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Figure 1: We propose MultiTalk, a novel framework for audio-driven multi-person conversational
video generation. Given a multi-stream audio input and a prompt, MultiTalk generates a video
containing interactions following the prompt, with consistent lip motions aligned with the audio.

Abstract

Audio-driven human animation methods, such as talking head and talking body
generation, have made remarkable progress in generating synchronized facial move-
ments and appealing visual quality videos. However, existing methods primarily
focus on single human animation and struggle with multi-stream audio inputs,
facing incorrect binding problems between audio and persons. Additionally, they
exhibit limitations in instruction-following capabilities. To solve this problem, in
this paper, we propose a novel task: Multi-Person Conversational Video Genera-
tion, and introduce a new framework, MultiTalk, to address the challenges during
multi-person generation. Specifically, for audio injection, we investigate several
schemes and propose the Label Rotary Position Embedding (L-RoPE) method
to resolve the audio and person binding problem. Furthermore, during training,
we observe that partial parameter training and multi-task training are crucial for
preserving the instruction-following ability of the base model. MultiTalk achieves
superior performance compared to other methods on several datasets, including
talking head, talking body, and multi-person datasets, demonstrating the powerful
generation capabilities of our approach.
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1 Introduction

Audio-driven human animation aims to generate natural and vivid human-centric videos with syn-
chronized facial expressions and body movements from audio control signals. This field has made
significant progress recently, and existing methods can be roughly divided into two categories: talking
head generation and talking body generation.

Most human animation methods [1, 2, 3, 4, 5, 6] focus on talking head generation. These methods
utilize diffusion models to match audio features to visual frames, enabling the synthesis of vivid
talking head videos with enhanced video quality and realistic facial expressions. However, they
are constrained to achieve precise audio-aligned facial movements and often neglect other related
motions, such as hand and body. Recently, several methods [7, 8, 9, 10, 11] have utilized video
diffusion models [12, 13, 14] and successfully achieved talking body generation. By leveraging mixed
data training strategies or using additional hand pose data, they can synchronize body movements
with the audio. Despite these advancements, several constraints remain. Existing methods primarily
target single-person animation and cannot handle multi-person scenarios, such as conversational
video generation. They lack the capability for dual-stream audio injection. Additionally, they exhibit
limitations in instruction-following capabilities. For instance, generated videos may fail to precisely
follow instructions when a text prompt describes a large range of body movement.

In this paper, we propose a new task: audio-driven multi-person conversational video generation.
This task has diverse applications, including multi-character movie scenes making and e-retailers’
livestreaming. Compared to audio-driven single-human animation, this task presents three main
challenges: 1) As conversations involve audio from multiple persons, the model should accommodate
multi-stream audio inputs; 2) Each person within the conversation should be driven by only one audio
stream to prevent incorrect face and audio binding; 3) Each person in the generated video is dynamic,
requiring an adaptive method for person localization. Despite the success of existing methods in
achieving subtle expressions and realistic motions for a single person, challenges remain in creating
multiple-person videos. Specifically, existing methods cannot handle multi-stream input audio and
are limited to a single audio stream. Additionally, when reference images contain multiple people,
the audio tends to drive all individuals to speak simultaneously, resulting in consistent lip motions
across all persons. This complicates the achievement of alternating speech in conversational video.

To complete this new task, we propose a novel framework, MultiTalk, for audio-driven multi-person
conversational video generation. Multi-stream audio injection often encounters incorrect binding
between the audio and the person. We investigate several schemes for audio injection and introduce
the Label Rotary Position Embedding (L-RoPE) method. By assigning identical labels to audio
embeddings and video latents, it effectively activates specific regions within the audio cross-attention
map, thereby resolving incorrect binding issues. Furthermore, we explore a set of training strategies,
including multi-stage training, partial parameter training, and multi-task training. Our observations
highlight the importance of the latter two strategies. After incorporating a multi-event dataset for
image-to-video, the instruction-following ability of the base model is preserved.

Our main contributions are summarized as follows: (1) We propose a novel task, i.e., audio-driven
multi-person conversational video generation, and introduce a novel framework to address the
challenges. (2) We investigate several schemes for multi-stream audio injection and propose the Label
Rotary Position Embedding method to resolve the inaccurate audio binding problem in multi-person
video generation. (3) We explore a set of training strategies, including multi-stage training, partial
parameter training, and multi-task training. We observe that the latter two are crucial for preserving
the instruction-following ability of the base model, especially with limited compute resources and
data. The multi-event dataset for the image-to-video is quite crucial. (4) We conduct evaluations
on various datasets, such as talking face, talking body, and multi-person conversation. The results
demonstrate the effectiveness of the proposed method.

