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a b s t r a c t 

Background and objectives : Advanced artificial intelligence and machine learning have great potential to 

redefine how skin lesions are detected, mapped, tracked and documented. Here, we propose a 3D whole- 

body imaging system known as 3DSkin-mapper to enable automated detection, evaluation and mapping 

of skin lesions. 

Methods : A modular camera rig arranged in a cylindrical configuration was designed to automatically cap- 

ture images of the entire skin surface of a subject synchronously from multiple angles. Based on the im- 

ages, we developed algorithms for 3D model reconstruction, data processing and skin lesion detection and 

tracking based on deep convolutional neural networks. We also introduced a customised, user-friendly, 

and adaptable interface that enables individuals to interactively visualise, manipulate, and annotate the 

images. The interface includes built-in features such as mapping 2D skin lesions onto the corresponding 

3D model. 

Results : The proposed system is developed for skin lesion screening, the focus of this paper is to introduce 

the system instead of clinical study. Using synthetic and real images we demonstrate the effectiveness of 

the proposed system by providing multiple views of a target skin lesion, enabling further 3D geometry 

analysis and longitudinal tracking. Skin lesions are identified as outliers which deserve more attention 

from a skin cancer physician. Our detector leverages expert annotated labels to learn representations of 

skin lesions, while capturing the effects of anatomical variability. It takes only a few seconds to capture 

the entire skin surface, and about half an hour to process and analyse the images. 

Conclusions : Our experiments show that the proposed system allows fast and easy whole body 3D imag- 

ing. It can be used by dermatological clinics to conduct skin screening, detect and track skin lesions over 

time, identify suspicious lesions, and document pigmented lesions. The system can potentially save clini- 

cians time and effort significantly. The 3D imaging and analysis has the potential to change the paradigm 

of whole body photography with many applications in skin diseases, including inflammatory and pig- 

mentary disorders. With reduced time requirements for recording and documenting high-quality skin 

information, doctors could spend more time providing better-quality treatment based on more detailed 

and accurate information. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

Regular examination and skin monitoring are essential for the 

arly detection of cutaneous malignancies including melanoma. 

onitoring of pigmented skin lesions over a long period of time is 

ften a manual, time-consuming and error-prone task, especially 

hen a patient has hundreds of skin lesions, both the inspection 

nd documentation of these lesions are highly laborious and 

nefficient [1] . 

Data-driven approaches using dermoscopic images have been 

eveloped in recent decades to assist dermatologists in clinical 

https://doi.org/10.1016/j.cmpb.2023.107451
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2023.107451&domain=pdf
mailto:david.ahmedtaristizabal@data61.csiro.au
mailto:chuong.nguyen@data61.csiro.au
mailto:lachlan.tychsen-smith@data61.csiro.au
mailto:ashley.stacey@data61.csiro.au
mailto:shenghong.li@data61.csiro.au
mailto:joseph.pathikulangara@csiro.au
mailto:lars.petersson@data61.csiro.au
mailto:dadong.wang@data61.csiro.au
https://doi.org/10.1016/j.cmpb.2023.107451


D. Ahmedt-Aristizabal, C. Nguyen, L. Tychsen-Smith et al. Computer Methods and Programs in Biomedicine 232 (2023) 107451 

d

s

m

s

a

f

o

m

w

r

m

a

i

i

l

c

a

s

e

l

p

l

a

o

n

f

a

p

s

a

b

i

d

d

s

u  

t

i

e

o

t

w

d

w

t

s

t

o

g

f

t

i

i

a

c

3

s

r

s

i

u

a

d

o

d

v

s

c

i

e

f

w

c

a

r

f

e

s

m

t

e

i

R

t

l

i

t

H

w

i

t

r

s

w

a

e

t

r

F

c

h

g

a

t

o

w

t

g

d

t

t

f

s

a

i

o

s

t

t

t

a

ecisions and to spot extremely suspicious situations [2] . Recent 

tudies have demonstrated the ability of machine learning to 

atch, if not outperform, clinicians in the diagnosis of individual 

kin lesions in controlled reader studies where dermoscopic im- 

ges contain a single skin lesion. For example, algorithms derived 

rom the ISIC Grand Challenge [3] have shown the potential to 

utperform over 500 clinical experts in a controlled environ- 

ent [4] . However, these studies do not reflect clinical scenarios 

here clinicians need to examine all skin lesions of a patient 

egularly. 

Despite the potential for using deep learning in clinical der- 

atology such as skin cancer risk assessment [5] , most systems 

ssume that all relevant lesions of the patient have been manually 

dentified prior to classification. Thus, the detection of skin lesions 

n wide-field images (photographs depicting multiple lesions from 

arge body parts) is needed [6] . 

Contrary to classic investigations, where the attention is fo- 

used on a particular lesion and a single image is taken using 

 dermoscope or a high-resolution camera, whole body imaging 

ystems capture imagery of the entire epidermis. Such a system 

nables not only lesion detection, but also the possibility of a 

ongitudinal study of dermatological patients. In this manner, it is 

ossible to detect lesions that evolve over time and to find new 

esions that emerge after the previous examination. 

Traditionally, to monitor all skin lesions on the skin surface of 

 patient, 2D whole body imaging has been employed. The use 

f 2D whole body imaging has shown the potential to reduce the 

umber of biopsies taken, and increase the accuracy of diagnosis 

or patients at high risk of melanoma [7] . Recent advances in 

rtificial intelligence have demonstrated its capability to support 

hysicians in detecting outliers or suspicious “ugly duckling le- 

ions” in wide-field images [8,9] . A few commercial systems such 

s Dermengine [10] support whole body image analysis using mo- 

ile cameras. Nevertheless, the data collection is time and resource 

ntensive and requires a photographer to take photos of subjects in 

ifferent poses. Thus, skin lesion comparison remains challenging 

ue to changes in the pose or illumination between different 

cans. The majority of previous registration techniques are eval- 

ated only on a small part of the body ( e.g. the back or front

orso). 

Whole body photography increases the area captured in an 

mage by imaging the majority or all of the skin. Korotkov 

t al. [11] developed a system for acquiring overlapping images 

f the entire body’s skin to facilitate whole body scanning. Lesion 

racking across multiple scans was automated, but the system 

as not extended to include 3D reconstruction of skin surfaces. A 

evice used for capturing images of the whole area of human skin 

ith one camera was also introduced by Strzelecki et al. [12] , but 

he entire body was not captured simultaneously and tracking of 

kin lesions across 3D meshes were not explored. Investigations 

oward the identification of lesions that differ from most of the 

ther marks on a patient’s skin using wide-field images have 

ained attention for quick assessment of high-risk patients for 

urther examination [6,8] . Nevertheless, such correlation methods 

hat identify particular lesions on the patient’s body that appear in 

mages taken from different views and times are not well studied 

n the literature. 

Related work: 3D whole body imaging for skin data management 

Advanced 3D imaging technology, supported by automated 

nalysis methods, is changing the way we diagnose skin malignan- 

ies by enabling standardised and gapless image acquisition [13] . 

D imaging has enabled domain researchers to gain new under- 

tandings at a faster pace from the image data. 3D data explo- 

ation enables natural representation and accurate position mea- 

urements when particular attributes of interests cannot be easily 

dentified in a 2D image [14] . Thus, 3D mapping methods are being 
2 
sed to accurately inspect the fine topology and textual features of 

 lesion [13,15,16] . 

Digital 3D whole body images enable a complete and automatic 

ocumentation of all skin lesions of a patient, the determination 

f their geometric parameters, and their further analysis by a 

ermatologist [13] . 3D imaging allows for 360-degree rotation to 

iew the body from all angles, including the ability to view curved 

urfaces which are difficult to see in 2D imaging. This technology 

an also be used to provide context to single lesion dermoscopy 

mages [17] , facilitate long-term surveillance, and support the 

valuation of raised lesions, as the 3D images can be viewed 

rom multiple angles. This means that lesions are considered 

ithin the context of the surrounding skin, offering a more ac- 

urate overall assessment and diagnosis than dermoscopy images 

lone [16] . 

The main specifications of the proposed system compared to 

elated works are listed in Table 1 . Preliminary 3D body scanning 

or the detection of new melanocytic lesions is described by Bogo 

t al. [15] . Such a solution is based on a multi-camera 3D stereo 

ystem to capture body shape and skin texture, and a 3D body 

odel to register scans across time and track lesions based on 

he registered body locations. However, the model is based on 

xpensive scanning devices and is limited to higher-resolution RGB 

magery. The detection of lesions is based on handcrafted features. 

ecently, Zhao et al. [18] used an annotated publicly available 3D 

extured mesh dataset for detecting and tracking longitudinal skin 

esions. Lesions are identified first on the skin using 2D texture 

mages, and then are mapped to their corresponding positions on 

he 3D mesh surface of the subject as proposed in our system. 

owever, the development of a complete pipeline for capturing 

hole body images and constructing a patient avatar along with 

ntegrated existing lesions is not considered. 

Although there exist numerous recent articles that demonstrate 

he benefits of 3D whole body photography [16,19–21] , 3D human 

epresentation is obtained with expensive commercial systems 

uch as the VECTRA®WB360 system (Canfield Scientific Inc) [22] , 

hich simultaneously captures 92 images to reconstruct a 3D 

vatar [13] . In contrast, we propose a modular mobile health pod 

quipped with AI based smart tools that can be repurposed from 

he current clinician use case, to help researchers collect and cu- 

ate data automatically from 3D human models as illustrated in 

ig. 1 . Existing rotatory solutions for screening ( i.e. a system that 

onsists of cameras installed on a rotary beam or platform) that 

ave been used previously for skin lesion detection [12] or for the 

eneration of 3D human avatars [23] ( e.g. Artec Shapify Booth [24] ) 

re not suitable for clinical purposes because the moving parts of 

he system are a safety hazard for patients. It is noteworthy that 

ur system was developed using open-source libraries and soft- 

are packages for camera control, 3D human body reconstruc- 

ion, lesion detection, and user interface development, to facilitate 

reater reproducibility. 

With our camera rig, the skin image capture time can be re- 

uced from approximately 6 minutes [25,26] to a few seconds. Af- 

er raw data processing by our proposed system, a potential fur- 

her reduction of examining time can be achieved by more user- 

riendly data representation generated by the automatic 3D recon- 

truction and skin lesion detection algorithms. Using a 3D record of 

 patient’s entire skin surface, clinical experts can monitor changes 

n the appearance of lesions that could potentially be early signs 

f melanoma. The experience and outcome of the patient can be 

ignificantly improved by the fact that the doctors will have more 

ime to examine the disease progression and provide more effec- 

ive treatment [27] . 

In this paper, we introduce our 3D whole body imaging system 

o detect and monitor skin lesions. The contributions of our work 

re summarised as follows: 
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Table 1 

Comparison of our proposed system for data management with other related works in 3D whole body imaging. 

