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Abstract

Considering the seq2seq architecture of Yin001
and Neubig (2018) for natural language to002
code translation, we identify four key compo-003
nents of importance: grammatical constraints,004
lexical preprocessing, input representations,005
and copy mechanisms. To study the impact006
of these components, we use a state-of-the-art007
architecture that relies on BERT encoder and008
a grammar-based decoder for which a formal-009
ization is provided. The paper highlights the010
importance of the lexical substitution compo-011
nent in the current natural language to code012
systems.013

1 Introduction014

Translating natural language program descriptions015

to actual code is meant to help programmers to ease016

writing reliable code efficiently by means of a set017

of advanced code completion mechanisms.018

There are mainly two classes of methods for ob-019

taining code corresponding to a query expressed020

in natural language. The first one is code retrieval,021

which consists of searching and retrieving an ap-022

propriate code snippet from a code database. The023

second one is code generation, where the goal is to024

generate code fragments from a natural language025

description, generating potentially previously un-026

seen code. In this work, we are interested in Python027

code generation. Code generation features a mis-028

match between an ambiguous and noisy natural029

language input and the structured nature of the gen-030

erated code. Although Python’s vocabulary has a031

finite number of keywords, the set of value that can032

be assigned to a variable is infinite and constitutes033

one of the issues in predicting code corresponding034

to natural language.035

Like many other NLP tasks, current architectures036

for natural language to code generally take advan-037

tage of pre-trained language models such as BERT038

(Devlin et al., 2019) or GPT (Brown et al., 2020)039

based on the transformer architecture (Vaswani040

et al., 2017). In particular, these architectures are 041

used for code generation where parallel data is 042

limited due to the human expertise required for 043

alignment. The best results on code generation are 044

reached by pretraining seq2seq models on exter- 045

nal sources, then by fine-tuning those models on 046

smaller data sets. For instance, Orlanski and Git- 047

tens (2021) fine-tunes BART (Lewis et al., 2020) 048

on data pairs of natural language and code and by 049

taking advantage of external informations. Simi- 050

larly, Norouzi et al. (2021) used BERT and a trans- 051

former decoder in a semi-supervised way by taking 052

advantage of a large amount of additional mono- 053

lingual data. Another popular method is to train 054

large language models on code (Austin et al., 2021; 055

Hendrycks et al., 2021). Notably, GPT-3 has been 056

finetuned on a large quantity of data from Github 057

to obtain a powerful language model named Codex 058

(Chen et al., 2021) that powers Github Copilot, a 059

tool to help developers. 060

Overall the above mentioned solutions aim to 061

take advantage of large amounts of training data 062

available nowadays, but few of them care about 063

generating code that is guaranteed to be syntacti- 064

cally correct nor well typed. Let us mention some 065

exceptions from semantic parsing like Dong and 066

Lapata (2016); Rabinovich et al. (2017); Yin and 067

Neubig (2017) that rely on grammatical constraints 068

to ensure that the generated code can be executable. 069

In this work, we study variations around the 070

TranX seq2seq architecture (Yin and Neubig, 2018) 071

for translating natural language to code. Rather 072

than generating directly code tokens from natural 073

language, the architecture generates an Abstract 074

Syntax Tree (AST) constrained by the program- 075

ming language grammar. 076

The paper reports state of the art results on the 077

task and specifically introduces: 078

• A formalization of the grammar constrained 079

code generator relying on the Earley (1970) 080

parser transition system. 081

1



• A study of the impact of key components of082

the architecture on the performance of the sys-083

tem: we study the impact of the grammatical084

component itself, the impact of the language085

model chosen, the impact of variable naming086

and typing and the impact of the input/output087

copy mechanisms.088

It is structured as follows. Section 2 formalizes the089

symbolic transition system used for generating the090

grammatically correct code, Section 3 describes a091

family of variants around the TranX architecture092

that will be used to study the impact of these varia-093

tions in the experimental part of the paper (Section094

4).095

2 A transition system for code generation096

Among the models tested in the paper, some are097

