without con- 1048

text) from the fine-tuning, yielding less room for 1049

improvement in prediction confidence when con- 1050

text is introduced. 1051

A.2 Analysis of inflated CMT performance on 1052

CounterFact 1053

The inflated performance on CounterFact, observed 1054

in Figures 3 and 4, can potentially be explained 1055

by a suboptimal default prompt for CounterFact. 1056

Following previous work, the default prompt only 1057

contained the example to be completed, without 1058

any additional instructions or few-shot examples. 1059

For NQ and DRUID, the default prompt contained 1060

task instructions and few-shot examples. Further- 1061

more, we observe how Prompting performs best 1062

on CounterFact on average, with a near perfect per- 1063

formance, indicating that a better default prompt 1064

may have neutralised any additional improvements 1065

from other CMTs. This raises the question of 1066

whether certain CMTs only address low context 1067

utilisation when caused by poor prompting, finding 1068

no leverage if the prompt already is adequate. 1069

A.3 Quality check of irrelevant NQ contexts 1070

For the CUB evaluation, we find 244 (14%) NQ 1071

samples with the context type ‘irrelevant’ for which 1072

at least 5 of the 9 evaluated LMs switch prediction 1073

to the gold answer after having seen the sample 1074

context. This indicates that some of the irrelevant 1075

contexts may actually be gold, as a result of quality 1076

issues with the annotation for NQ (in our sampling 1077

we assume that Wikipedia paragraphs not anno- 1078

tated as gold are not gold). However, we also note 1079

for some of these 244 samples that the context may 1080

simply be the heading of a Wikipedia page with the 1081

same title as the gold answer (e.g. “<H1> Scythe 1082
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Dataset CounterFact NQ DRUID

Model Method Gold Conflict. Irrel. Tot. Gold Conflict. Irrel. Tot. Gold Conflict. Irrel. Tot.

GPT-2 XL

Regular 100.0 96.4 81.0 92.5 43.0 37.6 13.7 31.4 80.9 7.3 76.5 39.6
Fine-tuning 100.0 92.9 82.4 91.8 46.9 42.3 13.9 34.3 72.4 12.6 47.1 38.7
Prompting 100.0 96.4 81.0 92.5 42.4 36.2 14.2 30.9 83.3 1.9 100.0 37.7
PH3 +context 100.0 99.4 44.8 81.4 42.3 36.4 14.0 30.9 79.6 11.6 76.5 41.5
PH3 +memory 100.0 99.5 76.8 92.1 41.4 35.4 13.9 30.2 81.1 3.9 100.0 37.9
COIECD 100.0 97.6 70.8 89.5 43.4 37.4 9.0 29.9 69.8 21.3 41.2 42.4
ACD 99.6 49.1 91.0 79.9 31.8 29.1 36.4 32.4 81.3 3.2 100.0 37.6

PYTHIA 6.9B

Regular 100.0 56.5 91.5 82.7 52.7 43.9 16.2 37.6 84.1 9.4 52.9 42.1
Fine-tuning 100.0 65.1 89.4 84.8 54.0 49.6 14.6 39.4 81.5 1.4 94.1 36.6
Prompting 100.0 99.6 86.1 95.2 52.7 43.9 16.2 37.6 82.8 7.1 64.7 40.3
PH3 +context 98.3 89.7 62.4 83.5 55.9 46.3 14.6 38.9 87.1 8.7 58.8 43.0
PH3 +memory 91.4 4.0 90.5 61.9 48.9 39.2 18.1 35.4 86.2 8.4 70.6 42.5
COIECD 99.9 66.0 86.0 84.0 53.9 43.8 10.2 35.9 72.0 13.0 41.2 38.8
ACD 100.0 9.7 96.0 68.6 43.8 36.1 32.6 37.5 87.4 5.2 100.0 41.3

QWEN2.5 1.5B

Regular 99.9 53.1 80.0 77.6 44.0 41.1 22.4 35.8 84.7 11.6 70.6 43.6
Fine-tuning 100.0 90.3 85.7 92.0 66.1 61.9 18.5 48.8 79.7 18.5 52.9 45.3
Prompting 100.0 97.2 82.2 93.2 63.9 57.5 32.1 51.1 85.0 7.0 82.4 41.2
PH3 +context 100.0 99.0 62.5 87.2 44.2 40.9 21.7 35.6 63.8 40.4 17.6 50.5
PH3 +memory 98.9 38.5 84.9 74.1 19.4 17.3 26.0 20.9 81.2 1.4 100.0 36.5
COIECD 94.8 1.2 89.8 61.9 42.4 39.2 45.8 42.5 87.8 4.8 100.0 41.3
ACD 97.6 7.7 90.3 65.2 46.7 42.8 39.3 42.9 87.8 4.8 100.0 41.3

QWEN2.5 1.5B
Instruct

Regular 97.6 31.7 86.2 71.8 70.1 62.8 28.2 53.7 47.3 70.3 94.1 60.4
Fine-tuning 100.0 93.2 82.7 92.0 51.0 45.6 42.2 46.3 72.0 14.5 29.4 39.6
Prompting 99.3 94.2 76.1 89.9 68.1 60.5 29.1 52.5 47.3 70.3 94.1 60.4
Multi-agent 98.6 24.7 99.9 74.4 68.5 60.2 45.0 57.9 44.4 72.4 94.1 60.3
PH3 +context 96.0 42.5 59.8 66.1 67.1 59.9 26.0 51.0 61.1 64.7 94.1 63.2
PH3 +memory 94.6 11.5 85.5 63.9 48.8 42.7 22.0 37.8 25.4 76.1 94.1 54.1
COIECD 97.8 35.8 82.7 72.1 70.5 63.9 22.1 52.1 64.1 59.6 94.1 61.7
ACD 95.6 12.1 93.5 67.1 66.7 60.0 43.4 56.7 12.3 79.9 94.1 50.6

QWEN2.5 7B

Regular 96.6 36.0 79.0 70.5 71.7 65.6 25.3 54.2 91.8 23.6 41.2 53.3
Fine-tuning 99.6 47.4 85.0 77.4 76.7 68.8 41.7 62.4 86.4 1.8 82.4 39.0
Prompting 100.0 97.8 81.3 93.0 74.7 66.5 31.2 57.5 94.9 13.8 58.8 49.3
PH3 +context 97.8 96.3 16.7 70.3 69.7 63.6 25.3 52.8 83.4 50.1 17.6 64.5
PH3 +memory 96.8 4.0 84.2 61.6 66.5 59.5 26.6 50.8 90.5 4.1 76.5 42.0
COIECD 96.6 36.0 79.0 70.5 71.7 65.6 25.3 54.2 91.8 23.6 41.2 53.3
ACD 94.7 2.3 92.7 63.2 72.3 59.9 41.9 58.0 89.8 12.6 70.6 46.4

QWEN2.5 7B
Instruct

Regular 100.0 25.9 84.5 70.1 76.2 65.0 31.0 57.4 87.8 57.1 64.7 70.5
Fine-tuning 100.0 62.3 81.0 81.1 59.6 52.7 48.1 53.5 96.4 13.2 70.6 49.6
Prompting 100.0 98.6 35.3 78.0 75.8 66.7 29.1 57.2 87.8 57.1 64.7 70.5
Multi-agent 95.7 11.6 100.0 69.1 66.1 52.2 73.3 63.9 58.6 63.2 94.1 61.3
PH3 +context 98.3 84.0 54.1 78.8 75.3 64.4 26.9 55.5 86.9 54.7 70.6 68.8
PH3 +memory 100.0 27.6 82.8 70.1 76.4 66.1 30.9 57.8 3.1 81.4 70.6 47.3
COIECD 99.9 9.1 90.6 66.5 76.2 60.1 40.8 59.0 76.4 56.5 76.5 65.2
ACD 99.6 11.5 96.9 69.3 76.3 62.1 44.6 61.0 76.2 57.6 76.5 65.8

QWEN2.5 32B

Regular 99.9 77.6 77.2 84.9 77.3 66.7 39.7 61.2 98.2 19.8 41.2 54.0
Fine-tuning 98.1 88.4 81.9 89.4 79.2 69.2 46.3 64.9 98.0 9.7 82.4 48.4
Prompting 100.0 100.0 80.7 93.6 77.2 66.9 42.8 62.3 98.2 22.5 52.9 55.6
COIECD 97.4 96.5 58.5 84.1 76.1 67.4 32.7 58.7 97.1 27.8 29.4 57.9
ACD 97.6 2.3 92.6 64.1 75.7 56.1 57.6 63.1 97.6 14.1 58.8 50.6

