Adaptive Destruction Processes for Diffusion Samplers

Timofei Gritsaev!:>* Nikita Morozov> Kirill Tamogashev® Daniil Tiapkin*>
Sergey Samsonov> Alexey Naumov> Dmitry Vetrov! Nikolay Malkin?
!Constructor University ~*HSE University *University of Edinburgh
*CMAP, Ecole Polytechnique LMO, Université Paris—Saclay

Abstract

In this paper, we explore the challenges and benefits of a trainable destruction
process in diffusion samplers. We allow for additional flexibility in the definition
of the generative and destruction policies, enabling both transition kernels to be
learned as unconstrained Gaussian densities. We show that, when the number of
steps is limited, our approach results in faster convergence and improved sampling
quality on various benchmarks, and investigate the design choices necessary to
facilitate stable training. Finally, we show the scalability of our approach through
experiments on GAN latent space sampling for conditional image generation.

1 Introduction

Probabilistic inference is concerned with sampling from a distribution defined by an unnormalised
density. Contrary to the generative modelling scenario, the learner has access only to an energy
function &(x) : R — R, without access to ground truth samples. The aim is to sample from

ptarget(x) = efg(x)/Z; 7 = /d e*S(x) dx)
R

and estimate the (typically intractable) normalising constant Z. Amortised solutions to this problem
train a generative model to approximately sample from piarger, offering a more scalable alternative
to Monte Carlo or MCMC algorithms [48, 50, 25]. The success of diffusion models as distribution
approximators [69, 24, 70] motivate the application of diffusion-based techniques to amortised
sampling. Unlike typical diffusion models, these diffusion samplers do not assume access to samples
from the target density and are suitable for the sampling problem (1). There are many algorithms for
training diffusion samplers (see §2.1 and Appendix A), many originating in the theory of stochastic
control [e.g., 88, 77] or in discrete-time reinforcement learning [37].

Most stochastic control objectives assume an underlying continuous-time dynamics, necessitating
constraints on the generative and destruction processes: for example, their diffusion coefficients must
coincide (see Appendix B.1). Based on a more flexible discrete-time formulation of diffusion samplers,
we train both the generation and destruction processes. We find that faster and more accurate samplers
are obtained by learning the kernels of both processes as Gaussian distributions with trainable mean
and variance. We study choices of model architectures, training objectives, and techniques needed for
stable training. Finally, we show that our results scale to higher-dimensional problems in experiments
on text-conditional sampling in the latent space of a pretrained StyleGAN3 [31].

2 Methodology

2.1 Setting and background
To solve the problem (1), we simulate the process given by a (forward or generative) Ité6 SDE:

- - = — e d
dXt :fQ(Xht)dt-'_g(t)thv XO ~ Do, re [O, 1] ’ (2)

*Correspondence to tgritsaev@constructor.university.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: ‘Frontiers in Proba-
bilistic Inference: Sampling Meets Learning’ .

H
where py is a tractable distribution (e.g., Gaussian or Dirac). The drift function fy is a neural network

with parameters 6, and we want to find 6 such that)71) ~ Dtargets i.€., the terminal samples)?; are
distributed as prarger. There may be many SDEs of the form in (2) stochastically transporting pg to
Duarget- 10 set a learning target for 6, we consider a backward (or destructive) SDE:

— — —

dX; =f<p(Xt’t) dt+g(t) aw;, X, ~ PDrarget- 3)

Given a fixed process (3), there is a unique forward SDE of the form (2) that defines the same process,
— —
i.e., the processes X; and X; coincide. In particular, the marginal distributions at time 1 would then
—

coincide, S0 X| ~ prarger. Thus, training objectives aim to enforce time reversal — to minimise some
divergence between the generation and destruction processes with respect to their parameters.

In order to learn the time-discrete variant of (2) we use a T-step Euler-Maruyama scheme to obtain a
Markov chain: X — Xz, — ... — X|; At = 1/T.> The discrete dynamics can be written as:

XI+AI :Xt+f9(tht)At+g(t)\/E§h XO NpO(XO)’ §I NN(Osld) (4)
with the conditional probability density for each timestep being
Po(Xeear | Xo) = N(Xpane: Xe + fo(Xeu 1) At, g(1)*At 1y) . 5
The forward and reverse transition kernels pg and E induce joint distributions over X =
(Xo, Xat, - .., X1), corresponding to time-discrete variants of (2) and (3)3, which have the form

T T
Po(X) = po(Xo) l_[Po(Xinel X(i-1)ar) » Pp(X) = Prarger(X1) 1—[Pe(Xi-naclXiae) . (6)
i=1 i=1
If pg is Dirac the transition]Z(Xg | Xa;) is understood to be Dirac and to have density 1 when it
appears in objectives. At convergence we expect that approximately

P0(X0)Po(Xar,...1 | X0) = Prareet(X1) Do (Xo,.t-1)ar | X1) 7

or, for brevity, popg = ptargetfﬁ;. The majority of past work (see Appendix A) focuses on learning
the generation process given a fixed destruction process, although some [59] derive objectives for
optimising both processes. We propose to exploit the flexibility of time-discrete formulation of
diffusion samplers to parametrise both drift and variance of generation and destruction processes
using neural networks. We detail our approach in §2.2 and 2.3 and show experimental findings in §3.

2.2 Relaxing constraints on transitions

We first propose to relax the constraint that the generation and destruction processes arise from a pair
of SDEs (2) and (3) with fixed time-dependent variance. To achieve this, we allow both generatitunon
and destruction processes to be Gaussian with arbitrary means and variances, while maintaining
the requirement that the destruction process leads to pg at the last step. This is done by learning
the generation and destruction means and variances as corrections to those arising in time-discrete
variants of (2) and (3). By introducing corrections we get the following generative transition kernel:

Po(Xeaar | Xo) = N(Xeenr; Xo + fo (X, 1) At, diag(ye(X,, N)o*At L), (®)
and the following destruction kernel:
. t . t
E(Xt | Xisne) = N (Xz;dlag(aw(xz,t)) mXZ+At9 dlag(ﬁw(xtJ))[_'_ AL

where @, (X;,1), By (X;, 1), vo(X;,t) are neural networks with d-dimensional outputs. Details on
the functional form of these functions are given in Appendix B.3. In theory, the transitions could be
more general than Gaussian, as long as their density is tractable to sample and differentiate.

BRI, Id) ©)

The ability to train the destruction process increases the degrees of freedom in the feasible space
of solutions (pop ¢, PrargetP ») When minimising the discrepancy in the time-reversal condition (7).
Meanwhile, training the variance of the generation process corrects for the poor approximation to the
reverse of a fixed destruction process by Gaussian transition with the same variances when the time
discretisation is coarse.

2For notational clarity we assume a uniform discretisation, but all derivations hold for variable time steps.

3This can use the reverse Euler-Maruyama scheme, or (as in [88] and other works, including ours) the reversal
of a forward-time scheme, which do not coincide, but converge as At — 0; see, e.g., [7, Prop. 3.5].

