
TESTING MOST INFLUENTIAL SETS

000
001
002
003 **Anonymous authors**
004 Paper under double-blind review
005
006
007
008
009

ABSTRACT

010 Small influential data subsets can dramatically impact model conclusions, with a
011 few data points overturning key findings. While recent work identifies these *most*
012 *influential sets*, there is no formal way to tell when maximum influence is excessive
013 rather than expected under natural random sampling variation. We address this
014 gap by developing a principled framework for most influential sets. Focusing on
015 linear least-squares, we derive a convenient exact influence formula and identify the
016 extreme value distributions of maximal influence — the heavy-tailed Fréchet for
017 constant-size sets and heavy tailed data, and the well-behaved Gumbel for growing
018 sets or light tails. This allows us to conduct rigorous hypothesis tests for excessive
019 influence. We demonstrate through applications across economics, biology, and
020 machine learning benchmarks, resolving contested findings and replacing ad-hoc
021 heuristics with rigorous inference.

1 INTRODUCTION

022 Machine learning (ML) models and statistical inferences can be highly sensitive to small subsets of
023 data. In many applications, just a handful of samples can overturn key conclusions: two countries
024 nullify the estimated effect of geography on development (Kuschnig et al., 2021), a single outlier flips
025 the sign of a treatment effect (Broderick et al., 2021), or a small group of individuals drives disparate
026 outcomes in algorithmic decision-making (Black & Fredrikson, 2021). These *most influential*
027 sets — data subsets with the greatest influence on model predictions — are central to questions of
028 interpretability, fairness, and robustness in modern machine learning (see, e.g., Black & Fredrikson,
029 2021; Chen et al., 2018; Chhabra et al., 2023; Ghorbani & Zou, 2019; Sattigeri et al., 2022).
030

031 Despite their practical importance, practitioners lack principled tools to assess whether a set’s
032 influence is genuinely problematic. Current practice relies on heuristics, ad-hoc sensitivity checks,
033 and domain expertise, while approximate methods such as influence functions (Koh & Liang, 2017;
034 Fisher et al., 2023; Schioppa et al., 2023) systematically underestimate the impacts of sets and extreme
035 cases (Basu et al., 2020; Koh et al., 2019). Recent work highlights both the promises and challenges
036 of most influential subsets — small sets can drive results even in randomized trials (Broderick et al.,
037 2021; Kuschnig et al., 2021), heuristic algorithms can fail in simple settings (Hu et al., 2024; Huang
038 et al., 2025), and influence bounds remain an active area of research (Moitra & Rohatgi, 2023; Freund
039 & Hopkins, 2023; Rubinstein & Hopkins, 2024). What remains missing is a principled method to
040 distinguish natural sampling variation from genuinely excessive influence.

041 We develop a statistical framework for assessing the significance of most influential sets. By focusing
042 on linear regression — a tractable, interpretable, and widely-used setting that underlies many modern
043 methods (Rudin, 2019) — we derive the exact asymptotic distributions of maximal influence. We
044 show that two distinct regimes emerge depending on the size of the influential set: when the size
045 is fixed, maximal influence converges to a heavy-tailed Fréchet distribution; when the size grows
046 with the sample, maximal influence converges to a well-behaved Gumbel distribution. Our results
047 enable principled hypothesis tests for excessive influence, replacing ad-hoc diagnostics with rigorous
048 statistical procedures. We demonstrate their practical value via applications across economics,
049 biology, and machine learning benchmarks, resolving ambiguous cases where influential sets drive
050 contested findings.

051 **Contributions.** We present a comprehensive analysis of the influence of most influential sets, both
052 theoretically and in practical applications. Our main contributions are:

054 1. **Theoretical foundations.** We derive distributions for the influence of most influential sets,
 055 establishing their extreme value behavior and enabling statistical testing.
 056 2. **Efficient implementation.** We provide computationally efficient procedures for evaluating
 057 influence, making our approach practical for real-world applications.
 058 3. **Empirical validation.** We demonstrate the utility of our framework across domains, re-
 059 solving the contested ‘‘Blessing of Bad Geography’’ in economics, assessing robustness in
 060 biological data of sparrow morphology, and auditing fairness in ML benchmark datasets.
 061

062 To summarize — we provide the first rigorous theoretical results allowing us to interpret influence,
 063 and demonstrate their practical use by resolving contested findings across the literature.
 064

065 **Outline.** The remainder of the paper is structured as follows. Section 2 introduces the problem
 066 of most influential sets and formalizes the setting. Section 3 presents our theoretical results on the
 067 distribution of maximal influence. Section 4 demonstrates the practical merits of our framework
 068 through simulations and empirical applications. Section 5 discusses implications, limitations, and
 069 future directions, and Section 6 concludes.
 070

2 PRELIMINARIES AND BACKGROUND

071 Practitioners routinely encounter situations where small subsets of data points drive key conclusions.
 072 Consider the following scenarios:
 073

074 • **Scientific discovery:** Rugged terrain generally hinders economic development, but not in
 075 Africa. What if this striking result is driven by just two small island nations?
 076 • **Fairness auditing:** An algorithmic decision-making system produces different outcomes for
 077 a protected group. What if the disparity can be explained by only a handful of data points?
 078 • **Data cleaning:** A single influential point among a thousand samples flips a strong correlation
 079 to a null result. Should we trust the original finding or the one without the outlier?
 080 • **Data preprocessing:** A microcredit experiment shows negligible outcome variations overall,
 081 except for a few outliers. How should we prepare and analyze the sample?
 082

083 At the core of these examples lie *most influential sets*, which exert disproportionate influence on an
 084 estimate or prediction. These sets are intuitive to interpret, directly tied to the quantity of interest,
 085 and provide a new dimension for assessing estimates by highlighting their support in the data. What
 086 has been unclear, however, is how to interpret and deal with influential sets; current practice relies
 087 heavily on domain expertise and ad-hoc rules, lacking a statistically rigorous framework for judging
 088 their influence.
 089

2.1 FORMAL PROBLEM STATEMENT

090 We consider a supervised learning task with input space $\mathcal{X} \subset \mathbb{R}^P$ and target space $\mathcal{Y} \subset \mathbb{R}$. The goal
 091 is to learn a function $f(\theta, \cdot) : \mathcal{X} \mapsto \mathcal{Y}$ parameterized by $\theta \in \mathbb{R}^Q$. Given training data $\{(x_n, y_n)\}_{n=1}^N$
 092 and a loss function $\mathcal{L}(\cdot, \cdot)$, we learn parameters by solving
 093

$$\hat{\theta} = \arg \min_{\theta \in \mathbb{R}^Q} \sum_{n=1}^N \mathcal{L}(f(\theta, x_n), y_n).$$

094 Let $[N] = \{1, \dots, N\}$ and denote both an index set and its corresponding subsample as $\mathbb{S} \subset [N]$.
 095 For any subset \mathbb{S} , we use a subscript $\hat{\theta}_{-\mathbb{S}}$ to denote a quantity θ without \mathbb{S} , i.e.
 096

$$\hat{\theta}_{-\mathbb{S}} = \arg \min_{\theta \in \mathbb{R}^Q} \sum_{n \notin \mathbb{S}} \mathcal{L}(f(\theta, x_n), y_n).$$

097 **Definition (Most Influential Set).** For a positive integer $k \ll N$, the k -most influential set is
 098

$$\mathbb{S}_k^{\max} := \arg \max_{\mathbb{S} \subset [N], |\mathbb{S}| \leq k} \Delta(\mathbb{S}; \phi),$$

099 where $\Delta(\mathbb{S}; \phi) = \phi(\hat{\theta}) - \phi(\hat{\theta}_{-\mathbb{S}})$ is the influence of subset \mathbb{S} on target function $\phi : \mathbb{R}^Q \mapsto \mathbb{R}$. We
 100 denote the maximum influence as $\Delta^{\max} = \Delta(\mathbb{S}_k^{\max}; \phi)$.
 101

108 **Research Question.** What is the probability distribution of Δ^{\max} , and how can we distinguish
 109 excessive influence from natural sampling variation?
 110

111 **2.2 INFLUENCE FUNCTIONS VS. EXACT INFLUENCE**
 112

113 A common and related approach to study influence is via *influence functions* (Fisher et al., 2023; Hu
 114 et al., 2024; Koh & Liang, 2017). These are motivated by reweighing via the perturbation
 115

$$116 \hat{\theta}(\epsilon; \mathbb{S}) := \arg \min_{\theta \in \mathbb{R}^Q} \frac{1}{N} \sum_{n=1}^N \mathcal{L}(f(\theta, x_n), y_n) + \epsilon \sum_{i \in \mathbb{S}} \mathcal{L}(f(\theta, x_i), y_i).$$

119 Setting $\epsilon = 0$ recovers $\hat{\theta}$, while $\epsilon = -N^{-1}$ yields $\hat{\theta}_{-\mathbb{S}}$. The influence function is the linear approxi-
 120 mation at $\epsilon = 0$:

$$121 \mathcal{I}(\mathbb{S}) := \left. \frac{d\hat{\theta}(\epsilon; \mathbb{S})}{d\epsilon} \right|_{\epsilon=0},$$

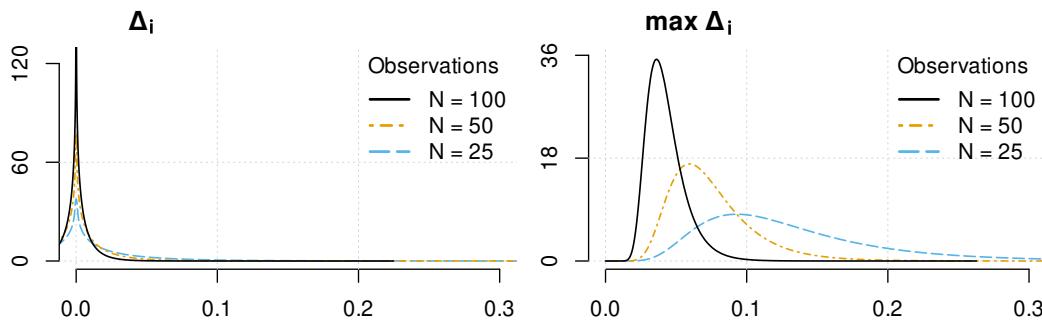
124 allowing us to compute a first-order estimate of influence.

125 While influence functions are computationally convenient, they are unreliable even for simple
 126 models (Basu et al., 2020; Hu et al., 2024; Huang et al., 2025; Koh et al., 2019). In particular, they
 127 systematically underestimate the impact of (a) *sets* of data points and (b) highly *influential* data
 128 points. This occurs because the first-order approximation cannot reflect higher-order effects from the
 129 interplay between data points or differential leverage scores.

131 **2.3 EXACT MAXIMUM INFLUENCE**
 132

133 We therefore derive an *exact influence formula* (in Section 3) and characterize the behavior of
 134 maximum influence (Section 3.1) to enable principled testing (Section 3.2). We focus on tractable
 135 but ubiquitous linear setting, avoiding approximations and accurately portraying most influential sets
 136 — for which extreme behavior dominates and first-order approximations fail most dramatically.