generating syntactically constrained code. In the098

context of our study, we propose a transition model099

that meets two objectives: the code generated is100

grammatically valid in terms of syntax and the101

whole translation process still reduces to a seq2seq102

transduction mechanism that allows us to leverage103

standard machine learning methods.104

To this end we introduce a transition system for105

code generation that generates an AST as a se-106

quence of actions. The derivations can then be107

translated into ASTs and in actual Python code108

by means of deterministic functions. The set of109

valid ASTs is a set of trees that are generated by110

an ASDL grammar (Wang et al., 1997). An ASDL111

grammar is essentially a context free grammar ab-112

stracting away from low level syntactic details of113

the programming language and aims to ease the se-114

mantic interpretation of the parse trees. To this end115

ASDL grammar rules come with additional deco-116

rators called constructors and field names (Figure117

1).118

Our transition system generates derivations, or119

sequences of actions, that can be translated to a120

syntactically correct Python code. We adapt to121

code generation the transition system of the Ear-122

ley parser (Earley, 1970) as formalized in Figure123

2. The generator state is a stack of dotted rules. A124

dotted rule is a rule of the formA→ α•Xβ where125

α is a sequence of grammar symbols whose sub-126

trees are already generated and Xβ is a sequence127

of grammar symbols for which the subtrees are yet128

to be generated. The •X symbol is the dotted sym-129

bol or the next symbol for which the system has to130

generate the subtree. The Python ASDL grammar131

includes rules with star (∗) qualifiers allowing zero 132

or more occurrences of the starred symbol. The 133

transition system uses an additional set of starred 134

actions and a CLOSE action to stop these iterations 135

(Figure 2). 136

Each PREDICT(C) action starts the generation 137

of a new subtree from its parent. The GENERATE 138

action adds a new leaf to a tree. The COMPLETE ac- 139

tion finishes the generation of a subtree and contin- 140

ues the generation process with its parent. The set 141

of PREDICT actions is parametrized by the ASDL 142

rule constructor (C), thus there are as many predict 143

actions as there are constructors in the ASDL gram- 144

mar. Constructors are required in order to generate 145

the actual ASTs from the derivations. 146

GENERATE(V) actions are actions responsible 147

for generating the terminal or primitive sym- 148

bols. The Python ASDL grammar generates ASTs 149

with primitive leaf types (identifier, int, 150

string, constant) that have to be filled with 151

actual values for the AST to be useful. To generate 152

actual primitive values the set of generate actions 153

is also parametrized by the actual values V for the 154

primitive types. The set of such values is infinite 155

and consequently the set of generate actions is also 156

infinite. 157

Non determinism comes from the use of PRE- 158

DICT(C), GENERATE(V) and CLOSE rules. By con- 159

trast the application of the COMPLETE action is 160

entirely deterministic: once the generator has a 161

completed dotted rule on the top of its stack, it has 162

no other choice than applying the complete rule. 163

The sequential generation process is illustrated 164

in Figure 3. Given a start state, at each time step, 165

the generator has to decide which action to perform 166

according to the current state of the stack and up- 167

dates the stack accordingly. Once the generator 168

reaches the goal state, we collect the list of actions 169

performed (the derivation) in order to build the 170

AST that we finally translate into actual Python 171

code1. 172

3 Factors influencing code prediction 173

All architectures analyzed in this study are varia- 174

tions around a seq2seq architecture. We describe 175

the several variants of this architecture used in this 176

paper both on the encoder and decoder side. We 177

identify key factors that have an impact on the 178

natural-language-to-code translation architecture 179

1We use the astor2 library to this end.
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expr = BinOp expr left, operator op, expr right
operator = Add
expr = Constant constant value
expr = List expr* elts

Figure 1: Example of ASDL rules for the Python language. Each rule is built from a set of grammatical symbols
(in blue), is uniquely identified by a constructor name (in red) and provides names to its right hand side symbols,
its fields (in green). Grammatical symbols are split in nonterminals (like expr) and terminals or primitives (like
constant). Grammatical symbols can also be annotated with qualifiers (*) that allow for zero or more iterations
of the symbol.