[15] [18] [19] [20] [16] ours 

Low-cost acquisition system � 

2D whole body photography � � � � � 

3D human reconstruction � � � � � 

Clinical images used for lesion detection � � � � 

Data-driven skin lesion detector � � � � � 

Map lesions to 3D body texture � � � � � � 

Data-driven 3D meshes registration � � � � � 

Longitudinal tracking of skin lesions � � � � � � 

User interface for data management � � � � 

Fig. 1. 3D Whole body imaging captures the entire skin surface to map, document and monitor pigmented lesions. Visualisation of the sparse point cloud (left), 3D texture 

model (middle), and skin lesions detected (right). All lesions detected on 2D images are mapped to the 3D reconstructed model, improving the ability to track lesions over 

time. Cameras are shown as 3D wireframe pyramids. 

Fig. 2. Overview of the 3DSkin-mapper workflow. 1. Design and construction of the hardware and software for the data collection (60 cameras). 2. Collection of diverse 

human data for the 3D reconstruction, 3D fine-tuning and skin lesion detection. 3. Reconstruction of the human body from different camera poses and sparse point cloud 

estimation. 4. Estimation of the depth, human mask and 2D to 3D projection. 5. A deep convolutional neural network that detects lesions from given wide-field images. 6. 

3DSkin-mapper user interface for visualisation, curation and data management. 
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1. A modular image acquisition system has been designed and 

constructed, enabling researchers to capture images of the 

whole body of a patient. 

2. We have developed a non-contact measurement system that 

enables efficient documentation, curation and data manage- 

ment of skin lesions compared to traditional manual processes, 

reducing the time and effort of the clinical expert and improv- 

ing the experience of the patients. 

3. A custom pipeline for 3D reconstruction based on open source 

tools is proposed to generate high-quality physical-scale 3D 

body avatars. 

4. A processing pipeline that can be used to estimate depth and 

3D projection, as well as provide the 3D localisation of skin le- 

sions in whole body images, with a good balance between in- 

ference time and accuracy, has been developed. 

5. A custom user interface is created that allows users to collab- 

orate and interact with the collected data, the 3D body avatar 

and detected skin lesions. 

. Materials and methods 

In this paper, we introduce a system called 3DSkin-mapper 

hich performs detection, monitoring and analysis of skin lesions 

n the patient’s entire body. The system workflow is illustrated in 
3 
ig. 2 . First, a camera rig with 60 (or more) high-resolution con- 

umer grade cameras is used to capture 2D images of the entire 

ody of a patient simultaneously. These images are then passed 

hrough a processing pipeline for 3D reconstruction, depth post- 

rocessing, and 2D to 3D projection. A trained deep learning model 

ocalises the lesions within the 2D images, which are then mapped 

ack to the 3D geometry of the human body. Such anatomical cor- 

espondence of the 3D locations of all lesions can be exploited for 

he longitudinal study of the lesions. All information is imported 

nto a user interface (UI) which brings different camera views into 

 single user point of view. A key aspect of developing a 3D data 

ollection and curation tool, such as this, is to create an efficient 

ay to facilitate a clinician to capture, analyse and document each 

f the lesions on the whole body of a patient. All hardware com- 

onents used are commercially available off-the-shelf and all al- 

orithms developed are based on open sources to facilitate its re- 

roducibility. This enables a cost-effective solution with the total 

ardware cost of less than $50K AUD. Details of each module of 

he imaging system are described in the following subsections. 

.1. Image acquisition system: hardware and software 

The image acquisition system consists of 15 poles approxi- 

ately 2.1 m tall, arranged in a cylindrical configuration with an 
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Fig. 3. Whole body photography structure. Camera cage which consist of 15 poles 

arranged in a cylindrical configuration, each pole with 4 cameras Canon EOS 200D. 
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Table 2 

Implementation costs of the proposed acquisition system. 

Component Quantity Item Cost Line Total

Canon EOS 200D cameras 60 700 42,000 

Pole 2.1m + base plate 15 80 1,200 

Black curtains 15 20 300 

Additional lighting 4 75 300 

Wooden platform 1 30 30 

Miscelaneous cables1 a 1 1,200 1,200 

Control board1 b 1 900 900 

digiCamControl - - - 

Total 45,930 

a Cables for remote triggering which includes audio jack port and hubs. 
b Circuit boards and FT232R microcontroller. Cost in Australian dolars. GST 

and delivery cost not included. 
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pproximate diameter of 2.2 m. Four Canon EOS 200D cameras are 

ounted on each pole at the following distances from the ground: 

.3 m, 0.8 m, 1.3 m, and 1.8 m. Black curtains are placed around

he camera rig for privacy, improved lighting as well as blocking 

ut the background of images. The cameras are set up to take por- 

rait images with a resolution of 4 , 0 0 0 × 6 , 0 0 0 pixels and with

he following settings: aperture (F-Stop) = 10, exposure time = 

/15; sensitivity to light (ISO) = 800; and focal length = 18 mm. 

uring the image acquisition, the patient stands on a motionless 

ooden platform at the centre of the system, which is used as a 

eference dimension. This stand is also used to crop and scale the 

esh of a patient to the right physical height. The modular acqui- 

ition system is shown in Fig. 3 . 

The Canon EOS 200D cameras used in the system have a 2.5 

m audio jack port for remote triggering. The jack itself has three 

erminals, which are ground, shutter release, and autofocus, re- 

pectively. Connecting either the shutter release or autofocus ter- 

inal to the ground terminal will activate the respective function. 

ynchronous image capturing is achieved by sending trigger signals 

o all cameras at the same time. A control board based on FTDI 

T232R microcontroller is used for this purpose. The board has 16 

.5 mm audio jack ports for camera connections, and more cam- 

ras can be added through purpose-built repeaters. The autofocus 

ignal and shutter release signal are connected to CBUS bit 2 and 

BUS bit 3 respectively of the FT232R microcontroller. The signals 

re set/reset by a Windows application that communicates with 

he FT232R chip through a USB connection. Fig. 4 (Top) shows the 

lock diagram of the triggering circuit. 

The autofocus signal is set first, followed by the shutter release 

ignal. T AF , T SR , and D SR represent the duration of the autofocus 

ignal, the duration of the shutter release signal, and the delay 

etween asserting the two signals, respectively. These parameters 

an be configured in the Windows application. By default, they 

re specified to the following values: T AF = 2,50 0ms, T SR = 3,50 0ms,

nd D SR = 2,600ms. Fig. 4 (Bottom) illustrates the camera control 

nterface. The drop-down menu in the top-left corner of the GUI 

ists the USB control boards connected to the PC. There should 

e exactly one device in the list, which is selected automatically 

hen the GUI is launched. The control signals are sent to cameras 

y clicking the “Shoot” button. The autofocus signal and shutter- 

elease signal can be enabled or disabled independently by check- 

ng/unchecking the “Focus” and “Capture” boxes correspondingly. 

his enables different camera settings during image capture. The 

nput boxes next to “Focus” and “Capture” are used to configure 

he duration of the autofocus signal and the shutter release signal 

espectively, while the “Delay” input box can be used to configure 

he delay between asserting the two signals. 

The open-source software digiCamControl [28] is used to 

hange camera settings and transfer captured images from individ- 

al cameras to a cloud storage. By launching and properly config- 

ring the software before capturing images, it automatically down- 
4 
oads images from all cameras after new images are captured each 

ime. All cameras and image files are labelled according to their 

ocations, which allows easy mapping of image files to the corre- 

ponding camera locations in the rig. The images are captured in 

ess than a second and are then downloaded to the storage. To fa- 

ilitate reproducibility of the proposed acquisition system we have 

rovided itemised cost for the components used in the system in 

able 2 . 

.2. Human dataset compilation 

In this section, we provide more details about the data we col- 

ected and generated for the training and validation of the compo- 

ents essential for enabling 3D skin lesion localisation and longi- 

udinal tracking. These datasets are summarised in Table 3 and are 

lso described in detail in the subsequent subsections. 

.2.1. Whole body images captured from participants 

Using the proposed imaging system described in Subsection 2.1 , 

e collected images from three (3) healthy participants to test the 

DSkin-mapper workflow - 3D human reconstruction, 3D mapping 

f skin lesions and longitudinal tracking. These participants were 

ecruited with the purpose of lesion screening instead of a clinical 

tudy. 

Participants undergo whole body photography excluding skin 

n lower body parts (lower limps), feet or scalp, by standing on 

he motionless wooden platform with a natural standing stance 

nd posture for screening. Each subject was scanned in 2 poses, 

espectively with arms pointing downwards at an angle (A-pose) 

nd “arms downward” without an angle (See Fig. 2 ). With a single 

rigger, sixty images are captured by the 60 cameras from differ- 

nt angles simultaneously. These images represent different views 

f the human body, and are used to reconstruct a 3D human avatar 

or visualisation, and 3D mapping of skin lesions. Selected views of 

 participant are illustrated in Fig. 5 . 

For the longitudinal tracking of skin lesions ( i.e. to identify 

hanges in size, border, colour, and texture of existing lesions over 

ime) a patient can be scanned at different times to form a set 

f 3D meshes. As a case study, body scans acquired at differ- 

nt times are represented with data collected from these three 

articipants at three sessions: t1 = 0 , t2 = 15 days, and t3 = 30

ays ( i.e. 15 days apart from each other). To evaluate our le- 

ion tracking approach, given two sequential meshes of the same 

ubject M t1 and M t2 taken at different times, we manually an- 

otate lesions that correspond to each other across the meshes. 

e manually find the location of a lesion in an image from 

 t2 that corresponds to a lesion annotated in an image from 

 t1 , and assign both lesions the same unique identifier. We re- 

eat the same process between the images from M and M . 
t2 t3 
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Fig. 4. Top: Block diagram of the camera triggering circuit. Bottom: Screenshot of the camera control application running on Windows OS. 

Table 3 

Overview of the datasets used in the evaluation of our proposed 3DSkin-mapper system. 

Component Data A Data B Data C Total Details 

3D human reconstruction � � 13 Subjects Data A (3 subjects, 2 poses each), Data B (10 subjects, 1 pose 

each, [2 sources]) 

Skin lesion detection � � � 24,525 

Images 

Data A (180 images � ), Data B (1,632 images,[2 sources]), Data 

C (22,893, [10 sources]) 

3D Longitudinal tracking � � 130 

Lesions 

Data A (3 subjects, 3 sessions, 34 lesions), Data B (7 subjects, 

2 sessions, 96 lesions, [1 source]) 

Data A: Data collected with the proposed imaging system (Discussed in Subsection 2.2.1 ) Data B: Data collected from existing repositories of 3D body scans 

(Discussed in Subsection 2.2.2 ) Data C: Data collected from wide-field of view images (proprietary, open-access repositories, and image synthesis) (Discussed in 

Subsection 2.2.3 ) � These images were exclusively utilised for validation and not included in the training of our detector. 