137 **Extreme Value Theory.** Our goal is to characterize the behavior of Δ^{\max} — the influence of the
 138 most influential set. Since this quantity is defined through maximization over all possible subsets,
 139 its distribution is governed by extreme value theory rather than classical asymptotics — which
 140 is illustrated in Figure 1. When taking maxima over random quantities, three possible limiting
 141 distributions can emerge (Fisher & Tippett, 1928; Gnedenko, 1943): the well-behaved Gumbel (Type
 142 I), the heavy-tailed Fréchet (Type II), and the bounded Weibull (Type III). We need to determine
 143 which extreme value distribution (EVD) attracts Δ^{\max} . Specifically, we distinguish between the
 144 Gumbel distribution with exponential tails, and the Fréchet distribution with polynomial tails allowing
 145 for potentially arbitrarily large influence. (The Weibull distribution can be ruled out since influence is
 146 unbounded.) Once we establish the asymptotic distribution, we show how it applies to finite samples.



159 Figure 1: Illustration of the distribution of $\Delta(\{i\})$ for general observations, and the maximum
 160 influence Δ^{\max} over all possible i , for $N \in \{25, 50, 100\}$. One can clearly discern an upward shift
 161 and a substantial increase of the density in the tails.

162 2.4 SETTING
163

164 Consider the standard linear regression model, where f is a linear function relating random features X
165 to the outcome Y via the parameter vector θ . The ordinary least-squares (OLS) population estimator
166 of θ is

$$167 \tilde{\theta} := \mathbb{E}[XX']^{-1}\mathbb{E}[XY]$$

168 yielding fitted values $\hat{Y} = X'\tilde{\theta}$ and the associated residuals $R = Y - X'\tilde{\theta}$. Stacking N observed
169 training samples yields the design matrix $\mathbf{X} \in \mathbb{R}^{N \times P}$ and outcome vector $\mathbf{y} \in \mathbb{R}^N$. For OLS, we
170 assume that $\mathbf{X}'\mathbf{X}$ is invertible and remains so after removing any subset. (This is not necessary for
171 our results, as they extend to ridge regression, where the penalization parameter $\lambda > 0$ in $\mathbf{X}'\mathbf{X} + \lambda\mathbf{I}$
172 creates a ridge that guarantees invertibility.) The sample OLS estimator is then

$$173 \hat{\theta} := \arg \min_{\theta} \|\mathbf{y} - \mathbf{X}\theta\|^2 = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y},$$

175 yielding predictions $\hat{\mathbf{y}} = \mathbf{X}\hat{\theta}$ and residuals $\mathbf{r} = \mathbf{y} - \hat{\mathbf{y}}$.

176 For our main results, we consider least-squares estimates of the regression coefficients, with and
177 without penalization. For illustration, however, we will consider a univariate model with one positive
178 coefficient of interest and target function $\phi(\theta) = \theta_1$. This eases notation considerably and comes
179 without loss of generality — theoretical results apply to more general settings.¹

181 3 PROPOSED APPROACH
182

183 The influence of a single observation i is well-known (Belsley et al., 1980; Cook, 1979; Walker &
184 Birch, 1988) to be

$$185 \Delta(\{i\}) = \frac{(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_i r_i}{1 - h_i},$$

186 where h_i is the leverage score and r_i the residual of observation i .

187 We extend this result to be (i) applicable to sets of observations, and (ii) computationally convenient.
188 We state the general result here, while full details are provided in [Appendix A1](#).

189 **Proposition 1.** *The influence of some set \mathbb{S} on the least-squares estimator $\hat{\theta}$ is*

$$190 \Delta(\mathbb{S}) = (\mathbf{X}'_{-\mathbb{S}}\mathbf{X}_{-\mathbb{S}} + \lambda\mathbf{I}_P)^{-1}\mathbf{X}'_{\mathbb{S}}r_{\mathbb{S}}, \quad (1)$$

191 where $\lambda \geq 0$ is an optional penalization parameter.

192 *Proof sketch.* Let $D := \mathbf{X}'\mathbf{X} + \lambda\mathbf{I}_P$ for brevity. In the Appendix, we show that, for a single
193 observation i , we can use the convenient expression $\Delta(\{i\}) = \mathbf{D}_{-\{i\}}^{-1}\mathbf{x}'_i r_i$. Consider the *base case*
194 for sequential removal of $\mathbb{S} = \{1, 2\}$. We have

$$195 \begin{aligned} \Delta(\{1, 2\}) &= \mathbf{D}_{-\{1\}}^{-1}\mathbf{x}'_1 r_1 + \mathbf{D}_{-\{1, 2\}}^{-1}\mathbf{x}'_2(r_2)_{-\{1\}} \\ &= \left(\mathbf{D}_{-\{1, 2\}}^{-1} + \mathbf{x}'_2\mathbf{x}_2\right)\mathbf{x}'_1 r_1 + \mathbf{D}_{-\{1, 2\}}^{-1}\mathbf{x}'_2\left(r_2 + \mathbf{x}_2\mathbf{D}_{-\{1\}}^{-1}\mathbf{x}'_1 r_1\right) \\ &= \mathbf{D}_{-\{1, 2\}}^{-1}(\mathbf{x}'_1 r_1 + \mathbf{x}'_2 r_2) - \mathbf{D}_{-\{1, 2\}}^{-1}(\dots)\mathbf{x}'_1 r_1, \end{aligned}$$

196 where the proof revolves around showing that the ellipsis zeros out. Let $\Omega = \mathbf{x}'_2\mathbf{x}_2\mathbf{D}_{-\{1, 2\}}^{-1}$, and
197 $\omega = \mathbf{x}_2\mathbf{D}_{-\{1, 2\}}^{-1}\mathbf{x}'_2$; then, in slight abuse of notation, the term collapses to:

$$198 \dots = \frac{-\Omega}{1 + \omega} + \Omega - \frac{\omega\Omega}{1 + \omega} = -\Omega + \Omega + \omega\Omega - \omega\Omega = 0.$$

199 Assuming this identity holds for $|\mathbb{S}| = K$ we can show by induction that it holds for $|\mathbb{S}| = K + 1$,
200 and the result follows. The full proof is provided in [Appendix A1](#). \square

201 ¹Multiple features can be factored out by the Frisch-Waugh-Lovell theorem under mild assumptions, leaving
202 an equivalent univariate regression. A different sign can be accommodated by simply flipping the feature of
203 interest or adjusting the target function ϕ accordingly.

216 **Proposition 1** elegantly reveals the additive structure of individual contributions in the numerator, as
 217 well as the multiplicative adjustment from the remaining data in the denominator. This representation
 218 enables efficient computation without explicitly recalculating leverage scores for each subset, making
 219 our approach computationally tractable for large datasets.
 220

221 **3.1 EXTREME VALUE DISTRIBUTION**
 222

223 We now turn to finding the distribution of $\Delta(\mathbb{S})$ for the *most influential set*, \mathbb{S}_k^{\max} . Since this quantity
 224 is defined by an extremal operation (maximization over all possible subsets), its asymptotic behavior
 225 is governed by extreme value theory. Specifically, we seek the limiting EVD H such that $\Delta^{\max} \in$
 226 $\text{MDA}(H)$, i.e., Δ^{\max} lies in the maximum domain of attraction of H .

227 Two canonical EVDs are of particular interest: the Fréchet (Type II) distribution Φ_α for heavy-tailed
 228 variables, and the Gumbel (Type I) distribution Λ for light-tailed variables. We distinguish two
 229 practically relevant regimes based on how the subset size k scales with sample size N :
 230

- 231 1. **Constant-size sets:** k remains fixed as $N \rightarrow \infty$.
- 232 2. **Relative-size sets:** k grows proportionally with N , i.e., $k = pN$ for some $p \in (0, 1)$.

233 Both regimes have been considered in practical applications (see, e.g, [Broderick et al., 2021](#); [Kuschnig et al., 2021](#)), and — as we will show next — they yield fundamentally different asymptotic behavior
 234 with important implications for the interpretation of influence.
 235

236 **3.1.1 CONSTANT-SIZE SETS**
 237

238 **Theorem 1** (EVD for constant-size sets). *Suppose $\mathbb{E}[X^2] < \infty$, and that X_i, R_i have polynomial
 239 tails with coefficients $\xi_x, \xi_r < \infty$. If $|\mathbb{S}_k^{\max}|$ remains constant as $N \rightarrow \infty$, then*

$$240 \lim_{N \rightarrow \infty} \Delta^{\max} \sim \text{Fréchet}(a, b, \xi),$$

241 with location parameter a , scale parameter b , and shape parameter $\xi = \min\{\xi_x, \xi_r\}$.
 242

243 *Proof sketch.* Let $C := \sum_{i \in \mathbb{S}} X_i R_i$ and $D := \sum_{n=1}^N X_n^2$. Notice that C and $D_{-\mathbb{S}}^{-1}$ are asymptotically
 244 independent. Since X_i and R_i have polynomial tails with coefficients ξ_x, ξ_r , their product $C \in$
 245 $\text{MDA}(\Phi_\xi)$, with $\xi = \min\{\xi_x, \xi_r\}$, since its upper tail behaves like the tail of $\max\{X_i R_i\}$ for
 246 $i \in \mathbb{S}_k^{\max}$. [Lemma 2](#) shows that the inverse sum $D_{-\mathbb{S}}^{-1} \in \text{MDA}(\Lambda)$, and the product $CD_{-\mathbb{S}}^{-1}$ inherits
 247 the Fréchet behavior from C by [Lemma 3](#). \square
 248

249 This result shows that, for constant-size sets, Δ^{\max} inherits tail behavior from the heavier tail of R
 250 and X . If one of them is sufficiently heavy-tailed, even small sets can exert extreme influence with
 251 non-negligible probability. [Corollary 1](#) simplifies [Theorem 1](#) in absence of heavy tails.
 252

253 **Corollary 1.** *If the tail coefficients of both X_i and R_i are infinite, then*

$$254 \lim_{N \rightarrow \infty} \Delta^{\max} \sim \text{Gumbel}(a, b).$$

255 **3.1.2 RELATIVE-SIZE SETS**
 256

257 When the most influential set grows proportionally with the sample size, the central limit theorem
 258 (CLT) dominates the asymptotic behavior:

259 **Theorem 2** (EVD for relative-size sets). *If $\{X_n R_n\}_{n=1}^N$ satisfies the conditions of a CLT and $|\mathbb{S}_k^{\max}|$
 260 grows proportionally with N , then*

$$261 \lim_{N \rightarrow \infty} \Delta^{\max} \sim \text{Gumbel}(a, b).$$

262 *Proof sketch.* When $|\mathbb{S}_k^{\max}| = pN$, for $p \ll 1$, the numerator C grows at the rate $\mathcal{O}(N)$. By the
 263 CLT, $C/\sqrt{N} \sim \mathcal{N}(\mu, \sigma^2)$ as $N \rightarrow \infty$. Hence, the product $CD_{-\mathbb{S}}^{-1}$ lies in the maximum domain of
 264 attraction of the Gumbel distribution, following [Lemma 3](#) and [Corollary 2](#). \square
 265

270 This reveals a fundamental distinction: constant-size sets are dominated by the heaviest tail, while, for
271 growing sets, Δ^{\max} converges to a well-behaved Gumbel distribution with exponentially decaying
272 tails. This result holds regardless of the underlying distributions of X and R as long as the variance
273 of $X_i \cdot R_i$ is finite.

