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ABSTRACT

Small influential data subsets can dramatically impact model conclusions, with a
few data points overturning key findings. While recent work identifies these most
influential sets, there is no formal way to tell when maximum influence is excessive
rather than expected under natural random sampling variation. We address this
gap by developing a principled framework for most influential sets. Focusing on
linear least-squares, we derive a convenient exact influence formula and identify the
extreme value distributions of maximal influence — the heavy-tailed Fréchet for
constant-size sets and heavy tailed data, and the well-behaved Gumbel for growing
sets or light tails. This allows us to conduct rigorous hypothesis tests for excessive
influence. We demonstrate through applications across economics, biology, and
machine learning benchmarks, resolving contested findings and replacing ad-hoc
heuristics with rigorous inference.

1 INTRODUCTION

Machine learning (ML) models and statistical inferences can be highly sensitive to small subsets of
data. In many applications, just a handful of samples can overturn key conclusions: two countries
nullify the estimated effect of geography on development (Kuschnig et al., 2021), a single outlier flips
the sign of a treatment effect (Broderick et al., 2021), or a small group of individuals drives disparate
outcomes in algorithmic decision-making (Black & Fredrikson, 2021). These most influential
sets — data subsets with the greatest influence on model predictions — are central to questions of
interpretability, fairness, and robustness in modern machine learning (see, e.g., Black & Fredrikson,
2021; Chen et al., 2018; Chhabra et al., 2023; Ghorbani & Zou, 2019; Sattigeri et al., 2022).

Despite their practical importance, practitioners lack principled tools to assess whether a set’s
influence is genuinely problematic. Current practice relies on heuristics, ad-hoc sensitivity checks,
and domain expertise, while approximate methods such as influence functions (Koh & Liang, 2017;
Fisher et al., 2023; Schioppa et al., 2023) systematically underestimate the impacts of sets and extreme
cases (Basu et al., 2020; Koh et al., 2019). Recent work highlights both the promises and challenges
of most influential subsets — small sets can drive results even in randomized trials (Broderick et al.,
2021; Kuschnig et al., 2021), heuristic algorithms can fail in simple settings (Hu et al., 2024; Huang
et al., 2025), and influence bounds remain an active area of research (Moitra & Rohatgi, 2023; Freund
& Hopkins, 2023; Rubinstein & Hopkins, 2024). What remains missing is a principled method to
distinguish natural sampling variation from genuinely excessive influence.

We develop a statistical framework for assessing the significance of most influential sets. By focusing
on linear regression — a tractable, interpretable, and widely-used setting that underlies many modern
methods (Rudin, 2019) — we derive the exact asymptotic distributions of maximal influence. We
show that two distinct regimes emerge depending on the size of the influential set: when the size
is fixed, maximal influence converges to a heavy-tailed Fréchet distribution; when the size grows
with the sample, maximal influence converges to a well-behaved Gumbel distribution. Our results
enable principled hypothesis tests for excessive influence, replacing ad-hoc diagnostics with rigorous
statistical procedures. We demonstrate their practical value via applications across economics,
biology, and machine learning benchmarks, resolving ambiguous cases where influential sets drive
contested findings.

Contributions. We present a comprehensive analysis of the influence of most influential sets, both
theoretically and in practical applications. Our main contributions are:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

1. Theoretical foundations. We derive distributions for the influence of most influential sets,
establishing their extreme value behavior and enabling statistical testing.

2. Efficient implementation. We provide computationally efficient procedures for evaluating
influence, making our approach practical for real-world applications.

3. Empirical validation. We demonstrate the utility of our framework across domains, re-
solving the contested “Blessing of Bad Geography” in economics, assessing robustness in
biological data of sparrow morphology, and auditing fairness in ML benchmark datasets.

To summarize — we provide the first rigorous theoretical results allowing us to interpret influence,
and demonstrate their practical use by resolving contested findings across the literature.

Outline. The remainder of the paper is structured as follows. Section 2 introduces the problem
of most influential sets and formalizes the setting. Section 3 presents our theoretical results on the
distribution of maximal influence. Section 4 demonstrates the practical merits of our framework
through simulations and empirical applications. Section 5 discusses implications, limitations, and
future directions, and Section 6 concludes.

2 PRELIMINARIES AND BACKGROUND

Practitioners routinely encounter situations where small subsets of data points drive key conclusions.
Consider the following scenarios:

• Scientific discovery: Rugged terrain generally hinders economic development, but not in
Africa. What if this striking result is driven by just two small island nations?

• Fairness auditing: An algorithmic decision-making system produces different outcomes for
a protected group. What if the disparity can be explained by only a handful of data points?

• Data cleaning: A single influential point among a thousand samples flips a strong correlation
to a null result. Should we trust the original finding or the one without the outlier?

• Data preprocessing: A microcredit experiment shows negligible outcome variations overall,
except for a few outliers. How should we prepare and analyze the sample?

At the core of these examples lie most influential sets, which exert disproportionate influence on an
estimate or prediction. These sets are intuitive to interpret, directly tied to the quantity of interest,
and provide a new dimension for assessing estimates by highlighting their support in the data. What
has been unclear, however, is how to interpret and deal with influential sets; current practice relies
heavily on domain expertise and ad-hoc rules, lacking a statistically rigorous framework for judging
their influence.

2.1 FORMAL PROBLEM STATEMENT

We consider a supervised learning task with input space X ⊂ RP and target space Y ⊂ R. The goal
is to learn a function f(θ, ·) : X 7→ Y parameterized by θ ∈ RQ. Given training data {(xn, yn)}Nn=1
and a loss function L (·, ·) , we learn parameters by solving

θ̂ = argmin
θ∈RQ

N∑
n=1

L (f(θ, xn), yn) .

Let [N ] = {1, . . . , N} and denote both an index set and its corresponding subsample as S ⊂ [N ] .

For any subset S, we use a subscript θ̂−S to denote a quantity θ without S, i.e.

θ̂−S = argmin
θ∈RQ

∑
n ̸∈S

L (f(θ, xn), yn) .

Definition (Most Influential Set). For a positive integer k ≪ N, the k-most influential set is
Smax
k := argmax

S⊂[N ],|S|⩽k

∆(S;ϕ) ,

where ∆(S;ϕ) = ϕ(θ̂) − ϕ(θ̂−S) is the influence of subset S on target function ϕ : RQ 7→ R. We
denote the maximum influence as ∆max = ∆(Smax

k ;ϕ) .
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Research Question. What is the probability distribution of ∆max, and how can we distinguish
excessive influence from natural sampling variation?

2.2 INFLUENCE FUNCTIONS VS. EXACT INFLUENCE

A common and related approach to study influence is via influence functions (Fisher et al., 2023; Hu
et al., 2024; Koh & Liang, 2017). These are motivated by reweighing via the perturbation

θ̂(ϵ;S) := argmin
θ∈RQ

1

N

N∑
n=1

L (f(θ, xn), yn) + ϵ
∑
i∈S

L (f(θ, xi), yi) .