Fig. 5. Sample images collected from a participant with the proposed whole body imaging system. Selected poles from the imaging system are shown as orange circles. 
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he unique identifier assigned to pairs of matching lesions al- 

ows us to determine the ground truth lesion correspondence 

cross meshes. A total of 34 unique representative selection of 

esions from 3 subjects were manually tracked. This case study 

oes not examine skin lesions that appear or disappear within se- 

uential sessions as the follow-up sessions were conducted within 

ess than 30 days. The lesions are initially marked on all 2D im- 

ges of a single subject to aid in the evaluation and monitoring 

f the lesion detector, but they are not utilised for training the 

etector. 

.2.2. 3D body scans dataset from existing repositories 

Various datasets of 3D body scans are available for research or 

ommercial applications. 3D body scan images with high-quality 

kin texture information are used to optimise camera poses, and 

est the processing pipeline. Texture information combined with 

he 3D geometry allows for advanced analysis and representation. 
5 
o create realistic images of human figures, we use 3D models 

rom Renderpeople [29] consisting of 4 meshes (4 subjects), and 

he Texture 3D Body dataset (3DBodyTexV1) [23,30] , utilising 6 

andomly chosen meshes (6 subjects). From each of the 3D models, 

e extract 60 synthetic images (with similar configuration as our 

cquisition system) using Pyrender library [31] and Blender soft- 

are [32] for more realistic rendering with a background scene. 

uch human models and synthetic images are shown in Fig. 6 . 

The synthetic images that were generated, which contain skin 

esions, are also included in the skin image analysis dataset dis- 

ussed in the following section. Additionally, the 3DBodyTexV1 

ataset has two scanned meshes of the same subject (captured 

t different times and poses) which can be used to evaluate lon- 

itudinal lesion tracking. We selected 7 subjects from the testing 

et used to validate the lesion detector on 2D images. Skin lesions 

rom the given pair of meshes M t1 and M t2 of the same subject are

nnotated with a unique identifier as explained in Subsection 2.2.1 . 
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Fig. 6. Synthetic 3D human models. Top. Selected human model from Renderpeople [29] , 60 synthetic images generated with background scene and skin lesion visible on 

the images extracted. Bottom. Selected human models from [23,30] with subjects captured in two different poses. 
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anual tracking was done for 96 lesions belonging to 7 different 

ubjects. 

.2.3. Skin image analysis dataset 

We curated an annotated dataset on skin disease, which is 

ased on wide-field of view images (captured with digital cam- 

ras and cell phones) collected from a commercial lab in Aus- 

ralia, and from open-access 2D image repositories and 3D body 

cans. Dermoscopic images acquired through a digital dermato- 

cope, which have relatively low levels of noise and consistent 

ackground illumination are not included in our dataset [33] . The 

ataset contains a wide range of skin lesions including common 

evus (moles), melanoma and those typical seen in most derma- 

ological patients, e.g. blue nevus, dysplastic nevus (atypical mole), 

ongenital nevus, nevus spilus, angioma, junction nevus, compount 

evus, fibroma molle, etc. A nevus that is undergoing changes is a 

ign of increased risk for melanoma when monitoring a lesion over 

ime [34] . All skin lesions are categorised as one single class (“pig- 

ented skin lesion”) as our system is designed to capture, analyse 

nd manage the data rather than clinical management of skin le- 

ions [35] . 

In this work, our objective is to identify the location of a lesion 

elative to its surrounding skin, so we represent it using a 2D 

ounding box. To accelerate the annotation process of 2D bound- 

ng boxes for the curation of training data for the lesion detector, 

 scale-invariant feature transformation (SIFT) is performed first to 

etect all blob-like regions (group of connected pixels in an image 

hat shares some common property) on the basis of Laplacian of 

aussian (LoG) as suggested in [8,15] . Skin modelling and analysis 

f histogram shapes were also considered for lesion localisation. 

he preliminary annotations across all images are refined by 

wo human annotators (non-experts) using a computer vision 

nnotation tool (CVAT) [48] , and are then reviewed by an expert 

hysician (dermatologist). Selected samples of these annotations 

re depicted in Fig. 7 (Top). As the images from different sources 

ave different resolutions, all the annotated images are split 

nto patches (tiles) of 608 × 608 pixels which are then used for 

raining. We pad images that have variable dimensions to facilitate 

odel training (See Fig. 7 (Bottom)). 
6 
Details about the source of the selected images are described 

n Table 4 . We consolidated a total of 24,525 clinical images anno- 

ated. From the set of 60 synthetic images rendered from each 3D 

uman model (See Fig. 6 Top), we selected 8 images which corre- 

pond to the Top and Bottom views of each position: Front, Left, 

ight and Back. Selected samples of raw wide-field images that 

ontain lesions used to train the skin lesion detector are illustrated 

n Fig. 8 . 

.3. 3D human reconstruction 

.3.1. Whole body image rendering from 3D human models 

The viewing angles, positions and field of view (FoV), of cap- 

ured images could significantly affect the quality of the recon- 

tructed 3D human avatar. Therefore, the angles and positions of 

he cameras were adjusted to capture entire skin surface to con- 

truct a complete 3D whole body image with minimal missing 

arts. Since we limit the total number of cameras to 60 mounted 

n 15 poles and setup space inside a lab, the max angles between 

earby cameras is 24 degrees and the max height is 2.5m. In ad- 

ition, the adjustment of the cameras is mostly the height and 

he tilt angle of the cameras on the poles. In order to expedite 

he process, we utilised computer graphics rendering to generate 

ynthetic images with a similar configuration and resolution as 

ur camera rig, instead of physically testing different camera po- 

itions. Similarly for every camera configuration, a set of 60 syn- 

hetic images are rendered from an existing 3D human model from 

enderpeople dataset [29] . The images are processed to recon- 

truct a 3D human model which is visually inspected for quality 

heck. 

There are two conflicting parameters to compromise: i) a wider 

amera field of view provides a more complete 3D model and more 

mage overlapping between nearby views provides better estima- 

ions of camera poses; ii) image resolution for accurate depth es- 

imation for 3D reconstruction. A camera pose represents the 3D 

osition and orientation of the camera when capturing an image. 

ncorrect camera poses as well as less view overlapping lead to 

oisy depth and a low-quality 3D reconstructed model. In prac- 

ice, we need to make sure all cameras are detected and used for 
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Fig. 7. Top: Selected samples of skin lesions annotated on clinical images. Bottom: Each clinical image is split into annotated segments of 608 × 608 to train the detector. 

Table 4 

Details of the images used to train the skin lesion detector. 

Dataset Images Description 

ISIC [3] 100 The 2020 ISIC Grand Challenge contains the largest publicly available collection of quality controlled dermoscopic 

images of skin lesions. This is the official dataset of the SIIM-ISIC Melanoma Classification Challenge hosted on 

Kaggle [36] . 

Dermofit [37] 1,300 The Edinburgh Dermofit Library is a collection of focal high quality skin lesion images collected under standardised 

conditions with internal colour standards. The lesions span across ten different classes including melanomas, 

seborrhoeic keratosis and basal cell carcinomas. 

MED-NODE [38] 170 MED-NODE contains melanoma and nevus images from the digital image archive of the Department of 

Dermatology of the University Medical Center Groningen (UMCG) in Netherlands. 

SD [39,40] 3,309 SD-datasets (SD-198 [39] and SD-260 [40] ) contain clinical images collected by digital cameras and mobile phones. 

PAD-UFES-20 [41] 1,149 PAD-UFES-20 dataset consists of samples of six different types of skin lesions. Each sample consists of a clinical 

image and clinical features including skin lesion location and Fitzpatrick skin type. 

Fitzpatrick 17K [42] 8,289 Fitzpatrick 17K dataset contains clinical images with Fitzpatrick skin type labels sourced from two online 

open-source dermatology atlases: DermaAmin [43] and Atlas Dermatologico [44] . 

MIT dataset [8] 136 MIT dataset contains wide-field images extracted from open-access dermatology repositories, web scraping outputs, 

and de-identified clinical images from the hospital Gregorio Marañón (Madrid, Spain). We adopted the clinical 

images provided as supplementary material. 

DermNet NZ [45] 428 DermNet NZ is supported and contributed by New Zealand Dermatologists on behalf of the New Zealand 

Dermatological Society Incorporated. 

Renderpeople [29] 32 Renderpeople offers a diverse library of scanned 3D People models. We adopted a bundle of 4 subjects (4 meshes) 

on swimwear with different skin colour. 

3DBodyTexV1 [23,30] 1,600 3DBodyTex consists of 400 high-resolution 3D texture scans of 100 male and 100 female subjects captured in two 

different poses in finess clothing. Only one mesh per subject was selected. 

Australian Lab 

(proprietary) 

3,535 We develop an experimental dataset in collaboration with a commercial lab in Australia, which includes 

de-identified clinical images of skin lesions and ground truth data of the images. 

GAN-based skin 

(proprietary) 

4,487 We adopted GAN-based data augmentation for skin lesion analysis [46] . To generate synthetic skin lesion images 

from our proprietary dataset, we adapted the conditional GAN (cGAN) proposed in [47] which has been 

successfully used in many cross-domain learning tasks. 

Total 24,525 
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D reconstruction, and minimise the missing part of the output 3D 

odel, particularly the head, shoulder, hands and feet. 

Blender [32] , a popular 3D computer graphics open-source soft- 

are with a Python API, was initially used to render the 3D hu- 

an model in a controlled environment. However, the rendering 

ime was too long and repeated texture of the environment also 

aused errors in camera pose estimation during 3D reconstruction. 

hus, we adopt Pyrender [31] , a light-weight Python package, to 

ender the 3D model without a background scene. This can speed 

p the rendering while producing good quality rendered images of 

he same 24MP resolution as the real captured images for testing 

he processing pipeline. Another indication of the rendered images 

ith good quality is that the structure-from-motion step in the 

rocessing pipeline can detect all the camera poses of the images 

ear expected positions. 
7 
.3.2. Image acquisition system evaluation 

In addition to the camera positions, angles and FoV, camera set- 

ings including ISO (that is, the gain of the camera sensor), shutter 

peed/exposure time, aperture and focus also affect the quality of 

he images. Higher gain leads to a brighter but also noisier im- 

ge. Exposure time represents the amount of light captured by the 

amera sensor. Longer exposure time leads to a brighter image, but 

ubject to motion blurs. Too high ISO or too long exposure time 

lso leads to image saturation, where image details are lost in very 

right image regions. As a result, a balance between ISO and expo- 

ure time is determined to obtain the best image quality by visual 

nspection and checking the image histogram using GIMP software 

or a given scene and lighting conditions. As the depth of focus is 

nite and therefore only part of the object is in focus, the focus 

f the camera lens needs to be adjusted to maximise the image 
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Fig. 8. Selected samples of typical clinical photography included in the skin image 

analysis dataset. Images from a proprietary source (first row) and publicly available 

in [3,8,45] . 
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harpness of the body part to be reconstructed. Bright, minimal 

aturation, low noise, and sharp images can improve the geomet- 

ic accuracy of 3D reconstruction. 

