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“Simplicity is prerequisite for reliability.” — Edsger W. Dijkstra

Figure 1: We present AnyDepth, a simple and efficient training framework for zero-shot monocular
depth estimation, which achieves impressive performance across a variety of indoor and outdoor
scenes.

ABSTRACT

Recent monocular depth estimation models have achieved impressive perfor-
mance. However, they typically rely on traditional encoders, complex decoders,
and large training datasets, which collectively limit their efficiency and generaliza-
tion. In this work, we pursue a complementary approach: building a lightweight
and efficient training framework without sacrificing accuracy. First, we apply DI-
NOv3 to zero-shot monocular depth estimation for the first time. Second, we de-
sign a lightweight decoder that reduces parameters and computational cost while
maintaining competitive performance. Third, inspired by data-centric learning,
we propose a quality-based filtering strategy to filter out harmful samples, thereby
reducing dataset size while improving overall training quality. Experiments on
multiple benchmarks demonstrate that our approach achieves comparable or even
superior accuracy to larger-scale counterparts, despite using fewer parameters and
data. Our work emphasizes the integration of visual backbone performance, de-
coder efficiency, and data quality to explore more efficient zero-shot monocular
depth estimation pipelines.

1 INTRODUCTION

Monocular depth estimation is gaining increasing attention due to its wide range of downstream
applications. Depth maps are not only used to measure scene distances (Bhat et al., 2023; 2021;
Godard et al., 2017), but can also be embedded as conditional information within models in the
3D generation domain (Zhang et al., 2023; Rombach et al., 2022; Poole et al., 2022; Mildenhall
et al., 2021; Li et al., 2024a; Yang et al., 2023), providing complementary information to improve
granularity and geometric consistency.

The MiDaS series (Ranftl et al., 2020; Birkl et al., 2023), through extensive and systematic exper-
iments, compared the transfer performance of various pretrained vision transformers (such as ViT
(Dosovitskiy et al., 2020), Swin (Liu et al., 2021), DINO (Oquab et al., 2023), and BeiT (Bao et al.,
2021)) on monocular depth estimation tasks. These experiments demonstrated the crucial impor-
tance of semantic information extracted by pretrained models for improving model performance.
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Figure 2: Comparison of the number of parameters (left) and computational complexity (right)
of AnyDepth and DPT for different model sizes and input resolutions. Our method significantly
reduces the number of model parameters and computational cost while maintaining competitive
accuracy.

High-quality dense feature maps are required to obtain finer-grained depth maps, while global con-
text and long-range dependency modeling are essential to preserve geometric structure.

DPT (Ranftl et al., 2021) has demonstrated impressive performance in various dense prediction tasks
and is currently used as the decoder in mainstream models. DPT aims to achieve finer-grained pre-
dictions by fusing features at different scales. However, each Transformer layer requires a separate
Reassemble module to map to different scales, followed by multiple alignments. This results in
a cumbersome architecture and high computational overhead. Second, this structure also leads to
large parameters and slow inference speed.
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Figure 3: Comparison of inference time between
AnyDepth and DPT at different input resolutions.
Our method consistently achieves lower latency,
especially at higher resolutions.

The Depth Anything series (Yang et al.,
2024a;b) represents a typical data-driven ap-
proach, aiming to improve understanding and
generalization capabilities of model for com-
plex scenarios by leveraging massive datasets.
These methods have significantly improved
performance in zero-shot scenarios, demon-
strating the potential of data scalability in
the field of depth estimation. However, this
purely data-driven approach also has draw-
backs. First, data collection is expensive, hin-
dering academic replication and research. Sec-
ond, large datasets inevitably contain noisy
samples, which can negatively impact model
training. Therefore, simply using data-driven
approaches to improve model performance is
limited.

Based on these findings and limitations, we re-examined the entire monocular depth estimation
pipeline, aiming to design a lightweight and efficient training framework that maintains competitive
performance while being widely adopted by the research community (Fig. 2).

Specifically, our contributions are reflected in four aspects:

• We leverage the latest DINOv3 encoder to provide higher-quality dense features for depth
estimation. To our best knowledge, this is the first application of DINOv3 to a monocular
depth estimation framework.

• We design a novel decoder that aligns and fuses features before restoring resolution through
a one-shot reconstruction and upsampling. This architecture avoids multi-branch cross-
scale alignment and repeated reconstruction, better preserving high-frequency details and
geometric consistency.