275 3.2 IMPLEMENTATION AND COMPUTATION

277 With the theoretical results established, we turn towards practical implementation. Assuming there is
278 a most influential set of interest,² our procedure follows three steps:

- 279 1. **Choose the EVD family.** Our theoretical results guide the decision between the Gumbel
280 and Fréchet families, which based on the hypothesized set size and the tail behavior of X
281 and R . For the latter, we can estimate tail coefficients using maximum likelihood estimation
282 (MLE; [Smith, 1985](#); [Bücher & Segers, 2017](#)). If $1/\min\{\xi_x, \xi_r\}$ is sufficiently close to zero,
283 we default to the Gumbel distribution (per [Corollary 1](#) and [Theorem 2](#)). Otherwise, we use
284 the Fréchet distribution with shape parameter $\xi = \min\{\xi_x, \xi_r\}$, following [Theorem 1](#).³
- 285 2. **Estimate EVD parameters.** With the EVD known, we estimate its location and scale
286 parameters a, b e.g., using the block maxima method ([Coles, 2001](#); [De Haan & Ferreira, 2006](#)). For this, we divide the sample (excluding \mathbb{S}_k^{\max} for robustness) into M blocks of size
287 N/M , compute Δ^{\max} for each block, and use MLE based on these draws. Since selecting
288 the maximum out of N/M observations reduces the expected maximum compared to the
289 full sample, a bias correction can be applied for the Gumbel distribution. We know that the
290 densities for sizes N and N/M are related by

$$292 F^N(x) \xrightarrow{d} \text{Gumbel}(a, b) \quad \text{and} \quad [F^{N/M}(x)]^M \xrightarrow{d} \text{Gumbel}(a, b),$$

294 which yields the location correction $\tilde{a} = \hat{a} + b \log(M)$, where \hat{a} is the MLE.

- 295 3. **Perform hypothesis test.** Finally, we test the null hypothesis H_0 that the observed influence
296 reflects natural sampling variation against the alternative H_1 of excessive influence. Based
297 on the estimated parameters, we can simply compute the p -value as $P(\Delta^{\max} \geq \delta_{\text{obs}})$ where
298 δ_{obs} is the observed maximum influence.

300 **Computational Efficiency.** Thanks to [Proposition 1](#), our procedure is computationally convenient,
301 allowing for application to large and varied datasets. The maximum likelihood steps are simple and
302 well-behaved, optimizing over only two parameters in the Gumbel case. The primary computational
303 constraint stems from finding most influential sets — we need to approximate Δ^{\max} for the M block
304 maxima estimates ([Price et al., 2022](#)). For computational tractability, we use an adaptive greedy
305 algorithm ([Hu et al., 2024](#); [Kuschnig et al., 2021](#)) with complexity $\mathcal{O}(Mk)$ and considerably reduced
306 runtime from our closed-form influence formula for sets.

307 4 EXPERIMENTS

309 In this section, we validate our theoretical predictions, investigate convergence in small samples, and
310 demonstrate their practical relevance and utility through real-world applications spanning economics,
311 biology, and machine learning.

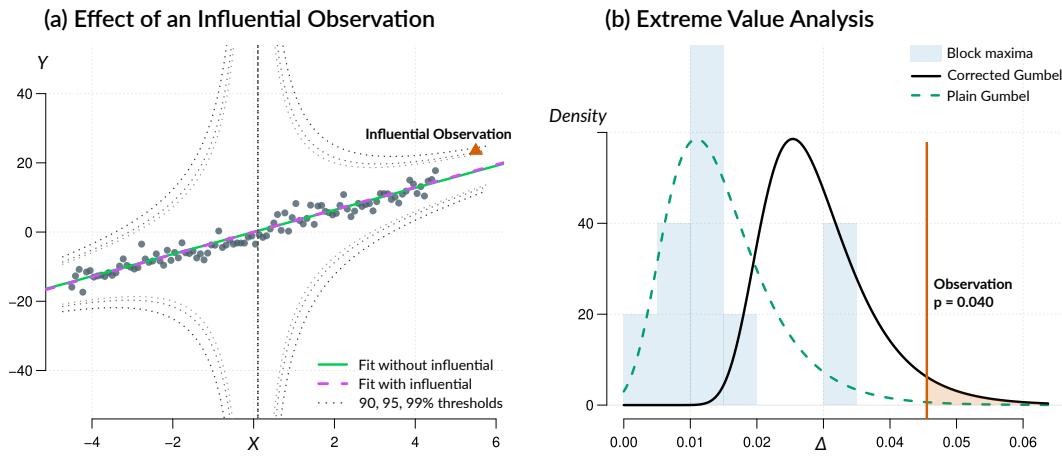
313 4.1 SIMULATION STUDY

315 We begin with a controlled setting, where we (i) illustrate, (ii) investigate convergence for small
316 samples, and (iii) evaluate empirical estimation.

317 ²This set can be obtained with any of the methods in the literature ([Broderick et al., 2021](#); [Kuschnig et al., 2021](#); [Freund & Hopkins, 2023](#)), and could, e.g., be the smallest set that achieves a sign-flip — a commonly
318 considered heuristic cutoff. If no such heuristic is used and multiple tests are considered (e.g., for different
319 coefficients or sets sizes), a multiple testing correction should be applied. Note that EVT controls the implicit
320 search for the most influential set over the $\binom{N}{k}$ possible subsets.

322 ³Small values of ξ correspond to extremely heavy-tailed distributions where the variance ($\xi \leq 2$) or even
323 the mean ($\xi \leq 1$) become infinite. Such cases pose practical challenges for statistical inference, and imply that
arbitrarily large influence is possible in our case.

324
325 **Illustration.** Figure 2 illustrates our approach on a simple linear regression with one moderately
326 influential point due to high leverage. Panel A visualizes the data, significance thresholds (at the 10,
327 5, and 1% significance levels) as a function of predictor and response values. Panel B presents the
328 underlying extreme value analysis: block maxima inform the estimated Gumbel distribution, yielding
329 a p -value of 0.04 for the observation of interest.



345 Figure 2: Illustration of our methodology on a simple linear regression with a moderately influential
346 observation. Panel A depicts observations, estimated regression lines with and without the influential
347 point, and conditional significance regions at the 10, 5, and 1% levels (dotted lines). Panel B
348 illustrates the extreme value analysis: a histogram of block maxima in the background, fitted Gumbel
349 distributions with (solid) and without (dashed) bias correction, and the resulting p -value for the
350 observation of interest.

352 4.1.1 CONVERGENCE TO EXTREME VALUE DISTRIBUTIONS

353 Next, we verify that maximal influence converges to the predicted extreme value distributions. We
354 consider four scenarios based on combinations of the standard Normal and $t(5)$ distributions for
355 X, R . For each scenario, we simulate 1,000 datasets of sizes between $N = 20$ and $N = 1000$, and
356 compare the empirical parameter estimates with the theoretical prediction. Overall, we find rapid
357 convergence, implying that our theoretical predictions are applicable with small samples.

358 Figure 3 shows convergence of the scenarios to the predictions, which are indicated by dashed
359 horizontal lines. (Details are provided in Table A1 of the Appendix.) All scenarios reliably converge
360 for moderate sample sizes. The Normal-Normal scenario is insignificantly different from Gumbel
361 behavior ($\xi^{-1} = 0$) for $N \geq 50$, and the heavy-tailed cases also exhibit the predicted Fréchet
362 behavior ($\xi^{-1} = 0.2$). Notably, the $t(5)$ -Normal case converges at slower rates, likely due to the
363 relative instability of the inverse $(\mathbf{X}'\mathbf{X})_{\mathcal{S}}^{-1}$ in small samples. Overall, the simulation results support
364 the applicability of Theorem 1 in small samples.

366 4.1.2 LOCATION AND SCALE ESTIMATION

368 Next, we evaluate whether block maximum MLE accurately captures the location and scale parameters
369 for empirical testing. Results are provided in Figure A2 of the Appendix. We find that bias-corrected
370 estimation of the location parameter works well, while the scale estimate is consistent but exhibits a
371 minor downward bias that disappears asymptotically (consistent with known limitations of the MLE;
372 see Dombray & Ferreira, 2019). For our goal of hypothesis testing, the overall distribution and its
373 quantiles are recovered effectively.

375 4.2 APPLICATIONS

376 We investigate several real-world datasets — two applications from economics and biology, and four
377 machine learning benchmarks — and provide the first conclusive investigation of influence.

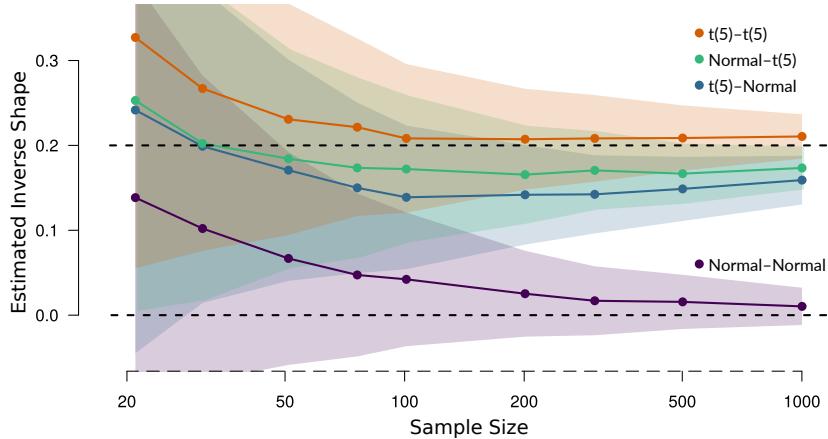


Figure 3: Convergence of empirical samples to the limiting distribution with increasing sample sizes ($N \in \{20, 30, 50, 75, 100, 150, 200, 300, 500, 1000, 2000\}$, note the non-linear scale) for four different scenarios. Dots indicate estimated means from 1000 repetitions, while the shaded area indicates $\pm 1\text{SD}$. The Normal–Normal and the $t(5)$ – $t(5)$ cases quickly converge to the theoretical predictions of $\xi^{-1} = 0$ and $\xi^{-1} = 0.2$, while the mixed scenarios converge marginally slower.

Economic Development and Geography. We re-examine the controversial finding that rugged terrain benefits African economies when compared to the rest of the world (Nunn, 2020). Kuschnig et al. (2021) call the influence of the Seychelles, which remove significance of the estimate of interest when coupled with any of Rwanda, Lesotho, Eswatini, and the Comoros. However, lacking the statistical framework that we provide, they were not able to test whether this level of influence should be deemed excessive or not.

We can now decisively resolve this controversy. Table 1 reveals the Seychelles as excessively influential on $\hat{\theta}_{\text{rugged}}$, both individually ($p < 0.001$) and in combination with other outliers, except for Lesotho. This substantiates the suspected confounding from the size of nations (Kuschnig et al., 2021), lending statistical rigor to prior concerns and calling into question the differential relation between ruggedness and income in Africa.

Table 1: Influence of Ruggedness on log(GDP per capita in 2000)

Influential Set	$\Delta(\$)$	\hat{a}	\hat{b}	$p\text{-value}$
Seychelles	0.077	0.020	0.004	$< 1e^{-16}$
Seychelles + Lesotho	0.046	0.036	0.007	0.216
Seychelles + Rwanda	0.070	0.028	0.006	0.001
Seychelles + Eswatini	0.077	0.020	0.004	$< 1e^{-16}$
Seychelles + Comoros	0.061	0.028	0.006	0.004

Sparrow Morphology — Big Heads and Beaks. We analyze the relation between head and tarsus length in saltmarsh sparrows, based on measurements of $N = 1,295$ sparrows with known outliers (Gjerdum et al., 2008; Zuur et al., 2010). The baseline regression yields $\hat{\theta} = 0.011$ with a standard error of (.030), implying a relation that is statistically indistinguishable from zero.