2 Related Work

2.1 Audio-driven Human Animation

Pioneering audio-driven human animation works [15, 16, 17, 18, 19, 20, 21] typically consist of
two components. They first employ an audio-to-motion model to transform motion signals into
intermediate representations such as 3DMM [22] and FLAME [23]. Subsequently, motion-to-video
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Figure 2: The overall pipeline of the proposed MultiTalk framework. Our framework incorporates
an additional audio cross-attention layer to support audio conditions. To achieve multi-person
conversational video generation, we propose a Label Rotary Position Embedding (L-RoPE) for
multi-stream audio injection.

rendering techniques, such as GANs, are employed to project these intermediate representations into
dynamic portrait animations. Despite notable successes, limitations in audio-to-motion models’ ability
to capture intricate facial expressions and head movements significantly constrain the authenticity
and naturalness of synthesized videos.

Recently, end-to-end audio-to-video synthesis methods [1, 24, 2, 4, 3, 25, 5, 6] omit intermediate
representation and directly utilize a single diffusion model to integrate audio cues with facial dynamics.
These methods demonstrate enhanced potential, exhibiting superior naturalness and consistent portrait
animation capability. However, they are constrained to support only head movement. To achieve audio-
driven body animation, CyberHost [7] proposes a one-stage audio-driven talking body generation
framework equipped with a Region Attention Module and Human-Prior-Guided Conditions to address
common synthesis degradations in half-body animation. EMO2 [9] introduces a two-stage framework,
first generating hand movements and subsequently using them as control signals in the second stage
to enable holistic facial expressions and upper body motions. OmniHuman [8] employs a mixed data
training strategy with multimodal motion conditioning to overcome the scarcity of high-quality data.
EchomimicV2 [10] proposes an Audio-Pose Dynamic Harmonization strategy, requiring an additional
hand pose sequence as input alongside audio. However, these audio-driven human animations can
only animate a single person and cannot achieve multi-stream audio-driven image animation.

2.2 Video Diffusion Model

The success of text-to-image diffusion models and their downstream applications [26, 27, 28, 29] has
sparked considerable interest in exploring their potential for video generation. Video diffusion models
can be roughly divided into two categories: text-to-video models and image-to-video models. Early
video diffusion models [30, 31, 12] typically leverage the U-Net architecture for video generation,
attempting to extend the 2D U-Net pretrained on text-to-image tasks into 3D to generate continuous
video frames. Recent works [32, 33, 14] have adopted a DiT (Diffusion-in-Transformer) architecture
[34], significantly advancing video generation technology. These DiT-based methods replace the
U-Net with a Transformer, incorporating a 3D VAE as the encoder and decoder. By expanding the
training dataset, DiT networks learn motion priors for various objects and scenes. Video diffusion
models demonstrate substantial potential in tackling intricate video generation tasks and provide
a strong visual backbone for various downstream tasks [35, 36, 37, 38, 39]. Due to its excellent
performance in human generation, a DiT-based image-to-video diffusion model is adopted as the
backbone of our method to fully leverage its human generative prior.

3 Method

The overall architecture of the proposed method is illustrated in Fig. 2, showcasing an audio-driven
multi-person conversational video generation framework. In Section 3.1, we first briefly describe
the network architecture of the video foundational model. Then, in Section 3.2, we introduce the
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integration of audio conditions via an audio cross-attention mechanism for single-person animation.
Subsequently, in Section 3.3, we present our investigation into multi-stream audio injection and
introduce the proposed L-RoPE method for audio and person binding. In Section 3.4, we explain our
training strategy. Finally, we describe our method for long video generation in Section 3.5.

3.1 Preliminaries

In this study, we adopt a DiT-based video diffusion model as our foundational model, which is built
upon the DiT architecture and incorporates a 3D Variational Autoencoder (VAE). This design achieves
compression in both spatial and temporal dimensions. A textual encoder is utilized to generate the
text-conditioned input, denoted as ctext. Additionally, the extracted global context from the CLIP
image encoder [40] is injected into the DiT model along with ctext via decoupled cross-attention.