• We analyze sample quality issues in deep learning datasets and proposed two metrics to
quickly measure sample quality, which we then used to filter out low-quality samples. This
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reduced dataset size while improving overall data quality, demonstrating that our frame-
work can achieve better performance with fewer resources.

• On multiple benchmarks, our framework achieves comparable accuracy and generalization
to DPT with significantly fewer parameters and lower training overhead, demonstrating a
superior efficiency-accuracy trade-off and academic reproducibility.

2 RELATED WORK

Zero-Shot Monocular Depth Estimation. To enable widespread use of depth images in real-
world scenarios without relying on specific environments, zero-shot depth estimation has become a
key research direction in recent years (Chen et al., 2016; Piccinelli et al., 2024; Chen et al., 2020;
Yin et al., 2021). Due to the lack of strict geometric constraints on MDE, many zero-shot models
learn to predict affine-invariant depth, i.e., recovering relative structure while maintaining scale and
translation invariance (Ranftl et al., 2020; Yang et al., 2024a;b). For example, DiverseDepth (Yin
et al., 2020) uses web images as training data to improve zero-shot generalization performance. Mi-
DaS (Ranftl et al., 2020) proposed scale-shift-invariant losses to solve the ambiguity problem of dif-
ferent deep numerical representation methods of different datasets, so that the model can be trained
on a large scale. In order to eliminate the inherent problems of the CNN backbone, the performance
of Zero-Shot Monocular Depth Estimation was further improved by using the vision transformer
architecture, such as DPT (Ranftl et al., 2021), Omnidata (Eftekhar et al., 2021), Depthformer (Li
et al., 2023) and Zoepdeth (Bhat et al., 2023). Marigold (Ke et al., 2024) directly utilizes the stan-
dard diffusion model paradigm and stable diffusion pre-trained weights for fine-tuning to produce
high-quality results. Depth Anything series (Yang et al., 2024a;b) used 62 million unlabeled im-
ages for larger-scale training. Geowizard (Fu et al., 2024) uses the high consistency between dense
prediction tasks to jointly predict depth and normals. Lotus (He et al., 2024) analyzes the diffusion
process to achieve single-step diffusion and speed up the inference process. Genpercept (Xu et al.,
2024) uses experiments to prove that the diffusion model requires specific details to be optimized in
dense prediction tasks.

Decoder for Dense Prediction. Currently, many methods for dense prediction tasks employ multi-
scale feature fusion strategies to compensate for the lack of information from single-layer fea-
tures (Lin et al., 2017; Liu et al., 2018; Tan et al., 2020; Chen et al., 2018; Ghiasi et al., 2019;
Xu et al., 2021; Eigen & Fergus, 2015). FPN (Lin et al., 2017) proposes a top-down architecture
where high-level semantic representations are successively merged with low-level features to en-
hance multi-scale features. (Lee et al., 2019) designed a multi-scale local plane guidance layer to
more effectively guide the fusion of features at each layer to achieve performance improvement.
Swin-Depth (Cheng et al., 2021) designs a lightweight multi-scale attention mechanism module
to enhance the ability to learn global information at multiple scales. PVT (Wang et al., 2021) and
Uformer (Wang et al., 2022) use a multi-scale pyramid decoder structure to capture long-range visual
dependencies.DPT (Ranftl et al., 2021) utilizes the ViT (Dosovitskiy et al., 2020) backbone network
to generate high-resolution features, thereby achieving finer-grained representation and improving
prediction accuracy. However, multi-branch reassembly incurs significant overhead, especially in
the case of high-resolution input.

3 THE PROPOSED METHOD

3.1 OVERVIEW

The proposed AnyDepth uses a pre-trained DINOv3 (Siméoni et al., 2025) encoder and SDT de-
coder; as shown in Fig.4, given an input image I , we extract multi-scale representations from four
intermediate Transformer layers T 1, T 2, T 3, T 4 and input them into the SDT head for depth recon-
struction, thereby capturing different levels of detail and semantic information. These tokens are
linearly projected onto a common dimension and fused to capture complementary semantic levels.
The fused representations are then reshaped into feature maps and refined by a Spatial Detail En-
hancer (SDE). Finally, a dense depth map is generated through two learnable Upsampler and head
prediction.Our method differs from the Depth Anything series (Yang et al., 2024a;b) and DPT (Ran-
ftl et al., 2021) in that we fuse tokens using only a single linear projection, followed by upsampling