2.3 Training objectives for generation and destruction processes

We consider a number of training objectives from the previous literature with both fixed and learnable
destruction processes. Learning discrete Markov process requires optimising a divergence between
two distributions D(pop_g)H ptargetﬁ) that enforces equality in (7). The seminal works [88, 77]
proposed to optimize reverse KL divergence Dy, through reparameterisation trick. Although this
scheme yields an unbiased estimator, it requires backpropagating though the simulation of the
generation process. Alternatively, one can use second-moment divergences where the expectation
is taken with respect to an arbitrary proposal distribution p. The losses that fall under this category
are trajectory balance [TB; 41]) and VarGrad [59]. They alleviate the need for backpropagating
though the simulation of the generation process, as well as allow for using off-policy exploration
techniques [64]. TB and VarGrad inherently allow for end-to-end learning of generation process and
destruction process, making them a straightforward choice for our purposes. In addition, reverse KL
can also be used for optimization of]‘ﬁ, resulting in an approach that is called trajectory likelihood
maximisation [TLM; 21] in the more general GFlowNet setting.

Table 1 summarises the possible combinations of objec- Table 1: Summary of objectives for learning
tives for destruction and generation policies. In §3 we generation and destruction processes.

numerically study the behaviour of the aforementioned P (generation)
objectives. The detailed descriptions of training objectives j (destruction) | 2" moment Reverse KL
are presented in Appendix B.2. Fixed [59,64] PIS [88], DDS [77]
2" moment TBy,e PISy + VarGrad,,
2.4 Techniques for stable joint optimisation Rev. KL TBy + TLM, PISy +TLM,

We found that simultaneously training generation and destruction processes requires a number
of careful design choices in training. Using a shared MLP backbone for predicting mean and
log-variance of generation and destruction processes, as well us utilizing separate optimizers to
account for different scales of gradients when different training objectives are used for the generation
and destruction process, facilitates faster convergence. Since the destruction process sets a learning
target for the generation process, making it learnable causes this target to become nonstationary,
leading to instabilities in optimisation. Thus, tuning relative learning rates is critical for stable
training [21]. In addition, we use target networks for ¢ when computing the loss gradient for 6
and vice versa, which is a well-know RL [44] technique that further facilitates stability. We also
use the existing exploration techniques proposed by [37, 64], namely, increasing the variance of the
generation process for sampling trajectories for training, as well as local search based on Langevin
dynamics. Finally, we employ prioritised experience replay [PER; 63] with prioritisation by the
loss, which was also utilised for GFlowNet training by [73]. Detailed descriptions are presented
in Appendix C.1, and a numerical study is carried out in Appendix C.2.

3 Experiments

3.1 Synthetic tasks

Energies and metrics. We consider several target densities that are commonly used in the diffusion
samplers literature, as well as more challenging variants of these distributions (see Appendix E.1
for details): Gaussian mixture models (GMM), Funnel [49], and ManyWell [53]. Following the
literature, we use the ELBO and EUBO [10] metrics to evaluate trained samplers. We also compute
the 2-Wasserstein distance between generated and ground truth samples.

Algorithms compared. We use two objectives for optimisation of the generation process: trajectory
balance (TBy, [41]) and reverse KL (equivalent to PIS [88] and so denoted PISg). With each
generation process objective, we compare four settings and vary the number of discretisation steps 7":

* Fixed generation variances, fixed destruction process (as in most prior work);

» Learnable generation variances, fixed destruction process;

* Learnable generation variances, destruction process learned using reverse KL (TLM,,) or TB
(TBy). (When the generation process is learned using reverse KL, we replace TB,, by VarGrad,,
since the log-normalising constant is not learned.)

All training details can be found in Appendix E.3.

Results. Representative results are shown in Figs. 1 and 3 and full tables are in Appendix F. We
summarise the main conclusions below. Extended discussion can be found in Appendix D.1.

125GMM

2
—e— TBg (fixed var.)

Easy Funnel Hard Funnel Distorted Manywell
il TBg (fixed var.)
TBg (leamned var.) — 07 TBg (learned var.)
—+— TBg+TLM, —* TBp+TLM,
—— TBs,p

—— TBg,p

Exponent of ELBO
Exponent of ELBO
<
\
\
\
\
s
Exponent of ELBO

Exponent of ELBO

04 —e— TBg (fixed var.)

TBj (learned var.)
—+— TBe+TLM,
—— TBg,y

2 3 45 10 20 5 10 15 20 25 30
Number of steps Number of steps

)

10 15 20 25 30 5 10 20
Number of steps Number of steps

Figure 1: We compare performance on 125GMM, Easy Funnel, Hard Funnel, Distorted Manywell of TB ¢
(fixed var.), TBg (learned var.), TBg + TLM,,, TBg, , (other objectives in Fig. 3, Appendix F). Results are
compared using ELBO. Mean and std over 3 seeds, collapsed runs excluded.

Learned generation variances improve sampling. Learnable variance of the generation process
significantly improves the performance of the sampler, especially when the number of generation
steps is small (Fig. 1) and in environments with high distortions (Fig. 4).

Off-policy losses are superior to differentiable simulation. The off-policy TB loss with ex-
ploratory behaviour policy is on par with or better than the PIS loss for learning the generation
process in all cases (Appendix F), showing that findings in past work, such as [59, 64, 34], continue
to hold when generation variances and the destruction process are learned.

Learning the destruction process is beneficial. Learning the destruction process yields an im-
provement over models with fixed destruction process and learned generation variance on all tasks.

TB is preferable to TLM for learning destruction. Training the destruction process with the
TLM loss is typically superior to TB for small 7 but unstable for large T (see Appendix F), which
partially confirms the results of [21] in discrete-space cases.

3.2 Scalability: Sampling in GAN latent space for conditional image generation

To validate our method in a high-dimensional set-
ting, we sampled latent vectors for a pretrained Style-
GAN3 generator to produce face images aligned with
a text prompt as in [81]. The target distribution is
defined by an energy function combining a standard
prior N (0, I) with the ImageReward score, which
measures text-image alignment. We train 5-step dif-

Table 2: FFHQ text-conditional sampling results.

All models use T = 5 discretisation steps.

ELBO (1) E[logr(x,y)] (1) CLIP Diversity (T)
~117.0 ~1.17 036

98.8 1.42 0.24
104.5 1.49 0.24

TB (fixed var.) [81]

Prior

TBy (fixed var.)
TBg,,

fusion samplers to draw from this distribution for 7
different text prompts, comparing our proposed ap-
proach with learnable variances (TBg ,) against a
baseline with fixed variances [81] (TBy).

We evaluate performance using ELBO, average Im-
ageReward score, and diversity. Our method shows
improved ELBO and ImageReward scores on 5 out of
7 prompts, similar performance on one, and a slight

-
/1N

Jilads

‘ . } \
Ag al

TBg,, (ours)

eaavne

Figure 2: Decoded latents sampled with the same
random seeds from outsourced diffusion samplers

P

trained with a StyleGAN3 prior and ImageReward

degradation on another. A representative example of > . ‘
with prompt ‘A person with medium length hair’.

the improvement is shown in Fig. 2. Average metrics
are reported in Table 2. Extended discussion is in Appendix D.2.