Setting ϵ = 0 recovers θ̂, while ϵ = −N−1 yields θ̂−S. The influence function is the linear approxi-
mation at ϵ = 0:

I(S) := dθ̂(ϵ;S)
dϵ

∣∣∣∣
ϵ=0

,

allowing us to compute a first-order estimate of influence.

While influence functions are computationally convenient, they are unreliable even for simple
models (Basu et al., 2020; Hu et al., 2024; Huang et al., 2025; Koh et al., 2019). In particular, they
systematically underestimate the impact of (a) sets of data points and (b) highly influential data
points. This occurs because the first-order approximation cannot reflect higher-order effects from the
interplay between data points or differential leverage scores.

2.3 EXACT MAXIMUM INFLUENCE

We therefore derive an exact influence formula (in Section 3) and characterize the behavior of
maximum influence (Section 3.1) to enable principled testing (Section 3.2). We focus on tractable
but ubiquitous linear setting, avoiding approximations and accurately portraying most influential sets
— for which extreme behavior dominates and first-order approximations fail most dramatically.

Extreme Value Theory. Our goal is to characterize the behavior of ∆max — the influence of the
most influential set. Since this quantity is defined through maximization over all possible subsets,
its distribution is governed by extreme value theory rather than classical asymptotics — which
is illustrated in Figure 1. When taking maxima over random quantities, three possible limiting
distributions can emerge (Fisher & Tippett, 1928; Gnedenko, 1943): the well-behaved Gumbel (Type
I), the heavy-tailed Fréchet (Type II), and the bounded Weibull (Type III). We need to determine
which extreme value distribution (EVD) attracts ∆max. Specifically, we distinguish between the
Gumbel distribution with exponential tails, and the Fréchet distribution with polynomial tails allowing
for potentially arbitrarily large influence. (The Weibull distribution can be ruled out since influence is
unbounded.) Once we establish the asymptotic distribution, we show how it applies to finite samples.
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Figure 1: Illustration of the distribution of ∆({i}) for general observations, and the maximum
influence ∆max over all possible i, for N ∈ {25, 50, 100}. One can clearly discern an upward shift
and a substantial increase of the density in the tails.
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2.4 SETTING

Consider the standard linear regression model, where f is a linear function relating random features X
to the outcome Y via the parameter vector θ. The ordinary least-squares (OLS) population estimator
of θ is

θ̃ := E[XX ′]−1E[XY ]

yielding fitted values Ŷ = X ′θ̃ and the associated residuals R = Y −X ′θ̃. Stacking N observed
training samples yields the design matrix X ∈ RN×P and outcome vector y ∈ RN . For OLS, we
assume that X′X is invertible and remains so after removing any subset. (This is not necessary for
our results, as they extend to ridge regression, where the penalization parameter λ > 0 in X′X+ λI
creates a ridge that guarantees invertibility.) The sample OLS estimator is then

θ̂ := argmin
θ

∥y −Xθ∥2 = (X′X)
−1

X′y,

yielding predictions ŷ = Xθ̂ and residuals r = y − ŷ.

For our main results, we consider least-squares estimates of the regression coefficients, with and
without penalization. For illustration, however, we will consider a univariate model with one positive
coefficient of interest and target function ϕ(θ) = θ1. This eases notation considerably and comes
without loss of generality — theoretical results apply to more general settings.1

3 PROPOSED APPROACH

The influence of a single observation i is well-known (Belsley et al., 1980; Cook, 1979; Walker &
Birch, 1988) to be

∆({i}) = (X′X)
−1

xiri
1− hi

,

where hi is the leverage score and ri the residual of observation i.

We extend this result to be (i) applicable to sets of observations, and (ii) computationally convenient.
We state the general result here, while full details are provided in Appendix A1.

Proposition 1. The influence of some set S on the least-squares estimator θ̂ is

∆(S) =
(
X′

−SX−S + λIP
)−1

X′
SrS, (1)

where λ ⩾ 0 is an optional penalization parameter.

Proof sketch. Let D := X′X + λIP for brevity. In the Appendix, we show that, for a single
observation i, we can use the convenient expression ∆({i}) = D−1

−{i}x
′
iri. Consider the base case

for sequential removal of S = {1, 2}. We have

∆({1, 2}) = D−1
−{1}x

′
1r1 +D−1

−{1,2}x
′
2 (r2)−{1}

=
(
D−1

−{1,2} + x′
2x2

)
x′
1r1 +D−1

−{1,2}x
′
2

(
r2 + x2D

−1
−{1}x

′
1r1

)
= D−1

−{1,2} (x
′
1r1 + x′

2r2)−D−1
−{1,2} (. . . )x

′
1r1,

where the proof revolves around showing that the ellipsis zeros out. Let Ω = x′
2x2D

−1
−{1,2}, and

ω = x2D
−1
−{1,2}x

′
2; then, in slight abuse of notation, the term collapses to:

. . . =
−Ω

1 + ω
+Ω− ωΩ

1 + ω
= −Ω+ Ω+ ωΩ− ωΩ = 0.

Assuming this identity holds for |S| = K we can show by induction that it holds for |S| = K + 1,
and the result follows. The full proof is provided in Appendix A1.

1Multiple features can be factored out by the Frisch-Waugh-Lovell theorem under mild assumptions, leaving
an equivalent univariate regression. A different sign can be accommodated by simply flipping the feature of
interest or adjusting the target function ϕ accordingly.
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Proposition 1 elegantly reveals the additive structure of individual contributions in the numerator, as
well as the multiplicative adjustment from the remaining data in the denominator. This representation
enables efficient computation without explicitly recalculating leverage scores for each subset, making
our approach computationally tractable for large datasets.

3.1 EXTREME VALUE DISTRIBUTION

We now turn to finding the distribution of ∆(S) for the most influential set, Smax
k . Since this quantity

is defined by an extremal operation (maximization over all possible subsets), its asymptotic behavior
is governed by extreme value theory. Specifically, we seek the limiting EVD H such that ∆max ∈
MDA(H) , i.e., ∆max lies in the maximum domain of attraction of H.

Two canonical EVDs are of particular interest: the Fréchet (Type II) distribution Φα for heavy-tailed
variables, and the Gumbel (Type I) distribution Λ for light-tailed variables. We distinguish two
practically relevant regimes based on how the subset size k scales with sample size N :

1. Constant-size sets: k remains fixed as N → ∞.

2. Relative-size sets: k grows proportionally with N, i.e., k = pN for some p ∈ (0, 1).

Both regimes have been considered in practical applications (see, e.g, Broderick et al., 2021; Kuschnig
et al., 2021), and — as we will show next — they yield fundamentally different asymptotic behavior
with important implications for the interpretation of influence.