3
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Figure 4: AnyDepth architecture overview. The input image is encoded into tokens by a frozen
DINOv3 backbone network, then decoded by our lightweight SDT decoder. Tokens undergo only
a single projection and weighted fusion. The Spatial Detail Enhancer (SDE) module ensures finer-
grained predictions. The feature map is upsampled by an efficient and learnable upsampler dysam-
ple, and the depth is finally output by the head.

in a single path, without multi-branch cross-scale alignment, significantly reducing the number of
parameters and computational overhead.

3.2 SIMPLE DEPTH TRANSFORMER (SDT)

Our decoder adopts a simple single-path fusion and reconstruction strategy, aiming to take advantage
of the high-resolution feature of DINOv3 and further unleash its performance at high resolution. We
first project the tokens extracted from the encoder into a 256-dimensional space using a linear layer
followed by a GELU non-linearity (Hendrycks & Gimpel, 2016), which preserves sufficient infor-
mative content while substantially reducing the computational overhead in the subsequent decoding
stages. For the class token, we keep the same processing as DPT (Ranftl et al., 2021), concatenate it
with the spatial token, and then fuse it through the learnable projection.

Fusion. To fuse tokens from multiple layers of representation, we then employ a learnable
weighted fusion strategy (Eq. 1).

Specifically, we assign a learnable scalar weight to each layer of tokens and normalize them using a
softmax function to form a uniform probability distribution, preventing initial instability in training.
This strategy enables the model to adaptively balance low-level structural details with high-level
semantic information.

T =
∑
i∈L

αi Proji(Ti), Ti ∈ RNp×D, (1)

Where Ti denotes the token in layer i after projection, and contains Np tokens of dimension D.

Spatial Detail Enhancer. After the fusion block, we reshape the sequence token output into a
spatial feature map. Because the reorganized feature map lacks local continuity and, after multi-
level fusion, easily obscures shallow texture details, which are crucial for dense prediction tasks
such as depth estimation, we designed the Spatial Detail Enhancer.The SDE can be expressed by
Eq. 2,

F ′ = ReLU(F +BN(DWConv3×3(F ))), F ∈ R
H
16×

W
16×256. (2)

We implement this operation first using a 3 × 3 Depthwise convolution for local spatial modeling,
followed by batch normalization. We then add the normalized response to the input feature F via a
residual connection, and finally pass it through an activation layer.

Upsampler. In the upsampling stage, we abandon the commonly used bilinear interpolation,
which easily blurs high-frequency details, and instead adopt a learnable dynamic sampler (Eq. 6).
Specifically, we use DySample (Liu et al., 2023) as the upsampler, which adaptively constructs an
offset sampling grid based on the learned low-resolution features to adjust the sampling position,
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and then uses differentiable grid sampling to resample to high-resolution features. We first define
three operators: the DySample block B(·), the DySample stage S(·), and the refinement block R(·):

B(X) = ReLU
(
BN

(
Conv3×3(DySample×2(X))

))
, (3)

S(X) = B
(
B(X)

)
, (4)

R(X) = ReLU
(
BN

(
Conv3×3(X)

))
. (5)

Based on these definitions (Eq. 3, 4, 5), the complete upsampling process can be expressed as:

U(X) = R
(
S
(
R(S(X))

))
, (6)

In this way, the compact feature map of size H/16×W/16 can be progressively upsampled back to
the original resolution H×W . We want to emphasize that we do not jump to H×W all at once, but
rather decompose the upsampling into two ×4 upsamplers, using four dysamples of scale 2. Single-
stage ×16 upsampling forces the sampler to infer large offsets from very low-resolution features,
which amplifies errors and destabilizes gradients. Our progressive design keeps the offsets small,
inserting local refinement after each resampling, resulting in a model with better detail recovery
capabilities.

3.3 SDT VS. DPT

A key difference between SDT and DPT (Ranftl et al., 2021) is the order of feature reassembly.
DPT employs a reassemble-fusion strategy. Specifically, DPT first applies the reassemble module
to the tokens extracted by each Transformer layer, mapping the tokens to feature maps of different
scales. These feature maps are then fused in a cascade across scales, which inevitably introduces
multiple branches and repeated cross-scale alignment overhead. In contrast, SDT employs a fusion-
reassemble strategy, directly projecting and fusing groups of tokens. Only after this stage do we
perform spatial reassembly and upsampling along a single path. This fusion-reassemble strategy
avoids the high cost of per-layer token reassembly and feature map cross-scale alignment, making it
more efficient and stable, especially when processing high-resolution inputs.