4 Conclusion

In this paper we present the benefits of using learnable variance and learnable destruction process in
diffusion samplers. We empirically find that these modifications help to more accurately model com-
plex energy landscapes, especially with few sampling steps. We also contribute to the understanding
of training diffusion samplers by studying techniques that improve their stability and convergence
speed. We hope that these results inspire the community to scale our findings to other distributions
and domains. Another interesting direction for future work would be to rigorously study the optimal
parametrisations of the generation and destruction processes — including non-Gaussian transitions —
and the theoretical limits of sampling with discrete-time learned diffusions.

Acknowledgment

The work of N.Morozov, A.Naumov, and S.Samsonov was supported by the grant for research centers
in the field of Al provided by the Ministry of Economic Development of the Russian Federation in
accordance with the agreement 000000C313925P4E0002 and the agreement with HSE University Ne
139-15-2025-009.

References

[1] Akhound-Sadegh, T., Rector-Brooks, J., Bose, A. J., Mittal, S., Lemos, P., Liu, C.-H., Sendera,
M., Ravanbakhsh, S., Gidel, G., Bengio, Y., Malkin, N., and Tong, A. (2024). Iterated denoising
energy matching for sampling from Boltzmann densities. International Conference on Machine
Learning (ICML).

[2] Atanackovic, L. and Bengio, E. (2025). Investigating generalization behaviours of generative
flow networks. Transactions on Machine Learning Research.

[3] Bartosh, G., Vetrov, D., and Naesseth, C. A. (2024a). Neural diffusion models. International
Conference on Machine Learning (ICML).

[4] Bartosh, G., Vetrov, D. P., and Andersson Naesseth, C. (2024b). Neural flow diffusion models:
Learnable forward process for improved diffusion modelling. Neural Information Processing
Systems (NeurlPS).

[5] Bengio, E., Jain, M., Korablyov, M., Precup, D., and Bengio, Y. (2021). Flow network based
generative models for non-iterative diverse candidate generation. Neural Information Processing
Systems (NeurlPS).

[6] Bengio, Y., Lahlou, S., Deleu, T., Hu, E. J., Tiwari, M., and Bengio, E. (2023). GFlowNet
foundations. Journal of Machine Learning Research, 24(210):1-55.

[7] Berner, J., Richter, L., Sendera, M., Rector-Brooks, J., and Malkin, N. (2025). From discrete-time
policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training. arXiv
preprint arXiv:2501.06148.

[8] Berner, J., Richter, L., and Ullrich, K. (2024). An optimal control perspective on diffusion-based
generative modeling. Transactions on Machine Learning Research.

[9] Blessing, D., Berner, J., Richter, L., and Neumann, G. (2025). Underdamped diffusion bridges
with applications to sampling. International Conference on Learning Representations (ICLR).

[10] Blessing, D., Jia, X., Esslinger, J., Vargas, F., and Neumann, G. (2024). Beyond ELBOs: A
large-scale evaluation of variational methods for sampling. International Conference on Machine
Learning (ICML).

[11] Bou, A., Bettini, M., Dittert, S., Kumar, V., Sodhani, S., Yang, X., De Fabritiis, G., and
Moens, V. (2023). TorchRL: A data-driven decision-making library for PyTorch. arXiv preprint
arXiv:2306.00577.

[12] Brunswic, L., Li, Y., Xu, Y., Feng, Y., Jui, S., and Ma, L. (2024). A theory of non-acyclic
generative flow networks. Association for the Advancement of Artificial Intelligence (AAAI),
38(10).

[13] Chen, T., Liu, G.-H., and Theodorou, E. A. (2022). Likelihood training of Schrédinger bridge
using forward-backward SDEs theory. International Conference on Learning Representations
(ICLR).

[14] Cretu, M., Harris, C., Igashov, 1., Schneuing, A., Segler, M., Correia, B., Roy, J., Bengio, E.,
and Lio, P. (2025). SynFlowNet: Design of diverse and novel molecules with synthesis constraints.
International Conference on Learning Representations (ICLR).

[15] De Bortoli, V., Thornton, J., Heng, J., and Doucet, A. (2021). Diffusion Schrodinger bridge
with applications to score-based generative modeling. Neural Information Processing Systems
(NeurlPS).

[16] Deleu, T., Géis, A., Emezue, C., Rankawat, M., Lacoste-Julien, S., Bauer, S., and Bengio,
Y. (2022). Bayesian structure learning with generative flow networks. Uncertainty in Artificial
Intelligence (UAI).

[17] Deleu, T., Nishikawa-Toomey, M., Subramanian, J., Malkin, N., Charlin, L., and Bengio, Y.
(2023). Joint Bayesian inference of graphical structure and parameters with a single generative
flow network. Neural Information Processing Systems (NeurlPS).

[18] Deleu, T., Nouri, P., Malkin, N., Precup, D., and Bengio, Y. (2024). Discrete probabilistic
inference as control in multi-path environments. Proceedings of the Fortieth Conference on
Uncertainty in Artificial Intelligence, pages 997-1021.

[19] Geist, M., Scherrer, B., and Pietquin, O. (2019). A theory of regularized Markov decision
processes. International Conference on Machine Learning (ICML).

[20] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. (2014). Generative adversarial nets. Neural Information Processing Systems
(NeurlPS).

[21] Gritsaev, T., Morozov, N., Samsonov, S., and Tiapkin, D. (2025). Optimizing backward policies
in GFlownets via trajectory likelihood maximization. International Conference on Learning
Representations (ICLR).

[22] Havens, A., Miller, B. K., Yan, B., Domingo-Enrich, C., Sriram, A., Wood, B., Levine, D., Hu,
B., Amos, B., Karrer, B., Fu, X., Liu, G.-H., and Chen, R. T. Q. (2025). Adjoint sampling: Highly
scalable diffusion samplers via adjoint matching. arXiv preprint arXiv:2504.11713.

[23] Hendrycks, D. and Gimpel, K. (2016). Gaussian error linear units (gelus).

[24] Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. Neural
Information Processing Systems (NeurIPS), 33:6840-6851.

[25] Hoffman, M. D., Gelman, A., et al. (2014). The No-U-Turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1):1593-1623.

[26] Hu, E. J., Jain, M., Elmoznino, E., Kaddar, Y., Lajoie, G., Bengio, Y., and Malkin, N. (2024).
Amortizing intractable inference in large language models. International Conference on Learning
Representations (ICLR).

[27] Hu, E. J., Malkin, N., Jain, M., Everett, K., Graikos, A., and Bengio, Y. (2023). GFlowNet-EM
for learning compositional latent variable models. International Conference on Machine Learning
(ICML).

[28] Jain, M., Bengio, E., Hernandez-Garcia, A., Rector-Brooks, J., Dossou, B. F., Ekbote, C. A.,
Fu, J., Zhang, T., Kilgour, M., Zhang, D., Simine, L., Das, P., and Bengio, Y. (2022). Biological
sequence design with GFlowNets. International Conference on Machine Learning (ICML).