By optimising these camera settings, we gradually improve the 

uality of the 3D reconstructed models from real 2D images. Multi- 

iew stereo reconstruction (MVS) successfully detects the camera 

oses of all 60 images to create a 3D human model as shown in

ig. 9 using two different software solutions. Although the head 

f the person is incomplete in regions where no lesions are de- 

ectable (hair / scalp), the reconstructed 3D mesh is good enough 

or lesion mapping and analysis. 

.3.3. 3D reconstruction approach 

3D avatars of participants are generated from 3D whole body 

hotography for lesion identification. For this purpose, two 3D 

econstruction software packages were evaluated: i) Meshroom 

49,50] is a powerful open-source software package that provides 

ery flexible environment for customisation running on Linux and 

indows environments; ii) Reality Capture [51] is a well-known 

ommercial software which provides simple and high-resolution 

D reconstruction running on Windows environment only. The 3D 

econstructions were performed on a PC with an i9-9900K CPU, 

2 GB RAM, and an RTX 2080 Ti GPU, although lower configura- 

ion is also possible as long as a CUDA supported GPU is available. 
Fig. 9. Meshes reconstructed by Meshroom

8 
ig. 9 illustrates the 3D meshes reconstructed using Meshroom and 

eality Capture, respectively. 

Both software packages produce decent-quality meshes, how- 

ver missing a portion of the top of the head. Reality Capture 

learly produces a mesh with higher resolution with slightly more 

ompleteness. However, Reality Capture was not able to detect the 

amera poses of four images and excluded them, while Meshroom 

ould detect camera poses for all 60 images. Due to the flexibil- 

ty and open-source nature of Meshroom, we adopted this tool in 

he 3DSkin-mapper workflow. For this purpose, we customised a 

D reconstruction pipeline for the implementation of ground plane 

etection, automatic cropping, scaling and alignment as follows: 

1. Standard reconstruction pipeline . Such a pipeline is illustrated in 

Fig. 10 following the solid arrows. The main steps are structure- 

from-motion, depth map estimation, meshing and texturing. 

2. Custom reconstruction pipeline . The customised 3D reconstruc- 

tion adds new functionalities including finding the ground (by 

plane fitting to the reconstructed point cloud), the stand and 

the scale (by circle fitting) and the transformation of the re- 

constructed body (by setting the centre and normal vector of 

the stand to be the world centre and vertical axis respectively). 

Fig. 11 shows the output of structure-from-motion (left), and 

the filtered non-textured mesh (right) produced by the stan- 

dard reconstruction. Notice that the non-textured mesh con- 

tains the body standing on the floor and the curtain around, 

and these are removed in the textured mesh of the person. The 

3D origin is on the ground between the feet, the ground normal 

represents the y-axis, and the height of the body matches the 

physical height of the person. The stand provides the scaling 

factor from the known diameter, and the origin from the fitted 

circle centre. Such a proposed pipeline is shown as dotted ar- 

rows in Fig. 10 . Qualitative results of the 3D whole body skin 

surface scans and the 3D model with the customised pipeline 

are depicted in Fig. 1 . 

.4. 3D data pre-processing and estimation 

Given the reconstructed 3D model and camera intrinsic and ex- 

rinsic parameters, a preprocessor renders the 3D models to get the 

orresponding depth image to each captured image, and a mask in- 

icating which pixels are associated with the subject for each cam- 

ra view (see Fig. 12 ). 2D to 3D projection can then be obtained

rom the depth image and camera parameters. These outputs are 

enerated using a process based on 3D rendering for each camera 

s follows: 

1. The model view projection (MVP) matrix is calculated from the 

estimated camera intrinsics / extrinsics. 
 (left) and Reality Capture (right). 
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Fig. 10. Meshroom’s standard 3D reconstruction pipeline with solid arrows. The customised reconstruction pipeline is shown by the dotted arrows to align, crop and scale 

the 3D mesh. 

Fig. 11. Camera poses and a sparse point cloud estimated (left), and reconstructed and filtered mesh (right) of the whole scene. The final aligned, cropped, scaled and 

textured mesh of the person is shown as a small upright-coloured 3D model near the middle. The final 3D model is overlaid together with the filtered mesh to show the 

differences in size, scale and orientation. 
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2. A scene is constructed consisting of the reconstructed 3D mesh 

and a single ambient light source. 

3. The scene is rendered using the Pyrender (OpenGL) library to 

produce a colour and depth image from the camera’s viewpoint. 

4. For each pixel in the image, a 3D ray is calculated from the 

MVP matrix. The ray is combined with its associated depth 

value to produce the 3D coordinates associated with each pixel. 

5. Every pixel which has an associated 3D coordinate within the 

predefined capture region (cylinder with origin in the centre) is 

marked as part of the subject. 

A small mismatch is present between the input camera view 

nd the rendered outputs, which becomes more pronounced near 

he edges of the images as shown in Fig. 12 (middle left). This 

s caused by the errors from different steps in 3D reconstruction 

ipeline including lens parameter estimation, depth estimation, 3D 

eshing, or even missing information from the lack of images and 

elf occlusions. Such errors lead to some uncertainty in the 2D to 

D mapping. Depending on the general distance between nearby 

kin lesions the uncertainty may not affect that matching of le- 

ions in 3D. As in our limited test cases, such uncertainty does not 

ffect the skin lesion detection in 2D images and their longitudinal 

racking in 3D space. 
9 
.5. Skin lesion detection 

To accurately detect and track lesions on the surface of 3D mod- 

ls over time, we employ a multi-step process. First, lesions are 

etected on 2D images, and then tracked in 3D using 3D recon- 

truction techniques. This process allows us to estimate the cam- 

ra poses, depth, and mask of each input image, which are used to 

ccurately compute the 3D position of each detected lesion on the 

D model. This information is then used for thorough data docu- 

entation and longitudinal monitoring. 

.5.1. Skin lesion detection on 2D images 

Human skin lesions are not homogeneous, which include struc- 

ures such as pathological and benign melanocytic lesions. To iden- 

ify such lesions, we propose a method based on deep learning as 

uch methods have shown great potential in practical real-world 

kin lesion examination [8] . These models can be used to identify 

he location and determine the dimension (height and width) of a 

esion in 2D images collected with the whole body imaging sys- 

em. The detected skin lesions in the 2D images can be mapped 

ack to the 3D surface of the subject, with the associated 3D co- 

rdinates of every pixel estimated with the preprocessor described 

n Subsection 2.4 . 
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Fig. 12. The input view of preprocessor (left), rendered 3D mesh (middle left), depth image (middle right) and subject mask (right). 

Fig. 13. Structure of the deep learning based object detectors, highlighting the main components of the Backbone, Neck and Head, and how information flows between these 

components. Image recreated from [57] . 
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Deep learning based object detectors have achieved exceptional 

erformance in recent years, thanks to advances in deep convo- 

utional neural networks (CNNs). CNN-based models have been 

idely applied for skin lesion detection and segmentation where 

retrained models are employed (on ImageNet [52] , Microsoft 

OCO [53] ) and fine-tuned with the skin lesion datasets [54] . The 

eep learning based object detection models can be classified into 

wo categories: one-stage and two-stage detectors. One-stage de- 

ection frameworks use a single network stage to perform classi- 

cation and bounding box regression. Two-stage detection frame- 

orks, on the other hand, include a pre-processing step for gener- 

ting object proposals to identify the object class and to regress an 

mproved bounding box. The structures of both the one-stage and 

wo-stage object detectors are illustrated in Fig. 13 . 

There are many variants of both the one-stage and two-stage 

odels, which are developed by changing the main components of 

he structures. Common components that may be changed include: 

he backbone used as the feature extractor, the neck used to extract 

ifferent f eature maps from different stages of the backbone, and 

he head which is used for the detection of bounding boxes. Such a 

ead can be a dense prediction (one-stage) or a sparse prediction 

two-stage) [55,56] . 

We opt to evaluate the performance of one-stage detectors as 

hey are better suited and highly viable for real-world applications 

ue to the faster inference than the two-stage detectors. Two-stage 

etectors such as Faster RCNN used in [18] for skin lesion detection 

re popular but require a lot of computational power at inference 

ime. 

Among well-known one-stage object detectors , the scaling cross- 

tage partial network ( Scaled-YOLOv4 ) [58] from the YOLO family 

f detectors (You Only Look Once [59] ), can achieve competitive 
10 
ccuracy while maintaining a high processing frame rate with an 

nference speed greater than 30FPS. Such an accurate and efficient 

odel has several features that make it well-suited for commercial 

pplications. Firstly, it is relatively easy to train and deploy, and it 

as a relatively small model size, making it more suitable for the 

eployment on resource-constrained devices. Secondly, it can pro- 

ess multiple scales of input images in a single pass and perform 

eal-time object detection on high-resolution images. Lastly, its im- 

lementation with the Darknet deep learning framework available 

n [60] allows for commercial use. 

Scaled-YOLOv4 makes an incremental improvement to 

OLOv4 [57] with a network scaling approach that modifies 

ot only the network depth, width, and resolution; but also the 

tructure of the network. The model is composed of an opti- 

ised CSPDarknet53 as its backbone, which employs a Darknet- 

3 [61] and a Cross Stage Partial Network (CSPNet) strategy [62] to 

artition the feature map of the base layer into two parts and 

hen merge them through a cross-stage hierarchy. An additional 

patial pyramid pooling (SPP) [63] module and a path aggregation 

etwork (PANet) [64] with CSP are used as the neck. Finally, a 

OLOv3 [61] is used as the head of the model. 

Model training and experimental setup 

A Scaled-YOLOv4 model pretrained on the MS COCO dataset is 

ne-tuned with the Darknet framework on our skin lesion dataset, 

s described in Subsection 2.2.3 (clinical images spanning vari- 

us skin-types and body locations. The 24,525 images are ran- 

omly split into training (14,715 images), validation (3,924 images), 

nd testing (5,886 images) sets. To prevent bias against certain 

roups of people, images from the PAD-UFES-20 and Fitzpatrick 

7K datasets were selected based on their skin type labels for the 

raining, validation, and testing sets. Additionally, male and female 
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ubjects from the 3DBodyTex dataset were evenly distributed in 

he training dataset. The model is trained for 10,0 0 0 iterations, 

ith a batch size of 64, a learning rate of 1 e −3 , a loss function

f sum-squared error (SSE), and a bounding box regression loss 

IoU [65] . In Darknet, an iteration refers to the process of adjusting 

he model’s parameters using the gradients calculated from a batch 

f training data. The training dataset is enhanced by using various 

ata augmentation techniques such as Mosaic, randomly rotating 

mages between 0 and 15 degrees, randomly modifying the bright- 

ess, contrast, saturation, and hue of each image, and randomly 

ipping the image horizontally. 

To enhance the prediction performance of the skin lesion de- 

ector, the whole body images are split into patches of 608 × 608 

ixels with an overlap of 50%. The detected lesions are then aggre- 

ated across all patches and non-max suppression (soft-NMS [66] ) 

s applied to obtain the final set of lesions detected for the input 

mage. 