3.4 DATA CENTRIC LEARNING

Although MiDaS (Ranftl et al., 2020) uses an affine-invariant loss to accommodate multi-dataset
training, the varying degrees of noise and scale ambiguity introduced by these datasets can easily
negatively impact training, especially in dense prediction tasks (Fig.7, 8). Inspired by data-centric
learning (Singh, 2023; Zha et al., 2025), for the monocular depth estimation task and our setting, we
believe that high-quality samples should possess two properties: (i) depth values should be evenly
distributed throughout the image, rather than being overly concentrated within a specific range;
and (ii) gradient magnitudes should vary slightly across continuous surfaces, while exhibiting more
pronounced changes near object edges. Based on these two properties, we define two metrics to
measure sample quality. These metrics aim to reduce low-quality samples, facilitate model training,
and reduce dataset size and training cost.

3.4.1 DEPTH DISTRIBUTION SCORE

Some samples have depths that are primarily concentrated near or far, while other depth ranges are
relatively small. As shown in Fig. 7 , this phenomenon is common in outdoor datasets. This unbal-
anced depth distribution can cause the model to favor learning depth values within a specific range
rather than the entire valid depth range, leading to unstable training and poor model generalization.

To quantify this phenomenon, we propose a Depth Distribution Score that evaluates how uniformly
depth values are distributed across the available depth range. For a depth map D ∈ RH×W , we
divide the depth values into K bins of equal width, and we use K = 20 by default to balance
granularity and robustness.

5
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Chi-square Deviation (Sχ2 ). We measure the deviation from a uniform distribution using the chi-
square statistic:

χ2 =

K∑
k=1

(nk − n̄)2

n̄
, Sχ2 = exp

(
−χ2

N

)
, (7)

where nk is the number of depth bins k, n̄ = N/K is the expected number under a uniform distribu-
tion, and N is the total number of valid depth values. We use an exponential transformation to map
the chi-squared statistic (Eq. 7) to [0, 1], with higher scores indicating a more uniform distribution.

Maximum Concentration Index (Sconc). To prevent excessive concentration in any single depth
interval, we penalize the maximum bin occupancy:

Sconc =

{
1, if pmax ≤ 2/K

1−min
(
1, pmax−2/K

0.5−2/K

)
, otherwise

(8)

where pmax = maxk(nk)/N is the maximum bin probability. This formulation (Eq. 8) tolerates up
to twice the ideal concentration (2/K) without penalty, then linearly decreases the score as concen-
tration increases.

Range Utilization (Srange) . Partition the available depth range into K equal-width bins and let
nk be the count in bin k. Define the number of non-empty bins K+ = { k ∈ {1, . . . ,K} | nk > 0 }.
The range utilization score is Srange = K+/K, which penalizes samples whose depths concentrate
within a narrow portion of the range.

The final Depth Distribution Score Sdist is the weighted sum of these three scores:

Sdist = λ1 · Sχ2 + λ2 · Sconc + λ3 · Srange, (9)

where we empirically set λ1 = 0.5, λ2 = 0.3, and λ3 = 0.2.

3.4.2 GRADIENT CONTINUITY SCORE

In the real world, continuous physical surfaces should have smoothly transitioning depth values,
without drastic random fluctuations. However, perhaps due to rendering defects in synthetic data,
some sample depth maps exhibit gradient abrupt changes caused by noise on smooth surfaces. If
these samples are used for training, the model will learn incorrect depth changes, thus affecting
prediction quality.

Inspired by the gradient loss function ((Li et al., 2024b; Yang et al., 2018; Ranftl et al., 2020)), we
propose a gradient continuity score to assess the noise content of each sample. We first calculate
the gradient magnitude G(i, j) =

√
(∂xD)2 + (∂yD)2. To distinguish reasonable gradient abrupt

changes at normal object edges from those caused by abnormal noise, we define edge pixels as
pixels with gradient magnitudes in the top 10%. Within the smooth region, we use the coefficient of
variation CV = σG

µG
to assess gradient consistency:

Sgrad =
1

1 + CV
, (10)

where µG and σG are the mean and standard deviation of the gradient magnitude in the region,
respectively.