3.2 Audio-Driven Single Person Animation

Our foundational model is an image-to-video diffusion model capable of animating a reference
image to generate a video. However, it does not natively support audio as an input. To incorporate
an additional audio condition, we add layers consisting of layer normalization and an audio cross-
attention mechanism after the text cross-attention in each DiT block.

Audio Embedding Extraction To extract acoustic audio embeddings, we employ Wav2Vec [41],
a widely utilized audio feature extractor. In audio-driven human animation, since current motion
is influenced by both preceding and succeeding audio frames, we follow [1] and concatenate audio
embeddings proximal to the current frames, described as follows:

ai = Concat(ai−⌊ k
2 ⌋, · · · , ai, · · · , ai+⌊ k

2 ⌋) (1)

where k denotes the context length.

In the audio cross-attention layer, queries are derived from video latents, while keys and values
originate from audio embeddings. These elements execute frame-by-frame attention calculations.
Due to the temporal compression of the 3D VAE, the frame length of video latents is shorter than
that of audio embeddings, complicating direct calculations between them. To address this, we
propose an audio adapter for audio compression. Specifically, suppose the input audio contains l
frames. We first divide the audio embedding into the initial frame a1 and the subsequent frames
a[2:l] along the temporal dimension. Next, we downsample a[2:l] get Down(a[2:l]), and then encode
a1 with Down(a[2:l]) separately through several MLP layers. After concatenating, we encode the
concatenated features to obtain the compressed audio condition ca. This process is represented as:

ca = MLP (Concat(MLP (a1),MLP (Down(a[2:l])))). (2)

3.3 Audio-Driven Multi-Person Animation

Existing methods fail to address the problem of multi-human generation driven by multi-audio
streams. In this paper, we introduce a novel task: audio-driven multi-person conversational video
generation. To tackle this challenge, we propose a new framework, MultiTalk, specifically designed
to handle multi-stream audio injection and rectify incorrect audio and person binding. The overall
architecture of MultiTalk is depicted in Fig.2. We first investigate several schemes for multi-stream
audio injection. Then, to accurately identify each person’s motion region in generated videos, we
propose an adaptive person localization method. Finally, we introduce the proposed L-RoPE method
to effectively bind audio and persons.

Multi-stream Audio Injection Schemes. Multi-person conversational video generation, unlike
single audio-driven video generation, requires the model to accommodate multi-stream audio inputs.
To find an effective method for audio injection, we explore four distinct injection schemes, as
illustrated in Fig. 3.

Our first attempt involved directly concatenating the multi-stream audio embeddings za1 and za2,
then calculating the audio cross-attention results with video latent zt, as shown in Fig. 3 a). Another
strategy is to calculate the multi-stream audio embeddings za1 and za2 separately with zt, and then
followed by an adding operation to calculate these two components, as seen in Fig.3 b). However,
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Figure 3: Investigation on different injection strategies for multi-stream audio condition.

these two attempts failed to bind the multi-stream audio with its corresponding video latent region.
The network cannot learn to bind audio to different persons through training directly. Given that the
individuals in the generated video are typically positioned on the left and right sides, we attempted to
simplify binding by splitting the video latents into left and right segments, as demonstrated in Fig.
3c). Each video latent segment computes attention results with the corresponding audio embedding
separately, and the two attention results are concatenated as the final output. Although this attempt
successfully binds multi-stream audio to different persons, its generalization capacity is limited.
Specifically, it is only effective for videos with minimal movement range. When a person exhibits
extensive motion, directly applying this simple operation results in audio binding failures. To address
these shortcomings, we propose an adaptive method for multi-stream audio injection, named L-RoPE,
as illustrated in Fig. 3d).

Adaptive Person Localization. Before utilizing L-RoPE, the model must adaptively track the
localization of each individual. Given a reference image I contains two persons, we first find the
subject localization within I , resulting in the set M = {Mp1,Mp2,Mb}. Here, Mp1 and Mp2

represent the mask regions for each person, and Mb denotes the mask covering the background in the
reference image. Collectively, they satisfy the relation I = Mh1 ∪Mh2 ∪Mb. The self-attention
map reflects the similarity of generated video latents across different frames. In the I2V model, the
first frame of the video also serves as the reference image, enabling the creation of a reference-image-
to-video attention map Ar2v ∈ Rfhw×1hw, as depicted in Fig. 4 a). Here, f denotes the frame length
in latent space, while h and w represent the height and width, respectively. Since the reference image
contains multiple subjects within M , we calculate the average similarity of each latent in zt with
the subjects in the reference image, yielding S ∈ Rfhw×3. In this matrix, S(i, j) represents the
similarity between the i-th token in the video latents and the j-th subject in M . By leveraging the
similarity captured in the self-attention map, we can adaptively locate each person in the video.