QWEN2.5 32B
Instruct

Regular 99.4 4.9 92.6 65.6 81.4 59.9 43.8 61.7 97.9 43.2 76.5 67.2
Fine-tuning 100.0 18.0 93.6 70.5 71.6 64.9 42.0 59.5 96.4 20.8 52.9 53.8
Prompting 99.9 95.3 69.1 88.1 81.4 59.9 43.8 61.7 97.2 48.7 82.4 70.0
Multi-agent 100.0 20.6 100.0 73.5 76.8 57.2 49.2 61.1 93.1 55.6 94.1 72.1
COIECD 98.0 6.0 70.8 58.3 79.7 61.6 36.8 59.4 97.7 38.3 64.7 64.3
ACD 98.4 2.5 97.5 66.1 80.1 55.2 57.4 64.2 88.5 51.4 94.1 67.7

COMMAND A
Regular 100.0 100.0 4.1 68.0 79.2 62.7 28.9 56.9 95.9 57.3 76.5 74.2
Prompting 97.0 92.8 48.4 79.4 79.2 62.7 28.9 56.9 93.6 64.4 70.6 77.2
Multi-agent 99.6 39.1 99.9 79.6 74.3 49.7 58.8 61.0 91.9 48.2 94.1 67.4

Table 3: BCU scores on CUB. A high BCU score is desirable regardless of context type. Gold denotes relevant
contexts that also contain the gold answer. Conflict. denotes ‘Conflicting’ – relevant contexts that contain a
conflicting answer, dissimilar from the correct answer or model memory. Irrel. denotes irrelevant contexts. Tot.
denotes the average performance across all context types. Values marked in bold indicate the top CMT score across
LMs for each dataset and context type.
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Dataset CounterFact NQ DRUID

Model Method Gold Conflict. Irrel. Tot. Gold Conflict. Irrel. Tot. Gold Conflict. Irrel. Tot.

GPT-2 XL

Regular 100.0 2.9 69.7 57.5 43.0 8.1 20.8 24.0 80.9 69.0 64.7 74.2
Fine-tuning 100.0 3.2 70.6 57.9 46.9 7.7 23.8 26.2 72.4 65.5 41.2 68.4
Prompting 100.0 2.9 69.7 57.5 42.4 7.5 20.3 23.5 83.3 73.8 76.5 78.0
PH3 +context 100.0 0.4 29.8 43.4 42.3 7.8 20.4 23.6 79.6 65.7 52.9 71.7
PH3 +memory 100.0 0.4 65.1 55.1 41.4 7.4 20.1 23.0 81.1 72.6 76.5 76.3
COIECD 100.0 2.3 67.7 56.7 43.4 7.1 19.4 23.3 69.8 51.0 47.1 59.1
ACD 99.6 29.4 72.3 67.1 31.8 7.7 18.1 19.2 81.3 73.0 76.5 76.6

PYTHIA 6.9B

Regular 100.0 37.2 91.4 76.2 52.7 9.8 29.6 30.8 84.1 49.9 47.1 64.7
Fine-tuning 100.0 26.5 91.8 72.8 54.0 5.6 26.6 28.8 81.5 74.4 70.6 77.5
Prompting 100.0 0.5 86.1 62.2 52.7 9.8 29.6 30.8 82.8 57.1 47.1 68.3
PH3 +context 98.3 2.5 62.1 54.3 55.9 8.4 30.0 31.5 87.1 55.2 52.9 69.0
PH3 +memory 91.4 86.0 90.4 89.2 48.9 11.5 29.7 30.1 86.2 55.1 64.7 68.7
COIECD 99.9 27.3 86.0 71.0 53.9 9.8 27.4 30.4 72.0 32.9 35.3 50.0
ACD 100.0 77.6 95.9 91.2 43.8 12.1 29.7 28.6 87.4 69.2 82.4 77.2

QWEN2.5 1.5B

Regular 99.9 41.9 74.2 72.0 44.0 7.7 22.0 24.6 84.7 63.5 52.9 72.7
Fine-tuning 100.0 5.5 77.0 60.8 66.1 18.8 42.4 42.5 79.7 60.3 58.8 68.7
Prompting 100.0 1.6 79.7 60.4 63.9 17.0 38.5 39.8 85.0 69.8 58.8 76.4
PH3 +context 100.0 0.7 50.1 50.3 44.2 12.6 25.5 27.5 63.8 26.9 11.8 42.9
PH3 +memory 98.9 52.8 78.0 76.6 19.4 8.1 10.4 12.7 81.2 74.5 70.6 77.4
COIECD 94.8 71.9 79.0 81.9 42.4 16.3 27.6 28.8 87.8 72.7 70.6 79.3
ACD 97.6 70.8 79.4 82.6 46.7 15.5 28.0 30.1 87.8 72.7 70.6 79.3

QWEN2.5 1.5B
Instruct

Regular 97.6 54.5 79.6 77.2 70.1 16.1 37.1 41.2 47.3 11.1 0.0 26.8
Fine-tuning 100.0 7.0 78.0 61.7 51.0 7.6 27.8 28.8 72.0 28.5 47.1 47.5
Prompting 99.3 5.4 74.1 59.6 68.1 15.7 38.8 41.0 47.3 11.1 0.0 26.8
Multi-agent 98.6 68.7 83.0 83.4 68.5 16.9 36.1 40.6 44.4 10.0 0.0 24.9
PH3 +context 96.0 35.9 58.2 63.4 67.1 15.4 34.7 39.1 61.1 18.9 0.0 37.2
PH3 +memory 94.6 68.9 78.3 80.6 48.8 13.1 25.8 29.3 25.4 7.2 0.0 15.1
COIECD 97.8 50.4 77.1 75.1 70.5 15.5 35.9 40.7 64.1 19.2 0.0 38.7
ACD 95.6 77.7 82.1 85.1 66.7 19.0 39.0 41.6 12.3 3.6 0.0 7.4

QWEN2.5 7B

Regular 96.6 52.2 72.6 73.8 71.7 16.7 39.0 42.6 91.8 57.6 23.5 72.3
Fine-tuning 99.6 45.1 77.1 73.9 76.7 18.5 50.5 48.6 86.4 74.8 70.6 79.8
Prompting 100.0 2.4 86.2 62.9 74.7 17.9 44.6 45.8 94.9 64.2 35.3 77.4
PH3 +context 97.8 0.2 6.0 34.7 69.7 17.0 38.7 41.9 83.4 30.5 5.9 53.4
PH3 +memory 96.8 88.6 79.4 88.2 66.5 17.6 37.7 40.6 90.5 73.4 70.6 80.8
COIECD 96.6 52.2 72.6 73.8 71.7 16.7 39.0 42.6 91.8 57.6 23.5 72.3
ACD 94.7 85.5 80.4 86.9 72.3 23.9 47.2 47.8 89.8 68.1 47.1 77.5

QWEN2.5 7B
Instruct

Regular 100.0 42.0 85.4 75.8 76.2 19.8 47.1 47.8 87.8 28.3 0.0 54.1
Fine-tuning 100.0 34.8 88.0 74.3 59.6 8.1 35.3 34.4 96.4 65.0 64.7 78.6
Prompting 100.0 1.9 37.5 46.5 75.8 20.3 46.0 47.4 87.8 28.3 0.0 54.1
Multi-agent 95.7 85.5 94.0 91.7 66.1 21.4 40.9 42.9 58.6 18.5 29.4 36.0
PH3 +context 98.3 12.5 55.6 55.5 75.3 18.5 44.1 46.0 86.9 31.5 0.0 55.5
PH3 +memory 100.0 50.9 83.8 78.2 76.4 20.1 47.7 48.1 3.1 2.5 0.0 2.7
COIECD 99.9 75.0 90.8 88.6 76.2 25.8 48.2 50.1 76.4 29.2 5.9 49.7
ACD 99.6 85.1 94.0 92.9 76.3 25.0 49.3 50.3 76.2 29.1 5.9 49.5

QWEN2.5 32B

Regular 99.9 21.4 75.0 65.4 77.3 20.8 47.7 48.7 98.2 58.5 29.4 75.7
Fine-tuning 98.1 9.8 77.2 61.7 79.2 20.3 55.9 51.9 98.0 66.6 64.7 80.3
Prompting 100.0 0.2 80.7 60.3 77.2 19.9 50.2 49.2 98.2 57.5 41.2 75.2
COIECD 97.4 3.2 59.7 53.4 76.1 18.8 43.9 46.3 97.1 47.4 17.6 68.9
ACD 97.6 85.7 81.3 88.2 75.7 31.4 53.3 53.5 97.6 66.1 47.1 79.8