[29] Jang, H., Jang, Y., Kim, M., Park, J., and Ahn, S. (2024a). Pessimistic backward policy for
GFlowNets. Neural Information Processing Systems (NeurIPS).

[30] Jang, H., Kim, M., and Ahn, S. (2024b). Learning energy decompositions for partial inference
in GFlownets. International Conference on Learning Representations (ICLR).

[31] Karras, T., Aittala, M., Laine, S., Hirkonen, E., Hellsten, J., Lehtinen, J., and Aila, T. (2021).
Alias-free generative adversarial networks. Neural Information Processing Systems (NeurlPS).

[32] Karras, T., Laine, S., and Aila, T. (2019). A style-based generator architecture for generative
adversarial networks. Computer Vision and Pattern Recognition (CVPR).

[33] Kim, M., Choi, S., Kim, H., Son, J., Park, J., and Bengio, Y. (2025a). Ant colony sampling with
GFlowNets for combinatorial optimization. Artificial Intelligence and Statistics (AISTATS).

[34] Kim, M., Choi, S., Yun, T., Bengio, E., Feng, L., Rector-Brooks, J., Ahn, S., Park, J., Malkin,
N., and Bengio, Y. (2025b). Adaptive teachers for amortized samplers. International Conference
on Learning Representations (ICLR).

[35] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR).

[36] Kong, L., Cui, J., Sun, H., Zhuang, Y., Prakash, B. A., and Zhang, C. (2023). Autoregressive
diffusion model for graph generation. International Conference on Machine Learning (ICML).

[37] Lahlou, S., Deleu, T., Lemos, P., Zhang, D., Volokhova, A., Hernandez-Garcia, A., Ezzine,
L. N., Bengio, Y., and Malkin, N. (2023). A theory of continuous generative flow networks.
International Conference on Machine Learning (ICML).

[38] Lee, S., Kim, M., Cherif, L., Dobre, D., Lee, J., Hwang, S. J., Kawaguchi, K., Gidel, G., Bengio,
Y., Malkin, N., and Jain, M. (2025). Learning diverse attacks on large language models for robust
red-teaming and safety tuning. International Conference on Learning Representations (ICLR).

[39] Madan, K., Lamb, A., Bengio, E., Berseth, G., and Bengio, Y. (2025). Towards improv-
ing exploration through sibling augmented GFlowNets. International Conference on Learning
Representations (ICLR).

[40] Madan, K., Rector-Brooks, J., Korablyov, M., Bengio, E., Jain, M., Nica, A. C., Bosc, T,
Bengio, Y., and Malkin, N. (2023). Learning GFlowNets from partial episodes for improved
convergence and stability. International Conference on Machine Learning (ICML).

[41] Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio, Y. (2022). Trajectory balance: Improved
credit assignment in GFlowNets. Neural Information Processing Systems (NeurIPS).

[42] Malkin, N., Lahlou, S., Deleu, T., Ji, X., Hu, E. J., Everett, K. E., Zhang, D., and Bengio, Y.
(2023). GFlowNets and variational inference. International Conference on Learning Representa-
tions (ICLR).

[43] Midgley, L. L., Stimper, V., Simm, G. N., Scholkopf, B., and Herndndez-Lobato, J. M. (2023).
Flow annealed importance sampling bootstrap. International Conference on Learning Representa-
tions (ICLR).

[44] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. nature, 518(7540):529-533.

[45] Mohammadpour, S., Bengio, E., Frejinger, E., and Bacon, P.-L. (2024). Maximum entropy
GFlowNets with soft Q-learning. Artificial Intelligence and Statistics (AISTATS).

[46] Morozov, N., Maksimov, 1., Tiapkin, D., and Samsonov, S. (2025). Revisiting non-acyclic
GFlowNets in discrete environments. International Conference on Machine Learning (ICML).

[47] Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D. (2017). Bridging the gap between value
and policy based reinforcement learning. Neural Information Processing Systems (NeurIPS).

[48] Neal, R. M. (1998). Annealed importance sampling. arXiv preprint arXiv:physics/9803008.
[49] Neal, R. M. (2003). Slice sampling. The annals of statistics, 31(3):705-767.

[50] Neal, R. M. et al. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov Chain
Monte Carlo, 2(11):2.

[51] Neu, G., Jonsson, A., and Gémez, V. (2017). A unified view of entropy-regularized Markov
decision processes. arXiv preprint arXiv:1705.07798.

[52] Nielsen, B. M., Christensen, A., Dittadi, A., and Winther, O. (2024). DiffEnc: Variational
diffusion with a learned encoder. International Conference on Learning Representations (ICLR).

[53] Noé, F, Olsson, S., Kohler, J., and Wu, H. (2019). Boltzmann generators: Sampling equilibrium
states of many-body systems with deep learning. Science, 365(6457):eaaw1147.

[54] Pan, L., Malkin, N., Zhang, D., and Bengio, Y. (2023). Better training of GFlowNets with local
credit and incomplete trajectories. International Conference on Machine Learning (ICML).

[55] Phillips, D. and Cipcigan, F. (2024). MetaGFN: Exploring distant modes with adapted metady-
namics for continuous GFlowNets. arXiv preprint arXiv:2408.15905.

[56] Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons.

[57] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,
Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from natural language
supervision. International Conference on Machine Learning (ICML).

[58] Rector-Brooks, J., Madan, K., Jain, M., Korablyov, M., Liu, C.-H., Chandar, S., Malkin, N., and
Bengio, Y. (2023). Thompson sampling for improved exploration in GFlowNets. arXiv preprint
arXiv:2306.17693.

[59] Richter, L. and Berner, J. (2024). Improved sampling via learned diffusions. International
Conference on Learning Representations (ICLR).

[60] Richter, L., Boustati, A., Niisken, N., Ruiz, F., and Akyildiz, O. D. (2020). VarGrad: a low-
variance gradient estimator for variational inference. Neural Information Processing Systems
(NeurlPS).

[61] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical
image segmentation. Medical image computing and computer-assisted intervention—-MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part 11l
18, pages 234-241.

[62] Sahoo, S., Gokaslan, A., De Sa, C. M., and Kuleshov, V. (2024). Diffusion models with learned
adaptive noise. Neural Information Processing Systems (NeurIPS).

[63] Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized experience replay.
International Conference on Learning Representations (ICLR).

[64] Sendera, M., Kim, M., Mittal, S., Lemos, P., Scimeca, L., Rector-Brooks, J., Adam, A., Bengio,
Y., and Malkin, N. (2024). Improved off-policy training of diffusion samplers. Neural Information
Processing Systems (NeurIPS).

[65] Shen, T., Seo, S., Lee, G., Pandey, M., Smith, J. R., Cherkasov, A., Kim, W. Y., and Ester, M.
(2024). TacoGFN: Target-conditioned GFlowNet for structure-based drug design. Transactions on
Machine Learning Research.