3.1.1 CONSTANT-SIZE SETS

Theorem 1 (EVD for constant-size sets). Suppose E
[
X2

]
< ∞, and that Xi, Ri have polynomial

tails with coefficients ξx, ξr < ∞. If |Smax
k | remains constant as N → ∞, then

lim
N→∞

∆max ∼ Fréchet(a, b, ξ),

with location parameter a, scale parameter b, and shape parameter ξ = min{ξx, ξr}.

Proof sketch. Let C :=
∑

i∈S XiRi and D :=
∑N

n=1 X
2
n. Notice that C and D−1

−S are asymptotically
independent. Since Xi and Ri have polynomial tails with coefficients ξx, ξr, their product C ∈
MDA(Φξ), with ξ = min{ξx, ξr}, since its upper tail behaves like the tail of max{XiRi} for
i ∈ Smax

k . Lemma 2 shows that the inverse sum D−1
−S ∈ MDA(Λ), and the product CD−1

−S inherits
the Fréchet behavior from C by Lemma 3.

This result shows that, for constant-size sets, ∆max inherits tail behavior from the heavier tail of R
and X. If one of them is sufficiently heavy-tailed, even small sets can exert extreme influence with
non-negligible probability. Corollary 1 simplifies Theorem 1 in absence of heavy tails.

Corollary 1. If the tail coefficients of both Xi and Ri are infinite, then

lim
N→∞

∆max ∼ Gumbel(a, b).

3.1.2 RELATIVE-SIZE SETS

When the most influential set grows proportionally with the sample size, the central limit theorem
(CLT) dominates the asymptotic behavior:

Theorem 2 (EVD for relative-size sets). If {XnRn}Nn=1 satisfies the conditions of a CLT and |Smax
k |

grows proportionally with N, then

lim
N→∞

∆max ∼ Gumbel(a, b).

Proof sketch. When |Smax
k | = pN, for p ≪ 1, the numerator C grows at the rate O(N). By the

CLT, C/
√
N ∼ N (µ, σ2) as N → ∞. Hence, the product CD−1

−S lies in the maximum domain of
attraction of the Gumbel distribution, following Lemma 3 and Corollary 2.
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This reveals a fundamental distinction: constant-size sets are dominated by the heaviest tail, while, for
growing sets, ∆max converges to a well-behaved Gumbel distribution with exponentially decaying
tails. This result holds regardless of the underlying distributions of X and R as long as the variance
of Xi ·Ri is finite.

3.2 IMPLEMENTATION AND COMPUTATION

With the theoretical results established, we turn towards practical implementation. Assuming there is
a most influential set of interest,2 our procedure follows three steps:

1. Choose the EVD family. Our theoretical results guide the decision between the Gumbel
and Fréchet families, which based on the hypothesized set size and the tail behavior of X
and R. For the latter, we can estimate tail coefficients using maximum likelihood estimation
(MLE; Smith, 1985; Bücher & Segers, 2017). If 1/min{ξx, ξr} is sufficiently close to zero,
we default to the Gumbel distribution (per Corollary 1 and Theorem 2). Otherwise, we use
the Fréchet distribution with shape parameter ξ = min{ξx, ξr}, following Theorem 1.3

2. Estimate EVD parameters. With the EVD known, we estimate its location and scale
parameters a, b e.g., using the block maxima method (Coles, 2001; De Haan & Ferreira,
2006). For this, we divide the sample (excluding Smax

k for robustness) into M blocks of size
N/M , compute ∆max for each block, and use MLE based on these draws. Since selecting
the maximum out of N/M observations reduces the expected maximum compared to the
full sample, a bias correction can be applied for the Gumbel distribution. We know that the
densities for sizes N and N/M are related by

FN (x)
d−→ Gumbel(a, b) and [FN/M (x)]M

d−→ Gumbel(a, b),

which yields the location correction ã = â+ b log(M), where â is the MLE.
3. Perform hypothesis test. Finally, we test the null hypothesis H0 that the observed influence

reflects natural sampling variation against the alternative H1 of excessive influence. Based
on the estimated parameters, we can simply compute the p-value as P (∆max ⩾ δobs) where
δobs is the observed maximum influence.

Computational Efficiency. Thanks to Proposition 1, our procedure is computationally convenient,
allowing for application to large and varied datasets. The maximum likelihood steps are simple and
well-behaved, optimizing over only two parameters in the Gumbel case. The primary computational
constraint stems from finding most influential sets — we need to approximate ∆max for the M block
maxima estimates (Price et al., 2022). For computational tractability, we use an adaptive greedy
algorithm (Hu et al., 2024; Kuschnig et al., 2021) with complexity O(Mk) and considerably reduced
runtime from our closed-form influence formula for sets.

4 EXPERIMENTS

In this section, we validate our theoretical predictions, investigate convergence in small samples, and
demonstrate their practical relevance and utility through real-world applications spanning economics,
biology, and machine learning.

4.1 SIMULATION STUDY

We begin with a controlled setting, where we (i) illustrate, (ii) investigate convergence for small
samples, and (iii) evaluate empirical estimation.

2This set can be obtained with any of the methods in the literature (Broderick et al., 2021; Kuschnig et al.,
2021; Freund & Hopkins, 2023), and could, e.g., be the smallest set that achieves a sign-flip — a commonly
considered heuristic cutoff. If no such heuristic is used and multiple tests are considered (e.g., for different
coefficients or sets sizes), a multiple testing correction should be applied. Note that EVT controls the implicit
search for the most influential set over the

(
N
k

)
possible subsets.

3Small values of ξ correspond to extremely heavy-tailed distributions where the variance (ξ ⩽ 2) or even
the mean (ξ ⩽ 1) become infinite. Such cases pose practical challenges for statistical inference, and imply that
arbitrarily large influence is possible in our case.
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Illustration. Figure 2 illustrates our approach on a simple linear regression with one moderately
influential point due to high leverage. Panel A visualizes the data, significance thresholds (at the 10,
5, and 1% significance levels) as a function of predictor and response values. Panel B presents the
underlying extreme value analysis: block maxima inform the estimated Gumbel distribution, yielding
a p-value of 0.04 for the observation of interest.

Influen�al Observa�on

(a) Effect of an Influen�al Observa�on (b) Extreme Value Analysis

90, 95, 99% thresholds

X

Y

Density

Δ

Fit with influen�al
Fit without influen�al

Block maxima

Corrected Gumbel
Plain Gumbel

Observa�on
p = 0.040

Figure 2: Illustration of our methodology on a simple linear regression with a moderately influential
observation. Panel A depicts observations, estimated regression lines with and without the influential
point, and conditional significance regions at the 10, 5, and 1% levels (dotted lines). Panel B
illustrates the extreme value analysis: a histogram of block maxima in the background, fitted Gumbel
distributions with (solid) and without (dashed) bias correction, and the resulting p-value for the
observation of interest.