QWEN2.5 32B
Instruct

Regular 99.4 81.0 93.5 91.3 81.4 28.6 52.2 54.2 97.9 41.8 29.4 66.2
Fine-tuning 100.0 78.5 92.2 90.2 71.6 13.3 44.3 43.2 96.4 61.8 47.1 76.8
Prompting 99.9 3.2 70.6 57.9 81.4 28.6 52.2 54.2 97.2 36.2 11.8 62.6
Multi-agent 100.0 78.5 94.7 91.1 76.8 22.7 40.7 46.8 93.1 31.7 17.6 58.4
COIECD 98.0 9.7 72.4 60.0 79.7 23.4 49.4 50.9 97.7 43.3 29.4 66.9
ACD 98.4 94.7 95.4 96.2 80.1 35.3 55.4 57.0 88.5 36.0 17.6 58.8

COMMAND A
Regular 100.0 0.0 4.4 34.8 79.2 12.3 33.8 41.9 95.9 30.3 5.9 58.8
Prompting 97.0 0.7 47.8 48.5 79.2 12.3 33.8 41.9 93.6 23.3 0.0 53.8
Multi-agent 99.6 32.2 90.2 74.0 74.3 13.5 40.4 42.8 91.9 33.2 23.5 58.7

Table 4: Accuracy with respect to gold label on CUB. Gold denotes relevant contexts that also contain the gold
answer. Conflict. denotes ‘Conflicting’ – relevant contexts that contain a conflicting answer, dissimilar from the
correct answer or model memory. Irrel. denotes irrelevant contexts. Tot. denotes the average performance across all
context types. Values marked in bold indicate the top CMT score across LMs on each dataset and context type.
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Figure 5: CCU scores for the evaluated context utilisation manipulation methods applied to the evaluated models
and datasets. ‘Total’ denotes the averaged performance across all context types. A high CCU score is desirable
regardless of context type. The red vertical lines indicate scores of 0.

</H1>” when the gold answer is “scythe” for the1083

query “what is the name of the weapon the grim1084

reaper carries?”), without providing sufficient evi-1085

dence with respect to the question, raising the ques-1086

tion of whether they should be considered relevant1087

by the model.1088

A.4 Performance of Relevance Judgement1089

For the Multi-agent technique, we investigate1090

whether instruction-tuned LMs are capable of iden-1091

tifying irrelevant context when explicitly prompted1092

to do so. According to Table 5, the Multi-agent1093

approach demonstrates strong performance in de-1094

tecting irrelevant contexts and in recognising gold1095

contexts as relevant. Although it does not reliably1096

maintain a closed-book response when directly gen-1097

erating responses (i.e. Regular), it can accurately1098

detect irrelevance when equipped with an explicit1099

relevance assessment setup.1100

The prediction accuracy of relevance assessment 1101

on conflicting contexts is consistently lower than 1102

that on other contexts. This discrepancy is par- 1103

ticularly evident in the conflicting contexts of the 1104

CounterFact dataset. For instance, we found that 1105

LMs often generate feedback such as: “X is Y, not 1106

Z. Therefore, the context is irrelevant”. This sug- 1107

gests that LM interprets factual inconsistency with 1108

its internal knowledge as a signal of irrelevance, 1109

even when instructed to ignore its own memory. 1110

One possible explanation for this behaviour lies 1111

in the nature of the CounterFact dataset itself. Con- 1112

texts in CounterFact are typically composed of 1113

single-sentence facts, which may lack sufficient 1114

surrounding information to render the context trust- 1115

worthy from the model’s perspective. Such be- 1116

haviour is less pronounced in NQ and DRUID 1117

datasets, where the provided contexts are relatively 1118

longer and richer, offering more semantic cues that 1119
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Gold Conflict. Irrel. All

QWEN2.5 1.5B-I

CounterFact 98.56 24.25 99.88 74.23
NQ 92.44 91.89 26.26 70.13

DRUID 93.27 96.52 17.65 94.79

QWEN2.5 7B-I

CounterFact 99.16 10.68 99.88 69.91
NQ 80.70 76.14 59.35 72.05

DRUID 82.53 65.56 94.12 73.06

QWEN2.5 32B-I

CounterFact 99.64 19.57 99.40 72.87
NQ 94.74 92.50 25.77 70.94

DRUID 98.66 76.25 88.24 86.05

COMMAND A

CounterFact 100.00 99.88 99.88 99.92
NQ 94.31 91.82 37.69 74.56

DRUID 93.11 68.55 88.24 79.31

Table 5: Multi-agent: Relevance assessment accuracy

may help the LM interpret the information as con-1120

textually anchored (Xie et al., 2024b).1121

The performance of relevance assessment is par-1122

ticularly low on the NQ dataset compared to other1123

datasets. Since irrelevant contexts of NQ dataset1124

are sampled from the same document and may be1125

topically or semantically similar to the question,1126

distinguishing relevance may become more chal-1127

lenging.1128

A.5 Features Impacting Context Utilisation1129

See Table 6 for the correlation values between1130

model features and context utilisation. See Table 71131

for the correlation values between input features1132

and context utilisation.1133

B Data Collection1134

B.1 CounterFact1135

Samples from the CounterFact dataset can be found1136

in Table 8. The relations covered by the dataset are1137

capital of (80%), country of origin (9%), location1138

of formation (9%), field of work (1%) and country1139

of citizenship (1%).1140

Rate of memorisation of CUB models We eval-1141

uate all Regular LMs on the samples from CUB1142

CounterFact without context. The results can be1143

found in Table 9. We observe rates above 70% for1144

all models. As expected, the highest memorisation1145

rate is found for Pythia. The lowest is found for1146

Dataset Context CMT Corr.

Model size

DRUID Gold Multi-agent 0.42
DRUID Gold ACD 0.41
NQ Gold PH3 +memory 0.37
DRUID Gold Regular 0.36
DRUID Gold Prompting 0.36
NQ Conflicting PH3 +memory 0.33
NQ Gold Regular 0.20
NQ Irrelevant Regular 0.14
NQ Conflicting Regular 0.09
CounterFact Gold Regular 0.04
CounterFact Irrelevant Regular 0.02
CounterFact Conflicting Regular -0.01
DRUID Conflicting Regular -0.08
DRUID Irrelevant Regular -0.20
DRUID Irrelevant PH3 +memory -0.33
CounterFact Conflicting Fine-tuning -0.33
DRUID Irrelevant COIECD -0.44

Instruct tuned

DRUID Conflicting PH3 +memory 0.77
DRUID Irrelevant PH3 +context 0.65
DRUID Conflicting ACD 0.54
DRUID Conflicting Prompting 0.46
DRUID Conflicting Regular 0.40
DRUID Conflicting COIECD 0.34
DRUID Irrelevant Regular 0.29
NQ Gold Regular 0.13
CounterFact Irrelevant Regular 0.12
NQ Irrelevant Regular 0.06
NQ Conflicting Regular 0.05
CounterFact Gold Regular 0.01
DRUID Gold Regular -0.19
CounterFact Conflicting Regular -0.36
DRUID Gold ACD -0.38
CounterFact Conflicting PH3 +context -0.43
DRUID Gold PH3 +memory -0.72

Strength of memory

DRUID Conflicting PH3 +memory 0.54
NQ Irrelevant Fine-tuning 0.47
NQ Irrelevant ACD 0.39
CounterFact Irrelevant Fine-tuning 0.39
NQ Irrelevant Prompting 0.39
NQ Irrelevant COIECD 0.38
DRUID Conflicting ACD 0.37
NQ Irrelevant Regular 0.37
CounterFact Irrelevant Regular 0.35
DRUID Conflicting Prompting 0.34
CounterFact Irrelevant ACD 0.32
CounterFact Irrelevant PH3 +memory 0.31
CounterFact Irrelevant COIECD 0.30
DRUID Conflicting Regular 0.26
NQ Gold Regular 0.18
DRUID Irrelevant Regular 0.15
NQ Conflicting Regular 0.09
CounterFact Gold Regular 0.04
DRUID Gold Regular 0.02
CounterFact Conflicting ACD -0.31
CounterFact Conflicting COIECD -0.42
DRUID Gold PH3 +memory -0.43
CounterFact Conflicting Regular -0.44

Table 6: Spearman’s ρ between BCU and different
model aspects. Correlation values for Regular or with
an absolute value above 0.3 are shown. Correlation
values with an absolute value below 0.3 are marked in
gray. Significant correlation values (p-value < 0.05) are
marked in bold.