[66] Shi, Y., Bortoli, V. D., Campbell, A., and Doucet, A. (2023). Diffusion Schrodinger bridge
matching. Neural Information Processing Systems (NeurIPS).

[67] Silva, T., Alves, R. B., de Souza da Silva, E., Souza, A. H., Garg, V., Kaski, S., and Mesquita, D.
(2025). When do GFlowNets learn the right distribution? International Conference on Learning
Representations (ICLR).

[68] Silva, T., de Souza, D. A., and Mesquita, D. (2024). Streaming Bayes GFlowNets. Neural
Information Processing Systems (NeurlPS).

[69] Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and Ganguli, S. (2015). Deep unsu-
pervised learning using nonequilibrium thermodynamics. International Conference on Machine
Learning (ICML).

[70] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2021). Score-
based generative modeling through stochastic differential equations. International Conference on
Learning Representations (ICLR).

[71] Song, Z., Yang, C., Wang, C., An, B., and Li, S. (2024). Latent logic tree extraction for event
sequence explanation from LLMs. International Conference on Machine Learning (ICML).

[72] Stromme, A. (2023). Sampling from a Schrodinger bridge. Artificial Intelligence and Statistics
(AISTATS).

[73] Tiapkin, D., Morozov, N., Naumov, A., and Vetrov, D. P. (2024). Generative flow networks as
entropy-regularized RL. Artificial Intelligence and Statistics (AISTATS).

[74] Tong, A., Malkin, N., Fatras, K., Atanackovic, L., Zhang, Y., Huguet, G., Wolf, G., and Bengio,
Y. (2024). Simulation-free schrodinger bridges via score and flow matching. Artificial Intelligence
and Statistics (AISTATS).

[75] Uehara, M., Zhao, Y., Biancalani, T., and Levine, S. (2024). Understanding reinforce-
ment learning-based fine-tuning of diffusion models: A tutorial and review. arXiv preprint
arXiv:2407.13734.

[76] van Krieken, E., Thanapalasingam, T., Tomczak, J., Van Harmelen, F., and Ten Teije, A. (2023).
A-NeSI: A scalable approximate method for probabilistic neurosymbolic inference. Neural
Information Processing Systems (NeurIPS).

[77] Vargas, F., Grathwohl, W., and Doucet, A. (2023). Denoising diffusion samplers. International
Conference on Learning Representations (ICLR).

[78] Vargas, F., Ovsianas, A., Fernandes, D., Girolami, M., Lawrence, N. D., and Niisken, N. (2022).
Bayesian learning via neural schrodinger—follmer flows. Statistics and Computing, 33(1):3.

[79] Vargas, F., Padhy, S., Blessing, D., and Niisken, N. (2024). Transport meets variational inference:
Controlled monte carlo diffusions. International Conference on Learning Representations (ICLR).

[80] Vargas, F., Thodoroff, P., Lamacraft, A., and Lawrence, N. (2021). Solving Schrédinger bridges
via maximum likelihood. Entropy, 23(9):1134.

[81] Venkatraman, S., Hasan, M., Kim, M., Scimeca, L., Sendera, M., Bengio, Y., Berseth, G., and
Malkin, N. (2025). Outsourced diffusion sampling: Efficient posterior inference in latent spaces
of generative models. International Conference on Machine Learning (ICML).

[82] Xu, J., Liu, X., Wu, Y., Tong, Y., Li, Q., Ding, M., Tang, J., and Dong, Y. (2023). Imagereward:
Learning and evaluating human preferences for text-to-image generation. Neural Information
Processing Systems (NeurIPS).

[83] Younsi, A., Abubaker, A., Seddik, M. E. A., Hacid, H., and Lahlou, S. (2025). Accurate and
diverse LLM mathematical reasoning via automated PRM-guided GFlowNets. arXiv preprint
arXiv:2504.19981.

[84] Zhang, D., Chen, R. T. Q., Liu, C.-H., Courville, A., and Bengio, Y. (2024). Diffusion generative
flow samplers: Improving learning signals through partial trajectory optimization. International
Conference on Learning Representations (ICLR).

[85] Zhang, D., Chen, R. T. Q., Malkin, N., and Bengio, Y. (2023a). Unifying generative models
with GFlowNets and beyond. arXiv preprint arXiv:2209.02606.

[86] Zhang, D., Dai, H., Malkin, N., Courville, A., Bengio, Y., and Pan, L. (2023b). Let the flows
tell: Solving graph combinatorial problems with GFlowNets. Neural Infromation Processing
Systems (NeurlPS).

[87] Zhang, D., Rainone, C., Peschl, M., and Bondesan, R. (2023c). Robust scheduling with
GFlowNets. International Conference on Learning Representations (ICLR).

[88] Zhang, Q. and Chen, Y. (2022). Path integral sampler: A stochastic control approach for
sampling. International Conference on Learning Representations (ICLR).

[89] Zhou, M. Y., Yan, Z., Layne, E., Malkin, N., Zhang, D., Jain, M., Blanchette, M., and Bengio,
Y. (2024). PhyloGFN: Phylogenetic inference with generative flow networks. International
Conference on Learning Representations (ICLR).

[90] Zimmermann, H., Lindsten, F., van de Meent, J.-W., and Naesseth, C. A. (2023). A variational
perspective on generative flow networks. Transactions on Machine Learning Research.

A Related work

Diffusion samplers. While diffusion models were first introduced with the goal of approximating a
distribution from which samples are available by an iterative denoising process [69, 24, 70], diffusion
samplers — on which the modern line of work started with [78, 88, 77] and continues to rapidly expand
[79, 59, 1, 64, 9, 22, inter alia] — seek to amortise the cost of sampling from a given target density
Prarget> Which can be queried for the energy and possibly its gradient, by training a generation process
to approximate it. Algorithms such as PIS [88] and DDS [77] achieve this by minimising the KL
divergence between destruction and generation processes. Other divergences have been considered
for their better numerical properties, for example, [59] uses a second-moment divergence [60]. In
[37, 85], diffusion samplers are understood as a generalised instance of GFlowNets [5], which are deep
reinforcement learning algorithms that allow for using exploration techniques and off-policy training
and do not require access to the gradients of piarger (although physics-informed parametrisations may
use this gradient). Subsequent work [84, 64, 34] has applied training objectives from GFlowNet
literature [41, 40, 54] to the diffusion sampling case and explored the benefits of the flexible off-policy
training that GFlowNets allow [64, 55, 34]. Finally, [7] builds theoretical connections among various
diffusion sampling objectives and their continuous-time limits.