However, a curious data point moves the estimate to 0.219(.029), turning the estimate significantly positive. An additional data point further moves the estimate to 0.288(.032). These extreme impacts from a vanishing fraction of the sample are deemed excessive by our approach at any conventional significance level (both $p < 0.001$).⁴

⁴One possible explanation for this excessive influence are data entry errors: The first observation (an outlier in both head and tarsus size) may have the two (adjacent) features mixed up — when swapped, they would fit

432 **Machine Learning Benchmarks.** We apply our framework to four widely-used regression bench-
433 marks: Law School, Adult Income, Boston Housing, and Communities & Crime. For each dataset,
434 we identify a most influential set of interest and test for excessive influence.
435

436 • **Law School** ($N = 20,800$): We examine the coefficient for the ‘Other’ race indicator, with
437 378 relevant samples. We consider two sets: 77 data points that move the estimate from
438 $-0.0412 (.0144)$ to $0.1117 (.0159)$, creating a significant estimate with flipped sign, and
439 17 data points that reduce the estimate to $-0.0223 (.0097)$. Our approach indicates that the
440 influence larger set’s influence falls within expected variation, while the smaller set exhibits
441 statistically excessive influence ($p = 0.019$).
442 • **Adult Income** ($N = 32,561$): We investigate the top 1% most influential sets (325 points)
443 that shift the ‘Male’ indicator from $\hat{\theta} = 0.062$, either raising it to 0.0992 or decreasing it to
444 0.0214 . Despite these considerable shifts from a small fraction of the data, neither is deemed
445 excessively influential by our approach.
446 • **Boston Housing** ($N = 506$): We focus on the effect of crime rate on house values.
447 The baseline (highly significant) coefficient $-0.1080 (.0329)$ is rendered insignificant at
448 $-0.0352 (.0556)$ after excluding just 6 observations. In this case, the underlying EVD is
449 Fréchet with inverse shape $\xi^{-1} = 0.29$ due to the heavy tail of the crime variable. The set’s
450 influence is highly significant ($p = 0.001$), indicating excessive influence.
451 • **Communities & Crime** ($N = 1,994$): We investigate 2 and 2 data points with substantial
452 influence on the relation between race and crime rates. The complete set is not extreme,
453 as the points cancel each other out. After exclusion, the first subset of two increases the
454 coefficient by more than 22%, which is deemed excessive $p < 0.001$. When re-estimating
455 after their exclusion, the second set decreases the estimate by more than 10% and is deemed
456 excessive at the 5% level ($p = 0.014$). (See [Table A2](#) for details.)
457

458 5 DISCUSSION

460 We develop the first rigorous statistical framework for assessing when most influential sets represent
461 genuine problems rather than natural sampling variation. By deriving the extreme value distribution
462 of maximal influence, we allow practitioners to replace ad-hoc sensitivity checks with principled
463 statistical decision rules.

464 **Theoretical Contribution.** Our key insight is how maximal influence fundamentally depends on
465 set size and tail behavior. For constant-size sets with polynomial tails, maximal influence follows
466 a heavy-tailed Fréchet distribution, implying that extreme influence can be arbitrarily large. For
467 relative-size sets or exponential-tailed data, maximal influence converges to a well-behaved Gumbel
468 distribution, and maximal influence can be bounded.
469

470 These results address a critical gap in interpretable machine learning. While recent work has developed
471 methods to identify influential sets ([Broderick et al., 2021](#); [Freund & Hopkins, 2023](#); [Hu et al., 2024](#)),
472 no formal theory existed to determine when their influence is excessive. Our framework provides
473 the long-missing theoretical foundation that enables rigorous statistical inference for influential
474 observations and sets (first discussed by [Cook, 1979](#)).

475 We can clarify the applicability of heuristics that are commonly used for identifying excessive
476 influence, and provide conclusive answers when excessively influential sets are suspected (such as the
477 Seychelles in the ruggedness example; see [Kuschnig et al., 2021](#)). The $2\sqrt{N}$ threshold for coefficient
478 influence ([Belsley et al., 1980](#)), e.g., is asymptotically accurate for randomly selected observations,
479 but is too restrictive for most influential observations, where the selection procedure necessitates
480 extreme value theory.

481 **Practical Recommendations.** In general, most influential sets hold valuable information for
482 inference. Our test is deliberately *conservative*, controlling Type I errors (false claims of excessive
483 influence) at the cost of some Type II errors (failing to detect truly excessive influence). This reflects
484

485 well into overall averages. The second observation (an outlier in one feature) stands out with both values being
486 equal up to the one significant digit.

486 our view that influential sets are a natural feature of data and not a problem to be eliminated. When
487 our test identifies an *excessively influential set*, however, we recommend:
488

- 489 1. **Investigate mechanism.** Document the set and investigate why it differs — it may convey
490 genuine heterogeneity, data quality issues, unobserved confounding, or important edge cases
491 not addressed by the model.
- 492 2. **Handle appropriately.** We argue that an excessively influential set warrants separate
493 analysis; exclusion can be considered if it reflects measurement error or outliers that are
494 irrelevant for the pattern of interest.
- 495 3. **Report transparently.** State the set, decision, and test outcome; if conclusions hinge on
496 the set, report both and discuss why. We advise against trimming or winsorizing to force
497 alignment with the remaining data; these transformations create artificial data that may
498 obscure and distort rather than illuminate underlying relations.

500 5.1 LIMITATIONS AND FUTURE WORK

501 Our analysis focuses on linear regression — foundational for theory and modern ML methods, but
502 limited to contexts where interpretability is valued (Rudin, 2019; Roscher et al., 2020). Extensions
503 to generalized linear models, tree-based methods, or non-parametric estimators require further
504 developments.

505 Our asymptotic arguments leverage independence between features and residuals, which may be
506 restrictive when dependence affects influence patterns. While our simulations show that small-sample
507 behavior quickly converges to asymptotic predictions — even at $N = 100$ — further investigation of
508 the theory-practice gap is warranted.

509 Several methodological improvements could enhance practical performance. Estimation of extreme
510 value parameters could benefit from domain-specific information and improved bias correction
511 methods may be possible (Dombry & Ferreira, 2019; Oorschot & Zhou, 2020). The efficient selection
512 of most influential sets themselves remains an active research area (Hu et al., 2024; Huang et al.,
513 2025) with direct implications for our estimation procedure.

514 5.2 BROADER IMPLICATIONS AND RECOMMENDATIONS

515 Our framework enables more reliable decision-making across domains where linear models remain
516 the method of choice. Principled tools for understanding data points that drive model behavior are
517 crucial for building trustworthy systems. Applications span fairness assessments — where influential
518 sets can reveal algorithmic bias — to causal inference settings, such as randomized controlled trials or
519 quasi-experimental econometric analyses where small data subsets can fundamentally alter estimates.

520 Importantly, we reframe influence as a natural feature of data requiring appropriate treatment rather
521 than a problem to be fixed. Influential sets can represent genuine heterogeneity or important edge
522 cases that should inform model development. This perspective enables more nuanced approaches to
523 data analysis, where information is preserved and assessed through principled statistical inference
524 rather than discarded based on rules of thumb.

525 6 CONCLUSION

526 We developed a statistical framework that transforms the assessment of most influential sets from art
527 to science. By deriving the extreme value distributions of maximal influence, we enable rigorous
528 hypothesis testing to distinguish excessive influence from natural variation. Applications across
529 economics, biology, and machine learning benchmarks demonstrate the practical utility of our
530 approach.

531 Our method offers clear guidance to practitioners — when small sets overturn results of interest, our
532 tests reveal whether this influence is statistically excessive. This enables more robust and transparent
533 decision-making in settings where reliability matters, from medical trials to policy evaluation to
534 algorithmic systems. By providing theoretical foundations for influential set analysis, this work
535 advances both the theory and practice of interpretable machine learning.

540 **REPRODUCIBILITY STATEMENT**
541

542 Proofs are detailed in the Appendix, datasets are from the cited sources, and code to reproduce results
543 will be released upon acceptance.
544

545 **STATEMENT ON LLM USE**
546

547 Large language models were used to (i) aid and polish writing, (ii) discover and retrieve related work,
548 and (iii) check results for apparent mistakes.
549

550 **REFERENCES**
551

552 Samyadeep Basu, Xuchen You, and Soheil Feizi. On Second-Order Group Influence Func-
553 tions for Black-Box Predictions, July 2020. URL <http://arxiv.org/abs/1911.00418>.
554 arXiv:1911.00418 [cs].
555

556 David A. Belsley, Edwin Kuh, and Roy E. Welsch. *Regression diagnostics: Identifying influential*
557 *data and sources of collinearity*. John Wiley & Sons, 1980. doi: 10.1002/0471725153.

558 Emily Black and Matt Fredrikson. Leave-one-out Unfairness, July 2021. URL <http://arxiv.org/abs/2107.10171>. arXiv:2107.10171 [cs].
559

560 Tamara Broderick, Ryan Giordano, and Rachael Meager. An automatic finite-sample robustness
561 metric: Can dropping a little data make a big difference?, 2021.
562

563 Axel Bücher and Johan Segers. On the maximum likelihood estimator for the generalized extreme-
564 value distribution. *Extremes*, 20(4):839–872, 2017. doi: 10.1007/s10687-017-0292-6. URL
565 <https://doi.org/10.1007/s10687-017-0292-6>.
566

567 Irene Chen, Fredrik D Johansson, and David Sontag. Why Is My Classifier Discrimina-
568 tory? In *Advances in Neural Information Processing Systems*, volume 31. Curran Asso-
569 ciates, Inc., 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/1f1baa5b8edac74eb4eaa329f14a0361-Abstract.html>.
570

571 Anshuman Chhabra, Peizhao Li, Prasant Mohapatra, and Hongfu Liu. "What Data Benefits My
572 Classifier?" Enhancing Model Performance and Interpretability through Influence-Based Data
573 Selection. October 2023. URL <https://openreview.net/forum?id=HE9eUQ1Avo>.
574

575 Stuart Coles. An introduction to statistical modeling of extreme values. *Journal of the American*
576 *Statistical Association*, 97:1204 – 1204, 2001. URL <https://api.semanticscholar.org/CorpusID:19678794>.
577

578 Ralph Dennis Cook. Influential observations in linear regression. *Journal of the American Statistical*
579 *Association*, 74(365):169–174, 1979. doi: 10.2307/2286747.
580

581 Laurens De Haan and Ana Ferreira. *Extreme value theory: An introduction*. Springer, 2006.
582

583 Clément Dombry and Ana Ferreira. Maximum likelihood estimators based on the block maxima
584 method. *Bernoulli*, 25(3):1690 – 1723, 2019. doi: 10.3150/18-BEJ1032. URL <https://doi.org/10.3150/18-BEJ1032>.
585

586 Paul Embrechts, Claudia Klüppelberg, and Thomas Mikosch. Modelling extremal events, volume 33
587 of applications of mathematics, 1997.
588

589 Jillian Fisher, Lang Liu, Krishna Pillutla, Yejin Choi, and Zaid Harchaoui. Influence Diagnostics under
590 Self-concordance. In *Proceedings of The 26th International Conference on Artificial Intelligence*
591 *and Statistics*, pp. 10028–10076. PMLR, April 2023. URL <https://proceedings.mlr.press/v206/fisher23a.html>.
592

593 R. A. Fisher and L. H. C. Tippett. Limiting forms of the frequency distribution of the largest or
594 smallest member of a sample. *Mathematical Proceedings of the Cambridge Philosophical Society*,
595 24(2):180–190, 1928. doi: 10.1017/S0305004100015681.
596