4.1.1 CONVERGENCE TO EXTREME VALUE DISTRIBUTIONS

Next, we verify that maximal influence converges to the predicted extreme value distributions. We
consider four scenarios based on combinations of the standard Normal and t(5) distributions for
X,R. For each scenario, we simulate 1, 000 datasets of sizes between N = 20 and N = 1000, and
compare the empirical parameter estimates with the theoretical prediction. Overall, we find rapid
convergence, implying that our theoretical predictions are applicable with small samples.

Figure 3 shows convergence of the scenarios to the predictions, which are indicated by dashed
horizontal lines. (Details are provided in Table A1 of the Appendix.) All scenarios reliably converge
for moderate sample sizes. The Normal-Normal scenario is insignificantly different from Gumbel
behavior (ξ−1 = 0) for N ⩾ 50, and the heavy-tailed cases also exhibit the predicted Fréchet
behavior (ξ−1 = 0.2) Notably, the t(5)–Normal case converges at slower rates, likely due to the
relative instability of the inverse (X′X)

−1
S in small samples. Overall, the simulation results support

the applicability of Theorem 1 in small samples.

4.1.2 LOCATION AND SCALE ESTIMATION

Next, we evaluate whether block maximum MLE accurately captures the location and scale parameters
for empirical testing. Results are provided in Figure A2 of the Appendix. We find that bias-corrected
estimation of the location parameter works well, while the scale estimate is consistent but exhibits a
minor downward bias that disappears asymptotically (consistent with known limitations of the MLE;
see Dombry & Ferreira, 2019). For our goal of hypothesis testing, the overall distribution and its
quantiles are recovered effectively.

4.2 APPLICATIONS

We investigate several real-world datasets — two applications from economics and biology, and four
machine learning benchmarks — and provide the first conclusive investigation of influence.

7
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Figure 3: Convergence of empirical samples to the limiting distribution with increasing sample
sizes (N ∈ {20, 30, 50, 75, 100, 150, 200, 300, 500, 1000, 2000}, note the non-linear scale) for four
different scenarios. Dots indicate estimated means from 1000 repetitions, while the shaded area
indicates ±1SD. The Normal–Normal and the t(5)–t(5) cases quickly converge to the theoretical
predictions of ξ−1 = 0 and ξ−1 = 0.2, while the mixed scenarios converge marginally slower.

Economic Development and Geography. We re-examine the controversial finding that rugged
terrain benefits African economies when compared to the rest of the world (Nunn, 2020). Kuschnig
et al. (2021) call the influence of the Seychelles, which remove significance of the estimate of interest
when coupled with any of Rwanda, Lesotho, Eswatini, and the Comoros. However, lacking the
statistical framework that we provide, they were not able to test whether this level of influence should
be deemed excessive or not.

We can now decisively resolve this controversy. Table 1 reveals the Seychelles as excessively
influential on θ̂rugged, both individually (p < 0.001) and in combination with other outliers, except
for Lesotho. This substantiates the suspected confounding from the size of nations (Kuschnig et al.,
2021), lending statistical rigor to prior concerns and calling into question the differential relation
between ruggedness and income in Africa.

Table 1: Influence of Ruggedness on log(GDP per capita in 2000)

Influential Set ∆(S) ˆ̃a b̂ p-value

Seychelles 0.077 0.020 0.004 < 1e−16

Seychelles + Lesotho 0.046 0.036 0.007 0.216
Seychelles + Rwanda 0.070 0.028 0.006 0.001
Seychelles + Eswatini 0.077 0.020 0.004 < 1e−16

Seychelles + Comoros 0.061 0.028 0.006 0.004

Sparrow Morphology — Big Heads and Beaks. We analyze the relation between head and tarsus
length in saltmarsh sparrows, based on measurements of N = 1, 295 sparrows with known outliers
(Gjerdrum et al., 2008; Zuur et al., 2010). The baseline regression yields θ̂ = 0.011 with a standard
error of (.030), implying a relation that is statistically indistinguishable from zero.

However, a curious data point moves the estimate to 0.219(.029), turning the estimate significantly
positive. An additional data point further moves the estimate to 0.288(.032). These extreme impacts
from a vanishing fraction of the sample are deemed excessive by our approach at any conventional
significance level (both p < 0.001).4

4One possible explanation for this excessive influence are data entry errors: The first observation (an outlier
in both head and tarsus size) may have the two (adjacent) features mixed up — when swapped, they would fit

8
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Machine Learning Benchmarks. We apply our framework to four widely-used regression bench-
marks: Law School, Adult Income, Boston Housing, and Communities & Crime. For each dataset,
we identify a most influential set of interest and test for excessive influence.

• Law School (N = 20, 800): We examine the coefficient for the ‘Other’ race indicator, with
378 relevant samples. We consider two sets: 77 data points that move the estimate from
−0.0412 (.0144) to 0.1117 (.0159), creating a significant estimate with flipped sign, and
17 data points that reduce the estimate to −0.0223 (.0097). Our approach indicates that the
influence larger set’s influence falls within expected variation, while the smaller set exhibits
statistically excessive influence (p = 0.019).

• Adult Income (N = 32, 561): We investigate the top 1% most influential sets (325 points)
that shift the ‘Male’ indicator from θ̂ = 0.062, either raising it to 0.0992 or decreasing it to
0.0214. Despite these considerable shifts from a small fraction of the data, neither is deemed
excessively influential by our approach.

• Boston Housing (N = 506): We focus on the effect of crime rate on house values.
The baseline (highly significant) coefficient −0.1080 (.0329) is rendered insignificant at
−0.0352 (.0556) after excluding just 6 observations. In this case, the underlying EVD is
Fréchet with inverse shape ξ−1 = 0.29 due to the heavy tail of the crime variable. The set’s
influence is highly significant (p = 0.001), indicating excessive influence.

• Communities & Crime (N = 1, 994): We investigate 2 and 2 data points with substantial
influence on the relation between race and crime rates. The complete set is not extreme,
as the points cancel each other out. After exclusion, the first subset of two increases the
coefficient by more than 22%, which is deemed excessive p < 0.001. When re-estimating
after their exclusion, the second set decreases the estimate by more than 10% and is deemed
excessive at the 5% level (p = 0.014). (See Table A2 for details.)

5 DISCUSSION

We develop the first rigorous statistical framework for assessing when most influential sets represent
genuine problems rather than natural sampling variation. By deriving the extreme value distribution
of maximal influence, we allow practitioners to replace ad-hoc sensitivity checks with principled
statistical decision rules.

Theoretical Contribution. Our key insight is how maximal influence fundamentally depends on
set size and tail behavior. For constant-size sets with polynomial tails, maximal influence follows
a heavy-tailed Fréchet distribution, implying that extreme influence can be arbitrarily large. For
relative-size sets or exponential-tailed data, maximal influence converges to a well-behaved Gumbel
distribution, and maximal influence can be bounded.