3.4.3 TOTAL SCORE

The depth distribution score and gradient continuity score capture different aspects of sample quality.
We combine them into a Total Score, defined as Stotal = (Sgrad+Sdist)/2, to assess the overall quality
of each sample for dataset filtering (Eq. 9, 10). It’s important to note that our goal is not to provide
a particularly precise quality assessment method, but rather to design efficient indicators to quickly
filter out samples with quality issues. For example, when performing edge detection, we did not use
traditional Canny or Sobel algorithms because the detected edge maps often produce unnecessary
artifacts and details. Learning-based methods, on the other hand, predict edges that are always
several pixels off from their exact locations (Li et al., 2024b; He et al., 2019; Pu et al., 2022; Su
et al., 2021), and their inference time is time-consuming, making them unsuitable for rapid filtering
of large datasets.
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4 EXPERIMENTS

4.1 DATASETS AND METRICS

Training Datasets. We use five synthetic datasets covering various indoor and outdoor scenes for
training. (1) Hypersim (Roberts et al., 2021) after filtering incomplete samples, we have approxi-
mately 39K. (2) Virtual KITTI (Cabon et al., 2020) we selected four scenes, totaling approximately
20K. (3) BlendedMVS (Yao et al., 2020) (4) IRS (Wang et al., 2019) (5) TartanAir (Wang et al.) As
shown in Table 1, we only use 369K datasets for training. The far plane is set to 100m. To improve
the robustness and generalization of the model, we used data augmentation of flipping and rotation.

Evaluation Datasets and Metrics. For Zero-shot monocular depth estimation, we evaluate SDT
using five datasets containing various scenes: NYUv2 (Silberman et al., 2012), KITTI (Geiger et al.,
2013), ETH3D (Schops et al., 2017), ScanNet (Dai et al., 2017), and DIODE (Vasiljevic et al.,
2019). We use the absolute mean relative error(AbsRel), i.e., 1

M

∑M
i=1

|d̂i−di|
di

, where M is the total
number of valid pixels, di denotes the ground truth, and d̂i is the predicted depth. We report accuracy
thresholds δτ , which denote the fraction of pixels where the prediction and ground truth differ by
less than a multiplicative factor τ = 1.25.

4.2 IMPLEMENTATION DETAILS

Our setup differs slightly from Depth Anything V2 (Yang et al., 2024b). To better utilize the high-
resolution features of DINOv3 (Siméoni et al., 2025), we increase the input image resolution to
768× 768. The encoder is kept frozen throughout training, and we use features from four interme-
diate layers as decoder inputs: [2, 5, 8, 11] for DINOv3 S/16 and DINOv3 B/16, and [4, 11, 17, 23]
for DINOv3 L/16. We perform simple regression to predict disparity d′ = 1/d, where d′ denotes
disparity and d denotes depth. Both the input image and the groundtruth are normalized to [0, 1].
We follow the settings of Depth Anything v2 (Yang et al., 2024b) and use a scale- and shift-invariant
loss Lssi and a gradient matching loss Lgm, and the weight ratio of Lssi and Lgm is set to 1 : 2. To
stabilize optimization, we follow an optimization strategy similar to DINOv3 (Siméoni et al., 2025).
We use AdamW with a base learning rate of 1 × 10−3, a PolyLR scheduler with power 0.9, and a
linear warm-up for the first two epochs. We train for a total of five epochs.

4.3 MAIN RESULTS

4.3.1 RESULTS OF DATA CENTRIC LEARNING
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Figure 5: Dataset quality across the Total Score, Depth Distribution Score, and Gradient Continuity
Score (higher is better).

We applied the metrics proposed in Section 3.4 to all training datasets, with the results shown in
Fig. 5. We observe that Hypersim performed well in both the Depth Distribution Score and Gradi-
ent Continuity Score, achieving the highest overall score. This indicates a relatively balanced depth
distribution, smooth gradients, and a low concentration of noisy samples. In contrast, datasets con-
taining outdoor samples, such as VKITTI2, BlendedMVS, and TartanAir, had significantly lower
Depth Distribution Scores, indicating a more severe depth distribution. This is likely a common
problem across all outdoor datasets. The low Gradient Continuity Score for VKITTI2 may be due to

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Dataset statistics of good and bad samples.