GFlowNets. Generative flow networks [GFlowNets; 5, 6] have been introduced as a general frame-
work for sampling from distributions by solving a sequential decision-making problem, training a
stochastic policy to construct objects step by step. GFlowNets represent a synthesis of variational in-
ference and reinforcement learning (RL) paradigms [42, 90, 73, 18]. Beyond their original application
in biological structure discovery [e.g., 28, 65, 14], GFlowNets have found uses in probabilistic infer-
ence over symbolic latent variables [16, 76, 27, 17, 89, 68], combinatorial optimisation [87, 86, 33],
and reasoning or planning in language [26, 71, 38, 83]. Although initially defined for discrete
spaces, the framework can be extended to continuous domains [37] and non-acyclic state spaces (i.e.,
nonconstrutive actions) [12, 46]. GFlowNets approach the training of amortised samplers from a RL
perspective and correspondingly require solving the RL challenges of exploration [58, 64, 55, 39, 34],
credit assignment [41, 54, 30], and generalisation [67, 2]. Relevant to our work, design and training
of the destruction process in discrete problems is a focus of [42, 45, 29, 21], where learning the
destruction process is shown to improve convergence and mode discovery.

Learning the destruction process in diffusion. A recent line of work [3, 4, 62, 52] studies learning
the destruction process (called the ‘forward’ process, clashing with the opposite convention in place
for diffusion samplers) for diffusion models in image domains, instead of using a fixed one, such as
VP or VE SDE [70]. This results in a broader class of models and is shown to improve log-likelihood
and visual quality of the generated samples, as well as reducing the required number of training steps.
GFlowNet objectives were applied to this problem in [37, 85]. Learning the destruction process for
diffusion models was also studied in discrete domains, e.g., [36] learns the order in which nodes are
removed from a graph by the destruction process.

Our work is also adjacent to the Schrodinger bridge (SB) problem. In continuous time, the learning
of destruction and generation processes that stochastically transport a source distribution pg to parget
is known as a bridge problem. The SB problem seeks the unique bridge that is closest to some
reference process and can be solved by algorithms based on iterative proportional fitting in a time
discretisation [IPF; 80, 15] or various other methods [13, 72, 66, 74]. Unlike diffusion samplers,
these algorithms typically assume samples from parget are available. Many of these algorithms, when
typical approximations are made in training, at convergence yield bridges that are not necessarily the
SB. In this work, we constrain the destruction process to be a bridge from piarget to po, meaning that
in the continuous-time limit iterative proportional fitting would converge in a single step. However,
the discrete-time TLM update for the destruction process (§2.3), which trains Eﬁ on trajectories

sampled from p_é, is in fact equivalent to an (unconverged) maximum-likelihood IPF step as in [80].

B More on diffusion samplers

B.1 On KL divergence between processes with different variances.

If two path space measures P; and P, defined by SDEs have different diffusion coefficients g; ()
and g»(1), they are not absolutely continuous with respect to each other, therefore, KL(P; || P;) = co.
To see this, notice that the quadratic variation of P; on the time interval [z,¢’] is almost surely

10

/tt/ gi(s5)%ds. Therefore, if P < P,, then the ftt, g1(s)%ds = /ttl g2(s)%ds for every ¢ < t’, which
implies g; = g if both are continuous.

B.2 Training objectives.

Learning discrete Markov process requires optimising a divergence between two distributions
D(popall p[argetﬁ) that enforces equality in (7). One option can be a reverse KL divergence:

Po(X0)po(Xar,...1 | Xo)
:EX At 1~Do (Xo.ar...1) lo —
e O exp(—=E(X1))po(Xo,....cr-)ar | X1)

+logZ.

(10)

Here the log-normalising constant log Z does not affect the optimisation. Methods that propose
to optimise this objective include [88, 77]. They use the reparametrisation trick to rewrite (10) as
an expectation over the noises used in integration (the &; in (4)). Although this scheme yields an
unbiased estimator, it requires backpropagating though the simulation of the generation process.
Alternatively, one can use second-moment divergences of the form

Po(X0)po(Xar,...1 | Xo)
exp(=E(X1) Py (Xo. . r-1)ar | X1)

2
+logZ

Dﬁ (p0p—9>||ptargel<p_¢') = EXO,A:,....1~[5(X0,At ,,,,, 1) [IOg
(11)

where j is some full-support proposal distribution not necessarily equal to pg and log Z is a scalar.
This scalar absorbs the (unknown) true normalising constant Z of piarger, allowing to use the un-
normalised log-density —& (X)) in place of log pragget(X1) = —E(X;) — log Z in the denominator.
The scalar log Z can be a learned parameter (yielding the loss called trajectory balance [TB; 41])
or analytically computed to minimise the loss on each batch of training trajectories (yielding the
log-variance or VarGrad loss [60]). In either case, when the loss is minimised to 0, log 7 becomes
equal to the true log-partition function log Z.

Unlike the KL divergence (10), which is an expectation over a distribution depending on 6, second-
moment divergences avoid backpropagating through sampling, allowing the use of off-policy ex-
ploration techniques to construct the proposal distribution p. On the other hand, when p = pg, the
expected gradient of D with respect to 6 — but not with respect to ¢ — remarkably coincides with
that of Dgy [42].

The divergence in (10) can be used for optimisation of ﬁ in addition to py. Notice that this is
equivalent to log-likelihood maximisation with respect to ¢, since the gradient of (10) takes the form:
Vo DL(PoPollPargetPe) = VoBx, | 53(x0. 1) [—log (E(Xo (- | X]))] (12)

T
= thExO _____ 1~Pe(Xo...1) [Z _10g<P_<p(X(i—l)At | Xiar)
i=1
In the more general GFlowNet setting, such approach for learning the destruction process is called
trajectory likelihood maximisation [TLM; 21].

13)

B.3 Details on process parametrisations

We begin with the destruction process that is the reversal of time-discretised Brownian motion with
fixed diffusion coefficient o starting from po = d, as considered by [88] and many later works. For
this process, the transitions have the form:

Po(Xeenr | X0) = N(Xpsar; Xo + fo(Xoot) At, 0?At 1), (14)
— ! ! 2

X, | Xpuns) = (X; X,in, At) 1
P (Xy | Xexar) = N | X; PV t+AL t+AtO- tilg (15)

11

where D (xo | xa;) is understood as Dirac 6o(xo). We use the following parametrisation for neural
networks from (8):

Po(Xisar | Xo) = N(Xeear; Xo + fo(Xi, 1) At, diag(yo(X;,)0 At 1a),
vo(X;,t) = exp {Cl tanh (NN;I)(X,, t))} (16)
t
t+ At
@p(X,.1) = 1 + Cy tanh (NNEf)(X,, t)) . Bo(X,.1) = 1 +Cy tanh (NNf;)(Xt, t)) . a7

. ! .
E(Xt I XI+AI) =N (X,;dlag(a'w(xt,[)) th+At’ dlag(ﬁ(p(X,,[)) 0-2At Id) N

where the NN represent neural networks with d-dimensional outputs and Cj, C; are constants.
Such a parametrisation guarantees that the generation process variance remains between Cil and C|
times that of the baseline one in (14), while the multiplicative deviations of the destruction process
mean and variance from the basic ones in (15) are bounded between 1 —C; and 1+C,. We empirically
found such a combination to work better than using the same parametrisation for both generation and
destruction processes. This parametrisation does not impose any other constraints on the generation
and destruction processes — they are no longer discretisations of SDEs defining absolutely continuous
path space measures.

B.4 On soft RL equivalence.