594 D. Freund and S. B. Hopkins. Towards practical robustness auditing for linear regression. *ArXiv*
595 *e-prints*, 2023. doi: 10.48550/arXiv.2307.16315.
596

597 Amirata Ghorbani and James Zou. Data Shapley: Equitable Valuation of Data for Machine Learning.
598 In *Proceedings of the 36th International Conference on Machine Learning*, pp. 2242–2251.
599 PMLR, May 2019. URL <https://proceedings.mlr.press/v97/ghorbani19c.html>. ISSN: 2640-3498.
600

601 Carina Gjerdum, Kira Sullivan-Wiley, Erin King, Margaret A. Rubega, and Chris S. Elphick.
602 Egg and Chick Fates During Tidal Flooding of Saltmarsh Sharp-Tailed Sparrow Nests. *The*
603 *Condor: Ornithological Applications*, 110(3):579–584, August 2008. ISSN 1938-5129. doi:
604 10.1525/cond.2008.8559. URL <https://doi.org/10.1525/cond.2008.8559>.
605

606 B. Gnedenko. Sur la distribution limite du terme maximum d'une série aléatoire. *Annals of*
607 *Mathematics*, 44(3):423–453, 1943. ISSN 0003486X, 19398980. URL <http://www.jstor.org/stable/1968974>.
608

609 Y. Hu, P. Hu, H. Zhao, and J. W. Ma. Most influential subset selection: Challenges, promises, and
610 beyond. In *Conference on Neural Information Processing Systems (NeurIPS 2024)*, volume 38,
611 2024. doi: 10.48550/arXiv.2409.18153.
612

613 Jenny Y. Huang, David R. Burt, Tin D. Nguyen, Yunyi Shen, and Tamara Broderick. Approximations
614 to worst-case data dropping: Unmasking failure modes, 2025.
615

616 Pang Wei Koh and Percy Liang. Understanding Black-box Predictions via Influence Functions. In
617 *Proceedings of the 34th International Conference on Machine Learning*, pp. 1885–1894. PMLR,
618 July 2017. URL <https://proceedings.mlr.press/v70/koh17a.html>.
619

620 Pang Wei Koh, Kai-Siang Ang, Hubert H. K. Teo, and Percy Liang. On the Accuracy of Influence
621 Functions for Measuring Group Effects, November 2019. URL <http://arxiv.org/abs/1905.13289>. arXiv:1905.13289 [cs].
622

623 Nikolas Kuschnig, Gregor Zens, and Jesús Crespo Cuaresma. Hidden in plain sight: Influential sets
624 in linear regression. *CESifo Working Paper*, (8981), 2021. doi: 10.13140/RG.2.2.30682.47042.
625

626 Ankur Moitra and Dhruv Rohatgi. Provably auditing ordinary least squares in low dimensions. In
627 *International Conference on Learning Representations (ICLR 2023)*, 2023. doi: 10.48550/arXiv.
628 2205.14284.
629

630 Nathan Nunn. The historical roots of economic development. *Science*, 367(6485):eaaz9986, 2020.
631 ISSN 0036-8075. doi: 10.1126/science.aaz9986. Publisher: American Association for the
632 Advancement of Science.
633

634 Jochem Oorschot and Chen Zhou. All block maxima method for estimating the extreme value index,
635 2020. URL <https://arxiv.org/abs/2010.15950>.
636

637 Eric Price, Sandeep Silwal, and Samson Zhou. Hardness and Algorithms for Robust and Sparse Opti-
638 mization. In *Proceedings of the 39th International Conference on Machine Learning*, pp. 17926–
639 17944. PMLR, June 2022. URL <https://proceedings.mlr.press/v162/price22a.html>.
640

641 Ribana Roscher, Bastian Bohn, Marco F. Duarte, and Jochen Garske. Explainable Machine Learning
642 for Scientific Insights and Discoveries. *IEEE Access*, 8:42200–42216, 2020. ISSN 2169-3536. doi:
643 10.1109/ACCESS.2020.2976199. URL <https://ieeexplore.ieee.org/abstract/document/9007737>.
644

645 I. Rubinstein and S. B. Hopkins. Robustness auditing for linear regression: To singularity and beyond.
646 *ArXiv e-prints*, 2024. doi: 10.48550/arXiv.2410.07916.
647

648 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
649 interpretable models instead. *Nature Machine Intelligence*, 1(5):206–215, May 2019. ISSN 2522-
650 5839. doi: 10.1038/s42256-019-0048-x. URL <https://www.nature.com/articles/s42256-019-0048-x>.

648 Prasanna Sattigeri, Soumya Ghosh, Inkit Padhi, Pierre Dognin, and Kush R. Varshney. Fair In-
649 finitesimal Jackknife: Mitigating the Influence of Biased Training Data Points Without Refitting,
650 December 2022. URL <http://arxiv.org/abs/2212.06803>. arXiv:2212.06803 [cs].
651

652 Andrea Schioppa, Katja Filippova, Ivan Titov, and Polina Zablotskaia. Theoretical-
653 and Practical Perspectives on what Influence Functions Do. *Advances in*
654 *Neural Information Processing Systems*, 36:27560–27581, December 2023. URL
655 https://proceedings.neurips.cc/paper_files/paper/2023/hash/57bb27b9be6ad04019ae3cea2b540872-Abstract-Conference.html.
656

657 Richard L Smith. Maximum likelihood estimation in a class of nonregular cases. *Biometrika*, 72(1):
658 67–90, 1985.

659 Esteban Walker and Jeffrey B Birch. Influence measures in ridge regression. *Technometrics*, 30(2):
660 221–227, 1988.

661

662 Alain F. Zuur, Elena N. Ieno, and Chris S. Elphick. A protocol for data exploration to avoid common
663 statistical problems. *Methods in Ecology and Evolution*, 1(1):3–14, 2010. ISSN 2041-210X. doi:
664 10.1111/j.2041-210X.2009.00001.x. URL <https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2041-210X.2009.00001.x>.
665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A1 EXACT INFLUENCE FORMULAS 703

704 We begin with a simplified setting based on a univariate regression for intuition. Then we consider
705 the general setting and prove [Proposition 1](#) from the main text.

706 **Proposition 2.** *We can express the influence of an observation as*

$$708 \Delta(\{i\}) = \frac{x_i r_i}{\sum_{n \neq i} x_n^2}. \quad (\text{A1.1})$$

710 *Proof.* Recall the well-known influence formula for a single observation i ,

$$712 \Delta(\{i\}) = \frac{x_i r_i}{\sum_n x_n^2} \cdot \frac{1}{1 - h_i},$$

714 where $h_i := x_i^2 / \sum x_n^2$ is the leverage score and $r_i := y_i - \hat{y}_i$ the residual of observation i .

715 Let $D := \sum_n x_n^2$, and we can directly show that

$$717 \Delta(\{i\}) = \frac{x_i \cdot r_i}{D} \cdot \frac{1}{1 - \frac{x_i^2}{D}} = \frac{x_i \cdot r_i}{D - x_i^2} = \frac{x_i \cdot r_i}{\sum_{n \neq i} x_n^2}. \quad (\text{A1.2})$$

719 \square

721 **Recursion** It helps to know the influence of observation i on the residual, leverage, and hat matrix:

$$723 (r_i)_{-\{j\}} = r_i + x_i \Delta(\{j\}), \quad (\text{A1.3})$$

$$724 (h_i)_{-\{j\}} = x_i^2 / \sum_{n \neq j} x_n^2,$$

$$726 (h_{ij})_{-\{k\}} = h_{ij} + \frac{h_{ik} h_{kj}}{1 - h_k}.$$

729 **Proposition 3.** *Let $\mathbb{S} = \{1, \dots, K\}$. Then we can recursively define $\Delta(\mathbb{S})$ as*

$$730 \Delta(\mathbb{S}) = \hat{\beta} - \hat{\beta}_{-\mathbb{S}} \\ 731 = \Delta(\{1\}) + \Delta(\{2\})_{-\{1\}} + \dots + \Delta(\{K\})_{-\mathbb{S} \setminus K}.$$

733 *Proof.* Notice that

$$735 \Delta(\{i, j\}) = \hat{\beta} - \hat{\beta}_{-\{i, j\}} \\ 736 = \hat{\beta} - \hat{\beta}_{-\{j\}} + \hat{\beta}_{-\{j\}} - \hat{\beta}_{-\{i, j\}} \\ 737 = \Delta(\{j\}) + \Delta(\{i\})_{-\{j\}}.$$

739 Equivalent results trivially hold for larger sets. \square

741 Next, we prove a simple variant of [Proposition 1](#).

742 **Proposition 4.** *The influence of some set \mathbb{S} on $\hat{\theta}$ is*

$$744 \Delta(\mathbb{S}) = \frac{\sum_{i \in \mathbb{S}} x_i r_i}{\sum_{n \notin \mathbb{S}} x_n^2}. \quad (\text{A1.4})$$

747 *Proof.* Let $\mathbb{S} = \{1, 2\}$ and define $D := \sum_n x_n^2$ for simplicity. By [Proposition 2](#), [Proposition 3](#), and
748 the updating rule in [Equation A1.3](#) one can write,

$$749 \Delta(\{1, 2\}) = \frac{x_1 r_1}{D_{-\{1, 2\}} + x_2^2} + \frac{x_2 (r_2 + x_2 \Delta(\{1\}))}{D_{-\{1, 2\}}} \\ 750 = \frac{x_1 r_1}{D_{-\{1, 2\}} + x_2^2} + \frac{x_2 r_2}{D_{-\{1, 2\}}} + \frac{x_2^2 (x_1 r_1)}{D_{-\{1, 2\}} (D_{-\{1, 2\}} + x_2^2)} \\ 752 = \frac{(D_{-\{1, 2\}} + x_2^2) x_1 r_1}{D_{-\{1, 2\}} (D_{-\{1, 2\}} + x_2^2)} + \frac{x_2 r_2}{D_{-\{1, 2\}}} = \frac{x_1 r_1 + x_2 r_2}{D_{-\{1, 2\}}},$$

756 where the second term in the first line corrects r_2 to reflect the removal of observation 1, which
757 the second line expands. The third line merges terms one and three by transforming to a common
758 denominator and simplifies the expression. Assuming this identity holds for $|\mathbb{S}| = K - 1$ we can
759 show by induction that it holds for $|\mathbb{S}| = K$, and the result follows.
760

761 **Induction** The induction hypothesis for set $\mathbb{S} = \{1, \dots, K - 1\}$ is

$$762 \quad 763 \quad 764 \quad \Delta(\mathbb{S}) = \frac{\sum_{k=1}^{K-1} x_k r_k}{D_{-\mathbb{S}}}.$$

765 For $\{\mathbb{S}, K\} = \{1, \dots, K\}$ this yields

$$766 \quad 767 \quad 768 \quad 769 \quad 770 \quad \Delta(\{\mathbb{S}, K\}) = \frac{\sum_{k=1}^{K-1} x_k r_k}{D_{-\{\mathbb{S}, K\}} + x_K^2} + \frac{x_K r_K}{D_{-\{\mathbb{S}, K\}}} + \frac{x_K^2 \sum_{k=1}^{K-1} x_k r_k}{D_{-\{\mathbb{S}, K\}} (D_{-\{\mathbb{S}, K\}} + x_K^2)} \\ = \frac{\sum_{i=k}^{K-1} x_k r_k (D_{-\{\mathbb{S}, K\}} + x_K^2)}{D_{-\{\mathbb{S}, K\}} (D_{-\{\mathbb{S}, K\}} + x_K^2)} + \frac{x_K r_K}{D_{-\{\mathbb{S}, K\}}} = \frac{\sum_{k=1}^K x_k r_k}{D_{-\{\mathbb{S}, K\}}}.$$

771 \square

773 A1.1 GENERAL RESULTS

774 Here, we provide the general results for multiple regression with an optional penalization parameter
775 λ .

776 **Matrix lemma** First, it helps to recall two well-known results: a rank-one matrix update, and the
777 inverse matrix lemma:

$$778 \quad \mathbf{X}'_{-\{i\}} \mathbf{X}_{-\{i\}} = \mathbf{X}' \mathbf{X} - \mathbf{x}'_i \mathbf{x}_i, \quad (\text{A1.5})$$

$$779 \quad 780 \quad 781 \quad 782 \quad (\mathbf{A} - \mathbf{a}' \mathbf{a})^{-1} = \frac{\mathbf{A}^{-1} \mathbf{a}' \mathbf{a} \mathbf{A}^{-1}}{1 - \mathbf{a} \mathbf{A}^{-1} \mathbf{a}'}.$$

783 **Proposition 5.** *The influence of an observation i on the least-squares coefficients is:*

$$784 \quad 785 \quad \Delta(\{i\}) = \left(\mathbf{X}'_{-\{i\}} \mathbf{X}_{-\{i\}} + \lambda \mathbf{I}_P \right)^{-1} \mathbf{x}'_i r_i, \quad (\text{A1.7})$$

786 where $\lambda \geq 0$ is an optional penalization parameter.