Dataset Total Good Bad

Hypersim 39,648 26,912 12,736
VKITTI2 19,559 12,643 6,916
BlendedMVS 115,142 74,838 40,304
IRS 103,316 68,211 35,105
TartanAir 306,637 186,693 119,944

Summary 584,302 369,297 215,005

Table 2: Quantitative comparison of zero-shot affine-invariant depth estimation. Lower AbsRel
values are better; higher δ1 values are better. DINOv3 (Siméoni et al., 2025) uses the ViT-7B
encoder, and Depth Anything v2 (DAv2) (Yang et al., 2024b) is trained on 62.6M datasets. For fair
comparison, the baseline (DPT) uses a frozen DINOv3 encoder and DPT head, while our method
replaces the DPT head with the proposed SDT. The bold numbers in the table refer to the best results
between DPT and AnyDepth.

Method Training
Data↓ Encoder #Params

(M)↓
NYUv2 KITTI ETH3D ScanNet DIODE

AbsRel↓ δ1 ↑AbsRel↓ δ1 ↑AbsRel↓ δ1 ↑AbsRel↓ δ1 ↑AbsRel↓ δ1 ↑
DINOv3 595K ViT-7B 91.19 4.3 98.0 7.3 96.7 5.4 97.5 4.4 98.1 25.6 82.2

DAv2 62.6M
ViT-S 70.64 5.3 97.3 7.8 93.6 14.2 85.1 – – 7.3 94.2
ViT-B 157.33 4.9 97.6 7.8 93.9 13.7 85.8 – – 6.8 95.0
ViT-L 391.19 4.5 97.9 7.4 94.6 13.1 86.5 – – 6.6 95.2

DPT 584K
ViT-S 49.64 8.4 93.3 10.8 89.1 12.7 92.0 8.3 93.5 26.0 71.4
ViT-B 71.33 7.5 95.1 10.8 88.9 10.0 92.9 7.1 95.3 24.5 73.4
ViT-L 91.19 6.1 96.8 8.9 92.5 13.0 94.9 6.0 97.0 23.4 73.9

AnyDepth 369K
ViT-S 5.52 8.2 93.2 10.2 88.3 8.4 93.5 8.0 93.6 24.7 71.4
ViT-B 9.45 7.2 95.0 9.7 90.1 8.0 94.5 6.8 95.6 23.6 72.7
ViT-L 13.38 6.0 96.8 8.6 92.6 9.6 95.4 5.4 97.4 22.6 73.6

the presence of numerous fine-grained structures (e.g., leaves) in the samples, resulting in abundant
edges and severe gradient abruptness, which is considered noisy.

Following the methods described in Section 3.4, we filtered the entire dataset. Specifically, we first
filtered out samples whose valid depth values accounted for less than 20% of the total pixels. We
then sorted the remaining samples based on the Depth Distribution Score and Gradient Continuity
Score, filtering out the 20% with the lowest scores for each metric. The number of filtered samples
for each dataset is shown in Table 1. For visualizations of low-quality samples, please see the A.2.
The merged dataset contains 584K samples, of which approximately 369K are used for training and
215K are filtered out.

4.3.2 QUANTITATIVE COMPARISONS

Table 2 reports quantitative comparison results for zero-shot affine-invariant depth estimation. Since
the baselines in the Depth Anything series all use a DPT head, we primarily compare our proposed
SDT decoder with the DPT under the same backbone settings.

While our approach does not yet surpass the state-of-the-art results reported by fully data-driven
methods (e.g., the Depth Anything series (Yang et al., 2024a;b) and DINOv3-7B (Siméoni et al.,
2025), which require hundreds of millions of parameters or massive datasets), we emphasize that
our entire AnyDepth is designed from a light-weight and simple perspective, focusing not only
on model design but also on data quality and quantity. Inspired by the principles of data-centric
learning, we conclude that our model can achieve superior performance even with a relatively small
amount of high-quality data (369K).

SDT uses only 5–13M parameters and outperforms DPT with various encoder sizes. Our results
show that SDT significantly reduces the number of parameters and training cost while maintain-
ing comparable accuracy to DPT, and there is a slight improvement in inference speed (Fig. 3).
AnyDepth provides a lightweight, efficient, and computationally friendly alternative.
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Image DPT-B AnyDepth Image DPT-B AnyDepth Image DPT-B AnyDepth

Figure 6: Qualitative results of zero-shot monocular depth estimation using AnyDepth of ViT-B
and comparison with DPT-B.