In this section we discuss a fact that provides important motivation and context for some of the
techniques mentioned in §2.4: it is possible to formulate the training of a diffusion sampler in discrete
time as an RL problem with entropy regularisation (also called soft RL [51, 19]). Although, up to
our knowledge, it was never directly stated in this form in previous literature on diffusion samplers,
this fact is well-understood, and a number of works on diffusion samplers frame their training as
a stochastic control task in continuous time [88, 79, 8]. The equivalence with soft RL in discrete
time can be directly shown by combining the analysis of [73, 18], which show GFlowNet training is
equivalent to a soft RL task, and [37, 64, 7], which show that discrete-time diffusion samplers are a
special case of continuous GFlowNets.

This connection gives an important motivation for using such techniques as target networks [44],
replay buffers [63], and various exploration methods, which are all well-studied in the RL literature,
for the training of diffusion samplers. Finally, we mention that [21] analyses trainable destruction
processes in GFlowNets from the RL perspective and theoretically and experimentally stipulates the
use of techniques for enforcing stability in the training of the destruction process, such as controlled
learning rates and target networks.

Below, we show that training a diffusion sampler with a finite number of steps and a fixed destruction
process is equivalent to solving an entropy-regularized reinforcement learning (RL) problem.

We formalize the RL problem using a finite-horizon Markov Decision Process (MDP) [56, Chapter
4], defined as the tuple M = (S, A, P,r, H, sp), where S and A are measurable state and action
spaces, Py, (ds’|s, a) is a time-inhomogeneous transition kernel, 1, (s, a) is a time-dependent reward
function with terminal reward rg (s), H is the planning horizon, and s is the initial state. We focus
on deterministic MDPs, where the transition kernel is

Pr(ds’ | s,a) = 67, (5,a)(ds"),

with T, (s, a) a deterministic transition map and J, (dx) the Dirac measure at y. The action space is
equipped with a base measure du(a) (e.g., the Lebesgue measure).

A time-inhomogeneous policy 7 = {nh}hH:51 is a collection of conditional densities 7 (a|s) with
respect to du(a). The corresponding entropy-regularized (or soft) value function [51, 19] is defined
as
H-1
Vio(s) =B | > ((Sn, Ap) = Alog mn(An|Sn)) + 1 (Sm)
h=0
where 4 > 0 is a regularization coefficient, and the expectation is over the trajectory induced by
Ah ~ ﬂh('lsh) and Sh+1 = Th(Sh,Ah) for h = 0, . ,H - 1.

We call a destruction process p = (ﬁ),zo,m ,,,,, | regular if m(dxolxm) = 6o(dxp) and ﬁ(~|x,) has
a full support of R? for all 1 > Ar. We use Prsa; (X;|x144¢) as a corresponding density.

S():Sl,

12

Theorem B.1. Define E(x): R — R as an energy function, a target density Dtarget (X) =
exp(—&(x))/Z, and a regular destruction process p = (p;)i=o.r.....1-
Define a Markov decision process Mps with a state space equal to S = R¢, an action space equal to
A = R4, deterministic transition kernel defined by the following transition function Tj,(s,a) = a, a
planning horizon H = T, and reward function t, (s, a) = log p p.a:(a | s) for h < H, with terminal
reward rg (x) = —&(x).
Then, for initial state sy = 0, the soft value with A = 1 in the MDP Mpg satisfies

V,;rzl,o(SO) =logZ - DKL(pOET)”ptarget(_) s
where p, is a generation process that corresponds to a policy n: m(xHA, | X1) = 7eae (Xewar | Xe) -

As a result, the policy corresponding to the optimal policy 71'; in the entropy-regularized MDP with
A = 1 provides a generation process that samples from the target distribution piargei(x) o exp(=&(x)).

Proof. Let us start from the expression (10) for the reverse KL divergence between the corresponding
generation and destruction processes:

Po(X0)P(Xar...1 | Xo)
exp(=E(X1)) P (Xo...(r-1)ar | X1)
Next, we use a chain rule for the probability distribution to study the first term in the expansion above:

+logZ.

DKL([’OP_ﬂ)”[)target(IT) = EX(),A: _____ 1~Dn(Xo.ar...1) [log

7-1
Exo e 1~P7 Xor1) [ZIngﬂ,iAt(X(Hl)At | Xine) —10g pisyae (Xiar | Xivnyar) + E(X1) |-
i=0

To show the equivalence with the corresponding soft RL definition of the value, we rename variables
as follows: T +— H, i+ h, and Spy1 = A, = X(i+1)as» apply a definition of a reward function and of
the generation process induced by policy:

H-1
DKL (PoP | Prarget D) — 10g Z = B Z (log mn (AnlSk) = 10 (Shs An)) =T (SH)| -
h=0
In the right-hand side of the equation we see exactly a negative value function with A = 1. O

The same result was obtained by [73] in the GFlowNet framework. In addition, we would like to
add that this perspective allows to treat the Trajectory Balance loss as a specific instance of Path
Consistency Learning [47], as it was shown for GFlowNets in [18] (see also [75] for a discussion in
the context of RL-based fine-tuning of diffusion models).

C Techniques for stability

C.1 Implementation details of techniques for stability

In this section, we describe the implementation details of stability techniques and discuss unsuccessful
approaches for destruction process training.

Shared backbone. Our architecture is built upon the one used in [64], uses time and state encoders,
a shared backbone and 2 different final layers for generation and destruction policy modelling. We
use an MLP with GELU [23] activation for the shared backbone. For experiments on Manywell,
Distorted Manywell, and GAN, this MLP has 4 layers, and for other energies it has 2.

Separate optimisers. The optimiser for generation policy updates parameters of time and state
encoders, the backbone, and the final layer modelling the generation process. The optimiser for
destruction policy updates the parameters of the time and state encoders, the backbone, and the
final layer modelling the destruction process. For both optimisers, we use Adam [35] with standard
parameters and weight decay of 1077,

Target network. Using a target network introduces a specific coefficient 7, which defines the
update speed of the target network. On each iteration, the target weights are updated by:

0=(1-1)0+T16, (18)

where 6 are the target network weights. If 7 is set to 0, the target network is the current policy
network, while higher 7 leads to a slower evolution of the target network. For the generation policy

13

Table 3: Different configurations compared by ELBO, EUBO and 2-Wasserstein between generated and ground
truth samples on 40GMM. Mean and std over 5 runs are specified.