These results address a critical gap in interpretable machine learning. While recent work has developed
methods to identify influential sets (Broderick et al., 2021; Freund & Hopkins, 2023; Hu et al., 2024),
no formal theory existed to determine when their influence is excessive. Our framework provides
the long-missing theoretical foundation that enables rigorous statistical inference for influential
observations and sets (first discussed by Cook, 1979).

We can clarify the applicability of heuristics that are commonly used for identifying excessive
influence, and provide conclusive answers when excessively influential sets are suspected (such as the
Seychelles in the ruggedness example; see Kuschnig et al., 2021). The 2

√
N threshold for coefficient

influence (Belsley et al., 1980), e.g., is asymptotically accurate for randomly selected observations,
but is too restrictive for most influential observations, where the selection procedure necessitates
extreme value theory.

Practical Recommendations. In general, most influential sets hold valuable information for
inference. Our test is deliberately conservative, controlling Type I errors (false claims of excessive
influence) at the cost of some Type II errors (failing to detect truly excessive influence). This reflects

well into overall averages. The second observation (an outlier in one feature) stands out with both values being
equal up to the one significant digit.
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our view that influential sets are a natural feature of data and not a problem to be eliminated. When
our test identifies an excessively influential set, however, we recommend:

1. Investigate mechanism. Document the set and investigate why it differs — it may convey
genuine heterogeneity, data quality issues, unobserved confounding, or important edge cases
not addressed by the model.

2. Handle appropriately. We argue that an excessively influential set warrants separate
analysis; exclusion can be considered if it reflects measurement error or outliers that are
irrelevant for the pattern of interest.

3. Report transparently. State the set, decision, and test outcome; if conclusions hinge on
the set, report both and discuss why. We advise against trimming or winsorizing to force
alignment with the remaining data; these transformations create artificial data that may
obscure and distort rather than illuminate underlying relations.

5.1 LIMITATIONS AND FUTURE WORK

Our analysis focuses on linear regression — foundational for theory and modern ML methods, but
limited to contexts where interpretability is valued (Rudin, 2019; Roscher et al., 2020). Extensions
to generalized linear models, tree-based methods, or non-parametric estimators require further
developments.

Our asymptotic arguments leverage independence between features and residuals, which may be
restrictive when dependence affects influence patterns. While our simulations show that small-sample
behavior quickly converges to asymptotic predictions — even at N = 100 — further investigation of
the theory-practice gap is warranted.

Several methodological improvements could enhance practical performance. Estimation of extreme
value parameters could benefit from domain-specific information and improved bias correction
methods may be possible (Dombry & Ferreira, 2019; Oorschot & Zhou, 2020). The efficient selection
of most influential sets themselves remains an active research area (Hu et al., 2024; Huang et al.,
2025) with direct implications for our estimation procedure.

5.2 BROADER IMPLICATIONS AND RECOMMENDATIONS

Our framework enables more reliable decision-making across domains where linear models remain
the method of choice. Principled tools for understanding data points that drive model behavior are
crucial for building trustworthy systems. Applications span fairness assessments — where influential
sets can reveal algorithmic bias — to causal inference settings, such as randomized controlled trials or
quasi-experimental econometric analyses where small data subsets can fundamentally alter estimates.

Importantly, we reframe influence as a natural feature of data requiring appropriate treatment rather
than a problem to be fixed. Influential sets can represent genuine heterogeneity or important edge
cases that should inform model development. This perspective enables more nuanced approaches to
data analysis, where information is preserved and assessed through principled statistical inference
rather than discarded based on rules of thumb.

6 CONCLUSION

We developed a statistical framework that transforms the assessment of most influential sets from art
to science. By deriving the extreme value distributions of maximal influence, we enable rigorous
hypothesis testing to distinguish excessive influence from natural variation. Applications across
economics, biology, and machine learning benchmarks demonstrate the practical utility of our
approach.

Our method offers clear guidance to practitioners — when small sets overturn results of interest, our
tests reveal whether this influence is statistically excessive. This enables more robust and transparent
decision-making in settings where reliability matters, from medical trials to policy evaluation to
algorithmic systems. By providing theoretical foundations for influential set analysis, this work
advances both the theory and practice of interpretable machine learning.
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REPRODUCIBILITY STATEMENT

Proofs are detailed in the Appendix, datasets are from the cited sources, and code to reproduce results
will be released upon acceptance.
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A1 EXACT INFLUENCE FORMULAS

We begin with a simplified setting based on a univariate regression for intuition. Then we consider
the general setting and prove Proposition 1 from the main text.
Proposition 2. We can express the influence of an observation as

∆({i}) = xiri∑
n ̸=i x

2
n

. (A1.1)

Proof. Recall the well-known influence formula for a single observation i,

∆({i}) = xiri∑
n x

2
n

· 1

1− hi
,

where hi := x2
i /

∑
x2
n is the leverage score and ri := yi − ŷi the residual of observation i.

Let D :=
∑N

n x2
n, and we can directly show that

∆({i}) = xi · ri
D

· 1

1− x2
i

D

=
xi · ri
D − x2

n

=
xi · ri∑N
n̸=i x

2
n

. (A1.2)

Recursion It helps to know the influence of observation i on the residual, leverage, and hat matrix:

(ri)−{j} = ri + xi ∆({j}) , (A1.3)

(hi)−{j} = x2
i /

∑
n ̸=j

x2
n,

(hij)−{k} = hij +
hikhkj

1− hk
.

Proposition 3. Let S = {1, . . . ,K} . Then we can recursively define ∆(S) as

∆(S) = β̂ − β̂−S

= ∆({1}) + ∆ ({2})−{1} + · · ·+∆({K})−S\K .

Proof. Notice that

∆({i, j}) = β̂ − β̂−{i,j}

= β̂ − β̂−{j} + β̂−{j} − β̂−{i,j}

= ∆({j}) + ∆ ({i})−{j} .

Equivalent results trivially hold for larger sets.

Next, we prove a simple variant of Proposition 1.

Proposition 4. The influence of some set S on θ̂ is

∆(S) =
∑

i∈S xiri∑
n ̸∈S x

2
n

. (A1.4)

Proof. Let S = {1, 2} and define D :=
∑

n x
2
n for simplicity. By Proposition 2, Proposition 3, and

the updating rule in Equation A1.3 one can write,

∆({1, 2}) = x1r1
D−{1,2} + x2

2

+
x2 (r2 + x2∆({1}))

D−{1,2}

=
x1r1

D−{1,2} + x2
2

+
x2r2

D−{1,2}
+

x2
2 (x1r1)

D−{1,2}
(
D−{1,2} + x2

2

)
=

(
D−{1,2} + x2

2

)
x1r1

D−{1,2}
(
D−{1,2} + x2

2

) +
x2r2

D−{1,2}
=

x1r1 + x2r2
D−{1,2}

,
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where the second term in the first line corrects r2 to reflect the removal of observation 1, which
the second line expands. The third line merges terms one and three by transforming to a common
denominator and simplifies the expression. Assuming this identity holds for |S| = K − 1 we can
show by induction that it holds for |S| = K, and the result follows.