GPT-2 XL, which can be expected as the model is 1147

quite small and old. 1148

Prompt templates Following the same approach 1149

as previous work, no specific prompt template was 1150

used for the LMs evaluated on CounterFact. The 1151
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Dataset Context CMT Corr.

Context length

CounterFact Irrelevant Regular 0.06
CounterFact Conflicting Regular 0.04
CounterFact Gold Regular 0.02
DRUID Conflicting Regular -0.02
DRUID Irrelevant Regular -0.02
NQ Irrelevant Regular -0.06
DRUID Gold Regular -0.08
NQ Conflicting Regular -0.22
NQ Gold Regular -0.23
DRUID Irrelevant Multi-agent -0.32

Query-context overlap

DRUID Gold Regular 0.02
DRUID Irrelevant Regular -0.03
NQ Gold Regular -0.06
NQ Conflicting Regular -0.08
NQ Irrelevant Regular -0.08
DRUID Conflicting Regular -0.13
DRUID Irrelevant Multi-agent -0.30

Distractor rate

CounterFact Gold Regular 0.00
NQ Conflicting Regular -0.19
NQ Gold Regular -0.19
CounterFact Conflicting Regular -0.22
CounterFact Conflicting ACD -0.34
CounterFact Conflicting Multi-agent -0.49

Relevance judgement

CounterFact Conflicting Multi-agent 0.53
CounterFact Conflicting Regular 0.17
NQ Irrelevant Regular 0.11
DRUID Irrelevant Regular 0.05
NQ Gold Regular 0.04
DRUID Gold Regular 0.03
NQ Conflicting Regular 0.02
CounterFact Irrelevant Regular 0.01
CounterFact Gold Regular -0.01
DRUID Conflicting Regular -0.15
NQ Irrelevant Multi-agent -0.36
DRUID Irrelevant Multi-agent -0.49

Table 7: Spearman’s ρ between BCU and different in-
put aspects. Correlation vallues for Regular or with
an absolute value above 0.3 are shown. Correlation
values with an absolute value below 0.3 are marked in
gray. Significant correlation values (p-value < 0.05) are
marked in bold.

Prompt Type

Fact: Athens, the capital city of Greece. Gold
Athens, the capital city of

Fact: Thomas Ong is a citizen of Pakistan. Conflicting
Thomas Ong is a citizen of

Fact: Melbourne, that is the capital of Jordan. Irrelevant
Prince Oscar Bernadotte is a citizen of

Table 8: CounterFact prompts with contexts and corre-
sponding context types. For prompts without context,
the first line (starting with “Fact:”) is simply removed.

LMs were evaluated in a simple sentence comple-1152

tion format as shown in Table 8.1153

However, since the sentence completion format1154

is less compatible with the instruction-tuned mod-1155

els, we added a small prompt template for the eval-1156

uation of the instruction-tuned Qwen models on1157

Model Accuracy

GPT-2 XL 71.8
Pythia 99.6
Qwen 1.5B 77.0
Qwen 1.5B-I 83.1
Qwen 7B 79.7
Qwen 7B-I 93.6
Qwen 32B 78.0
Qwen 32B-I 94.5
Command A 90.6

Table 9: Accuracy, proxying memorisation rate, on sam-
ples from CounterFact without context.

CounterFact, as follows. 1158

Prompt without context for instruction-tuned LMs.
1159

<|im_start|>system 1160
You are Qwen, created by Alibaba Cloud. You are 1161

a helpful assistant.<|im_end|> 1162
<|im_start|>user 1163
Complete the following sentence. Only answer 1164

with the next word. 1165
<prompt><|im_end|> 1166
<|im_start|>assistant 11671168

Prompt with context for instruction-tuned LMs.
1169

<|im_start|>system 1170
You are Qwen, created by Alibaba Cloud. You are 1171

a helpful assistant.<|im_end|> 1172
<|im_start|>user 1173
Complete the following sentence. Only answer 1174

with the next word. 1175
Fact: <context> 1176
<prompt><|im_end|> 1177
<|im_start|>assistant 11781179

B.2 NQ 1180

We retain all samples from the development set 1181

of NQ4 for which a short answer of fewer than 1182

five tokens is identified in the raw HTML of the 1183

corresponding Wikipedia pages. Samples from the 1184

NQ dataset can be found in Table 10. 1185

Sampling of conflicting contexts For a given 1186

question, context and short answer, we perform the 1187

following steps to identify substitute answers for 1188

conflicting contexts: 1189

1. Check if the short answer is a date5. If so, sam- 1190

ple a new random date in the interval [1900, 1191

2030) and format it in the same way as the 1192

gold date. 1193

2. If the short answer is not a date, prompt an 1194

LLM6 with the question and short answer to 1195

4https://console.cloud.google.com/storage/
browser/natural_questions/v1.0/dev

5Using the dateutil.parser in Python.
6The Cohere model command-r-plus-08-2024 from

https://docs.cohere.com/v2/docs/command-r-plus.
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Question Short answer Context Type

when did the movie
napoleon dynamite
come out?

June 11, 2004 <Table> <Tr> <Th colspan="2"> Napoleon Dynamite </Th> </Tr> <Tr> <Td colspan="2">
Theatrical release poster </Td> </Tr> <Tr> <Th> Directed by </Th> <Td> Jared Hess </Td>
</Tr> <Tr> <Th> Produced by </Th> <Td> <Ul> <Li> Jeremy Coon </Li> <Li> Chris Wyatt
</Li> <Li> Sean Covel </Li> <Li> Jory Weitz </Li> </Ul> </Td> </Tr> <Tr> <Th> Screenplay
by </Th> <Td> <Ul> <Li> Jared Hess </Li> <Li> Jerusha Hess </Li> </Ul> </Td> </Tr> <Tr>
<Th> Based on </Th> <Td> Peluca by Jared Hess </Td> </Tr> <Tr> <Th> Starring </Th> <Td>
<Ul> <Li> Jon Heder </Li> <Li> Jon Gries </Li> <Li> Efren Ramirez </Li> <Li> Tina Majorino
</Li> <Li> Aaron Ruell </Li> <Li> Diedrich Bader </Li> <Li> Haylie Duff </Li> </Ul> </Td>
</Tr> <Tr> <Th> Music by </Th> <Td> John Swihart </Td> </Tr> <Tr> <Th> Cinematography
</Th> <Td> Munn Powell </Td> </Tr> <Tr> <Th> Edited by </Th> <Td> Jeremy Coon </Td>
</Tr> <Tr> <Th> Production company </Th> <Td> <Ul> <Li> MTV Films </Li> <Li> Napoleon
Pictures </Li> <Li> Access Films </Li> </Ul> </Td> </Tr> <Tr> <Th> Distributed by </Th>
<Td> <Ul> <Li> Fox Searchlight Pictures (North America) </Li> <Li> Paramount Pictures
(International) </Li> </Ul> </Td> </Tr> <Tr> <Th> Release date </Th> <Td> <Ul> <Li> January
17, 2004 (2004 - 01 - 17) (Sundance) </Li> <Li> June 11, 2004 (2004 - 06 - 11) (United States)
</Li> <Li> </Li> <Li> </Li> <Li> </Li> </Ul> </Td> </Tr> <Tr> <Th> Running time </Th>
<Td> 95 minutes </Td> </Tr> <Tr> <Th> Country </Th> <Td> United States </Td> </Tr> <Tr>
<Th> Language </Th> <Td> English </Td> </Tr> <Tr> <Th> Budget </Th> <Td> $400,000
</Td> </Tr> <Tr> <Th> Box office </Th> <Td> $46.1 million </Td> </Tr> </Table>

Gold

when was the lupus
foundation of amer-
ica founded?

1977 <P> The Lupus Foundation of America (LFA), founded in 1967, is a national voluntary health
organization based in Washington, D.C. with a network of chapters, offices and support groups
located in communities throughout the United States . The Foundation is devoted to solving the
mystery of lupus, one of the world’s cruelest, most unpredictable and devastating diseases, while
giving caring support to those who suffer from its brutal impact . Its mission is to improve the
quality of life for all people affected by lupus through programs of research, education, support
and advocacy . </P>

Conflicting

who has scored the
most tries in rugby
union?