Action Transition Condition

START(C) 〈A→ •α〉
GOAL 〈A→ α•〉

PREDICT(C) 〈S|A→ α •Bβ〉 ⇒ 〈S|A→ α •Bβ|B → •γ〉 (B → γ ∈ rules)
GENERATE(V) 〈S|A→ α • tβ〉 ⇒ 〈S|A→ αt • β〉 (t ∈ primitives)
COMPLETE 〈S|A→ α •Bβ|B → γ•〉 ⇒ 〈S|A→ αB • β〉

PREDICT∗(C) 〈S|A→ α •B∗β〉 ⇒ 〈S|A→ α •B∗β|B → •γ〉 (B → γ ∈ rules)
GENERATE∗(V) 〈S|A→ α • t∗β〉 ⇒ 〈S|A→ αt•t∗β〉 (t ∈ primitives)
COMPLETE∗ 〈S|A→ α •B∗β|B → γ•〉 ⇒ 〈S|A→ αB •B∗β〉
CLOSE∗ 〈S|A→ α •X∗β〉 ⇒ 〈S|A→ α • β〉

Figure 2: An Earley inspired transition system for generating Abstract Syntactic Trees. The state of the generator
is a stack of dotted rules whose bottom is S. As in the the Earley parser, the PREDICT rule starts the generation of
a new subtree by pushing a new dotted rule on the stack, the GENERATE rule adds a leaf to the tree by swapping
the top of the stack and the COMPLETE rule attaches a generated subtree into its parent by popping the top two
elements of the stack and pushing an updated dotted rule. To handle * qualifiers we add the starred inference rules
where COMPLETE∗ and GENERATE∗ implement an iteration that stops with the CLOSE∗ rule.

Generator State (stack) Action

〈expr→ •expr∗〉 START(List)
〈expr→ •expr∗|expr→ •expr operator expr〉 PREDICT∗(BinOp)
〈expr→ •expr∗|expr→ •expr operator expr|expr→ •constant〉 PREDICT(Constant)
〈expr→ •expr∗|expr→ •expr operator expr|expr→ constant•〉 GENERATE(7)
〈expr→ •expr∗|expr→ expr • operator expr〉 COMPLETE

〈expr→ •expr∗|expr→ expr • operator expr|expr→ •〉 PREDICT(Add)
〈expr→ •expr∗|expr→ expr operator • expr〉 COMPLETE

〈expr→ •expr∗|expr→ expr operator • expr|expr→ •constant〉 PREDICT(Constant)
〈expr→ •expr∗|expr→ expr operator • expr|expr→ constant•〉 GENERATE(5)
〈expr→ •expr∗|expr→ expr operator expr•〉 COMPLETE

〈expr→ expr • expr∗〉 COMPLETE∗

〈expr→ expr • expr∗|expr→ •constant〉 PREDICT∗(Constant)
〈expr→ expr • expr∗|expr→ constant•〉 GENERATE(4)
〈expr→ expr expr • expr∗〉 COMPLETE∗

〈expr→ expr expr•〉 CLOSE∗

expr
(List)

expr:elts
(Constant)

constant:value
4

expr:elts
(BinOp)

expr:right
(Constant)

constant:value
5

operator:op
(Add)

expr:left
(Constant)

constant:value
7

Figure 3: Example derivation for the generation of the Python list expression [7+5,4]. The derivation starts
with expr as axiom symbol and applies transitions until the goal is reached. The list of actions performed is called
the generator derivation. Given a generated derivation we can design a straightforward deterministic procedure to
translate it into an AST. The actual Python code is generated from the AST by the astor library.
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and we formalize a family of models that allow to180