.5.2. 2D matching and 3D mapping of skin lesions 

The main challenge that our acquisition system addresses is the 

ssociation of lesions, or matching a lesion to all images in which 

t is identified. During image acquisition, the scanner takes a se- 

ies of overlapping images to ensure that each lesion is captured 

rom at least 5-6 different viewing angles of cameras mounted on 

he poles of the acquisition system. In order to avoid repeatedly 

nalysing the same skin lesion across multiple images, we have 

eveloped a method that effectively matches detected lesions and 

stablishes the correspondence between each lesion and its respec- 

ive images. This approach aims to prevent duplication of effort in 

esion analysis. 

To address the matching problem, we utilise the 3D position 

f the lesion to more accurately determine the correspondence. 

ur whole body imaging system captures a set of images and 

heir corresponding camera poses to evaluate the 2D-3D mapping 

f the detected lesions visible in multiple images. We first map 

he centre point of each predicted 2D bounding box to 3D space 

s the 3D coordinates associated with each pixel are known (See 

ubsection 2.4 ). As a lesion can appear multiple times in various 

mages, skin lesions with similar 3D positions on the 3D mesh are 

rouped together using a unique global lesion ID. When it comes 

o 3D points, a distance threshold is used to specify the maximum 

istance between two points for them to be considered part of the 

ame cluster. Using this 3D approach to align lesions across images, 

t has shown better performance than traditional 2D methods that 

epend on geometric constraints, 2D templates and graph match- 

ng [15] . 

In order to achieve this objective, we employ an agglomera- 

ive clustering technique that is computed using the SciKit-learn 

ibrary [67] ), with a thresholded distance of 0.02 and Euclidean 

etric which is used to measure the distance between instances 

n a feature array. This parameter was empirically set at 0.2 as 

t yields the highest accuracy to define the clusters taking into 

ccount the size of the images ( 4 , 0 0 0 × 6 , 0 0 0 pixels). Our frame-

ork that uses multiple cameras is utilised to eliminate lesions 

hat are not consistently identified by a series of cameras, which 

an be considered as outliers or possibly incorrect detection. Ag- 

lomerative clustering groups similar points together by repeatedly 

ombining smaller clusters into larger ones. Each point starts at 

ts own cluster, and the closest pair of clusters are joined together 

ntil all points are in one cluster or a predetermined stopping 

oint is reached. The model provides the clusters with each data 

oint belonging to them after running the hierarchical clustering 

lgorithm. Clusters of less than three (3) points are rejected as 

utliers based on the overlapping between nearby views in the 

cquisition system. The number of clusters is equivalent to the 

umber of unique lesions, and the 3D coordinate of the global 
11 
esion ID is defined as the centroid of the cluster. Fig. 14 illustrates 

he different viewing angles of two selected global lesion IDs and 

heir representations in the 3D space. 

.5.3. Anatomical correspondence and longitudinal tracking 

When studying two images that depict the same lesion before 

nd after a change, a method is required to confirm that they rep- 

esent the same lesion during a temporal analysis. To study the 

rogression of lesions over time, we take into consideration the 

ifferences in the pose between scans. The 3D information is used 

or matching and comparison as in clinical practice the visual ap- 

earance of the lesions change over time in different scans, which 

s a limitation of early methods based on only 2D anatomical land- 

arks and structured graphical models [11,68] . Comparing to using 

ultiple single images, detected lesions integrated into a full-body 

D map greatly simplify the tracking of changes in lesions. For this 

urpose, we first determine anatomical correspondence across 3D 

uman meshes, we then establish the correspondence between the 

esions (3D spatial coordinates) on two sequential meshes [15] . 

Learning-based deformation methods can be used for 3D cor- 

espondence matching between two 3D meshes [69] . This ensures 

hat skin textures captured at different times are precisely aligned, 

aking them directly comparable. This makes it easy to evaluate 

he changes in lesions over time. To generate vertex correspon- 

ence across scans of the same subject (per pairs), we adopted 

he semi-supervised scan registration method LoopReg [70] trained 

n the Faust dataset [71] , which contains 100 scans of undressed 

eople in challenging poses and noisy scans, and correspond- 

ng skinned multi-person linear model (SMPL) registration [72] as 

round truth. Such a model does not require instance specific an- 

otations or multiple initialisations in comparison with supervised 

odels such as 3D-CODED [73] adopted by [18] to register skin 

eshes. Details of the LoopReg approach are provided in [70] . 

With the vertices of two registered meshes of the same subject 

sing LoopReg, obtained at different scan times, we can now pro- 

eed with the lesion matching across meshes. The anatomical cor- 

espondences between two temporally adjacent meshes are used 

o register the 3D coordinates of the lesions. We map the 3D po- 

ition of each lesion, which is represented by a unique global le- 

ion ID as discussed previously, to the closest vertex on each of the 

orresponding 3D meshes of the same subject. Similar to previous 

orks [68] , let l t and l t+1 be lesions from two scans ( M t1 and M t2 ),

he matching function can be formalised as M : (l t , l t+1 ) → { 0 , 1 }
hich provides 1 when l t and l t+1 correspond to the same lesion, 

nd 0 otherwise. 

We then perform lesion tracking by determining the 3D 

eodesic distance between the vertices of the registered meshes 

o correct for any inaccuracies in the mesh registration process. 

e assume that the geodesic distance remains relatively consis- 

ent across all poses which allows us to locate the correspond- 

ng lesion in the closest anatomical location of the target mesh. 

his operation is accomplished through the Dijkstra’s algorithm. 

he algorithm finds the shortest path between two vertices on a 

esh by treating it as a graph with vertices as nodes and edges 

s paths. The algorithm begins at the starting vertex, explores its 

eighbouring vertices, and records the distance for the starting 

ertex to each one. It then selects the unvisited vertex closest to 

he starting vertex and continues the process until the target ver- 

ex is reached [74] . Dijkstra’s algorithm approximates the actual 

eodesic distance with the length of the shortest piecewise linear 

ath on mesh vertices. Given υt and υt+1 , two vertices of both ad- 

acent lesions l t and l t+1 , P (υt , υt+1 ) a path connecting the two 

ertices, and L (P (υt , υt+1 )) the path length, the geodesic distance 

3 d between two vertices is approximated by the following expres- 

ion: g3 d(υt , υt+1 ) = min /P L (P (υt , υt+1 )) . Such formulation as- 

umes that the assumption being made is that the number of skin 
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Fig. 14. Visualisation of two selected skin lesions and their different views from each camera. Lesions visible from poles C, B, A, O, N, and M. 

Fig. 15. User interface for the proposed system. The cropped images on the right that contain each lesion look blurry as they are zoomed-in and at the limit of image 

resolution. 
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esions observed in M t1 and M t2 are equal, which is consistent with 

he specific case being studied where the lesions do not change 

ignificantly in a short period of time between follow-up sessions. 

.6. 3DSkin-mapper UI 

We developed a custom user interface (UI) to visualise our re- 

ults. As illustrated in Fig. 15 , the interface centres around multiple 

inked views of the captured and processed images. 

A thumbnail grid view of the images that were captured us- 

ng the imaging system (See Fig. 5 ) appears at the bottom of the

entral column of the interface. Users can filter the visible thumb- 

ails based on the area and pole position the images were cap- 

ured from ( e.g. Front view: Poles C, B, A, O and N). The selected

mage appears in the central top view of the interface and allows 

he users to zoom and pan around the image for more detailed 

nspection. The rectangular region of the detected features can be 

hown as an overlay on the central primary image. An individual 
12 
esion can be selected within the bounding box region of the lesion 

n the central primary image. 

The left side of the interface shows the reconstructed textured 

D model (See Subsection 2.3 ). The view of the 3D model can be 

nteracted with a mouse, allowing the model to be rotated around 

he centre of the model (mid-abdomen), as well as manipulating 

he camera around the model (pan / tilt as well as moving the 

amera in/out). There are also user interface options to align the 

D camera view to a fixed predefined position pointing towards 

he model, as well as moving the model back to the centre of 

he viewport (while maintaining the current camera position). The 

odel appears with textures by default, but the textures can be 

urned off to allow more detailed inspection of the 3D mesh with- 

ut the added visual cues from the textures, which mask some un- 

erlying 3D model imperfections. 

The right panel highlights the active detection (top-right) show- 

ng either the raw image pixels of the detection enlarged with 

moothing optionally applied to facilitate clinical use cases. All 
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Fig. 16. Comparison between the ground-truth human model (left) with the reconstructed model (middle). Synthetic images generated from the ground-truth model were 

used to produce the reconstructed model. The reconstruction error in terms of Hausdorff distance is shown as colour map and histogram (right). The model displays some 

missing elements in the hand and underarm areas, with an average error of approximately 2 mm. 
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etected lesions from the current image appear in the “Current 

mage Detections” image grid. The “Current Detection Metadata”

egion can be used by the user to annotate the currently se- 

ected lesion with free text notes. Further, we allow for curation 

f the dataset by annotating misdetections with the “Remove De- 

ection” button (the selected lesion is then removed from visuali- 

ation on the user interface). Selecting the active detection (either 

y selecting within the bounding box region of the lesion directly 

rom the central primary image or the “Current Image Detections 

ox”) updates the selection across all views (highlighting on the 

D model, primary image, enlarged image crop and selected cur- 

ent image detection and metadata). When the actively selected 

etection is changed, the virtual camera viewing the 3D model 

an optionally be moved to a fixed offset from the 3D point on 

he mesh surface of the model to point directly at the computed 

D points of the detection (focusing the 3D view on the actively 

elected detection). This is achieved by offsetting the camera a 

xed distance from the computed 3D coordinates of the detection 

n the model surface along the computed normal vector at this 

ocation. 

The UI was developed so that it was agnostic to the underly- 

ng model generation, skin lesion detection and geometric trans- 

ormation computation. This completely decouples the data pro- 

essing from the user interface presentation, by using directories 

f flat files as the transport mechanism between these separate 

ystems. This means that the UI is a modular product that could 

e reused for a different application by simply feeding in the ap- 

ropriate model, images, and detection metadata. 

The UI was developed using QT via PySide2 bindings from 

ython version 5.15.2. The UI takes as input the 60 images saved 

rom the DSLR cameras, the 3D model (stored in an.obj file with an 

ssociated single texture image) and a JSON data file which con- 

ains the information on the detections ( e.g. unique identifier, 3D 

oordinate location and 3D normal direction). Linkage of the data 

n the JSON file to the underlying image in which the detection 

s found can be made via filename correspondence (prefixed the 

ame - different file extensions) or a metadata field which stores 

he original image in which the lesions are detected. 

The UI provides an alternative but effective way to present skin 

nformation to doctors. It allows doctors to see skin lesions virtu- 

lly in their 3D positions, and easily track them over time. 