Daisuke Ohata <P> This is a list of the leading try scorers in rugby union test matches . It includes players with a
minimum of 30 test tries . </P>

Irrelevant

Table 10: NQ samples and corresponding context types.

provide a substitute answer of the same format.1196

If the proposed answer is already found in1197

the sample context, prompt the model, for a1198

maximum of 20 times, to generate another1199

answer until a substitute answer not already1200

found in the context has been generated.1201

The prompt used to query an LLM for a substitute1202

answer was as follows:1203

Prompt for getting substitute answers.
1204

## Instructions1205
Please provide an incorrect answer to the1206

example below.1207
The incorrect answer should be incorrect in the1208

sense that it should be significantly1209
different from the original answer. At the1210
same time, it should be a plausible answer1211
to the given question.1212

The incorrect answer should follow the same1213
formatting as the original answer such that1214
it should be possible to directly replace1215
the original answer with the incorrect1216
answer in any context.1217

The incorrect answer should be a single word or1218
a short phrase.1219

Only output the incorrect answer.1220
1221

## Example1222
Question: <question>1223
Original answer:<target_true>1224
Incorrect answer:12251226

In the event that the model generated a substitute1227

answer that already could be found in the context,1228

the previous model answer was added to the chat1229

history together with the following new user query:1230

Prompt for getting another substitute answer.
1231

Please provide another incorrect answer 1232
following the same format as the original 1233
answer. Only output the incorrect answer. 12341235

Quality of conflicting contexts A manual inspec- 1236

tion of 200 samples found the method reliable for 1237

producing adequate conflicting contexts with an 1238

accuracy of 90% (11 samples corresponded to poor 1239

formatting, 4 were too similar to gold, and 4 were 1240

dropped due to data formatting issues or the LLM 1241

being unable to generate a substitute answer not 1242

already found in the context). In addition, we in- 1243

spect the CUB results to ascertain the quality of 1244

the conflicting context sampling, see Appendix A. 1245

We also experimented with a method based on 1246

named entities and random sampling for producing 1247

substitute answers for the conflicting contexts. In 1248

the method, the entity type of the answer to be re- 1249

placed was detected and another named entity of 1250

the same type was randomly sampled from a NE 1251

dataset as the replacement. We found this method 1252

to work poorly compared to the LLM based ap- 1253

proach. Mainly because the detected NEs lacked 1254

sufficient information for a successful sampling 1255

of replacements (e.g. “2024” and “last year” may 1256

both be labelled as time entities, while they are not 1257

interchangeable in all contexts). 1258

Sampling of irrelevant contexts Given a query 1259

and a corresponding Wikipedia page, the NQ anno- 1260
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tators were instructed to mark the first paragraph in1261

the Wikipedia page that contains an answer to the1262

query. Therefore, to ensure that we only sample ir-1263

relevant contexts, we perform the sampling over all1264

paragraphs before the gold paragraph in the given1265

Wikipedia page.1266

We use the Jina Reranker v27 to identify the1267

most relevant non-gold paragraph. It is a modern1268

LM re-ranker that has been proven to work well on1269

NQ (Hagström et al., 2025).1270

Prompt templates The 2-shot prompts used to1271

evaluate the LMs on NQ were as follows.1272

Prompt without context.
1273

Answer the following questions.1274
Question: When is the first episode of House of1275

the Dragon released?1276
Answer: August 21, 20221277

1278
Question: In what country will the 2026 Winter1279

Olympics be held?1280
Answer: Italy1281

1282
Question: <question>1283
Answer:12841285

Prompt with context.
1286

Answer the following questions based on the1287
context below.1288

Question: When is the first episode of House of1289
the Dragon released?1290

Context: <Table> <Tr> <Th> Season </Th> <Th>1291
Episodes </Th> <Th> First released </Th> <Th1292
> Last released </Th> </Tr> <Tr> <Td> 1 </Td1293
> <Td> 10 </Td> <Td> August 21, 2022 </Td> <1294
Td> October 23, 2022 </Td> </Tr> <Tr> <Td> 21295
</Td> <Td> 8 </Td> <Td> June 16, 2024 </Td>1296
<Td> August 4, 20241297

</Td> </Tr> </Table1298
Answer: August 21, 20221299

1300
Question: Where will the 2026 Winter Olympics be1301

held?1302
Context: <P> The 2026 Winter Olympics (Italian:1303

Olimpiadi invernali del 2026), officially1304
the XXV Olympic Winter Games and commonly1305
known as Milano Cortina 2026, is an upcoming1306
international multi-sport event scheduled1307

to take place from 6 to 22 February 2026 at1308
sites across Lombardy and Northeast Italy.1309
</P>1310

Answer: Lombardy and Northeast Italy1311
1312

Question: <question>1313
Context: <context>1314
Answer:13151316

For the instruction-tuned Qwen models, a chat1317

template with slightly different prompt templates1318

was used. The 2-shot prompt templates for the1319

instruction-tuned models were as follows.1320
7jinaai/jina-reranker-v2-base-multilingual

Prompt without context for instruction-tuned LMs.
1321

<|im_start|>system 1322
You are Qwen, created by Alibaba Cloud. You are 1323

a helpful assistant.<|im_end|> 1324
<|im_start|>user 1325
Answer the question. Only answer with the answer. 1326

Examples of questions and desired answers 1327
are given below. 1328

1329
# Example 1 1330
Question: When is the first episode of House of 1331

the Dragon released? 1332
Answer: August 21, 2022 1333

1334
# Example 2 1335
Question: In what country will the 2026 Winter 1336

Olympics be held? 1337
Answer: Italy 1338

1339
# Now, answer the following question (only with 1340

the answer): 1341
Question:<question> 1342
Answer:<|im_end|> 1343
<|im_start|>assistant 13441345

Prompt with context for instruction-tuned LMs.
1346

<|im_start|>system 1347
You are Qwen, created by Alibaba Cloud. You are 1348

a helpful assistant.<|im_end|> 1349
<|im_start|>user 1350
Answer the question based on the provided 1351

context. Only answer with the answer. 1352
Examples of questions and desired answers 1353
are given below. 1354

1355
# Example 1 1356
Question: When is the first episode of House of 1357

the Dragon released? 1358
Context: <Table> <Tr> <Th> Season </Th> <Th> 1359

Episodes </Th> <Th> First released </Th> <Th 1360
> Last released </Th> </Tr> <Tr> <Td> 1 </Td 1361
> <Td> 10 </Td> <Td> August 21, 2022 </Td> < 1362
Td> October 23, 2022 </Td> </Tr> <Tr> <Td> 2 1363
</Td> <Td> 8 </Td> <Td> June 16, 2024 </Td> 1364
<Td> August 4, 2024 1365

</Td> </Tr> </Table 1366
Answer: August 21, 2022 1367

1368
# Example 2 1369
Question: Where will the 2026 Winter Olympics be 1370

held? 1371
Context: <P> The 2026 Winter Olympics (Italian: 1372

Olimpiadi invernali del 2026), officially 1373
the XXV Olympic Winter Games and commonly 1374
known as Milano Cortina 2026, is an upcoming 1375
international multi-sport event scheduled 1376
to take place from 6 to 22 February 2026 at 1377
sites across Lombardy and Northeast Italy. 1378
</P> 1379

Answer: Lombardy and Northeast Italy 1380
1381

# Now, answer the following question (only with 1382
the answer): 1383

Question: <question> 1384
Context: <context> 1385
Answer:<|im_end|> 1386
<|im_start|>assistant 13871388
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B.3 DRUID1389

We map the stances of DRUID to context type using1390

the following approach:1391

1. Gold: If the evidence is relevant and the stance1392

of the evidence aligns with the claim verdict1393

reached by the fact-check site (here consid-1394

ered gold). This automatically encompasses1395

most samples with evidence that has been sam-1396

pled from a fact-check site, as the stance of the1397

evidence is likely to align with the FC verdict.1398

2. Conflicting: If the evidence is relevant and1399

the stance of the evidence does not align with1400

the claim verdict. This automatically encom-1401

passes all samples with insufficient evidence,1402

as the original FC verdicts always are True,1403

Half True or False.1404

3. Irrelevant: If the evidence is irrelevant.1405

Samples from the DRUID dataset can be found1406

in Table 11. The evidence stance and fact-check1407

verdict distributions per context type can be found1408

in Tables 12 and 13.1409

Prompt templates The 2-shot prompts used for1410

evaluating the LMs on DRUID were as follows.1411

Prompt without context.
1412

Are the following claims True or False? Answer1413
None if you are not sure or cannot answer.1414

1415
Claimant: Viral post1416
Claim: "the new coronavirus has HIV proteins1417

that indicate it was genetically modified in1418
a laboratory."1419

Answer: False1420
1421

Claimant: Sara Daniels1422
Claim: "Blackpink released the single 'You me1423

too' in 2026."1424
Answer: None1425

1426
Claimant: <claimant>1427
Claim: "<claim>"1428
Answer:14291430

Prompt with context.
1431

Are the claims True or False based on the1432
accompanying evidence? If you are not sure1433
or cannot answer, say None.1434