test variations of these factors.181

We consider a family of models generating182

Python code y from a natural language description183

x, that have the generic form:184

p(y|x) =
∏
t

p(yt|y<t, x) (1)185

y is either a sequence of code tokens in case we do186

not use a grammar, or a sequence of actions from a187

derivation in case we use a grammar. The decoding188

objective aims to find the most-probable hypothe-189

sis among all candidate hypotheses by solving the190

following optimization problem:191

ŷ = argmax
y

p(y|x) (2)192

The family of models varies according to four193

key qualitative factors that we identify in the TranX194

architecture. First we describe a substitution proce-195

dure managing variables and lists names in section196

3.1). Second, in section 3.2, we test the architec-197

tural variations for encoding the natural language198

sequence. Third, in section 3.3, we describe vari-199

ations related to constraining the generated code200

with grammatical constraints and architectural vari-201

ations that allow to copy symbols from the natural202

language input to the generated code.203

3.1 Substitution204

Programming languages come with a wide range of205

variable names and constant identifiers that make206

the set of lexical symbols infinite. Rather than207

learning statistics on a set of ad-hoc symbols, we208

rather normalize variable and constant names with209

a pre-processing method, reusing the method of210

Yin and Neubig (2018).211

Preprocessing amounts to substitute the actual212

names of the variables with a normalized set of pre-213

defined names known to the statistical model. The214

substitution step renames all variables both in the215

natural language and in the code with conventional216

names such as var_0, var_1, etc. for variables217

and lst_0,lst_1, etc. for lists. A post process-218

ing step substitutes back the predicted names with219

the original variable names in the system output.220

For example, given the natural language intent:221

create list `done` containing permuta-222

tions of each element in list `[a, b,223

c, d]` with variable `x` as tuples224

is transformed into:225

create list var_0 containing permuta- 226

tions of each element in list lst_0 with 227

variable var_1 as tuples 228

The predicted code such as var_0 = [(el, 229

var_1) for el in [lst_0]] is trans- 230

formed back into done = [(el, x) for 231

el in [a, b, c, d]]. 232

Models using variable replacement as illustrated 233

above, are identified with the notation SUBSTITU- 234

TION = TRUE in section 4. Implementing this 235

heuristic is made easy by the design of the CoNaLa 236

data set where all such names are explicitly quoted 237

in the data while for Django we had to define our 238

own heuristic. 239

3.2 Encoder 240

We switched between a classic bi-LSTM and a 241

pretrained BERTBASE to encode the input natural 242

language {xi, i ∈ J1, nK} of n words into a vecto- 243

rial representations {h(enc)i , i ∈ J1, nK} which are 244

later used to compute the attention mechanism. 245

We set the BERT factor to TRUE when using it and 246

FALSE when using the bi-LSTM. 247

3.3 Decoder 248

At each time step t, the LSTM decoder computes 249

its internal hidden state h(dec)t : 250

h
(dec)
t = LSTM([et−1 : ãt−1], h

(dec)
t−1 ) (3) 251

where et−1 is the embedding from the previous 252

prediction, ãt−1 is the attentional vector. 253

We compute the attentional vector ãt as in Lu- 254

ong et al. (2015) combining the weighted average 255

over all the source hidden state ct and the decoder 256

hidden state h(dec)t : 257

ãt =Wa[ct : h
(dec)
t ] (4) 258

It is the attention vector ãt which is the key to 259

determine the next prediction yt. 260

We use several variants of the code generator, 261

that we describe by order of increasing complexity. 262

The basic generator is a feed forward that uses the 263

attention vector to generate a code token v from a 264

vocabulary V : 265

p(yt = GENERATE[v]|x, e<t) =

softmax(e>v ·Wg · ãt)
(5) 266

These models are not constrained by the Python 267

grammar and we identify these models with GRAM- 268

MAR = FALSE. 269
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Figure 4: Illustration of the seq2seq model with the variables SUBSTITUTION, GRAMMAR, BERT, POINTERNET
set to TRUE. We describe here the complete process where we predict a derivation sequence composed of grammar
rules and CLOSE (PREDRULE) or Python variables/built-in (GENERATE). The astor library is used to transform the
AST constructed with the derivation sequence into Pyton code. In the case where GRAMMAR = FALSE, we only
have the GENERATE action which exclusively predicts unconstrained code tokens (as for a classical seq2seq).