L-RoPE for Audio and Person Binding. Rotary Position Embedding (RoPE) [42] is a relative
positional encoding technique that effectively captures inter-token relationships in large language
models (LLMs). Known for its proficiency in modeling long sequences, RoPE has also been employed
in video diffusion models, such as CogVideoX [32], Hunyuan Video [33], and Wan [14], among
others, to facilitate multi-resolution, multi-aspect ratio, and variable duration video generation. It
is utilized to generate position-aware query and key embeddings for time, height, and width within
the video latents during the self-attention layer of the DiT block. In this paper, we introduce the
Label Rotary Position Embedding (L-RoPE) method, aimed at binding multi-stream audio to multiple
persons within the audio cross-attention layers of the DiT block.

Specifically, take the query q as an example. q is a sequence of N vectors {qi}Ni=1. We compute an
angle θi for each vector qi using its label li ∈ R, and rotate qi with θi to obtain q̂i:

θi = li ∗ θbase (3)

q̂i = LRoPE(qi, li) = qie
liθi (4)

where θbase is a pre-defined base angle.

In the audio cross-attention mechanism, queries are derived from the video latent zt, whereas keys
and values originate from the multi-stream audio embeddings za1 and za2. Appropriately assigning
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Prompt: The woman holds a red cup of coffee, takes a sip.🔈
Figure 5: Instruction-following capability comparison between different training strategies.

labels l to video and multi-stream audio is crucial. As depicted in Fig. 4b, video latents encompass
regions corresponding to multiple persons and the background. We adopt a specific strategy for
label assignment. For person regions, due to varying sensitivity driven by audio in different parts
of the body, we first assign a numerical range for each person, (a, b). Then, we determine the
category C ∈ Rfhw of each vector in q through argmaxj(S [i, j])fhwi=1 . Finally, taking the first
person as an example, the label for person1 can be calculated through the normalization function,
Norm(S [i, j]j=C[person1] , a, b) =

si,j−min(S,j)
max(S,j)−min(S,j)

∗ (b − a) + a. This method is applied for
each person in the same manner, but using different label ranges. Specifically, we define the visual
label range as {0− 4} for the first person and {20− 24} for the second person. Conversely, for the
background and dual audio, they directly utilize a static value as their label. The background should
not be associated with audio, hence we assign it the label 12. For multi-audio embedding, as shown
in Fig. 3d, we first concatenate the multi-stream audio embeddings and subsequently assign different
labels ca1 and ca2 to them. To bind the multi-stream audio with the two persons respectively, we set
ca1 as 2 and ca2 as 22.

3.4 Training Strategy

Two-stage training. The training stages and associated data sources are essential for achieving
effective multi-person animation. We divide the training process into two stages, progressively
enhancing the model’s capabilities in audio and lip synchronization. The first stage primarily focuses
on developing the model’s ability to animate a single person. Subsequently, in the second stage, we
employ training data that contains dual-stream audio to facilitate multi-human animation.
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Partial Parameter Training. In our method, only the network parameters in the audio cross-attention
and audio adapter are updated, while all other network parameters are frozen during training. We
also compare this strategy with full parameter training. Our findings indicate that network training
parameters are crucial; when the compute resources and data are limited, fully parameterized training
can lead to not only the degradation in the model’s instruction-following ability, especially for
motion and interaction, but also cause hand and object distortion. Conversely, training only the audio
cross-attention does not result in this issue and the instruction-following ability of the base model can
be well preserved.

Multi-task training. During training, we adopt a multi-task hybrid paradigm, dividing model training
into multiple tasks, including audio + image to video (AI2V) training and image to video (I2V)
training. Different tasks utilize distinct training data while sharing the same network parameters. For
AI2V tasks, both the reference image and audio are used as conditions. In the I2V task, the audio
condition is removed by zeroing the audio embedding. Additionally, the training data used for the
I2V task is unique, comprising mainly of multi-event videos with interactions among human, object,
and scene, which is crucial for the alignment between the motion description in the prompt and the
generated video.