1435
Claimant: Viral post1436
Claim: "the new coronavirus has HIV proteins1437

that indicate it was genetically modified in1438
a laboratory."1439

Evidence: "Microbiologists say the spike1440
proteins found in the new coronavirus are1441
different from the ones found in HIV. [...]1442
There is no evidence to suggest the1443
coronavirus was genetically modified."1444

Answer: False1445
1446

Claimant: Sara Daniels 1447
Claim: "Blackpink released the single 'You me 1448

too' in 2026." 1449
Evidence: "Blackpink released their album 'Born 1450

Pink' in 2022." 1451
Answer: None 1452

1453
Claimant: <claimant> 1454
Claim: "<claim>" 1455
Evidence: "<evidence>" 1456
Answer: 14571458

For the instruction-tuned Qwen models, a chat tem- 1459

plate with slightly different prompt templates was 1460

used for compatibility. The 2-shot prompt tem- 1461

plates for the instruction-tuned models were as fol- 1462

lows. 1463

Prompt without context for instruction-tuned LMs.
1464

<|im_start|>system 1465
You are Qwen, created by Alibaba Cloud. You are 1466

a helpful assistant.<|im_end|> 1467
<|im_start|>user 1468
Is the claim True or False? Answer None if you 1469

are not sure or cannot answer. Only answer 1470
with True, False or None. Examples of claims 1471
and desired answers are given below. 1472

1473
# Example 1 1474
Claimant: Viral post 1475
Claim: "the new coronavirus has HIV proteins 1476

that indicate it was genetically modified in 1477
a laboratory." 1478

Answer: False 1479
1480

# Example 2 1481
Claimant: Sara Daniels 1482
Claim: "Blackpink released the single 'You me 1483

too' in 2026." 1484
Answer: None 1485

1486
# Now, answer for the following claim: 1487
Claimant: <claimant> 1488
Claim: "<claim>" 1489
Answer (True, False or None):<|im_end|> 1490
<|im_start|>assistant 14911492

Prompt with context for instruction-tuned LMs.
1493

<|im_start|>system 1494
You are Qwen, created by Alibaba Cloud. You are 1495

a helpful assistant.<|im_end|> 1496
<|im_start|>user 1497
Is the claim True or False based on the 1498

accompanying evidence? If you are not sure 1499
or cannot answer, say None. Only answer with 1500
True, False or None. Examples of claims, 1501
evidence and desired answers are given below 1502
. 1503

1504
# Example 1 1505
Claimant: Viral post 1506
Claim: "the new coronavirus has HIV proteins 1507

that indicate it was genetically modified in 1508
a laboratory." 1509

Evidence: "Microbiologists say the spike 1510
proteins found in the new coronavirus are 1511
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Claimant Claim Verdict Evidence Type

Viral
Claim

Harvard professor
Charles Lieber was
arrested for manu-
facturing and selling
the new coronavirus
to China

False Lieber was arrested on January 28 for "making false statements to the agency of the United
States Government," or lying to federal authorities about his ties to China, as per the fact-check
report. The channel added that prosecutors have never alleged that Lieber was involved in
manufacturing and/or selling a virus to China. The full federal court complaint against Dr
Lieber can be read <a href="https://htv-prod-media.s3.amazonaws.com/files/lieber-complaint-
1586387800.pdf" rel="noopener noreferrer" target="_blank">here</a>.</p>.<p>The report also
clarified Lieber’s links to Wuhan. The report stated, "Lieber travelled to WUT (Wuhan University
of Technology) in mid-November 2011 ostensibly in order to participate in a Nano-Energy
Materials Forum."</p>.<p>On July 29, Dr Lieber’s attorney Marc Mukasey told WCVB Channel
5 that he didn’t hide anything or get paid as the government alleges.</p>.<p>Thus, the social
media claim that Harvard professor Dr Charles Lieber "made and sold" the Covid-19 virus to
China is false.</p>

Gold

FACEBOOK
POST

WikiLeaks has pub-
lished the 1st list of
black money holders
in Swiss banks.

False (See attached file: List of Black Money Holders from Wiki Conflicting

Irish
Congress
of Trade
Unions
(ICTU)

One in five school
staff in Northern Ire-
land are assaulted at
least once a week.

False Finnegan, who died in January 2002, had also abused boys at St. Colman’s College, a prestigious
Catholic boys’ secondary school in Newry, Northern Ireland. He taught there from 1967 to 1971
and again from 1973 to 1976, when he was appointed president of the school. He served in that
post until 1987. [...] Admitted on October 9, 2014 to sample charges of indecently assaulting
four boys as young as 10 at St Mary’s CBS primary school in Mullingar between 1984 and 1987.
Jailed for two years at Mullingar Circuit Court sitting in Tullamore. This concluded a ten-year
investigation by detectives in Mullingar. [...] When Smyth returned to Kilnacrott in 1983, he again
began abusing children in Belfast, including the girl who, on February 23, 1990, would meet with a
social worker at the Catholic Family Welfare Society in Belfast and start all the Smyth revelations.

Irrelevant

Table 11: DRUID samples and corresponding context types.

Context Evidence stance Count

Gold Refutes 1,579
Supports 359

Conflicting Refutes 35
Insufficient-refutes 437
Insufficient-contradictory 163
Insufficient-neutral 892
Insufficient-supports 585
Supports 367

Irrelevant not applicable 83

Table 12: Stance distribution per context type for
DRUID.

Context FC verdict Count

Gold False 1,579
True 359

Conflicting False 1,842
Half True 276
True 361

Irrelevant False 54
Half True 13
True 16

Table 13: Fact-check verdict distribution per context
type for DRUID.

different from the ones found in HIV. [...]1512
There is no evidence to suggest the1513
coronavirus was genetically modified."1514

Answer: False1515
1516

# Example 21517
Claimant: Sara Daniels1518
Claim: "Blackpink released the single 'You me1519

too' in 2026."1520
Evidence: "Blackpink released their album 'Born1521

Pink' in 2022."1522
Answer: None1523

1524
# Now, answer for the following claim:1525
Claimant: <claimant>1526
Claim: "<claim>"1527

Evidence: "<evidence>" 1528
Answer (True, False or None):<|im_end|> 1529
<|im_start|>assistant 15301531

C CCU metric 1532

BCU cannot measure the difference in model be- 1533

haviour when context is introduced, as it does not 1534

take model behaviour without context into consider- 1535

ation. To address this, we introduce CCU. Given a 1536

query Q and context C, CCU measures the change 1537

in probability for token t as follows. 1538

CCU(t) =



PM (t|Q,C)−PM (t|Q)
1−PM (t|Q)

if PM (t|Q,C)≥PM (t|Q),

PM (t|Q,C)−PM (t|Q)
PM (t|Q)

otherwise.

(1) 1539

For relevant contexts C we record CCU(tC), i.e. 1540

the scores for the token promoted by the context. 1541

For irrelevant contexts we record the CCU(tM ), 1542

i.e. the scores for the top token predicted by the 1543

model when prompted without context (memory). 1544

The range of CCU is [−1, 1], for which a value of 1545

−1 denotes that the model goes completely against 1546

the context when the context is relevant or against 1547

its memory when the context is irrelevant, and vice 1548

versa for CCU values of 1. We report the averaged 1549

CCU per context type. 1550

By measuring the token probabilities before and 1551

after context is introduced, the CCU metric more 1552

accurately captures how the LM is impacted by 1553
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context. However, this metric excludes the Com-1554

mand A model, which does not provide the output1555

logits necessary to compute CCU scores.1556

D Hyperparameter Search1557

D.1 Prompting1558

The tuned prompt found for each model and dataset1559

can be found in Table 14. Different sets of prompts1560

were experimented with depending on dataset and1561

model type. A set of 11 to 12 prompts were pro-1562

duced for each of CounterFact, NQ and DRUID1563

for the three different model types (causal LM,1564

instruction-tuned LMs and Command A), respec-1565

tively. Prompts with the same number are similar1566

to each other across model types (e.g. Prompt #21567

for Qwen2.5 on DRUID is similar to Prompt #21568

for instruction-tuned Qwen2.5 on DRUID). Prompt1569

sets across different datasets are dissimilar as they1570

are adapted to align the instructions and few-shot1571

examples to the given dataset. Prompt sets across1572

different model types for the same dataset are dis-1573

similar as small tweaks need to be applied for the1574

instruction-tuned models that work less well in1575

a purely causal language modelling setting, and1576

for Command A that is a chat-based model. All1577

prompts will be possible to view in the code repos-1578

itory of the paper.1579

D.2 PH31580

The tuned attention head configurations for PH31581

can be found in Table 15. The head configurations1582

are grouped by the top number of identified atten-1583

tion heads to consider and to what extent we allow1584

mixing between context and memory heads. E.g.1585

#25 all denotes all top-25 context and memory1586

heads detected, #3 memory denotes the top-3 mem-1587

ory heads, allowing for overlap with context heads,1588

and #1 only memory denotes memory heads de-1589

tected without overlap with context heads when1590

considering the top-1 context and memory heads.1591

D.3 Context-aware Contrastive Decoding:1592

COIECD1593

Unlike other CMTs, the hyperparameters used in1594

COIECD, α and λ, are selected following the orig-1595

inal paper, Yuan et al. (2024), using the gold con-1596

text from the validation set of NQ dataset. This1597

deviation is necessary, as optimising COIECD’s1598

hyperparameters by maximising the average BCU1599

across all context types causes the model to con-1600

verge to using only the output distribution without1601

Dataset Model Prompt

CounterFact GPT2-XL 1.5B default
PYTHIA 6.9B Prompt #10 (ChatGPT)
QWEN2.5 1.5B Prompt #1 (Jin et al. (2024))