We also use a pointer network that may either270

copy symbols from input to output or generate sym-271

bols from V . Then the probability of generating272

the symbol v is given by the marginal probability:273

p(yt = GENERATE[v]|x, e<t) =

p(gen|x, e<t)p(v|gen, x, e<t)

+p(copy|x, e<t)p(v|copy, x, e<t)

(6)274

The probabilities p(gen|.) and p(copy|.) sum to275

1 and are computed with softmax(W · ãt). The276

probability of generating v from the vocabulary277

V p(v|gen, .) is defined in the same way as (5).278

We use the pointer net architecture (Vinyals et al.,279

2015) to compute the probability p(v|copy, .) of280

copying an element from the natural language x.281

Models that use a pointer network are identified282

with PN = TRUE, otherwise with PN = FALSE .283

Finally we use a set of models that are con-284

strained by the Python grammar and that rely on285

the transition system from section 2. Rather than286

directly generating Python code, these models gen-287

erate a derivation whose actions are predicted using288

two prediction tasks.289

When the generator is in a state where the dot of the290

item on the top of the stack points on a nonterminal291

symbol, the PREDRULE is used. This task either292

outputs a PREDICT(C) action or the CLOSE action: 293

p(yt = PREDRULE[c]|x, e<t) =

softmax(e>r ·Wp · ãt)
(7) 294

When the generator is in a state where the dot of 295

the item on the top of the stack points on a terminal 296

symbol, the generate task is used. This amounts to 297

reuse either equation (5) or equation (6) according 298

to the model at hand. Models constrained by the 299

grammar are labelled with GRAMMAR = TRUE. 300

Recall that the COMPLETE action of the transition 301

system is called deterministically (Section 2). 302

4 Experiments 303

In this section we describe the characteristics of the 304

data sets on which we have tested our different se- 305

tups and the underlying experimental parameters3. 306

4.1 Data sets 307

In this study we use two available data sets, Django 308

and CoNaLa, to perform our code generation task. 309

The Django data set provides line-by-line com- 310

ments with code from the Django web framework. 311

About 70% of the 18805 examples are simple 312

3The code of our experiments is public and available at
anonymized adress
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Python operation ranging from function declara-313