Induction The induction hypothesis for set S = {1, . . . ,K − 1} is

∆(S) =
∑K−1

k=1 xkrk
D−S

.

For {S,K} = {1, . . . ,K} this yields

∆({S,K}) =
∑K−1

k=1 xkrk
D−{S,K} + x2

K

+
xKrK

D−{S,K}
+

x2
K

∑K−1
k=1 xkrk

D−{S,K}
(
D−{S,K} + x2

K

)
=

∑K−1
i=k xkrk

(
D−{S,K} + x2

K

)
D−{S,K}

(
D−{S,K} + x2

K

) +
xKrK

D−{S,K}
=

∑K
k=1 xkrk

D−{S,K}
.

A1.1 GENERAL RESULTS

Here, we provide the general results for multiple regression with an optional penalization parameter
λ.

Matrix lemma First, it helps to recall two well-known results: a rank-one matrix update, and the
inverse matrix lemma:

X′
−{i}X−{i} = X′X− x′

ixi, (A1.5)

(A− a′a)
−1

=
A−1a′aA−1

1− aA−1a′
. (A1.6)

Proposition 5. The influence of an observation i on the least-squares coefficients is:

∆({i}) =
(
X′

−{i}X−{i} + λIP

)−1

x′
iri, (A1.7)

where λ ⩾ 0 is an optional penalization parameter.

Proof. Let D = X′X+ λIP for brevity. The well-known (Belsley et al., 1980; Cook, 1979; Walker
& Birch, 1988) closed-form expression for the influence is

∆({i}) = D−1x′
iri

1− hi
,

where ri is the residual and hi = xiD
−1xi the leverage of observation i. We need to show equivalence

with Equation A1.7. We begin with a rank-one update and by applying the inverse matrix lemma:(
D−{i}

)−1
= D−1 +

D−1x′
ixiD

−1

1− xiD−1x′
i

= D−1 +
D−1x′

ixiD
−1

1− hi
.

Post-multiplying with x′
iri yields Equation A1.7 on the left-hand-side and completes the proof:(
D−{i}

)−1
xiri = D−1x′

iri +
D−1x′

ixiD
−1

1− hi
xiri

= D−1x′
iri +

D−1x′
ihiri

1− hi

= D−1x′
iri

(
1 +

hi

1− hi

)
=

D−1x′
iri

1− hi
= ∆({i}) .
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Lemma 1. An increase in the penalization parameter λ equalizes the influence of observations.

Proposition 5 allows us to prove Proposition 1 from the main text:

∆(S) =
(
X′

−SX−S + λIP
)−1

X′
SrS. (A1.8)

Proof of Proposition 1. Recall the shorthand D, and consider the sequential removal of all observa-
tions 1, . . . ,K in S. We have

∆(S) = D−1
−{1}x

′
1r1 +D−1

−{1,2}x
′
2 (r2)−{1} + · · ·+D−1

−Sx
′
K (rK)−{1,...,K−1} .

Base case For S = {1, 2}, we have:

∆({1, 2}) = D−1
−{1}x

′
1r1 +D−1

−{1,2}x
′
2 (r2)−{1}

=
(
D−1

−{1,2} + x′
2x2

)
x′
1r1 +D−1

−{1,2}x
′
2

(
r2 + x2D

−1
−{1}x

′
1r1

)
,

where we use a rank-one update insert for (r2)−{1}. Let E = D−{1,2} and recall that (h2)−{1,2} =

x2D
−1
−{1,2}x

′
2 for a minor improvement in readability and apply the inverse matrix lemma:

= E−1x′
1r1 −

E−1x′
2x2E

−1

1 + (h2)−{1,2}
x′
1r1 +E−1x′

2r2 +E−1x′
2x2 (E+ x′

2x2)
−1

x′
1r1

= E−1 (x′
1r1 + x′

2r2)−
E−1x′

2x2E
−1

1 + (h2)−{1,2}
x′
1r1 +E−1x′

2x2E
−1x′

1r1 −
E−1x′

2x2E
−1x′

2x2E
−1

1 + (h2)−{1,2}
x′
1r1,

where the first term yields the result, and we need to show that the remainder cancels out. Let
F = E−1x′

2x2E
−1, factor out the common x′

1r1 and fill in (h2)−{1,2}, and we have

− F

1 + (h2)−{1,2}
+ F−

(h2)−{1,2}E
−1x′

2x2E
−1

1 + (h2)−{1,2}
=

(−F+ F) + (h2)−{1,2} (F− F) = 0.

Induction step Assume the formula holds for some set |S| = {1, . . . ,K − 1}, i.e.,

∆(S) = D−1
−S

∑
s∈S

x′
srs.

Then, for {S,K}, we have

∆({S,K}) = D−1
−S

∑
s∈S

x′
srs +D−1

−{S,K}x
′
K(rK)−S

=
(
∆−1

−{S,K} + x′
Kxk

)−1 ∑
s∈S

x′
srs +D−1

−{S,K}x
′
K(rK + xKD−1

−S

∑
s

x′
srs)

= D−1
−{S,K}

∑
s∈{S,K}

xsrs.

where the omitted steps follow the base case (consider E = D−1
−{S,K} instead, and notice the parallels

between {1} and S as well as {2} and {K}), yielding the desired result.
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A2 LEMMA FOR THE INVERSE SUM OF SQUARES

Lemma 2 (Asymptotic Normality of Inverse Sum of Squares). Let {Xi}∞i=1 be a sequence of
independent and identically distributed (i.i.d.) random variables satisfying:

1. E[X4
1 ] < ∞ (finite fourth moment)

2. E[X2
1 ] = µ > 0 (positive second moment)

3. Var(X2
1 ) = σ2 > 0 (non-degenerate variance of squares)

Define Sn =
∑n

i=1 X
2
i and Yn = S−1

n . Then Yn is asymptotically normal with:

n3/2

(
Yn − 1

nµ

)
d−→ N

(
0,

σ2

µ4

)
as n → ∞.

Proof. Define the sample mean of squares X̄(2)
n = n−1Sn. By the Central Limit Theorem (CLT):

√
n
(
X̄(2)

n − µ
)

d−→ N (0, σ2),

where µ = E[X2
1 ] and σ2 = Var(X2

1 ) (finite by E[X4
1 ] < ∞).

Consider the transformation g(x) = x−1, which is differentiable at x = µ > 0 with derivative
g′(x) = −x−2. The Delta Method gives:

√
n
(
g(X̄(2)

n )− g(µ)
)

d−→ N
(
0, σ2 · [g′(µ)]2

)
.

Substituting g(X̄
(2)
n ) = (X̄

(2)
n )−1 = n/Sn and g(µ) = µ−1:

√
n

(
n

Sn
− 1

µ

)
d−→ N

(
0, σ2 · (−µ−2)2

)
= N

(
0,

σ2

µ4

)
.