7B Prompt #11 (ChatGPT)
32B Prompt #8 (ChatGPT)

QWEN2.5-I 1.5B Instruct-prompt #4 (manual)
7B Instruct-prompt #11 (ChatGPT)
32B Instruct-prompt #3 (manual)

COMMAND A Prompt #5 (ChatGPT)

NQ GPT2-XL 1.5B Prompt #2 (manual)
PYTHIA 6.9B default
QWEN2.5 1.5B Prompt #7 (ChatGPT)

7B Prompt #6 (ChatGPT)
32B Prompt #5 (manual)

QWEN2.5-I 1.5B Prompt #5 (manual)
7B Prompt #3 (manual)
32B default

COMMAND A default

DRUID GPT2-XL 1.5B Prompt #8 (ChatGPT)
PYTHIA 6.9B Prompt #2 (manual)
QWEN2.5 1.5B Prompt #2 (manual)

7B Prompt #11 (Microsoft Copilot)
32B Prompt #1 (manual)

QWEN2.5-I 1.5B default
7B default
32B Prompt #2 (manual)

COMMAND A Prompt #1 (manual)

Table 14: The tuned prompts for each LM. default de-
notes that the original prompt template (seen in Ap-
pendix B) worked best. “-I” denotes instruction-tuned
model versions. The source of the prompt is indicated
in parenthesis.

context in the decoding step. This outcome arises 1602

from the nature of COIECD, where always rely- 1603

ing on the distribution without context results in a 1604

BCU score of 1.0 for irrelevant contexts, while also 1605

causing the model to ignore context, including gold 1606

and conflicting contexts. To prevent COIECD from 1607

collapsing into regular generation without context 1608

and to enable meaningful comparison with other 1609

CMTs, we follow the hyperparameter search from 1610

the original paper. While Yuan et al. (2024) uses 1611

the same hyperparameter values across all mod- 1612

els, our models exhibit different tendencies during 1613

hyperparameter search. Therefore, we tune the hy- 1614

perparameters separately for each model to ensure 1615

a fair comparison with other methods. We search 1616

α in the range [0.0, 2.0] and λ in the range [0.1, 1617

1.0], and the hyperparameters for each model are 1618

in Table 16. 1619

E Implementation Details of Fine-tuning 1620

We fine-tune the LMs with a learning rate of 5e-5,8 1621

using warm-up. To avoid overfitting, we use early 1622

stopping based on the loss on the validation set. For 1623

QA datasets, we use the train split from SQuAD 2.0 1624

8Experiments with other learning rates yielded insignifi-
cant changes in performance on the validation set.
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(Rajpurkar et al., 2018), and TriviaQA (Joshi et al.,1625

2017). For a FC dataset, we take the train split1626

from AVeriTeC (Schlichtkrull et al., 2023). For1627

a sentence completion dataset, we take the static1628

partition of the DYNAMICQA (Marjanovic et al.,1629

2024). We only create counterfactual training ex-1630

amples with DYNAMICQA dataset. The detailed1631

statistics for mixing the selected datasets can be1632

found in Table 17.1633

F Additional Details of Multi-agent1634

Algorithm 1 Multi-agent

1: Given: question q, context c
2: Stage1: Relevance Assessment
3: Predict frel ∼ LMrel(frel | q, c)
4: if frel = Relevant then
5: Proceed to Stage 2
6: else
7: return LM(a | q) ▷ Answer w/o c
8: end if
9: Stage 2: Context-Faithfulness

10: Predict ac ∼ LM(ac | q, c)
11: Predict ffaith ∼ LMfaith(ffaith | q, c, ac)
12: if ffaith = Faithful then
13: return ac ▷ Answer w/ c
14: else
15: Proceed to Stage 3
16: end if
17: Stage 3: Self-Refinement
18: return LM(a | q, c, ac, ffaith) ▷ Self-Refined

We design the Multi-agent approach to inves-1635

tigate whether LMs can explicitly handle the two1636

objectives of context utilisation: (1) being robust1637

to irrelevant context and (2) being faithful to rel-1638

evant context. Rather than directly generating an1639

answer, an LM is guided to perform intermediate1640

reasoning steps, each handled by a dedicated LM1641

agent. This decomposition allows us to understand1642

whether LMs can explicitly recognise when the1643

context should be used and whether their answer1644

aligns with it when it is. While self-refinement1645

and LM agent have been used broadly in reasoning1646

tasks (Du et al., 2024; Feng et al., 2024; Madaan1647

et al., 2023), our motivation is grounded in exam-1648

ining two components of context utilisation sep-1649

arately. Notably, self-refinement is only applied1650

when the context is assessed as relevant but the an-1651

swer is assessed as unfaithful, reflecting our focus1652

on improving the usage of relevant context. By1653

structuring the problem in this way, we aim to bet- 1654

ter understand the extent to which LMs can reason 1655

about context relevance and faithfulness. 1656

Figure 2 and Algorithm 1 outline the 1657

Multi-agent procedure employed in our 1658

framework. Given a question and the context, 1659

the model first undergoes a relevance assessment 1660

stage, where it is explicitly instructed to determine 1661

whether the context is relevant to the question 1662

(Shen et al., 2024). If assessed as irrelevant, the 1663

model answers without the context; if relevant, 1664

it incorporates the context to generate the initial 1665

answer and proceeds to the next stage. In the 1666

context faithfulness assessment, the model is 1667

instructed to provide feedback on whether its 1668

answer faithfully reflects the provided context. If 1669

deemed faithful, the answer is retained as the final 1670

answer. If the prediction is assessed as unfaithful, 1671

the model is instructed to refine its answer using 1672

the question, context, initial answer, and feedback 1673

derived from the faithfulness assessment. This 1674

self-refinement stage encourages the model to 1675

self-correct based on its own feedback. To ensure 1676

consistency in output formatting during refinement, 1677

we incorporate two-shot demonstrations. 1678

The templates for relevance assessment, context 1679

faithfulness, and self-refinement are presented be- 1680

low. Task-specific templates for each dataset are 1681

available in the released code. 1682

Relevance Assessment (NQ)
1683

You are a relevance assessment expert. Your task 1684
is to evaluate whether the provided context 1685
is relevant to the question. 1686

1687
Context: {context} 1688
Question: {question} 1689

1690
If the provided context is relevant to the 1691

question, answer "Relevant", otherwise 1692
answer "Irrelevant". Do not rely on your own 1693
knowledge or judge the factual accuracy of 1694
the context. 1695

Answer: 16961697

Context faithfulness (CounterFact and NQ)
1698

You are a context-faithfulness expert. Your task 1699
is to evaluate whether the proposed answer 1700
faithfully uses the information in the 1701
provided context. 1702

1703
Context: {context} 1704
Question: {question} 1705
Proposed answer: {response} 1706

1707
Does the answer faithfully reflect the content 1708

of the context? Do not rely on your own 1709
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knowledge or judge the factual accuracy of1710
the context. Please explain briefly.1711

1712
Feedback:17131714

Self-refinement (NQ)
1715

Your task is to generate the best possible final1716
answer to the question, based on the expert1717
feedback.1718

You may keep the original proposed answer if it1719
is correct, or revise it if the feedback1720
suggests it is incorrect or unsupported.1721

Generate only the final answer. Do not include1722
any explanation or repeat the prompt.1723

1724
{Two demonstrations}1725

1726
Context: {context}1727
Question: {question}1728
Proposed answer: {response}1729
Feedback on context faithfulness: {feedback}1730
Final answer:17311732

G Input Features1733

We detect the input features described in Sec-1734

tion 5.2 as follows:1735

• Context length is measured by the number of1736

characters in the context.1737

• Flesch reading ease score is measured with1738

the textstat9 module.1739

• Query-context overlap is measured as the size1740

of the set of words that form the intersection1741

of the set of words in the query and context,1742

respectively, normalised by the size of the set1743

of query words. CounterFact is excluded from1744

this analysis as its synthetic samples yield triv-1745

ial results for this feature.1746

• The answer position is measured as the index1747

of the answer in the context normalised by1748

context length. This feature is only detectable1749

for gold and conflicting contexts for Counter-1750

Fact and NQ.1751

• The distractor rate is measured as the num-1752

ber of answer entities found in the context,1753

divided by the total number of entities in the1754

context with an entity type that matches the1755

answer entity type(s).10 This feature is simi-1756

larly only measurable for gold and conflicting1757

contexts from CounterFact and NQ.1758

• Relevance is given by the relevance agent1759

based on Qwen 32B Instruct from the Multi-1760

agent setup. It labels context as either ‘rele-1761

vant’ or ‘irrelevant’.1762
9https://github.com/textstat/textstat

10Named entities are detected using spaCy and
en_core_web_trf.