787 *Proof.* Let $\mathbf{D} = \mathbf{X}' \mathbf{X} + \lambda \mathbf{I}_P$ for brevity. The well-known (Belsley et al., 1980; Cook, 1979; Walker
788 & Birch, 1988) closed-form expression for the influence is

$$789 \quad 790 \quad 791 \quad 792 \quad \Delta(\{i\}) = \frac{\mathbf{D}^{-1} \mathbf{x}'_i r_i}{1 - h_i},$$

793 where r_i is the residual and $h_i = \mathbf{x}_i \mathbf{D}^{-1} \mathbf{x}_i$ the leverage of observation i . We need to show equivalence
794 with Equation A1.7. We begin with a rank-one update and by applying the inverse matrix lemma:

$$795 \quad 796 \quad 797 \quad 798 \quad (\mathbf{D}_{-\{i\}})^{-1} = \mathbf{D}^{-1} + \frac{\mathbf{D}^{-1} \mathbf{x}'_i \mathbf{x}_i \mathbf{D}^{-1}}{1 - \mathbf{x}_i \mathbf{D}^{-1} \mathbf{x}'_i} \\ = \mathbf{D}^{-1} + \frac{\mathbf{D}^{-1} \mathbf{x}'_i \mathbf{x}_i \mathbf{D}^{-1}}{1 - h_i}.$$

799 Post-multiplying with $\mathbf{x}'_i r_i$ yields Equation A1.7 on the left-hand-side and completes the proof:

$$800 \quad 801 \quad 802 \quad 803 \quad 804 \quad 805 \quad 806 \quad 807 \quad 808 \quad 809 \quad (\mathbf{D}_{-\{i\}})^{-1} \mathbf{x}_i r_i = \mathbf{D}^{-1} \mathbf{x}'_i r_i + \frac{\mathbf{D}^{-1} \mathbf{x}'_i \mathbf{x}_i \mathbf{D}^{-1}}{1 - h_i} \mathbf{x}_i r_i \\ = \mathbf{D}^{-1} \mathbf{x}'_i r_i + \frac{\mathbf{D}^{-1} \mathbf{x}'_i h_i r_i}{1 - h_i} \\ = \mathbf{D}^{-1} \mathbf{x}'_i r_i \left(1 + \frac{h_i}{1 - h_i} \right) \\ = \frac{\mathbf{D}^{-1} \mathbf{x}'_i r_i}{1 - h_i} = \Delta(\{i\}).$$

810 \square

810 **Lemma 1.** *An increase in the penalization parameter λ equalizes the influence of observations.*

811 **Proposition 5** allows us to prove **Proposition 1** from the main text:

812
$$\Delta(\mathbb{S}) = (\mathbf{X}'_{-\mathbb{S}} \mathbf{X}_{-\mathbb{S}} + \lambda \mathbf{I}_P)^{-1} \mathbf{X}'_{\mathbb{S}} r_{\mathbb{S}}. \quad (\text{A1.8})$$

813 *Proof of Proposition 1.* Recall the shorthand \mathbf{D} , and consider the sequential removal of all observations $1, \dots, K$ in \mathbb{S} . We have

814
$$\Delta(\mathbb{S}) = \mathbf{D}_{-\{1\}}^{-1} \mathbf{x}'_1 r_1 + \mathbf{D}_{-\{1,2\}}^{-1} \mathbf{x}'_2 (r_2)_{-\{1\}} + \dots + \mathbf{D}_{-\mathbb{S}}^{-1} \mathbf{x}'_K (r_K)_{-\{1, \dots, K-1\}}.$$

815 **Base case** For $\mathbb{S} = \{1, 2\}$, we have:

816
$$\begin{aligned} \Delta(\{1, 2\}) &= \mathbf{D}_{-\{1\}}^{-1} \mathbf{x}'_1 r_1 + \mathbf{D}_{-\{1,2\}}^{-1} \mathbf{x}'_2 (r_2)_{-\{1\}} \\ &= \left(\mathbf{D}_{-\{1,2\}}^{-1} + \mathbf{x}'_2 \mathbf{x}_2 \right) \mathbf{x}'_1 r_1 + \mathbf{D}_{-\{1,2\}}^{-1} \mathbf{x}'_2 \left(r_2 + \mathbf{x}_2 \mathbf{D}_{-\{1\}}^{-1} \mathbf{x}'_1 r_1 \right), \end{aligned}$$

817 where we use a rank-one update insert for $(r_2)_{-\{1\}}$. Let $\mathbf{E} = \mathbf{D}_{-\{1,2\}}$ and recall that $(h_2)_{-\{1,2\}} = \mathbf{x}_2 \mathbf{D}_{-\{1,2\}}^{-1} \mathbf{x}'_2$ for a minor improvement in readability and apply the inverse matrix lemma:

818
$$\begin{aligned} &= \mathbf{E}^{-1} \mathbf{x}'_1 r_1 - \frac{\mathbf{E}^{-1} \mathbf{x}'_2 \mathbf{x}_2 \mathbf{E}^{-1}}{1 + (h_2)_{-\{1,2\}}} \mathbf{x}'_1 r_1 + \mathbf{E}^{-1} \mathbf{x}'_2 r_2 + \mathbf{E}^{-1} \mathbf{x}'_2 \mathbf{x}_2 (\mathbf{E} + \mathbf{x}'_2 \mathbf{x}_2)^{-1} \mathbf{x}'_1 r_1 \\ &= \mathbf{E}^{-1} (\mathbf{x}'_1 r_1 + \mathbf{x}'_2 r_2) - \frac{\mathbf{E}^{-1} \mathbf{x}'_2 \mathbf{x}_2 \mathbf{E}^{-1}}{1 + (h_2)_{-\{1,2\}}} \mathbf{x}'_1 r_1 + \mathbf{E}^{-1} \mathbf{x}'_2 \mathbf{x}_2 \mathbf{E}^{-1} \mathbf{x}'_1 r_1 - \frac{\mathbf{E}^{-1} \mathbf{x}'_2 \mathbf{x}_2 \mathbf{E}^{-1} \mathbf{x}'_2 \mathbf{x}_2 \mathbf{E}^{-1}}{1 + (h_2)_{-\{1,2\}}} \mathbf{x}'_1 r_1, \end{aligned}$$

819 where the first term yields the result, and we need to show that the remainder cancels out. Let $\mathbf{F} = \mathbf{E}^{-1} \mathbf{x}'_2 \mathbf{x}_2 \mathbf{E}^{-1}$, factor out the common $\mathbf{x}'_1 r_1$ and fill in $(h_2)_{-\{1,2\}}$, and we have

820
$$\begin{aligned} &-\frac{\mathbf{F}}{1 + (h_2)_{-\{1,2\}}} + \mathbf{F} - \frac{(h_2)_{-\{1,2\}} \mathbf{E}^{-1} \mathbf{x}'_2 \mathbf{x}_2 \mathbf{E}^{-1}}{1 + (h_2)_{-\{1,2\}}} = \\ &(-\mathbf{F} + \mathbf{F}) + (h_2)_{-\{1,2\}} (\mathbf{F} - \mathbf{F}) = 0. \end{aligned}$$

821 **Induction step** Assume the formula holds for some set $|\mathbb{S}| = \{1, \dots, K-1\}$, i.e.,

822
$$\Delta(\mathbb{S}) = \mathbf{D}_{-\mathbb{S}}^{-1} \sum_{s \in \mathbb{S}} \mathbf{x}'_s r_s.$$

823 Then, for $\{\mathbb{S}, K\}$, we have

824
$$\begin{aligned} \Delta(\{\mathbb{S}, K\}) &= \mathbf{D}_{-\mathbb{S}}^{-1} \sum_{s \in \mathbb{S}} \mathbf{x}'_s r_s + \mathbf{D}_{-\{\mathbb{S}, K\}}^{-1} \mathbf{x}'_K (r_K)_{-\mathbb{S}} \\ &= \left(\Delta_{-\{\mathbb{S}, K\}}^{-1} + \mathbf{x}'_K \mathbf{x}_K \right)^{-1} \sum_{s \in \mathbb{S}} \mathbf{x}'_s r_s + \mathbf{D}_{-\{\mathbb{S}, K\}}^{-1} \mathbf{x}'_K (r_K + \mathbf{x}_K \mathbf{D}_{-\mathbb{S}}^{-1} \sum_s \mathbf{x}'_s r_s) \\ &= \mathbf{D}_{-\{\mathbb{S}, K\}}^{-1} \sum_{s \in \{\mathbb{S}, K\}} \mathbf{x}_s r_s. \end{aligned}$$

825 where the omitted steps follow the base case (consider $\mathbf{E} = \mathbf{D}_{-\{\mathbb{S}, K\}}^{-1}$ instead, and notice the parallels between $\{1\}$ and \mathbb{S} as well as $\{2\}$ and $\{K\}$), yielding the desired result. \square

864 A2 LEMMA FOR THE INVERSE SUM OF SQUARES 865

866 **Lemma 2** (Asymptotic Normality of Inverse Sum of Squares). *Let $\{X_i\}_{i=1}^{\infty}$ be a sequence of
867 independent and identically distributed (i.i.d.) random variables satisfying:*

868

- 869 1. $\mathbb{E}[X_1^4] < \infty$ (finite fourth moment)
- 870 2. $\mathbb{E}[X_1^2] = \mu > 0$ (positive second moment)
- 871 3. $\text{Var}(X_1^2) = \sigma^2 > 0$ (non-degenerate variance of squares)

872 Define $S_n = \sum_{i=1}^n X_i^2$ and $Y_n = S_n^{-1}$. Then Y_n is asymptotically normal with:

873

$$874 n^{3/2} \left(Y_n - \frac{1}{n\mu} \right) \xrightarrow{d} \mathcal{N} \left(0, \frac{\sigma^2}{\mu^4} \right) \quad \text{as } n \rightarrow \infty.$$

875 *Proof.* Define the sample mean of squares $\bar{X}_n^{(2)} = n^{-1} S_n$. By the Central Limit Theorem (CLT):

876

$$877 \sqrt{n} \left(\bar{X}_n^{(2)} - \mu \right) \xrightarrow{d} \mathcal{N}(0, \sigma^2),$$

878 where $\mu = \mathbb{E}[X_1^2]$ and $\sigma^2 = \text{Var}(X_1^2)$ (finite by $\mathbb{E}[X_1^4] < \infty$).