Rewriting n/Sn = nYn:
√
n
(
nYn − µ−1

) d−→ N
(
0,

σ2

µ4

)
.

Factoring the left side:

√
n
(
nYn − µ−1

)
= n1/2 · n

(
Yn − 1

nµ

)
= n3/2

(
Yn − 1

nµ

)
.

Thus:

n3/2

(
Yn − 1

nµ

)
d−→ N

(
0,

σ2

µ4

)
.
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A3 LEMMATA FOR THE PRODUCT EVD

For notational simplicity let S :=
∑

i∈S Xi · Ri and T := D−1
−S , where D =

∑
n X

2
n. It holds for

any realization S = s ∈ R and T = t ∈ R+. Further, let MDA(H) denote the maximum domain of
attraction of an EVD H where we write Z ∈ MDA(H). We specifically denote the Fréchet as Φα

and the Gumbel as Λ. We are interested in the EVD of ∆ = S · T.

A3.1 IF S ∈ MDA(Φ)

Lemma 3. Let T ∈ MDA(Λ) and S ∈ MDA(Φa) with tail-coefficient a > 0 and S and T being
independent, then ∆(S) = S · T ∈ MDA(Φa) .

Proof. Recall that for Gumbel tails (S) the survival function decays double-exponentially, i.e.,

P(S > s) ∼ exp

(
− exp

(
s− µ

β

))
as s → ∞,

while for the Fréchet tails (T ) the survival function is regularly varying with index −a, i.e.,

P(T > t) ∼ t−aLT (t) as t → ∞,

where LT (t) is a slowly varying function. The density satisfies:

fT (t) ∼ at−a−1LT (t) as t → ∞.

We are interested in the EVD of ∆, i.e., P(∆ > δ). Since ∆ = S · T and S, T are independent by
assumption:

P(∆ > δ) = P(S T > δ) =

∫
R+

P(S > δ/t)fT (t) dt.

Next, we split the integral at M > 0:

P(∆ > δ) =

∫ M

0

P(S > δ/t)fT (t) dt︸ ︷︷ ︸
I1

+

∫ ∞

M

P(S > δ/t)fT (t) dt︸ ︷︷ ︸
I2

.

For fixed M , we have I1 → 0, as δ → ∞ since δ/t → ∞ and Gumbel tails decay faster than any
polynomial, and the dominant term is I2. Substitute u = δ/t (t = δ/u, dt = −(δ/u2) du), and we
have

I2 =

∫ ∞

M

P(S > δ/t)fT (t) dt =

∫ δ/M

0

P(S > u)fT (δ/u)
δ

u2
du.

Using the asymptotic form of fT :

fT (δ/u) ∼ a(δ/u)−a−1LT (δ/u),

we obtain

I2 ∼
∫ δ/M

0

P(S > u)

[
a

(
δ

u

)−a−1

LT

(
δ

u

)]
δ

u2
du

= aδ−a

∫ δ/M

0

P(S > u)ua−1LT

(
δ

u

)
du.

As δ → ∞, by Lemma 5 in Appendix A4, we obtain∫ δ/M

0

P(S > u)ua−1LT

(
δ

u

)
du ∼ LT (δ)

∫ ∞

0

P(S > u)ua−1 du. (A3.9)

The integral converges because:

1. near u = 0 we have P(S > u) ≈ 1 and ua−1 is integrable for a > 0, and
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2. as u → ∞ the Gumbel decay dominates ua−1.

Denote the constant

C(a, S) =

∫ ∞

0

P(S > u)ua−1 du ∈ (0,∞),

then
P(∆ > δ) ∼ aδ−aLT (δ)C(a, S) = δ−a (aC(a, S)LT (δ)) .

The term in parentheses is slowly varying in δ since LT (δ) is slowly varying.

Thus, the survival function P(∆ > δ) is regularly varying with index −a, and therefore, ∆ has
Fréchet tails with tail-coefficient a, which concludes the proof.

Corollary 2. Following Lemma 3 and assuming a tail coefficient a = ∞ it follows that S ∼ Gumbel
and thus ∆(S) = S · T ∈ MDA(Λ).

Proof. The result follows directly from properties of the Fréchet distribution.

Lemma 4. If S ∈ MDA(Φa) and T ∈ MDA(Φb) then ∆(S) ∈ MDA(Φmin{a,b}).

Proof. The proof of this follows directly from Lemma 1.3.1 on the convolution closure of distribution
functions with regularly varying tails in Embrechts et al. (1997).

Corollary 3 (Conditional EVD). Further, if S ∈ MDA(E) for some EVD E, it holds that

∆(S) | X−S ∈ MDA(E),
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A4 LEMMA FOR ASYMPTOTIC EQUIVALENCE

Lemma 5 (Asymptotic Equivalence Statement).∫ δ/M

0

P(S > u)ua−1LT

(
δ

u

)
du ∼ LT (δ)

∫ ∞

0

P(S > u)ua−1 du,

where S has Gumbel tails, LT is slowly varying, a > 0 is the tail coefficient, M > 0 is a fixed
constant.

Proof. For clarity, we prove this result in five steps.

STEP 1: INTEGRAL SPLITTING

Define

I(δ) =

∫ δ/M

0

P(S > u)ua−1LT

(
δ

u

)
du = I1(δ) + I2(δ),

where

I1(δ) =

∫ 1

0

P(S > u)ua−1LT

(
δ

u

)
du,

I2(δ) =

∫ δ/M

1

P(S > u)ua−1LT

(
δ

u

)
du.

STEP 2: ANALYSIS OF I1(δ) (BOUNDED DOMAIN)

For u ∈ (0, 1], we have:

lim
δ→∞

I1(δ)

LT (δ)
= lim

δ→∞

∫ 1

0

P(S > u)ua−1LT (δ/u)

LT (δ)
du

=

∫ 1

0

P(S > u)ua−1 du,

by the Dominated Convergence Theorem (DCT):

• Pointwise convergence: for fixed u > 0, limδ→∞
LT (δ/u)
LT (δ) = 1.

• Dominating function: by Potter’s theorem, for any δ > 0, there exists Cδ > 0 such that∣∣∣∣LT (δ/u)

LT (δ)

∣∣∣∣ ⩽ Cδu
−δ for all large δ.

Choose δ < a such that ua−1−δ is integrable on (0, 1], then∣∣∣∣P(S > u)ua−1LT (δ/u)

LT (δ)

∣∣∣∣ ⩽ Cδu
a−1−δ (since P ⩽ 1),

and the dominating function Cδu
a−1−δ is integrable over (0, 1] for a > δ > 0.