H Computational Resources 1763

GPT2-XL was evaluated using one Nvidia T4 GPU. 1764

Pythia, Qwen 1.5B and Qwen 7B using one A40 1765

GPU. Qwen 32B was evaluated using four A40 1766

GPUs. The compute budget for all CMTs was 1767

about 14 hours per model for CounterFact, 28 1768

hours per model for NQ and 21 hours per model 1769

for DRUID, amounting to a total of about 900 GPU 1770

hours. 1771

The costs for the experiments with Cohere Com- 1772

mand A amounted to a total of about 120 USD. 1773

I Use of AI assistants 1774

AI assistants like Copilot and ChatGPT were in- 1775

termittently used to generate template code and 1776

rephrase sentences in the paper, etc. However, no 1777

complete paper sections or code scripts have been 1778

generated by an AI assistant. All generated content 1779

has been inspected and verified by the authors. 1780
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Model Mode CounterFact NQ DRUID

GPT2-XL +context #25 all #1 all #5 only memory*
L18H10, L21H10, L21H7, L22H18,
L22H20, L24H6, L26H14, L26H20,
L26H8, L27H15, L27H5, L28H15,
L29H5, L29H9, L30H21, L30H8,
L31H0, L31H3, L31H8, L32H13,
L33H14, L33H18, L33H2, L33H7,
L34H17, L34H20, L35H17, L35H19,
L35H21, L36H17, L36H2, L37H7,
L38H24, L38H7, L39H12, L39H9,
L40H13, L40H23, L41H5, L41H9,
L42H24, L43H15, L47H0

L28H15, L35H19 L32H13, L35H19, L42H24, L43H15

+memory #12 memory #7 only context #22 all
L26H14, L26H8, L32H13, L33H14,
L35H19, L38H24, L40H23, L41H5,
L42H24, L43H15, L47H0, L30H8

L27H15, L28H15, L29H9, L33H2,
L34H17, L37H7

L21H10, L22H20, L24H6, L26H14,
L26H20, L26H8, L27H15, L27H5,
L28H15, L29H9, L30H21, L30H8,
L31H0, L31H3, L31H8, L32H13,
L33H14, L33H18, L33H2, L33H7,
L34H17, L34H20, L35H17, L35H19,
L36H17, L36H2, L37H7, L38H24,
L38H7, L39H12, L39H9, L40H13,
L40H23, L41H5, L42H24, L43H15,
L47H0

PYTHIA 6.9B +context #15 memory #17 only memory #10 only context
L10H27, L14H6, L16H16, L17H28,
L19H11, L19H21, L20H11, L20H18,
L21H8, L27H22, L18H7, L19H28,
L20H2, L20H8, L24H5

L10H27, L14H28, L14H6, L16H16,
L17H28, L19H11, L19H21, L20H11,
L20H18, L21H8, L22H12, L27H22

L12H11, L12H13, L14H0, L15H17,
L17H14, L20H2, L8H11

+memory #25 only context #12 only context #17 only context
L10H1, L12H11, L12H13, L13H12,
L14H0, L14H23, L15H17, L17H14,
L18H10, L19H1, L19H20, L21H10,
L23H25, L29H22, L8H11, L8H24

L12H11, L12H13, L14H0, L14H23,
L15H17, L17H14, L19H31, L20H2,
L8H11

L10H1, L12H11, L12H13, L13H12,
L14H0, L14H23, L15H17, L17H14,
L18H10, L19H1, L19H31, L8H11

QWEN2.5 1.5B +context #15 only memory #12 only memory #17 only context
L10H0, L10H1, L13H1, L16H1,
L17H0, L18H0, L1H1, L3H0

L10H0, L13H1, L16H1, L17H0,
L18H0, L1H1

L14H1, L16H0, L18H1, L19H0,
L19H1, L20H1, L24H1, L26H0,
L26H1, L9H0

+memory #5 only context #12 only context #12 only memory
L15H1, L16H0, L27H0 L14H1, L16H0, L18H1, L19H0,

L24H1, L27H0
L10H0, L13H1, L16H1, L17H0,
L18H0, L1H1

QWEN2.5 1.5B +context #7 only memory #1 only context #10 only context
Instruct L15H0, L1H1, L21H0 L19H1 L14H0, L17H1, L19H1, L22H0,

L26H0
+memory #1 only context #12 only context* #5 only context

L19H1 L14H0, L17H1, L19H1, L22H0,
L26H0, L27H0

L17H0, L19H1, L22H0

QWEN2.5 7B +context #7 memory #1 only context #3 only memory
L0H0, L17H1, L18H2, L19H0,
L21H0, L22H2, L23H0

L27H0 L0H0, L22H2

+memory #15 only context #5 only context #12 only context
L13H0, L17H0, L18H1, L18H3,
L22H0, L24H3, L25H1, L26H0,
L27H0, L27H2

L22H0, L27H0, L27H2 L16H3, L17H0, L18H1, L18H3,
L22H0, L24H3, L26H0, L27H0,
L27H2

QWEN2.5 7B +context #17 only memory #5 context #5 only context
Instruct L11H1, L12H0, L13H3, L14H3,

L16H1, L17H0, L17H3, L18H2,
L1H1, L20H0, L21H2, L26H3, L3H0

L18H0, L18H3, L22H2, L23H0,
L27H2

L18H0, L18H3, L27H2

+memory #3 only context #3 only context #17 all
L18H0 L18H0 L0H0, L11H1, L12H0, L13H3,

L14H3, L15H1, L16H0, L16H1,
L17H0, L17H3, L18H0, L18H1,
L18H2, L18H3, L19H0, L19H3,
L1H1, L20H0, L20H2, L20H3,
L21H0, L21H2, L22H0, L22H2,
L23H0, L26H3, L27H0, L27H2,
L3H0, L8H1

Table 15: Tuned PH3 attention head configurations for each model and evaluation dataset. +context indicates heads
for which pruning leads to increased context usage and vice versa for +memory. Configurations marked with *
denote that they yielded degraded performance compared to the standard setting (no mechanistic intervention) on
the validation set.
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Model λ α

GPT2-XL 0.50 1.00
PYTHIA 6.9B 0.50 1.00
QWEN2.5 1.5B 1.00 0.50
QWEN2.5 1.5B INSTRUCT 0.50 1.00
QWEN2.5 7B 1.00 1.00
QWEN2.5 7B INSTRUCT 0.50 0.50
QWEN2.5 32B 0.50 1.00
QWEN2.5 32B INSTRUCT 0.50 1.50

Table 16: Selected COIECD hyperparameters λ and α
for each model, evaluated on gold contexts from NQ’s
validation set. For models with multiple (λ, α) pairs
attaining the maximum score, we choose the setting that
lies near the midpoint of the optimal region.

Dataset Dataset weight Context type Context weight

SQuAD 2.0 0.4
Relevant 0.65
Irrelevant 0.25
Empty 0.1

TriviaQA 0.3
Relevant 0.65
Irrelevant 0.25
Empty 0.10

AVeriTeC 0.15
Relevant 0.65
Irrelevant 0.25
Empty 0.10

DYNAMICQA 0.15

Relevant 0.50
Irrelevant 0.05
Empty 0.05
Counterfactual 0.40

Table 17: Sampling weight for each dataset. We first
sample the number of instances for each dataset follow-
ing the dataset sampling weight. Then, each context
type is determined by the context sampling weight.
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