Multi-task training substantially impacts the results, as shown in Fig.5. Utilizing only talking head
and talking body data for AI2V training diminishes the network’s instruction-following capability.
Conversely, incorporating I2V training allows the model to retain its instruction-following ability.

3.5 Long Video Generation

Although the model can generate video lengths of up to a few frames, this is still insufficient for
real-world applications. To address this issue, we introduce an autoregressive-based method to
facilitate long video inference. Specifically, within the I2V model, the first frame of the video is
typically used as the condition for inference. In contrast, we incorporate the last 5 frames of the
previously generated video as additional conditions for inference. Following 3D VAE compression,
these conditional frames are reduced to 2 frames of latent noise. We pad zeros to the subsequent
frames and concatenate them with latent noise and a video mask. These are then input into DiT for
inference, enabling longer video generation.

4 Experiments

4.1 Settings

Datasets. We collect a video dataset of about 2K hours for the first stage training, which covers the
face or body of a single talking person. We also collect about 200K video clips that contain multiple
events and human-object/environment interactions. The average clip duration is about 10 seconds.
For the second stage training, we collect 100 hours of videos consisting of conversations between two
persons. For evaluation, we employ three distinct types of testing datasets: the talking head dataset,
the talking body dataset, and the dual-human talking body dataset with interactive scenarios. For the
talking head dataset, we employ two publicly available datasets, HDTF [43], and CelebV-HQ [44]
for evaluation purposes. For the talking body dataset, we utilize the EMTD [10] dataset. Since we
are the first to propose a dual-human talking body task, no public dataset is available. We collect a
dataset containing 40 videos (referred to as MTHM) sourced from the internet.

Evaluation Metrics. We utilize the commonly used metrics to evaluate the methods. Frechet
Inception Distance (FID) [45] and Fréchet Video Distance (FVD) [46] are used to assess the quality
of the generated data. Expression-FID (E-FID) is used to evaluate the expressiveness of the facial
in the generated video. Sync-C [47] and Sync-D [47] are utilized to measure the synchronization
between audio and lip movements.

Implementation Details. We adopted Wan2.1-I2V-14B as the foundational video diffusion model
for our experiments. The model is trained using a constant learning rate of 2e− 5, incorporating a
warm-up strategy, and optimized using the AdamW optimizer. During training, we only fine-tuned
the audio cross-attention layer and adapter while keeping other layers frozen. The proposed method
was trained using 64 NVIDIA H800-80G GPUs. In stage 1 of the training process, the batch size was
set to 64, whereas in stage 2, the batch size was adjusted to 32.
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Table 1: Quantitative comparison with other competing methods on talking head generation, including
HDTF and CelebV-HQ datasets.

Methods HDTF CelebV-HQ
Sync-C↑ Sync-D↓ E-FID↓ FID↓ FVD↓ Sync-C↑ Sync-D↓ E-FID↓ FID↓ FVD↓

AniPortrait [24] 3.09 10.94 1.32 32.83 112.21 2.09 11.29 1.66 37.17 250.24
VExpress [21] 5.79 8.37 8.92 60.49 200.60 4.30 8.98 10.01 67.34 345.87
Echomimic [4] 5.36 8.99 1.27 60.82 240.07 4.16 9.55 2.87 63.72 318.08

Hallo3 [3] 6.55 8.49 1.12 33.98 153.31 5.57 8.58 1.51 40.81 212.91
Sonic [25] 8.35 6.43 1.22 29.53 89.34 6.68 7.31 1.85 39.89 224.48

Fantasy Talking [11] 3.61 10.78 1.36 32.64 103.01 3.14 10.43 1.77 37.54 218.43
MultiTalk-single (Ours) 8.54 6.69 1.00 24.01 95.99 7.07 7.13 1.41 32.31 219.19

MultiTalk-multiple (Ours) 8.53 6.81 1.24 27.27 124.06 7.33 7.18 1.48 34.08 184.86

Table 2: Quantitative comparison with other competing methods on talking body generation, including
EMTD dataset.