. Results 

.1. 3D model reconstruction 

Validation of 3D reconstruction accuracy is performed by com- 

uting the Hausdorff distance (using MeshLab [75] ) of the recon- 
13 
tructed 3D mesh relative to the ground truth 3D mesh (from 

enderpeople and 3DBodyTexV1) which is used to generate syn- 

hetic images for 3D reconstruction. Hausdorff distance is defined 

s the largest distance between two meshes. When comparing two 

eshes, large Hausdorff distances indicate missing features in the 

econstructed mesh. Once the Hausdorff distance is computed and 

ormalised by the diagonal distance of the 3D mesh bounding box, 

t is visualised as a heatmap on the ground truth mesh. 

The results and their comparison to a selected ground truth 3D 

esh from Renderpeople are shown in Fig. 16 . An average error 

cross the 10 models introduced in Subsection 2.2.2 was 2.5 mm. 

owever, errors were concentrated in the areas of limited image 

overage such as underarm and upper shoulder. The entire 3D re- 

onstruction process takes approximately 30 minutes or less. 

.2. Lesion detection and tracking 

.2.1. Detecting lesions on 2D images and 3D mapping 

The accuracy of the lesion detection is evaluated by comparing 

he 2D bounding box predicted by our method (that encapsulates 

he pigmented skin lesion) to the corresponding manual annota- 

ion (ground truth) in the image in which the lesion is detected, 

s described in the Subsection 2.2.3 . 

We use the normalised intersection-over-union (IoU) metric to 

efine how well a bounding box overlaps the associated ground 

ruth. We adopt the mAP@IoU[0.5], where the mean average preci- 

ion (mAP) requires that the bounding boxes overlap with an IoU 

0.5. We also report recall and precision. Precision represents the 

roportion of true positives among all positive predictions, while 

ecall represents the proportion of true positives among all actual 

ositive instances. We calculated each metric for all images and re- 

ort the average over all images. It is worth noting that, while high 

recision is preferred, high recall is crucial as the consequences of 

issing a potential melanoma are much more severe than those of 

 false alarm. 

The model, trained using the data specified in Table 4 achieved 

 mAP @ IoU[0.5] of 92.4% with a precision of 79% and a recall 

f 88% on the test set (See Subsection 2.5.1 ) while maintaining a 

ast frame rate of over 45 frames per second. This performance is 

omparable with the state-of-the-art methods for skin lesion de- 

ection on clinical images as shown in Table 5 . Previous works on 

esion detection or segmentation using high-magnification images 

f small regions surrounding a lesion obtained with a dermato- 

cope are not considered. Our algorithm automatically detects skin 

esions and provides an opportunity to perform quick screening of 

kin lesions in whole body images. This is especially useful for pa- 

ients with many lesions. Fig. 17 shows some examples of the skin 

esion detection in a visual format. 
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Table 5 

Five-fold evaluation results on the skin image dataset with different detectors. 

The inference time for each model is also reported with a single Nvidia Geforce 

RTX 2080Ti and 4 CPU cores. Models are pre-trained on COCO dataset and fine- 

tuned with the specifications provided in Subsection 2.5.1 . 

Detector mAP@IoU[0.5] Frame rate 

YOLOv3 (adopted in [12] ) 63.3 128 

Faster RCNN (ResNet-50) (adopted in [18] ) 84.6 17 

SDD (ResNet-18) + FPN (adopted in [9] ) 90.1 26 

ScaledYOLOv4 (our customised approach) 92.4 47 

Fig. 17. Qualitative results of the skin lesion detector on clinical images introduced 

in Subsection 2.2.3 . 
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We also evaluated the performance of our detector on 55 dis- 

inct lesions identified from 3 participants (See Subsection 2.2.1 ) 

nd their various perspectives in all 2D images. This test aimed to 

ssess the model’s ability to detect the same lesion across differ- 

nt camera angles. The model achieved a mAP@IoU[0.5] of 85.1%. 

owever, the performance is degraded when the view of some le- 

ions is distorted or blurred, as seen with Global ID 1 and its views

rom Poles C, N and M in Fig. 14 . It’s important to note that these

mages were not used in the training of our detector. 

To overcome the limitation of identifying all visible lesions in 

ll recorded images, we exploited 3D information by analysing the 

D positions of the lesions across multiple views. As described in 

ubsection 2.5.2 , the system categorised the same skin lesion de- 

ected in multiple 2D images into a unique 3D global lesion identi- 

er which is then used for temporal change analysis between ses- 

ions. This functionality enables the user to visualise the lesion 

rom different angles, which can help overcome the limitations 

hat may be present in a single image, such as a partial occlusion. 

ig. 18 shows the lesions detected on 2D images (frontal position), 

s well as the mapping of these lesions onto the 3D model re- 

onstructed and visible in the user interface. Additional qualitative 

esults of the lesion detection on the collected data from a partic- 

pant were shown in Fig. 1 and 15 . 

.2.2. Tracking of skin lesions across temporal scans 

To monitor the changes in lesions over time, we need to map 

he 2D locations of the lesions back to 3D coordinates with a 

nique ID. Then, we establish a match between the 3D human 

eshes and find the correspondence between the lesions on two 
14 
onsecutive meshes. A metric called longitudinal accuracy is de- 

ned as the ratio of the number of lesion pairs that were correctly 

racked to the total number of pairs within the longitudinal le- 

ion set. It measures how accurately the lesions were tracked over 

ime. Using ten subjects scanned, three (3) from our image acqui- 

ition system and seven (7) from 3DBodyTexV1 (34 + 96 = 130 

nique lesions) (Refer to Subsections 2.2.1 and 2.2.2 ), we create 

 representative dataset to validate the matching across meshes. 

hile the lesion count is important to restrict the amount of re- 

uired manual matching work, the diversity in body constitution 

nd skin type help cover different skin topographies. Thus, with 

he different body characteristics in our experiments, the number 

f lesions is sufficient to evaluate the performance of the proposed 

ethod. 

The solution based on the anatomical registration with LoopReg 

nd the skin lesion matching with 3D geodesic distance reaches a 

ongitudinal accuracy of 94% (32/34) between M t1 and M t2 (our 

ataset collected), 88% (85/96) between M t1 and M t2 (3DBody- 

exV1 subjects), and 70% (24/34) between M t2 and M t3 (our 

ataset collected). The accuracy of longitudinal examination may 

e impacted when it fails to track or match corresponding lesions 

f they are not detected by the lesion detector. Fig. 19 illustrates the 

ualitative results of the longitudinal examination. While the ma- 

ority of the observed lesions were successfully mapped, it can be 

een that some lesions were not tracked due to detection failure 

n t3 = 30 days as a result of reflections in the image. Addition- 

lly, for this particular session, the examination faced challenges 

n tracking lesions that were heavily occluded on the right side of 

he body due to unusual body pose. 

. Discussion 

3D whole body imaging is notably important in the analyt- 

cal assessment of individual lesions relative to the overall skin 

esion ecosystem of a patient [16] . Such technology is especially 

seful to track and document lesions of patients with many skin 

esions, where diagnostic biopsy of every lesion is unfeasible. 

ur modular imaging system provides a promising tool to cap- 

ure whole body images, detect and document lesions. This can 

otentially save large amounts of time for skin cancer special- 

sts. The 3D imaging can be used to facilitate long-term surveil- 

ance by monitoring the entire skin surface rather than individual 

esions [76] . 

We have assessed the 3D reconstruction accuracy using syn- 

hetic images generated from existing 3D whole body scans, and 

iscovered that the average error of the 3D reconstruction is about 

.5 mm. However, it is worth mentioning that the accuracy of the 

D reconstruction on the dataset collected with the proposed sys- 

em was not studied explicitly, but rather the individual compo- 

ents of the system. While preferred, access to a certified commer- 

ial system such as VECTRA WB360 was not available to generate 

ccurate ground truth data. Rotatory systems were not considered 

or this analysis. 

While the primary aim of this study is to present a modular 

ystem that allows for 3D geometry analysis of skin lesions and 

ata management, rather than a clinical study, we recognise that 

athering additional data will facilitate appropriate validation of 

ongitudinal tracking and patient variability for long-term surveil- 

ance. 

If small lesions that occupy an area of less than 25 × 25 pix- 

ls (approximately ≤ 2 mm measured under real settings with the 

ataset collected with our proposed system) are to be detected, 

n unsatisfactory amount of false positives may be detected with 

he current quality of images. Earlier stages and smaller lesions 

f 1mm or 2mm in size, were much more difficult and error- 

rone [77] . To estimate the diameter of a lesion on these images, 
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Fig. 18. Visualisation of the selected skin lesions detected in a selected 2D image [Front view of camera A3] (left) and mapped back to the 3D mesh of the subject [predefined 

front position in the interface] (right). To facilitate the visualisation of the 3D model, half of the human body is represented without texture. Since the camera poses and 

intrinsic parameters were estimated, it is possible to automatically map the 3D coordinates of a selected lesion to its corresponding 2D location on any of the regional 

images. 

Fig. 19. Skin lesion matching. 3D meshes and longitudinal tracking of selected skin lesions across different sessions and poses ( t1 = 0 , t2 = 15 days, and t3 = 30 days). The 

coloured line between each lesion indicates the unique lesion correspondence across different meshes. The dotted line indicates missing lesion between M t2 and M t3 . 
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tsu thresholding can be used to segment the lesion. While nevi 

hat are less than 2 mm in size may be less likely to be can-

erous, it is still important to have them checked [78] . Further- 

ore, for greater repeatability of 3D body imaging, only lesions 

2 mm have been considered for classification [20,76] , as they 

re associated with a higher risk of cancer spreading (metasta- 

is) or recurrence [79] . In general, smaller skin lesions are more 

ikely to be confined to the top layer of the epidermis and less 

ikely to have invaded deeper layers or spread to nearby lymph 

odes [79] . 

Limitations of our model include the difficulties to filter the 

esions based on more advanced geometrical parameters. By in- 

luding a data-driven segmentation module, as shown in [9] , for 

ach lesion within a bounding box, the system will be able to rank 

ll the lesions with such characteristics. Once the correspondence 

mong overlapping images captured by adjacent cameras is estab- 

ished, the next steps are to segment the lesions and align the im- 

ges to address the difference in perspectives, before identifying 

heir temporal changes. The accurate estimation of the diameter of 

 lesion is especially important when comparing the images cap- 

ured over a period of time. A significant increase in the diameter 

f a nevus between consecutive examinations is a strong indicator 

hat the melanocytic nevus can potentially be dangerous [76,78] . 

dditionally, our matching algorithm did not take into account the 
i

15 
xamination of meshes that showed lesions either disappearing or 

ppearing anew [68] . 

. Conclusion 

In this study, we introduced a 3D whole body imaging sys- 

em and workflow for multiple view image capturing, 3D human 

ody reconstruction, 3D skin lesion localisation and documenta- 

ion. A software tool has been designed for image visualisation 

nd management. We have also developed an algorithm to identify 

kin lesions in whole body images. The baseline system that serves 

s a platform for new scientific discoveries is developed utilising 

pen source libraries and software packages such as digiCamCon- 

rol, Meshroom, Darknet, and QT via PySide2 for camera control, 

D human body reconstruction, lesion detection, and user interface 

evelopment, respectively. Future work will involve further evalu- 

tion of the workflow against a larger image set with expertly la- 

elled lesions. 