879 Consider the transformation $g(x) = x^{-1}$, which is differentiable at $x = \mu > 0$ with derivative
880 $g'(x) = -x^{-2}$. The Delta Method gives:

881

$$882 \sqrt{n} \left(g(\bar{X}_n^{(2)}) - g(\mu) \right) \xrightarrow{d} \mathcal{N} \left(0, \sigma^2 \cdot [g'(\mu)]^2 \right).$$

883 Substituting $g(\bar{X}_n^{(2)}) = (\bar{X}_n^{(2)})^{-1} = n/S_n$ and $g(\mu) = \mu^{-1}$:

884

$$885 \sqrt{n} \left(\frac{n}{S_n} - \frac{1}{\mu} \right) \xrightarrow{d} \mathcal{N} \left(0, \sigma^2 \cdot (-\mu^{-2})^2 \right) = \mathcal{N} \left(0, \frac{\sigma^2}{\mu^4} \right).$$

886 Rewriting $n/S_n = nY_n$:

887

$$888 \sqrt{n} (nY_n - \mu^{-1}) \xrightarrow{d} \mathcal{N} \left(0, \frac{\sigma^2}{\mu^4} \right).$$

889 Factoring the left side:

890

$$891 \sqrt{n} (nY_n - \mu^{-1}) = n^{1/2} \cdot n \left(Y_n - \frac{1}{n\mu} \right)$$

892

$$= n^{3/2} \left(Y_n - \frac{1}{n\mu} \right).$$

893 Thus:

894

$$895 n^{3/2} \left(Y_n - \frac{1}{n\mu} \right) \xrightarrow{d} \mathcal{N} \left(0, \frac{\sigma^2}{\mu^4} \right).$$

906 \square

A3 LEMMATA FOR THE PRODUCT EVD

For notational simplicity let $S := \sum_{i \in \mathbb{S}} X_i \cdot R_i$ and $T := D_{-\mathbb{S}}^{-1}$, where $D = \sum_n X_n^2$. It holds for any realization $S = s \in \mathbb{R}$ and $T = t \in \mathbb{R}^+$. Further, let $\text{MDA}(H)$ denote the maximum domain of attraction of an EVD H where we write $Z \in \text{MDA}(H)$. We specifically denote the Fréchet as Φ_α and the Gumbel as Λ . We are interested in the EVD of $\Delta = S \cdot T$.

A3.1 IF $S \in \text{MDA}(\Phi)$

Lemma 3. *Let $T \in \text{MDA}(\Lambda)$ and $S \in \text{MDA}(\Phi_\alpha)$ with tail-coefficient $a > 0$ and S and T being independent, then $\Delta(\mathbb{S}) = S \cdot T \in \text{MDA}(\Phi_\alpha)$.*

Proof. Recall that for Gumbel tails (S) the survival function decays double-exponentially, i.e.,

$$\mathbb{P}(S > s) \sim \exp\left(-\exp\left(\frac{s - \mu}{\beta}\right)\right) \quad \text{as } s \rightarrow \infty,$$

while for the Fréchet tails (T) the survival function is regularly varying with index $-a$, i.e.,

$$\mathbb{P}(T > t) \sim t^{-a} L_T(t) \quad \text{as } t \rightarrow \infty,$$

where $L_T(t)$ is a slowly varying function. The density satisfies:

$$f_T(t) \sim at^{-a-1} L_T(t) \quad \text{as } t \rightarrow \infty.$$

We are interested in the EVD of Δ , i.e., $\mathbb{P}(\Delta > \delta)$. Since $\Delta = S \cdot T$ and S, T are independent by assumption:

$$\mathbb{P}(\Delta > \delta) = \mathbb{P}(ST > \delta) = \int_{\mathbb{R}^+} \mathbb{P}(S > \delta/t) f_T(t) dt.$$

Next, we split the integral at $M > 0$:

$$\mathbb{P}(\Delta > \delta) = \underbrace{\int_0^M \mathbb{P}(S > \delta/t) f_T(t) dt}_{I_1} + \underbrace{\int_M^\infty \mathbb{P}(S > \delta/t) f_T(t) dt}_{I_2}.$$

For fixed M , we have $I_1 \rightarrow 0$, as $\delta \rightarrow \infty$ since $\delta/t \rightarrow \infty$ and Gumbel tails decay faster than any polynomial, and the dominant term is I_2 . Substitute $u = \delta/t$ ($t = \delta/u$, $dt = -(\delta/u^2) du$), and we have

$$I_2 = \int_M^\infty \mathbb{P}(S > \delta/t) f_T(t) dt = \int_0^{\delta/M} \mathbb{P}(S > u) f_T(\delta/u) \frac{\delta}{u^2} du.$$

Using the asymptotic form of f_T :

$$f_T(\delta/u) \sim a(\delta/u)^{-a-1} L_T(\delta/u),$$

we obtain

$$\begin{aligned} I_2 &\sim \int_0^{\delta/M} \mathbb{P}(S > u) \left[a \left(\frac{\delta}{u} \right)^{-a-1} L_T \left(\frac{\delta}{u} \right) \right] \frac{\delta}{u^2} du \\ &= a\delta^{-a} \int_0^{\delta/M} \mathbb{P}(S > u) u^{a-1} L_T \left(\frac{\delta}{u} \right) du. \end{aligned}$$

As $\delta \rightarrow \infty$, by [Lemma 5](#) in [Appendix A4](#), we obtain

$$\int_0^{\delta/M} \mathbb{P}(S > u) u^{a-1} L_T \left(\frac{\delta}{u} \right) du \sim L_T(\delta) \int_0^\infty \mathbb{P}(S > u) u^{a-1} du. \quad (\text{A3.9})$$

The integral converges because:

1. near $u = 0$ we have $\mathbb{P}(S > u) \approx 1$ and u^{a-1} is integrable for $a > 0$, and

972 2. as $u \rightarrow \infty$ the Gumbel decay dominates u^{a-1} .
973

974 Denote the constant

975
$$C(a, S) = \int_0^\infty \mathbb{P}(S > u) u^{a-1} du \in (0, \infty),$$

976

977 then

978
$$\mathbb{P}(\Delta > \delta) \sim a\delta^{-a} L_T(\delta)C(a, S) = \delta^{-a} (aC(a, S)L_T(\delta)).$$

979

980 The term in parentheses is slowly varying in δ since $L_T(\delta)$ is slowly varying.
981

982 Thus, the survival function $\mathbb{P}(\Delta > \delta)$ is regularly varying with index $-a$, and therefore, Δ has
983 Fréchet tails with tail-coefficient a , which concludes the proof. \square

984 **Corollary 2.** *Following Lemma 3 and assuming a tail coefficient $a = \infty$ it follows that $S \sim \text{Gumbel}$
985 and thus $\Delta(\mathbb{S}) = S \cdot T \in \text{MDA}(\Lambda)$.*

986 *Proof.* The result follows directly from properties of the Fréchet distribution. \square

987 **Lemma 4.** *If $S \in \text{MDA}(\Phi_a)$ and $T \in \text{MDA}(\Phi_b)$ then $\Delta(\mathbb{S}) \in \text{MDA}(\Phi_{\min\{a,b\}})$.*

988 *Proof.* The proof of this follows directly from Lemma 1.3.1 on the convolution closure of distribution
989 functions with regularly varying tails in Embrechts et al. (1997). \square

990 **Corollary 3 (Conditional EVD).** *Further, if $S \in \text{MDA}(E)$ for some EVD E , it holds that*

991
$$\Delta(\mathbb{S}) \mid X_{-\mathbb{S}} \in \text{MDA}(E),$$

992

993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 A4 LEMMA FOR ASYMPTOTIC EQUIVALENCE

1028 **Lemma 5** (Asymptotic Equivalence Statement).

$$1030 \int_0^{\delta/M} \mathbb{P}(S > u) u^{a-1} L_T \left(\frac{\delta}{u} \right) du \sim L_T(\delta) \int_0^{\infty} \mathbb{P}(S > u) u^{a-1} du,$$

1032 where S has Gumbel tails, L_T is slowly varying, $a > 0$ is the tail coefficient, $M > 0$ is a fixed
1033 constant.

1035 *Proof.* For clarity, we prove this result in five steps.

1037 STEP 1: INTEGRAL SPLITTING

1039 Define

$$1040 I(\delta) = \int_0^{\delta/M} \mathbb{P}(S > u) u^{a-1} L_T \left(\frac{\delta}{u} \right) du = I_1(\delta) + I_2(\delta),$$

1042 where

$$1043 I_1(\delta) = \int_0^1 \mathbb{P}(S > u) u^{a-1} L_T \left(\frac{\delta}{u} \right) du,$$

$$1046 I_2(\delta) = \int_1^{\delta/M} \mathbb{P}(S > u) u^{a-1} L_T \left(\frac{\delta}{u} \right) du.$$

1049 STEP 2: ANALYSIS OF $I_1(\delta)$ (BOUNDED DOMAIN)

1050 For $u \in (0, 1]$, we have:

$$1052 \lim_{\delta \rightarrow \infty} \frac{I_1(\delta)}{L_T(\delta)} = \lim_{\delta \rightarrow \infty} \int_0^1 \mathbb{P}(S > u) u^{a-1} \frac{L_T(\delta/u)}{L_T(\delta)} du \\ 1054 = \int_0^1 \mathbb{P}(S > u) u^{a-1} du,$$

1057 by the Dominated Convergence Theorem (DCT):

- 1059 • *Pointwise convergence:* for fixed $u > 0$, $\lim_{\delta \rightarrow \infty} \frac{L_T(\delta/u)}{L_T(\delta)} = 1$.
- 1060 • *Dominating function:* by Potter's theorem, for any $\delta > 0$, there exists $C_\delta > 0$ such that

$$1062 \left| \frac{L_T(\delta/u)}{L_T(\delta)} \right| \leq C_\delta u^{-\delta} \quad \text{for all large } \delta.$$

1065 Choose $\delta < a$ such that $u^{a-1-\delta}$ is integrable on $(0, 1]$, then

$$1066 \left| \mathbb{P}(S > u) u^{a-1} \frac{L_T(\delta/u)}{L_T(\delta)} \right| \leq C_\delta u^{a-1-\delta} \quad (\text{since } \mathbb{P} \leq 1),$$

1069 and the dominating function $C_\delta u^{a-1-\delta}$ is integrable over $(0, 1]$ for $a > \delta > 0$.