Methods Sync-C↑ Sync-D↓ E-FID↓ FID↓ FVD↓
Echomimic v2 [10] 6.31 8.41 1.91 35.99 163.60

Fantasy Talking [11] 3.32 11.41 1.98 37.68 284.29
MultiTalk-single (Ours) 8.18 7.28 1.67 32.05 221.86

MultiTalk-multiple (Ours) 8.34 7.30 1.51 31.93 238.77

4.2 Comparisons with Competing Methods

Quantitative Evaluation. To verify the effectiveness of our method, we compare it with several
state-of-the-art human animation methods. For talking head generation, we compare with AniPortrait
[24], VExpress [21], EchoMimic [4], Hallo3 [3] Sonic [25] and Fantasy Talking [11]. For talking
body comparison, we compare with EchoMimicV2 [10] and Fantasy Talking [11].

Quantitative comparisons, including both talking head and talking body analyses, are presented in
Table 1 and Table 2, respectively. Our method surpasses most other approaches across a majority of
metrics, exhibiting superior performance in lip synchronization and video quality, which underscores
the effectiveness of our approach.

Qualitative Evaluation. To demonstrate the visual effectiveness of the proposed method, we
compare and visualize the results alongside some competitive methods, as shown in Fig. 6. Upon
providing instructions via a text prompt, only our method successfully responded to the instructions,
highlighting its robust instruction-following capability. Additionally, our method generates fewer
artifacts in the produced video, attesting to the quality of our approach.

Hallo3

Echomimic v2

Sonic

Fantasy 
Talking

Ours

Prompt: a man closed the laptop 
and put it on the desk. 

Prompt: a woman sitting at a table with headphones, 
and then she takes up the headphones🔈 🔈

Figure 6: Qualitative comparison with other competing methods.
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Table 3: Ablation study about the label range selection in L-RoPE on MTHM dataset.

Variant Label for video Label for audio Sync-C↑ Sync-D↓ E-FID↓ FID↓ FVD↓person1 person2 person1 person2
a) 0–2 2–4 1 3 7.47 7.22 3.22 52.87 506.49
b) 0–4 20–24 2 22 7.56 7.13 3.16 54.20 508.01

As the first method for multi-person generation, there is no directly comparable approach available.
We compare our method with the video concatenation technique, which involves generating the left
and right video patches separately and subsequently concatenating them. The comparison results are
presented in Fig. 7. Our method effectively handles interactive scenarios, avoiding inconsistencies
between the left and right segments of the video. Besides, we also visualize the self-attention map for
the specific person, highlighted in the red box. Our method can adaptively identify the localization of
the person, thereby benefiting the audio binding.

4.3 Analyses

Multi-stream vs Single-stream. Our initial model for multi-stream audio training is derived from
a single human animation model. To investigate whether multi-stream audio training would lead
to performance degradation, we compared the performance of the single human animation model
with multiple human animation models on both the talking head and talking body datasets. The
results, presented in Table 1 and Table 2, show that our multiple human animation models achieve
performance comparable to that of the single human animation models, indicating that multi-stream
audio training does not result in model degradation.

Video
Concat

Ours

Prompt: An elderly person is sitting in a wheelchair. Beside him, an elderly woman sits at a table. The woman, holding a glass of 
wine, stands up, walks over, and gives the man a heartfelt hug.🔈

Self-Attention
Map

Visualization

Figure 7: Qualitative comparison with video concat method in multi-human animation.

Label Selection for L-RoPE To validate the effectiveness of L-RoPE within MultiTalk, we conduct
an ablation study focusing on label range selection. The evaluation dataset is the collected conversa-
tion data, MTHM. The experimental results are presented in Table 3. These results demonstrate that
different label choices for various persons yield comparable metrics, indicating that L-RoPE is not
sensitive to label range variations.

Table 4: Ablation study for different audio inject strategies (Corresponding to Fig. 3).

Sync-C↑ Sync-D↓
a 3.49 10.73
b 3.07 11.26
c 7.09 8.00

d (Ours) 7.56 7.13

Different Audio Injection Strategies We conducted an additional ablation study to investigate the
impact of different audio injection strategies. The results are summarized in Table 4, with each row
corresponding to an audio injection strategy as illustrated in Fig. 3. Strategies (a) and (b) fail to bind
multi-stream audio to the corresponding video latent regions. Strategy (c) employs a hard mask-based
audio binding approach, which is capable of associating multi-stream audio with different persons;
however, its effectiveness is limited to videos with minimal motion. When a person exhibits extensive
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movement, this strategy also results in failure cases. In contrast, our proposed L-RoPE method (d)
achieves the best results across all tested scenarios, demonstrating the superiority of our approach.