. Ethical clearance 

The experimental procedures involving human subjects de- 

cribed in this paper were approved by the CSIRO Health and Med- 

cal Human Research Ethics Committee (CHMHREC). 



D. Ahmedt-Aristizabal, C. Nguyen, L. Tychsen-Smith et al. Computer Methods and Programs in Biomedicine 232 (2023) 107451 

D

c

i

R

 

[

 

[

[  

[

[  

[  

[

[

[

[

[

[

[

[

[

[

[

[

[  

[  

[
[

[
[

[

[

[

[  

[  

[  

[  

[

[

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

eferences 

[1] M. Vestergaard, P. Macaskill, P. Holt, S. Menzies, Dermoscopy compared with 

naked eye examination for the diagnosis of primary melanoma: a meta-anal- 
ysis of studies performed in a clinical setting, Br. J. Dermatol. 159 (3) (2008) 

669–676 . 

[2] C. Barata, M.E. Celebi, J.S. Marques, A survey of feature extraction in der- 
moscopy image analysis of skin cancer, IEEE J. Biomed. Health Inform. 23 (3) 

(2018) 1096–1109 . 
[3] V. Rotemberg, N. Kurtansky, B. Betz-Stablein, L. Caffery, E. Chousakos, 

N. Codella, M. Combalia, S. Dusza, P. Guitera, D. Gutman, et al., A patient-cen- 
tric dataset of images and metadata for identifying melanomas using clinical 

context, Sci. Data 8 (1) (2021) 1–8 . 

[4] P. Tschandl, G. Argenziano, M. Razmara, J. Yap, Diagnostic accuracy of con- 
tent-based dermatoscopic image retrieval with deep classification features, Br. 

J. Dermatol. 181 (1) (2019) 155–165 . 
[5] T.M. de Carvalho, E. Noels, M. Wakkee, A. Udrea, T. Nijsten, Development of 

smartphone apps for skin cancer risk assessment: progress and promise, JMIR 
Dermatol. 2 (1) (2019) e13376 . 

[6] J.S. Birkenfeld, J.M. Tucker-Schwartz, L.R. Soenksen, J.A. Avilés-Izquierdo, 

B. Marti-Fuster, Computer-aided classification of suspicious pigmented lesions 
using wide-field images, Comput. Methods Programs Biomed. 195 (2020) 

105631 . 
[7] A. Truong, L. Strazzulla, J. March, K.M. Boucher, K.C. Nelson, C.C. Kim, D. Gross- 

man, Reduction in nevus biopsies in patients monitored by total body photog- 
raphy, J. Am. Acad. Dermatol. 75 (1) (2016) 135–143 . 

[8] L.R. Soenksen, T. Kassis, S.T. Conover, B. Marti-Fuster, J.S. Birkenfeld, J. Tuck- 
er-Schwartz, A. Naseem, R.R. Stavert, C.C. Kim, M.M. Senna, et al., Using deep 

learning for dermatologist-level detection of suspicious pigmented skin lesions 

from wide-field images, Sci Transl Med 13 (581) (2021) . 
[9] M. Mohseni, J. Yap, W. Yolland, A. Koochek, S. Atkins, Can self-training iden- 

tify suspicious ugly duckling lesions? in: Proc. IEEE Conf. Comput. Vis. Pattern 
Recognit., 2021, pp. 1829–1836 . 

[10] Dermengine, Dermengine total body photography, 2021, ( https://www. 
dermengine.com/en- ca/total- body- photography ). 

[11] K. Korotkov, J. Quintana, R. Campos, A. Jesús-Silva, P. Iglesias, S. Puig, 

J. Malvehy, R. Garcia, An improved skin lesion matching scheme in total body 
photography, IEEE J. Biomed. Health. Inform. 23 (2) (2018) 586–598 . 

[12] M.H. Strzelecki, M. Str ̨akowska, M. Kozłowski, T. Urba ́nczyk, 
D. Wielowieyska-Szybi ́nska, M. Kociołek, Skin lesion detection algorithms 

in whole body images, Sensors 21 (19) (2021) 6639 . 
[13] J.E. Rayner, A.M. Laino, K.L. Nufer, L. Adams, A.P. Raphael, S.W. Menzies, 

H.P. Soyer, Clinical perspective of 3D total body photography for early detec- 

tion and screening of melanoma, Front. Med. 5 (2018) 152 . 
[14] P. Treleaven, J. Wells, 3d body scanning and healthcare applications, Computer 

40 (7) (2007) 28–34 . 
[15] F. Bogo, J. Romero, E. Peserico, M.J. Black, Automated detection of new or 

evolving melanocytic lesions using a 3d body model, in: Proc. Int. Conf. Med. 
Image Comput. Comput. Assist. Interv., 2014, pp. 593–600 . 

[16] K. Grochulska, B. Betz-Stablein, C. Rutjes, F.P.-C. Chiu, S.W. Menzies, H.P. Soyer, 

M. Janda, The additive value of 3d total body imaging for sequential monitor- 
ing of skin lesions: a case series, Dermatol. (2021) 1–6 . 

[17] M. Janda, H.P. Soyer, Describing the skin surface ecosystem using 3d total body 
photography, Dermatol. (2021) 1–3 . 

[18] M. Zhao, J. Kawahara, S. Shamanian, K. Abhishek, P. Chandrashekar, 
G. Hamarneh, Detection and longitudinal tracking of pigmented skin lesions in 

3d total-body skin textured meshes, arXiv preprint arXiv:2105.00374 (2021) . 

[19] C. Navarrete-Dechent, K. Liopyris, A. Rishpon, N.G. Marghoob, J. Monnier, 
A .A . Marghoob, Total body photography as an aid for the early detection of

skin cancer, in: Photogr. Clin. Med., Springer, 2020, pp. 253–269 . 
20] B. Betz-Stablein, B. D’Alessandro, U. Koh, E. Plasmeijer, M. Janda, S.W. Menzies, 

R. Hofmann-Wellenhof, A.C. Green, H.P. Soyer, Reproducible naevus counts us- 
ing 3d total body photography and convolutional neural networks, Dermatol. 

(2021) 1–8 . 

[21] C.A . Primiero, A .M. McInerney-Leo, B. Betz-Stablein, D.C. Whiteman, L. Gordon, 
L. Caffery, J.F. Aitken, E. Eakin, S. Osborne, L. Gray, et al., Evaluation of the

efficacy of 3d total-body photography with sequential digital dermoscopy in 
a high-risk melanoma cohort: protocol for a randomised controlled trial, BMJ 

open 9 (11) (2019) e032969 . 
22] Canfield Scientific Imaging Systems, Canfield 3D Vectra system, 2021, ( https: 

//www.canfieldsci.com/imaging-systems/vectra-wb360-imaging-system/ ). 
23] A. Saint, E. Ahmed, K. Cherenkova, G. Gusev, D. Aouada, B. Ottersten, et al.,

3dbodytex: Textured 3d body dataset, in: Proc. Int. Conf. 3D Vis., 2018, 

pp. 495–504 . 
24] Artec3D, Artec shapify booth, 2022, ( https://www.artec3d.com/ 

portable- 3d- scanners/shapifybooth ). 
25] I. Zalaudek, H. Kittler, A .A . Marghoob, A . Balato, A . Blum, S. Dalle, G. Ferrara,

R. Fink-Puches, C.M. Giorgio, R. Hofmann-Wellenhof, et al., Time required for a 
16 
complete skin examination with and without dermoscopy: a prospective, ran- 
domized multicenter study, Arch. Dermatol. 144 (4) (2008) 509–513 . 

26] S.A . Hantirah, B.A . Yentzer, S.J. Karve, M. McCallister, C.M. Yarbrough, S.R. Feld-
man, Estimating the time required for a complete skin examination, J. Am. 

Acad. Dermatol. 62 (5) (2010) 886–888 . 
27] N. Golda, S. Beeson, N. Kohli, B. Merrill, Recommendations for improving 

the patient experience in specialty encounters, J. Am. Acad. Dermatol. 78 (4) 
(2018) 653–659 . 

28] DigiCamControl, DigiCamControl, 2021, ( http://digicamcontrol.com/ ). 

29] Renderpeople, Bundle swimwear rigged 002, 2020, ( https://renderpeople.com/ 
3d- people/bundle- swimwear- rigged- 002/ ). 

30] A. Saint, K. Cherenkova, G. Gusev, D. Aouada, B. Ottersten, et al., Bodyfitr: Ro- 
bust automatic 3d human body fitting, in: Proc. Int. Conf. Image Process., 2019, 

pp. 4 84–4 88 . 
[31] M. Mat, Pyrender, 2021, ( https://pypi.org/project/pyrender/ ). 

32] B.O. Community, Blender-a 3D modelling and rendering package, Blender 

Foundation, Stichting Blender Foundation, Amsterdam, 2020 . http://www. 
blender.org 

33] M. Hasan, M. Ahamad, C.H. Yap, G. Yang, et al., Skin lesion analysis: A 
state-of-the-art survey, systematic review, and future trends, arXiv preprint 

arXiv:2208.12232 (2022) . 
34] N.R. Abbasi, H.M. Shaw, D.S. Rigel, R.J. Friedman, W.H. McCarthy, I. Osman, 

A.W. Kopf, D. Polsky, Early diagnosis of cutaneous melanoma: revisiting the 

abcd criteria, Jama 292 (22) (2004) 2771–2776 . 
35] K. Abhishek, J. Kawahara, G. Hamarneh, Predicting the clinical management of 

skin lesions using deep learning, Sci. Rep. 11 (1) (2021) 1–14 . 
36] I.S.I. Collaboration, et al., Siim-isic 2020 challenge dataset, International Skin 

Imaging Collaboration (2020) . 
37] L. Ballerini, R.B. Fisher, B. Aldridge, J. Rees, A color and texture based hierarchi- 

cal k-nn approach to the classification of non-melanoma skin lesions, in: Color 

Med. Image Anal., 2013, pp. 63–86 . 
38] I. Giotis, N. Molders, S. Land, M. Biehl, M.F. Jonkman, N. Petkov, Med-node: A 

computer-assisted melanoma diagnosis system using non-dermoscopic images, 
Expert Syst. Appl. 42 (19) (2015) 6578–6585 . 

39] X. Sun, J. Yang, M. Sun, K. Wang, A benchmark for automatic visual classifi- 
cation of clinical skin disease images, in: Proc. Eur. Conf. Comput. Vis., 2016, 

pp. 206–222 . 

40] J. Yang, X. Wu, J. Liang, X. Sun, M.-M. Cheng, P.L. Rosin, L. Wang, Self-paced
balance learning for clinical skin disease recognition, IEEE Trans Neural Netw 

Learn Syst 31 (8) (2019) 2832–2846 . 
[41] A.G. Pacheco, G.R. Lima, A.S. Salomão, B. Krohling, I.P. Biral, G.G. de Angelo, 

F.C. Alves Jr, J.G. Esgario, A.C. Simora, P.B. Castro, et al., Pad-ufes-20: a skin 
lesion dataset composed of patient data and clinical images collected from 

smartphones, Data Brief 32 (2020) 106221 . 