tions to package imports, and including excep-314

tion handling. Those examples strongly share the315

natural language structure (e.g. call the function316

cache.close → cache.close()). More than317

26% of the words in the natural language are also318

present in the code, BLEU score between the natu-319

ral language and code is equal to 19.4.320

CoNaLa is made up of 600k NL-code pairs from321

StackOverflow, among which 2879 examples322

have been been manually cleaned up by developers.323

All results are reported on the manually curated324

examples, unless stated otherwise. The natural lan-325

guage descriptions are actual developer queries (e.g.326

Delete an element 0 from a dictionary ‘a‘) and the327

associated code is diverse and idiomatic (e.g. {i:328

a[i] for i in a if (i != 0)}). Com-329

pared to Django, the code is much more challeng-330

ing to generate. Especially because the number of331

words shared between the NL and the code is much332

lower (BLEU = 0.32). Also, the code is longer and333

more complex with an AST depth of 7.1 on average334

against 5.1 for Django.335

4.2 Vocabulary generation336

The vocabulary of natural language and code is337

essential. Usually, this vocabulary is created by338

adding all the words present in the training data set.339

There are however exceptions that are detailed in340

this section.341

The natural language vocabulary relies on a byte342

pair encoding tokenizer when BERT = TRUE. As343

explained in section 3.1, the variable names are344

replaced with special tokens var_i and lst_i.345

These new tokens are crucial to our problem, and346

added to the BERT vocabulary. We can then fine-347

tune BERT with this augmented vocabulary on our348

data sets.349

For the decoder part, when GRAMMAR = TRUE,350

the vocabulary of grammatical actions is fixed,351

while the vocabulary of AST leaves has to be built.352

This associated vocabulary can be composed of353

built-in Python functions, libraries with their asso-354

ciated functions or variable names. Its creation is355

consequently a major milestone in the generation356

process.357

To create this external vocabulary, we proceed as358

in TranX. From the code, we create the derivation359

sequence composed of the action of the grammar360

as well as the primitives. All primitives of the361

action sequences are incorporated into our external362

vocabulary. 363

4.3 Setup 364

When BERT = FALSE, the size of the representa- 365

tions is kept small to prevent overfitting. Encoder 366

and decoder embedding size is set to 128. The hid- 367

den layer size of the encoder and decoder bi-LSTM 368

is set to 256 and the resulting attention vector size 369

is 300. We have two dropout layers: for embed- 370

dings and at the output of the attention. We use 371

Adam optimizer with learning rate α = 5.10−3. 372

When BERT = TRUE, encoder embeddings have 373

a natural size of 756 with BERT. We therefore 374

apply a linear transformation to its output to get an 375

embedding size equal to 512. The size of LSTM 376

decoder hidden state and attention vector are set to 377

512. We regularize only the attentional vector in 378

that case. We use Adam optimizer with learning 379

rate α = 5.10−5. In both cases, we use a beam 380

search size of 15 for decoding. 381

Evaluation We report the standard evaluation 382

metric for each data set: exact match accuracy and 383

corpus-level BLEU. 384

385

Python version As the grammar slightly 386

changes between Python versions, let us mention 387

that all our experiments have been carried out with 388

Python 3.7. 389

4.4 Ablation study 390

Figure 5: Difference between the marginal mean of
each variable for the TRUE and FALSE conditions.

To highlight the contribution of the different fac- 391

tors, SUBSTITUTION, BERT, GRAMMAR, PN on the 392

Django and CoNaLa data sets we report a detailed 393

study of their impact in Table 1. 394
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Substitution BERT Grammar PN CoNaLa BLEU CoNaLa accuracy Django BLEU Django accuracy

False

False
False

False 21.05± 0.81 0.9± 0.42 42.58± 1.54 26.86± 1.15
True 22.33± 0.78 1.7± 0.90 64.79± 1.00 62.85± 1.21

True
False 20.59± 0.74 2.87± 0.48 43.23± 1.62 30.12± 0.63
True 22.16± 1.93 3.87± 1.65 62.55± 1.60 65.20± 0.03

True
False

False 30.83± 4.08 2± 0.94 53.18± 0.87 30.28± 0.26
True 30.98± 1.33 3.3± 1.48 58.69± 1.28 37.96± 0.27

True
False 25.88± 0.94 3.8± 1.96 47.32± 0.50 29.62± 0.33

False

True 28.43± 0.64 4.4± 1.67 52.55± 0.51 37.38± 0.38

False
False 31.17± 0.88 3.1± 1.52 70.4± 0.25 70.40± 0.29

True

True 32.10± 1.06 3.1± 1.24 70.28± 0.38 70.46± 0.37

True
False 33.36± 1.63 6.37± 0.63 70.82± 0.22 71.3± 0.19
True 32.86± 1.75 5± 1.67 70.62± 0.49 71.47± 0.19

True

False
False 36.43± 0.41 4.5± 1.84 76.97 ± 0.15 74.58± 0.27

True
36.29± 2.27 5± 1.32 76.62± 0.50 76 ± 0.71
35.42± 1.75∗ 5.2± 1.33∗ - -

True
False 35.04± 1.03 7.3± 1.25 76.20± 0.46 74.88± 0.56

True
37.99± 1.85 7.5± 1.12 76.32± 0.59 75.32± 1.54

39.01 ± 1.08∗ 7.7 ± 1.92∗ - -

Table 1: Performances with different natural language encoders on the development sets with and without a gram-
matical component. The scores reported are the mean and standard deviation resulting from training with 5 differ-
ent seeds. The * refers to the use of 100k CoNaLa mined data in addition to clean examples.