Table 5: Ablation study for different training strategies.

Cross-attention Training Full Parameter Training
MPS↑ 59.5 40.5

Different Training Strategies To quantitatively evaluate the impact of different training strategies
on the model’s instruction-following ability and hand/object distortion, we conducted an additional
ablation study. Specifically, we utilized a reward model [48] to directly compare the cross-attention
training strategy and full parameter training, using the Multi-dimensional Preference Score (MPS) as
an evaluation metric. The results, shown in Table 5, demonstrate that training only the cross-attention
layers leads to a higher MPS score. This provides clear quantitative evidence that optimizing only the
cross-attention layers leads to better performance compared to full-parameter training, particularly
when computational resources and data are limited.

5 Conclusion

This paper introduces a novel task: audio-driven multi-person conversational video generation, and
presents a new framework, MultiTalk, to accomplish this task. Multi-stream audio conditions are
effectively injected using the proposed L-PoRE method, ensuring accurate audio and person binding.
Furthermore, our findings demonstrate that partial parameter training and multi-task training are
essential for maintaining the instruction-following ability of the base model, equipping our model
with powerful instruction-following capability.

Limitation. We observe that our method performs better using real audio than using synthesized
audio in terms of facial expression. The reason might be that our model is trained exclusively on real
audio, which typically contains rich emotional cues and natural prosody. As a result, the generated
videos exhibit more expressive and realistic facial behaviors when driven by real audio. In contrast,
most current TTS-generated audio lacks emotional variation and nuanced expressiveness, leading to
video outputs that appear less vivid and natural We will explore ways to mitigate the gap between
real and synthesized audio for animation in future work.

Societal Impacts This paper introduces an effective approach for audio-driven multi-person conver-
sational video generation to the community. However, this technology also raises ethical concerns.
Beyond the risk of generating fake videos of celebrities, there are broader implications, including
the potential for misuse in creating deepfakes for misinformation, defamation, fraud, or harassment.
Such synthetic videos could be used to impersonate individuals, manipulate public opinion, or violate
privacy. These risks are not unique to our approach, but are common across the broader field of
human animation and generative models.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our our contributions:(1) propose a novel task (2) propose a framework as
solution (3)training strategies, are accurately reported in the abstract and the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitations in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present the implementation details in the experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: [No]

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are provided in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We use the commonly used metrics that do not involve error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resource information are presented in the experiment part.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research follows the rules.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts in the supplementary.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Those works are properly cited in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Task Definition

Audio-driven multi-person conversational video generation is defined as follows: Given a reference
image containing multiple persons and corresponding audio streams (with a one-to-one correspon-
dence between each person and their audio), the goal is to synthesize a video sequence in which
all persons appear together in the same frame, and each person’s lip movements are temporally
synchronized with their respective audio input. Unlike previous single-person talking face generation
tasks, this new task requires the joint modeling of multi-person interactions, spatial consistency, and
audio-visual synchronization within a unified, end-to-end generative framework, requiring only a
single diffusion process.

In contrast to approaches that generate videos for each person independently and subsequently
composite them, this new task demands integrated modeling of multiple individuals, offering several
key advantages:

• Higher computational efficiency: Only a single inference process is required, substantially
reducing computational costs.

• Global consistency: The unified framework enables better control over the overall coherence
of the generated content, such as coordinated camera movements, lighting, and scene
dynamics.

• Enhanced interaction modeling: This approach is inherently more suitable for capturing
interactions among individuals, enabling natural and contextually appropriate reactions (e.g.,
when one person is speaking, others can display attentive or responsive behaviors).

B Dataset and Implementation Details

B.1 Dataset Details

In this paper, we utilize three distinct testing datasets: the talking head dataset, the talking body
dataset, and the dual-human talking body dataset with interactive scenarios. For the talking head
and talking body datasets, we employ conventional evaluation techniques for comparison with other
methods. However, for the dual-human talking body dataset, where each reference image contains
two persons, we evaluate Sync-C, Sync-D, and E-FID by splitting the video into two segments: the
left part and the right part. Each segment contains only one person and their corresponding audio.
We then average the scores of these two segments to derive the final result for this dataset. Fig.8
showcases some examples of our dual-human dataset.