Table 3: Ablation on the effect of data filtering across five benchmarks. Filtering denotes our quality-
based sample selection strategy (369K vs. 584K). We report AbsRel (lower is better) and δ1 (higher
is better).

Variant NYUv2 KITTI ETH3D ScanNet DIODE
AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑

w/o Filtering 7.3 95.1 9.3 91.1 8.8 94.8 7.0 95.6 24.4 72.7
w/ Filtering (ours) 7.2 95.0 9.7 90.1 8.0 94.5 6.8 95.6 23.6 72.7

4.4 EFFICIENCY

We comprehensively evaluated efficiency advantages of AnyDepth. Compared to DPT, AnyDepth
not only significantly reduces the number of parameters (Fig.2a), but also shows that AnyDepth
significantly reduces FLOPs by 37% when using models of varying sizes, particularly at high res-
olutions (Fig.2b). It also slightly improves inference speed (Fig.3). Furthermore, Average iteration
time of AnyDepth during training is 10% shorter than that of DPT.

4.5 ABLATION STUDY

To examine the effectiveness of our data-centric filtering strategy, we compared models trained
using all available samples (584K) with models trained using a filtered subset (369K). As shown in
Table 3 , while the amount of training data is reduced, model performance remains comparable. This
suggests that removing noisy or low-quality samples benefits model training, further supporting our
data-centric approach.

5 LIMITATIONS AND FUTURE WORK

While our work demonstrates advantages, it also has some limitations. First, the current pipeline has
not been evaluated in large-scale fully supervised or fine-tuned settings. Second, further analysis
of the dataset can be used to optimize the filtering strategy. In future work, we can extend our
lightweight framework to a wider range of tasks, such as metric depth and normal estimation.

6 CONCLUSION

In this paper, we introduce AnyDepth, a simple and efficient-to-train framework for zero-shot
monocular depth estimation. In our setup, a powerful self-supervised visual backbone paired with
a single-path lightweight decoder is sufficient to achieve competitive performance without the need
for large-scale, costly training. The goal of AnyDepth is not to surpass large-scale state-of-the-art
methods, but rather to provide a more practical and academically valuable approach through its
lightweight design and improved data quality.

9
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ETHICS STATEMENT

This research focuses on monocular depth estimation using publicly available synthetic and real-
world datasets. All datasets are widely used in the literature and were collected with relevant consent
and licenses. No new human or animal data were collected for this research. Our methods do not
involve personally identifiable information and do not allow for surveillance or privacy-intrusive
applications outside of existing depth estimation research. We release our code and data processing
pipeline under an open license to support transparency and research integrity. This research adheres
to the ICLR ethical guidelines on fairness, accountability, and responsible dataset use.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. To further enhance repro-
ducibility, we will release anonymized source code, pretrained model checkpoints, and data filtering
scripts. All datasets used in this research are publicly available. These resources enable independent
researchers to replicate our experiments and verify all reported results.
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A APPENDIX

A.1 LLM USE DECLARATION

Large Language Models (ChatGPT) were used exclusively to improve the clarity and fluency of
English writing. They were not involved in research ideation, experimental design, data analysis, or
interpretation. The authors take full responsibility for all content.

A.2 VISUALIZATION OF LOW-QUALITY SAMPLES

Figure 7 provides qualitative examples of low-quality samples from five training datasets. It can
be seen that some datasets contain samples with highly uneven depth value distributions, leading
to biased supervision. This situation motivates us to use a depth distribution score when evaluating
dataset quality.

In addition, Figure 8 shows RGB images, gradient maps, and ground-truth depth examples from the
same five datasets. The highlighted areas indicate the presence of severe gradient noise or incon-
sistent edges, which can negatively impact training stability. These qualitative findings support our
quantitative gradient consistency metric.

Virtual KITTI IRS

Hypersim TartanAir BlendedMVS

Figure 7: RGB images and GT of each dataset, showing that the depth value distribution of some
samples is not uniform.
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Figure 8: Examples of RGB, gradient, and GT depth from five datasets. The dotted box highlights
the noisy area.
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