The results are analyzed by distinguishing lex-395

ical and grammatical aspects and by identifying396

relations between the different factors. We start by397

a comparison of the marginal mean of the BLEU398

score for each of our variables in both conditions.399

Figure 5 highlights the mean difference between400

the conditions by contrasting the case where the401

value is TRUE with the case where the value is402

FALSE.403

Pointer network The pointer network can im-404

prove the results, especially when SUBSTITUTION405

= FALSE. This is because the only way to obtain406

the name of the variables is to copy them. Com-407

bined with substitution, the pointer network of-408

fers an additional possibility to predict the var_i,409

lst_i which allows to achieve the best results410

with a BLEU score of 39.01 on CoNaLa and an411

exact match accuracy of 76 on Django.412

Substitution and Typing The scores are sta-413

bilised and much higher with substitution. We gain414

more than 9 points of BLEU on CoNaLa (respec-415

tively 20 points on Django) thanks to substitution.416

The "weakest" configuration where all variables417

are FALSE except the substitution gives better re-418

sults than all configurations where SUBSTITUTION419

= FALSE.420

The increase in BLEU with substitution can be ex-421

plained in two ways. On the one hand, we remark422

that the model has difficulties to memorize the val-423

ues to fill the lists with GENERATE. For example, 424

four tokens of code must be generated to predict 425

the list [a, b, c, d]. Using substitution, the 426

model can just predict lst_0 which will be re- 427

placed by [a, b, c, d] during postprocessing. 428

This avoids a potential error in the creation of the 429

list and directly gives a valid 4-gram. This con- 430

tributes to greatly increase the BLEU, which shows 431

the importance of replacing listf. On CoNaLa, 432

BLEU score on the development set drops from an 433

average of 37.99 to an average of 30.66 without list 434

replacement. Besides list replacement, the architec- 435

ture has also a weakness with respect to variable 436

typing. When using the grammar without substi- 437

tution, the results are lower than without grammar. 438

This effect is the result of a type checking failure. 439

The model predicts ill-typed AST structures. For 440

instance it predicts an AST whose corresponding 441

code should be 1.append([6,7]). However 442

the AST library we used prevents from generating 443

such ill-typed code. The absence of code genera- 444

tion in such cases explain the decrease in BLEU 445

score. 446

The use of substitution partially corrects for 447

these typing errors because the substituted sym- 448

bols var_i, lst_i are generally more likely to 449

be predicted and are likely to have the right type 450

thanks to the mapping. 451

Grammatical aspect The transition system 452

doesn’t improve the results on average because 453
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System CoNaLa BLEU CoNaLa accuracy Django BLEU Django accuracy

(Yin and Neubig, 2018) 27.2 - - 73.7
(Yin and Neubig, 2018) + mined 28.1 - - -
(Orlanski and Gittens, 2021) + mined 100k 30.55 - - -
(Norouzi et al., 2021) + 600k mined 32.57 - - 81.03

Ours BERT + GRAMMAR 31.6 4.5 79.86 79.77
Ours BERT + GRAMMAR + 100k mined 34.20 5.8 - -
Ours BERT (tokens) 30.73 1.40 79.81 79.61
Ours BERT + 100k mined (tokens) 32.39 3.4 - -

Table 2: Comparisons of the systems trained without external data sources on CoNaLa and Django test sets.