Figure 8: Some examples of our MTHM dataset.

All data used in our experiments were collected from publicly available sources on the internet. Our
data collection process follows the best practices established by previous works [49, 50, 51], ensuring
that our methods are consistent with the standards in the community. All data sources are under the
CC BY 4.0 International license. Our dataset comprises approximately 2,700 unique subjects, with
approximately 71% male and 29% female. The distributions of age and race are presented in Table 6
and 7, respectively.

21



Table 6: The distributions of the age of the training dataset.

Age 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70+
Percentage 0% 0.02% 20.77% 57.11% 19.03% 2.95% 0.12% 0%

Table 7: The distributions of race of the training dataset.

Race white black middle eastern asian latino hispanic indian
Percentage 61.55% 6.22% 4.89% 21.76% 4.77% 0.81%

For data preprocessing, we closely follow the procedures described in [49] and further filter out
samples exhibiting large facial movements or unsynchronized speech and mouth motion [52]. This
ensures the high quality and reliability of our dataset.

B.2 Sample Details

In all the experiments and evaluations conducted within this paper, we utilize 40 sampling steps.
To filter out undesired variations in diffusion models, we employ the following negative prompt
during sampling: "bright tones, overexposed, static, blurred details, subtitles, style, works, paintings,
images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete,
extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs,
fused fingers, still picture, messy background, three legs, many people in the background, walking
backwards." Additionally, we employ Qwen-VL for reference image captioning.

B.3 Inference Time

Although our method introduces an additional audio condition, the computational time required
to pass through the DiT backbone remains the same as in Wan2.1, and it requires 40 steps for
inference. Furthermore, all acceleration strategies available for Wan2.1—such as TeaCache and
model distillation—are also applicable to our approach. For example, when employing a distilled
model (such as lightx2v), the total number of inference steps is reduced to 4 steps per video.

C Analyses

C.1 Full Parameter Training vs Cross-attention Training

Full Parameter 
Training

Cross-attention 
Training

Prompt: A man firmly grasped the camera and lifted it off the table..🔈

Figure 9: Comparison between full parameter training and cross-attention training.

We compare full parameter training with fine-tuning only the audio cross-attention layer. Our findings
indicate that network training parameters are crucial. When compute resources and data are limited,
fully parameterized training can lead not only to degradation in the model’s instruction-following
ability, especially for motion and interaction, but also to hand and object distortion. Conversely,
training only the audio cross-attention does not result in these issues, and the instruction-following
ability of the base model is well preserved. The comparison results between full parameter training
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and cross-attention training are shown in Fig. 9. It can be seen that full parameter training degrades
the model’s instruction-following ability and causes hand distortion.

C.2 Long Video Generation

Utilizing the autoregressive-based method facilitates the long video generation of our method. The
experimental results for long video generation are shown in Fig.10. This example shows a generated
result containing 305 frames.

🤖

🤖

🤖 🤖 🤖 🤖

🤖 🤖 🤖 🤖

Figure 10: The generation result of long videos.

C.3 Emotional Expressions

We use the same reference image and specify emotional (e.g., angry, sad, happy) via the text prompt.
Our model successfully generates videos with the corresponding emotional expressions, as shown in
Fig. 11.

Angry

Happy

Sad

Figure 11: Generation results for videos with different emotions using the same reference image.

C.4 Generalization to More Speakers

In the two-speaker setting, we assign distinct, non-overlapping ranges of video and audio labels
to each individual (e.g., video labels 0–4 for person 1 and 20–24 for person 2; audio labels 2 for
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person 1 and 22 for person 2). For scenarios involving more individuals, we conducted additional
experiments to verify that this labeling scheme can be extended by assigning new, non-overlapping
ranges (e.g., video labels 40–44 and audio label 42 for a third person). This flexible approach enables
the model to accommodate a greater number of speakers simply by expanding the label ranges for
both video and audio streams, which demonstrates the generalizability of our L-RoPE framework.
The visualization results for scenarios involving three speakers are shown in Fig. 12. Importantly,
the L-RoPE extension strategy remains effective even when the number of persons during inference
differs from that during training. By assigning dedicated label ranges, each person’s lip movements
are accurately aligned with their respective audio streams.

🤖 🤖 🤖

Figure 12: The generation results generalize to scenarios with three persons.
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