STEP 3: ANALYSIS OF I2(δ) (GROWING DOMAIN)

For u ∈ [1, δ/M ], we have

lim
δ→∞

I2(δ)

LT (δ)
= lim

δ→∞

∫ δ/M

1

P(S > u)ua−1LT (δ/u)

LT (δ)
du

=

∫ ∞

1

P(S > u)ua−1 du by the DCT.

• Pointwise convergence: for fixed u ⩾ 1, limδ→∞
LT (δ/u)
LT (δ) = 1
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• Dominating function: by Potter’s theorem, for δ > 0:∣∣∣∣LT (δ/u)

LT (δ)

∣∣∣∣ ⩽ Cδu
δ for all large δ, u ⩾ 1.

Choose δ such that k = a− 1 + δ > 0, and∫ ∞

1

P(S > u)uk du < ∞,

since the Gumbel decay dominates. Then∣∣∣∣P(S > u)ua−1LT (δ/u)

LT (δ)

∣∣∣∣ ⩽ CδP(S > u)uk,

and the dominating function CδP(S > u)uk is integrable over [1,∞).

• Tail control: as δ → ∞, the upper limit δ/M → ∞ and∫ ∞

δ/M

CδP(S > u)uk du → 0.

STEP 4: NEGLIGIBILITY OF OMITTED TAIL

The tail beyond δ/M is negligible:

R(δ) =

∫ ∞

δ/M

P(S > u)ua−1LT

(
δ

u

)
du.

• For u ⩾ δ/M , we have δ/u ⩽ M s.t. is bounded on compact sets: LT (δ/u) ⩽ CM .

• By the Gumbel tail properties, there exist a θ > 0 s.t. P(S > u) ⩽ e−uθ

for large u. Thus

|R(δ)| ⩽ CM

∫ ∞

δ/M

e−uθ

ua−1 du = o(1) as δ → ∞.

• Since LT (δ) → ∞ or is slowly varying, R(δ) = o(LT (δ))

STEP 5: FINAL COMBINATION

Combining all results, we have

I(δ)

LT (δ)
=
I1(δ) + I2(δ) +R(δ)

LT (δ)

=
I1(δ)

LT (δ)
+

I2(δ)

LT (δ)
+ o(1)

=⇒
∫ 1

0

P(S > u)ua−1 du +

∫ ∞

1

P(S > u)ua−1 du

=

∫ ∞

0

P(S > u)ua−1 du.
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A5 AUXILIARY MATERIAL
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Figure A1: Visualization of the empirical estimation of EVD shape parameters. Most notable is the
regime change between thin and polynomial tails. While the average MLE for the Fréchet cases is
statistically insignificantly different from another, they all differ from the Gumbel case. This suggests
that we can distinguish between both regimes in small samples.
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N Distribution Mean Std.Dev. Q25 Median Q75

20

Normal–Normal 0.1385 0.2541 −0.0206 0.1293 0.2902
t(5)–Normal 0.2417 0.2865 0.0863 0.2329 0.3994
Normal–t(5) 0.2529 0.2479 0.0910 0.2505 0.4089
t(5)–t(5) 0.3271 0.2719 0.1601 0.3144 0.4922

30

Normal–Normal 0.1021 0.1803 −0.0079 0.1101 0.2291
t(5)–Normal 0.1989 0.1845 0.0917 0.1994 0.3067
Normal–t(5) 0.2023 0.1846 0.0817 0.2101 0.3225
t(5)–t(5) 0.2670 0.1912 0.1453 0.2668 0.3961

50

Normal–Normal 0.0668 0.1255 −0.0153 0.0631 0.1466
t(5)–Normal 0.1708 0.1304 0.0890 0.1701 0.2532
Normal–t(5) 0.1843 0.1286 0.1015 0.1797 0.2704
t(5)–t(5) 0.2307 0.1363 0.1420 0.2305 0.3203

75

Normal–Normal 0.0474 0.0960 −0.0163 0.0485 0.1176
t(5)–Normal 0.1500 0.1006 0.0821 0.1469 0.2173
Normal–t(5) 0.1735 0.1057 0.1037 0.1749 0.2434
t(5)–t(5) 0.2214 0.1046 0.1561 0.2213 0.2885

100

Normal–Normal 0.0422 0.0788 −0.0115 0.0429 0.0959
t(5)–Normal 0.1389 0.0846 0.0790 0.1369 0.1948
Normal–t(5) 0.1721 0.0865 0.1183 0.1731 0.2291
t(5)–t(5) 0.2083 0.0876 0.1492 0.2056 0.2639

200

Normal–Normal 0.0253 0.0506 −0.0075 0.0253 0.0582
t(5)–Normal 0.1418 0.0587 0.1020 0.1403 0.1833
Normal–t(5) 0.1655 0.0576 0.1272 0.1632 0.2013
t(5)–t(5) 0.2072 0.0595 0.1691 0.2054 0.2450

300

Normal–Normal 0.0169 0.0406 −0.0096 0.0180 0.0455
t(5)–Normal 0.1423 0.0461 0.1122 0.1446 0.1731
Normal–t(5) 0.1705 0.0463 0.1377 0.1695 0.2006
t(5)–t(5) 0.2082 0.0511 0.1757 0.2082 0.2406

500

Normal–Normal 0.0157 0.0319 −0.0049 0.0154 0.0381
t(5)–Normal 0.1488 0.0378 0.1245 0.1499 0.1739
Normal–t(5) 0.1667 0.0354 0.1419 0.1662 0.1903
t(5)–t(5) 0.2087 0.0385 0.1833 0.2085 0.2323

1000

Normal–Normal 0.0103 0.0220 −0.0042 0.0109 0.0243
t(5)–Normal 0.1591 0.0287 0.1408 0.1589 0.1771
Normal–t(5) 0.1734 0.0252 0.1565 0.1743 0.1905
t(5)–t(5) 0.2105 0.0262 0.1938 0.2101 0.2273

Table A1: Inverse shape estimates for different distributions and sample sizes. They indicate fast
convergence to asymptotic predictions (0.0 for the Normal-Normal, and 0.2 for other cases) — for all
settings, the predicted value is contained between the 25th and 75th quantile. Estimates are based on
1000 repetitions.

Set Composition Set Size ∆(S) ˆ̃a b̂ p-value

Full set 4 0.0214 0.0076 0.0029 0.4914
1st partial 2 0.0456 0.0050 0.0021 7.62e−7

2nd after excl. 1st 2 −0.0241 0.0051 0.0022 0.0141

Table A2: Influence of % Black Population on Violent Crimes. The table summarizes the results for
testing the preselected set and its subsets for significant influence of the percent of black population
on the violent crimes committed per population.
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Figure A2: Simulation exercise for the performance of the simple MLE based on block maxima,
correcting for block size. While the corrected location parameter ˆ̃a is close to unbiased, the scale
parameter b̂ suffers some downward bias using simple block maxima, which is in line with Dombry
& Ferreira (2019). However, for practical purposes the block maxima are expected to be fitting
reasonably well, as visible in panel (a).
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