1071 STEP 3: ANALYSIS OF $I_2(\delta)$ (GROWING DOMAIN)

1072 For $u \in [1, \delta/M]$, we have

$$1074 \lim_{\delta \rightarrow \infty} \frac{I_2(\delta)}{L_T(\delta)} = \lim_{\delta \rightarrow \infty} \int_1^{\delta/M} \mathbb{P}(S > u) u^{a-1} \frac{L_T(\delta/u)}{L_T(\delta)} du \\ 1076 = \int_1^{\infty} \mathbb{P}(S > u) u^{a-1} du \quad \text{by the DCT.}$$

- 1079 • *Pointwise convergence:* for fixed $u \geq 1$, $\lim_{\delta \rightarrow \infty} \frac{L_T(\delta/u)}{L_T(\delta)} = 1$

1080 • *Dominating function:* by Potter's theorem, for $\delta > 0$:

1082
$$\left| \frac{L_T(\delta/u)}{L_T(\delta)} \right| \leq C_\delta u^\delta \quad \text{for all large } \delta, u \geq 1.$$

1084 Choose δ such that $k = a - 1 + \delta > 0$, and

1086
$$\int_1^\infty \mathbb{P}(S > u) u^k du < \infty,$$

1088 since the Gumbel decay dominates. Then

1090
$$\left| \mathbb{P}(S > u) u^{a-1} \frac{L_T(\delta/u)}{L_T(\delta)} \right| \leq C_\delta \mathbb{P}(S > u) u^k,$$

1093 and the dominating function $C_\delta \mathbb{P}(S > u) u^k$ is integrable over $[1, \infty)$.

1094 • *Tail control:* as $\delta \rightarrow \infty$, the upper limit $\delta/M \rightarrow \infty$ and

1096
$$\int_{\delta/M}^\infty C_\delta \mathbb{P}(S > u) u^k du \rightarrow 0.$$

1099 **STEP 4: NEGLIGIBILITY OF OMITTED TAIL**

1100 The tail beyond δ/M is negligible:

1102
$$R(\delta) = \int_{\delta/M}^\infty \mathbb{P}(S > u) u^{a-1} L_T \left(\frac{\delta}{u} \right) du.$$

1105 • For $u \geq \delta/M$, we have $\delta/u \leq M$ s.t. is bounded on compact sets: $L_T(\delta/u) \leq C_M$.

1106 • By the Gumbel tail properties, there exist a $\theta > 0$ s.t. $\mathbb{P}(S > u) \leq e^{-u^\theta}$ for large u . Thus

1109
$$|R(\delta)| \leq C_M \int_{\delta/M}^\infty e^{-u^\theta} u^{a-1} du = o(1) \quad \text{as } \delta \rightarrow \infty.$$

1111 • Since $L_T(\delta) \rightarrow \infty$ or is slowly varying, $R(\delta) = o(L_T(\delta))$

1114 **STEP 5: FINAL COMBINATION**

1115 Combining all results, we have

1117
$$\begin{aligned} \frac{I(\delta)}{L_T(\delta)} &= \frac{I_1(\delta) + I_2(\delta) + R(\delta)}{L_T(\delta)} \\ 1118 &= \frac{I_1(\delta)}{L_T(\delta)} + \frac{I_2(\delta)}{L_T(\delta)} + o(1) \\ 1119 &\implies \int_0^1 \mathbb{P}(S > u) u^{a-1} du + \int_1^\infty \mathbb{P}(S > u) u^{a-1} du \\ 1120 &= \int_0^\infty \mathbb{P}(S > u) u^{a-1} du. \end{aligned}$$

1126 \square

1127
1128
1129
1130
1131
1132
1133

A5 AUXILIARY MATERIAL

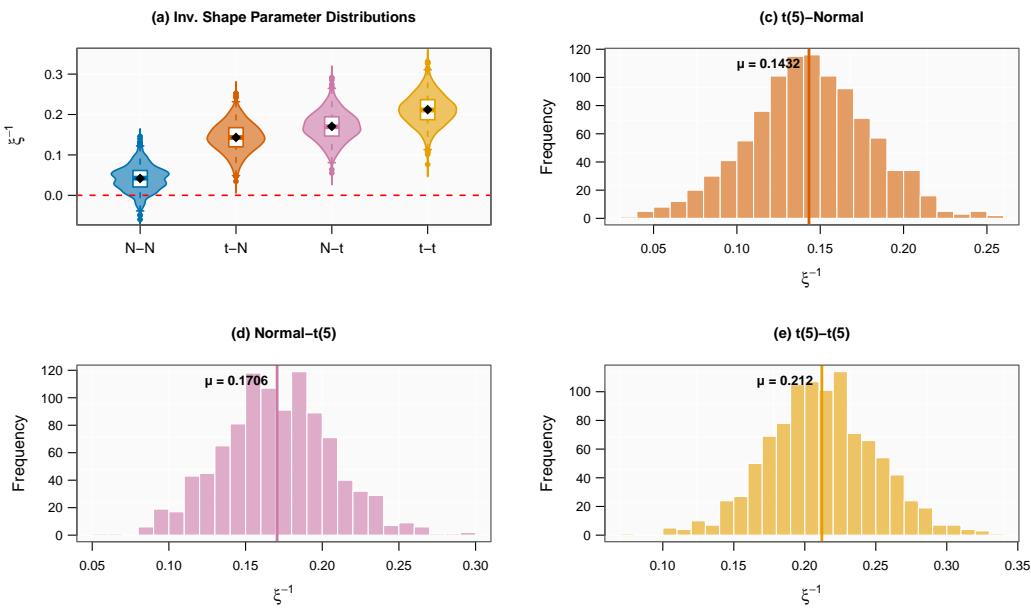


Figure A1: Visualization of the empirical estimation of EVD shape parameters. Most notable is the regime change between thin and polynomial tails. While the average MLE for the Fréchet cases is statistically insignificantly different from another, they all differ from the Gumbel case. This suggests that we can distinguish between both regimes in small samples.

<i>N</i>	Distribution	Mean	Std.Dev.	Q25	Median	Q75
20	Normal–Normal	0.1385	0.2541	-0.0206	0.1293	0.2902
	$t(5)$ –Normal	0.2417	0.2865	0.0863	0.2329	0.3994
	Normal– $t(5)$	0.2529	0.2479	0.0910	0.2505	0.4089
	$t(5)$ – $t(5)$	0.3271	0.2719	0.1601	0.3144	0.4922
30	Normal–Normal	0.1021	0.1803	-0.0079	0.1101	0.2291
	$t(5)$ –Normal	0.1989	0.1845	0.0917	0.1994	0.3067
	Normal– $t(5)$	0.2023	0.1846	0.0817	0.2101	0.3225
	$t(5)$ – $t(5)$	0.2670	0.1912	0.1453	0.2668	0.3961
50	Normal–Normal	0.0668	0.1255	-0.0153	0.0631	0.1466
	$t(5)$ –Normal	0.1708	0.1304	0.0890	0.1701	0.2532
	Normal– $t(5)$	0.1843	0.1286	0.1015	0.1797	0.2704
	$t(5)$ – $t(5)$	0.2307	0.1363	0.1420	0.2305	0.3203
75	Normal–Normal	0.0474	0.0960	-0.0163	0.0485	0.1176
	$t(5)$ –Normal	0.1500	0.1006	0.0821	0.1469	0.2173
	Normal– $t(5)$	0.1735	0.1057	0.1037	0.1749	0.2434
	$t(5)$ – $t(5)$	0.2214	0.1046	0.1561	0.2213	0.2885
100	Normal–Normal	0.0422	0.0788	-0.0115	0.0429	0.0959
	$t(5)$ –Normal	0.1389	0.0846	0.0790	0.1369	0.1948
	Normal– $t(5)$	0.1721	0.0865	0.1183	0.1731	0.2291
	$t(5)$ – $t(5)$	0.2083	0.0876	0.1492	0.2056	0.2639
200	Normal–Normal	0.0253	0.0506	-0.0075	0.0253	0.0582
	$t(5)$ –Normal	0.1418	0.0587	0.1020	0.1403	0.1833
	Normal– $t(5)$	0.1655	0.0576	0.1272	0.1632	0.2013
	$t(5)$ – $t(5)$	0.2072	0.0595	0.1691	0.2054	0.2450
300	Normal–Normal	0.0169	0.0406	-0.0096	0.0180	0.0455
	$t(5)$ –Normal	0.1423	0.0461	0.1122	0.1446	0.1731
	Normal– $t(5)$	0.1705	0.0463	0.1377	0.1695	0.2006
	$t(5)$ – $t(5)$	0.2082	0.0511	0.1757	0.2082	0.2406
500	Normal–Normal	0.0157	0.0319	-0.0049	0.0154	0.0381
	$t(5)$ –Normal	0.1488	0.0378	0.1245	0.1499	0.1739
	Normal– $t(5)$	0.1667	0.0354	0.1419	0.1662	0.1903
	$t(5)$ – $t(5)$	0.2087	0.0385	0.1833	0.2085	0.2323
1000	Normal–Normal	0.0103	0.0220	-0.0042	0.0109	0.0243
	$t(5)$ –Normal	0.1591	0.0287	0.1408	0.1589	0.1771
	Normal– $t(5)$	0.1734	0.0252	0.1565	0.1743	0.1905
	$t(5)$ – $t(5)$	0.2105	0.0262	0.1938	0.2101	0.2273

Table A1: Inverse shape estimates for different distributions and sample sizes. They indicate fast convergence to asymptotic predictions (0.0 for the Normal–Normal, and 0.2 for other cases) — for all settings, the predicted value is contained between the 25th and 75th quantile. Estimates are based on 1000 repetitions.

Set Composition	Set Size	$\Delta(\$)$	\hat{a}	\hat{b}	<i>p</i> -value
Full set	4	0.0214	0.0076	0.0029	0.4914
1st partial	2	0.0456	0.0050	0.0021	$7.62e^{-7}$
2nd after excl. 1st	2	-0.0241	0.0051	0.0022	0.0141

Table A2: Influence of % Black Population on Violent Crimes. The table summarizes the results for testing the preselected set and its subsets for significant influence of the percent of black population on the violent crimes committed per population.

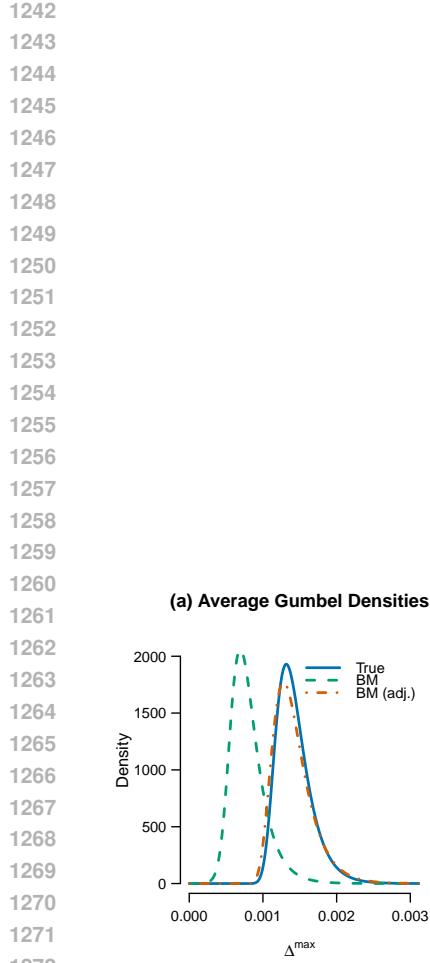


Figure A2: Simulation exercise for the performance of the simple MLE based on block maxima, correcting for block size. While the corrected location parameter $\tilde{\alpha}$ is close to unbiased, the scale parameter \hat{b} suffers some downward bias using simple block maxima, which is in line with [Dombry & Ferreira \(2019\)](#). However, for practical purposes the block maxima are expected to be fitting reasonably well, as visible in panel (a).