of the empty predictions when SUBSTITUTION =454

FALSE. The use of the transition system leads to455

better results when SUBSTITUTION = TRUE but not456

as drastically as one would have expected. How-457

ever the real contribution of the grammar associated458

with substitution is the syntactic validity of the code459

in 100% of the cases, as tested with our architec-460

ture obtaining the best results. In scenarios where461

we do not use the grammar, it is never the case to462

have an empty output. But then the proportion of463

code sequences that are actually syntactically valid464

in this setup is 92% on average.465

BERT As expected when using BERT to encode466

the natural language input we get an improvement467

of about 6 marginal BLEU on CoNaLa (respec-468

tively +3 BLEU on Django). More interestingly,469

this effect is lower than the one of the substitution470

operation.471

We conclude that the use of a pre-trained model472

increases the results but less than substitution, de-473

spite what one might think and it suggests that im-474

proving the management of variable names and475

lists is one of the key elements for improving476

the system. The contribution of grammatical con-477

straints in BLEU may seem detrimental but we478

could see that this is a side effect of typing con-479

straints in adversarial scenarios. Overall the non-480

constrained generated code is syntactically incor-481

rect in 8% of the cases.482

4.5 Test483

We compare in table 2 our results with other sys-484

tems on CoNaLa and Django test sets. We report485

our best performing models on the development set486

with and without grammatical constraints. We also487

use models trained on the full CoNaLa including488

mined examples to get relevant comparisons.489

Among the other systems Yin and Neubig (2018)490

is the only one that uses grammatical constraints.491

Our architecture differs with the use of a BERT 492

encoder whereas Yin and Neubig (2018) use an 493

LSTM. The other systems do not use grammati- 494

cal constraints but rather try to take advantage of 495

additional data. Orlanski and Gittens (2021) and 496

Norouzi et al. (2021) aim to take advantage of the 497

CoNaLa mined examples. As these mined exam- 498

ples are noisy, Orlanski and Gittens (2021) takes 499

advantage of BART (Lewis et al., 2020), a denois- 500

ing encoder. They also enrich the natural language 501

input with the results of queries from StackOver- 502

flow by adding the title of the post, its associated 503

tags, etc. Norouzi et al. (2021) use BERT as en- 504

coder and a transformer decoder. They apply the 505

Target Autoencoding method introduced by Currey 506

et al. (2017). During training, the encoder parame- 507

ters are frozen and the decoder is trained to recon- 508

struct code examples. They use this method on the 509

mined examples to take maximal advantage of the 510

additional noisy data. 511

We observe that our grammar based model with 512

BERT encoder is state of the art on CoNaLa while 513

the transformer encoder/decoder architecture of 514

Norouzi et al. (2021) performs best on Django. 515

Quite interestingly the exact match accurracy of 516

these models remain weak on CoNaLa. 517

5 Conclusion 518

We formalized a transition system that allows us 519

to guarantee the generation of syntactically cor- 520

rect code. A detailed study of the components of 521

the seq2seq architecture reveals that the models 522

have difficulties at managing accurately variable 523

names and list encodings. The comparison with 524

models trained on larger noisy data sets reveals that 525

our grammatically constrained architecture with- 526

out explicit denoising remains competitive. This 527

further highlights the importance of grammatical 528

constraints and of specific processes dedicated to 529

manage variables, list naming and typing. 530
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A Additional Qualitative Examples655

We present examples of code generated by our best656

models with and without grammar.657

Source convert tuple ‘t‘ to list

Gold list(t)

Grammar [x for x in t for x in
t]

Without
Grammar

[i for i in t]

Remark Problem of CLOSE for the Grammar
output. Without grammar the code
is correct but with a low BLEU.

Source get the position of item 1 in ‘testlist‘

Gold [i for i, x in
enumerate(testlist) if
x == 1]

Grammar [i for i, v in
enumerate(testlist) if
v == 1]

Without
Grammar

testlist = [i for i in
testlist if i != 1]

Remark Grammar output is not equal to Gold
due to dummy variable.

Source declare an array

Gold my_list = []

Grammar x = [0] * 2

Without
Grammar

[(0) for _ in range
(10000)]

Remark Source is not precise enough. Mod-
els’ outputs are valid.

Source append a numpy array ‘b‘ to a
numpy array ‘a‘

Gold np.vstack((a, b))

Grammar a = numpy.array([b, a])

Without
Grammar

z = np.array([b]).
reshape((3, 3))

Remark Gold is not accurate with np unde-
fined before. vstack function not
in the external vocabulary.

Source activate is a lambda function which
returns None for any argument x.

Gold activate = lambda x :
None

Grammar activate = lambda x =
None : x

Without
Grammar

activate = lambda x :
None

Remark Good BLEU for grammar output
while the result is not adequate.

Source remove first element of text

Gold text = text[1:]

Grammar text = text[1:]

Without
Grammar

text[1:

Remark Syntax mistake for the code without
grammar.

Source increment piece by first element of
elt

Gold piece += elt[0]

Grammar piece += elt[1]

Without
Grammar

piece += elt[1]

Remark First element of a list is zero, not
one.

10