42] M. Groh, C. Harris, L. Soenksen, F. Lau, R. Han, A. Kim, A. Koochek, O. Badri,
Evaluating deep neural networks trained on clinical images in dermatology 

with the fitzpatrick 17k dataset, in: Proc. IEEE Conf. Comput. Vis. Pattern 
Recognit., 2021, pp. 1820–1828 . 

43] J.A. AlKattash, Dermaamin, 2021, ( https://www.dermaamin.com/site/ ). 
44] S.F. da Silva, Atlas dermatologico, 2021, ( http://atlasdermatologico.com.br/ ). 

45] D.N.Z. Trust, Dermnet, 2021, ( https://dermnetnz.org/ ). 
46] A. Bissoto, E. Valle, S. Avila, Gan-based data augmentation and anonymization 

for skin-lesion analysis: A critical review, in: Proc. IEEE Conf. Comput. Vis. Pat- 

tern Recognit., 2021, pp. 1847–1856 . 
[47] P. Isola, J.-Y. Zhu, T. Zhou, A .A . Efros, Image-to-image translation with condi- 

tional adversarial networks, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 
2017, pp. 1125–1134 . 

48] B. Sekachev, N. Manovich, M. Zhiltsov, A. Zhavoronkov, D. Kalinin, B. Hoff, TOs- 
manov, D. Kruchinin, A. Zankevich, DmitriySidnev, M. Markelov, Johannes222, 

M. Chenuet, a andre, telenachos, A. Melnikov, J. Kim, L. Ilouz, N. Glazov, 

Priya4607, R. Tehrani, S. Jeong, V. Skubriev, S. Yonekura, vugia truong, zliang7, 
lizhming, T. Truong, opencv/cvat: v1.1.0, 202010.5281/zenodo.4009388 

49] AliceVision, Meshroom: A 3D reconstruction software., 2018, ( https://github. 
com/alicevision/meshroom ). 

50] C. Griwodz, S. Gasparini, L. Calvet, P. Gurdjos, F. Castan, B. Maujean, G. De 
Lillo, Y. Lanthony, Alicevision meshroom: An open-source 3d reconstruction 

pipeline, in: Proc. ACM Multimed. Syst. Conf., 2021, pp. 241–247 . 

[51] RealityCapture, Realitycapture: Mapping and 3d modelling photogrammetry, 
2021, ( https://www.capturingreality.com/ ). 

52] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale
hierarchical image database, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 

Ieee, 2009, pp. 248–255 . 
53] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. Zit-

nick, Microsoft coco: Common objects in context, in: Proc. Eur. Conf. Comput. 

Vis., 2014, pp. 740–755 . 
54] Z. Mirikharaji, C. Barata, K. Abhishek, A. Bissoto, S. Avila, E. Valle, M.E. Celebi,

G. Hamarneh, A survey on deep learning for skin lesion segmentation, arXiv 
preprint arXiv:2206.00356 (2022) . 

55] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, M. Pietikäinen, Deep
learning for generic object detection: A survey, Int. J Comput Vis 128 (2) 

(2020) 261–318 . 

56] V. Sharma, R.N. Mir, A comprehensive and systematic look up into deep learn- 
ing based object detection techniques: A review, Comput. Sci. Rev. 38 (2020) 

100301 . 
57] A. Bochkovskiy, C.-Y. Wang, H.-Y.M. Liao, Yolov4: Optimal speed and accuracy 

of object detection, arXiv preprint arXiv:2004.10934 (2020) . 

http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0001
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0002
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0003
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0004
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0005
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0006
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0007
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0008
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0009
https://www.dermengine.com/en-ca/total-body-photography
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0010
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0011
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0012
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0013
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0014
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0015
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0016
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0017
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0018
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0019
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0020
https://www.canfieldsci.com/imaging-systems/vectra-wb360-imaging-system/
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0021
https://www.artec3d.com/portable-3d-scanners/shapifybooth
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0022
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0022
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0023
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0024
http://digicamcontrol.com/
https://renderpeople.com/3d-people/bundle-swimwear-rigged-002/
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0025
https://pypi.org/project/pyrender/
http://www.blender.org
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0027
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0028
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0029
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0030
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0031
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0032
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0033
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0034
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0035
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0036
https://www.dermaamin.com/site/
http://atlasdermatologico.com.br/
https://dermnetnz.org/
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0037
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0038
https://github.com/alicevision/meshroom
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0039
https://www.capturingreality.com/
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0040
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0041
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0042
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0043
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0044
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0045


D. Ahmedt-Aristizabal, C. Nguyen, L. Tychsen-Smith et al. Computer Methods and Programs in Biomedicine 232 (2023) 107451 

[

[

[

[

[

[  

[  

[  

[

[

[

[  

[

[

[

 

[

[

[

[

58] C.-Y. Wang, A. Bochkovskiy, H.-Y.M. Liao, Scaled-yolov4: Scaling cross stage 
partial network, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2021, 

pp. 13029–13038 . 
59] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real–

time object detection, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, 
pp. 779–788 . 

60] AlexeyAB, Darknet: Open source neural networks in c, 2021, ( https://github. 
com/AlexeyAB/darknet ). 

61] J. Redmon, A. Farhadi, Yolov3: An incremental improvement, arXiv preprint 

arXiv:1804.02767 (2018) . 
62] C.-Y. Wang, H.-Y.M. Liao, I.-H. Yeh, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, Cspnet: 

A new backbone that can enhance learning capability of cnn, arXiv preprint 
arXiv:1911.11929 (2019) . 

63] K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep convolutional
networks for visual recognition, IEEE Trans. Pattern Anal. Mach. Intell. 37 (9) 

(2015) 1904–1916 . 

64] S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path aggregation network for instance segmen-
tation, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 8759–8768 . 

65] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, D. Ren, Distance-iou loss: Faster and
better learning for bounding box regression, in: Proc. Conf. AAAI Artif. Intell., 

volume 34, 2020, pp. 12993–130 0 0 . 
66] N. Bodla, B. Singh, R. Chellappa, L.S. Davis, Soft-nms–improving object de- 

tection with one line of code, in: Proc. Int. Conf. Comput. Vis., 2017, 

pp. 5561–5569 . 
67] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, 

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, 
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine 

learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830 . 
68] H. Mirzaalian, T.K. Lee, G. Hamarneh, Skin lesion tracking using structured 

graphical models, Med. Image Anal. 27 (2016) 84–92 . 

69] T. Deprelle, T. Groueix, M. Fisher, V. Kim, B. Russell, M. Aubry, Learning ele-
mentary structures for 3d shape generation and matching, in: Proc. Adv. Neu- 

ral Inf. Process. Syst., volume 32, 2019 . 
17
70] B.L. Bhatnagar, C. Sminchisescu, C. Theobalt, G. Pons-Moll, Loopreg: Self-su- 
pervised learning of implicit surface correspondences, pose and shape for 3d 

human mesh registration, in: Proc. Adv. Neural Inf. Process. Syst., volume 33, 
2020, pp. 12909–12922 . 

[71] F. Bogo, J. Romero, M. Loper, M.J. Black, Faust: Dataset and evaluation for 3d 
mesh registration, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, 

pp. 3794–3801 . 
72] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, M.J. Black, Smpl: A skinned 

multi-person linear model, ACM Trans. Graph. 34 (6) (2015) 1–16 . 

73] T. Groueix, M. Fisher, V.G. Kim, B.C. Russell, M. Aubry, 3d-coded: 3d cor- 
respondences by deep deformation, in: Proc. Eur. Conf. Comput. Vis., 2018, 

pp. 230–246 . 
[74] K. Crane, M. Livesu, E. Puppo, Y. Qin, A survey of algorithms for geodesic paths

and distances, arXiv preprint arXiv:2007.10430 (2020) . 
75] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, G. Ranzuglia, 

et al., Meshlab: an open-source mesh processing tool, in: Proc. Eurograph. Ital. 

Chapter Conf., volume 2008, 2008, pp. 129–136 . 
[76] C. Horsham, M. O’Hara, S. Sanjida, S. Ma, D. Jayasinghe, A.C. Green, H. Schaider, 

J.F. Aitken, R.A. Sturm, T. Prow, et al., The experience of 3d total-body photog- 
raphy to monitor nevi: Results from an australian general population-based 

cohort study, JMIR Dermatol. 5 (2) (2022) e37034 . 
77] M. Dildar, S. Akram, M. Irfan, H.U. Khan, M. Ramzan, A.R. Mahmood, S.A. Al- 

saiari, A.H.M. Saeed, M.O. Alraddadi, M.H. Mahnashi, Skin cancer detection: a 

review using deep learning techniques, International journal of environmental 
research and public health 18 (10) (2021) 5479 . 

78] U. Koh, M. Janda, J.F. Aitken, D.L. Duffy, S. Menzies, R.A. Sturm, H. Schaider, 
B. Betz-Stablein, T. Prow, H.P. Soyer, et al., ‘mind your moles’ study: protocol 

of a prospective cohort study of melanocytic naevi, BMJ Open 8 (9) (2018) 
e025857 . 

79] NCCN, (NCCN), Nccn clinical practice guidelines in oncology. cutaneous 

melanoma. version 3.2021., 2022, ( https://www.nccn.org/professionals/ 
physician _ gls/pdf/melanoma _ blocks.pdf ). 

http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0046
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0047
https://github.com/AlexeyAB/darknet
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0048
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0049
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0050
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0051
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0052
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0053
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0054
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0055
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0056
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0057
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0058
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0059
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0060
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0061
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0062
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0063
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0064
http://refhub.elsevier.com/S0169-2607(23)00117-7/sbref0065
https://www.nccn.org/professionals/physician_gls/pdf/melanoma_blocks.pdf

	Monitoring of Pigmented Skin Lesions Using 3D Whole Body Imaging
	1 Introduction
	2 Materials and methods
	2.1 Image acquisition system: hardware and software
	2.2 Human dataset compilation
	2.2.1 Whole body images captured from participants
	2.2.2 3D body scans dataset from existing repositories
	2.2.3 Skin image analysis dataset

	2.3 3D human reconstruction
	2.3.1 Whole body image rendering from 3D human models
	2.3.2 Image acquisition system evaluation
	2.3.3 3D reconstruction approach

	2.4 3D data pre-processing and estimation
	2.5 Skin lesion detection
	2.5.1 Skin lesion detection on 2D images
	2.5.2 2D matching and 3D mapping of skin lesions
	2.5.3 Anatomical correspondence and longitudinal tracking

	2.6 3DSkin-mapper UI

	3 Results
	3.1 3D model reconstruction
	3.2 Lesion detection and tracking
	3.2.1 Detecting lesions on 2D images and 3D mapping
	3.2.2 Tracking of skin lesions across temporal scans


	4 Discussion
	5 Conclusion
	6 Ethical clearance
	Declaration of Competing Interest
	References