Ablation Setting ELBO (T) EUBO (|) 2-Wasserstein (])

TByg,, shared backbone, separate optimisers,

Optimal] ti —1.89-0. 5.06:0.3 18.71x=o0.
(Optimal configuration) Ir, = 1Irg, replay ratio = 3, target network 010 033 063
Fixed variance TByg,, fixed generation and destruction var. —2.49:0.05 101.84+11.23 30.15+2.30
Learnine only seneration TBy, fixed generation var. —2.47+0.06 105.1+27.11 32.56+2.3

gonly g TByg, learnt generation var. —3.5+0.11 37.02+45.42 20.37+6.14
Models and optimisers Separate backbones —6.03z1.15 26.71+2.70 28.29:0.49
’ plimisers Single optimizer —2.08=0.15 13.05:4.95 20.40+0.71
Learning rates Ir, =0.10 X Irg —2.06£020 6.55+3.48 16.79+1.71
g) Ir, =0.01 x1Irgy —-2.69+0.94 61.43+30.20 21.77+3.68
Replay ratio = 1 —1.96:0.13 18.59:11.72 20.86=1.10

Replay ratio Replay ratio = 2 —2.28+1.05 23.53x15.92 16.74+1.10
play Replay ratio = 5 —1.91=0.18 6.08=1.46 16.74+1.10
Replay ratio = 9 —3.43x1.59 21.24+21.20 16.79+1.71

Target network No target network —2.07+0.09 10.36+2.02 20.13x1.10

network, the second moment loss in (11) transforms into:

Po(X0)po(Xar...1 | Xo)

+logZ| ,
exp(—&(X1)) o (Xo,...r-1)ar | X1)

D%Cn.(poﬁ”ptafgel[%) = ExXoar...i~p(Xoar...) [108

19)
where o is the frozen destruction target network weights, and other variables are the same as in (11).

Similarly, the second moment loss for the destruction policy transforms into:

2
, Po(Xo)py(Xar..1 | Xo) 5
DS (popg || PrargetPg) = Exo o, ~B(Xo.ar....1) ‘ : +logZ| ,
p 7] argety ¢ 0.A,....,1~P(X0,Az....1 exp(—B(Xl))‘E;(Xg (T—1)Ar |Xl)
(20)

where 6 is the frozen generation target generation network, and other variables are as in (11).

Prioritised experience replay. We use the implementation of PER [63] from torchrl library [11].
We set the temperature parameter « to 1.0 and the importance sampling correction coefficient to 0.1
(similar parameter values were used in [73]).

Better exploration in off-policy methods. We use the existing techniques proposed by [37, 64] to
facilitate exploration during training. We use a replay buffer of terminal states updated by Langevin
dynamics (as studied by [64]), that is used to sample trajectories for training via the destruction
process. We also sample trajectories from the current generation policy, but with increased variance
on each step, with the added variance annealed to zero over the first 10 000 iterations (similar to the
techniques studied by [42, 37]).

Other considerations. In addition to the techniques discussed in §2.4 we also present design
choices that we tried in our experiments, but which turned out to be unsuccessful. We share them to
offer deeper intuition behind the development of our final methodology:

* Different parametrisation. We tried to predict destruction variance in the log-scale in the same
way as the generation variance (8):

B, (X:,1) = exp {C1 tanh (NN(HZ) (X, t))} , Q1)

but this parametrisation caused rapid fluctuations in the destruction policy and convergence was
dramatically slower than with the parametrisation in (9).

* Linear annealing. In experiments on synthetic tasks, we set the constant C; in (9) to 0.9. We also
tried to increase C linearly from 0 to 0.9 over the duration of training. We initially thought this
to be efficient since both generation and destruction processes are less stable in the beginning of
training when modes are unexplored.

14

C.2 Ablation study

In this subsection, we discuss the results of the ablation study to test the design choices outlined
in §2.4. The numerical results are presented in Table 3.

Parametrisation, optimisers, learning rates. As stated in §2.4, we experiment with using a
shared backbone for the generation and destruction processes. We find that using a shared backbone
drastically increases the quality of the sampler. Moreover, even though the backbone is shared
between two networks, it is optimal to use separate optimisers for the two processes.

We empirically find that the performance of samplers is sensitive to learning rates, and thus they
must be carefully tuned for each environment. We use equal learning rates for 6 and ¢ for GMM
distributions. However, for more complex environments the destruction policy learning rate must be
smaller than that of the generation policy. For instance, in Hard Funnel, a 10% times smaller learning
rate for ¢ is optimal, and for Manywell, the optimal ratio is 10* or 10°.

Target network and replay buffer. The best replay ratio in our setup is 2, and we use this value
for all our experiments. Moreover, using target networks increases the stability of the training and the
final quality of the sampler.

D Extended results and findings

D.1 Results on synthetic tasks

Learned generation variances improve sampling. Learnable variance of the generation process
significantly improves the performance of the sampler, especially when the number of generation
steps is small. As shown in Fig. 1, models with learnable generation variance dramatically outperform
ones with fixed variance: on some energies, learned-variance samplers with as few as 5 generation
steps outperform 20-step samplers with fixed variance. Second, the importance of trainable variance
is clearly observable in complex environments or environments with high distortions (Figs. 1 and 4).
If the variance is fixed, the sampler is likely to struggle with correctly sampling narrow modes: in
particular, the addition of noise of variance o->At on the last step imposes a smoothness constraint on
the modelled distribution. Conversely, learning the magnitude of added noise allows to capture the
shape of such modes.

Off-policy losses are superior to differentiable simulation. The off-policy TB loss with ex-
ploratory behaviour policy is on par with or better than the PIS loss for learning the generation
process in all cases, as shown in the Appendix F. This is consistent with findings in past work, such as
[59, 64, 34]. Extending these findings, we find that this improvement is maintained when generation
variances and the destruction process are learned.

Learning the destruction process is beneficial. Learning the destruction process yields an im-
provement over models with fixed destruction process and learned generation variance on all tasks,
although the improvement is often less pronounced when the number of sampling steps is large (e.g.,
on the Funnel densities in Fig. 1), presumably because the reverse of a fixed destruction process is
better modelled by Gaussian transitions when the number of steps is large.

TB is preferable to TLM for learning destruction. Extending the results of [21] in discrete cases,
we find that training the destruction process with the TLM loss is typically superior to TB when the
number of steps is small. However, the TLM loss is unstable and often leads to divergent training
when the number of steps is large (see Appendix F). We note that, even at optimality, the TLM loss
gradient has nonzero variance, while the TB loss gradient is zero for all trajectories at the global
optimum, which may explain TB’s greater stability.

D.2 Scalability: Sampling in GAN latent space for conditional image generation

To validate our main findings in a high-dimensional setting, we consider the setup proposed in [81].
Let gy : Raen — R be a pretrained GAN generator [20], and r(x, y) be some positive-valued

function operating on data points x € R% and conditions y. The task is to sample latent vectors z
from the distribution defined by the energy &(z) = —10g pprior(z) — Blogr(gy(2),y), where ppior
is N(0,1). The decoded samples g (z) then follow the posterior distribution, proportional to the
product of the GAN image prior and the tempered constraint r(x, y)».

15

25GMM Distorted 25GMM 40GMM

12 12 0200
—e— TBy (fixed var.) —e— PIS (fixed var.)

A ——— PISg (learned var.)

o150 - —+— PISg+ TLM,

—+— PISg + VarGrad,

10 —=— TBg (leamed var.)
—+— TBg+TLM,
—— TBe,p

EXponent or ELBU
|
*

Exponent of ELBO

Exponent of ELBO

0050

0025 M\

0.000

2 3 45 10 20 2 3 45 10 20 2 3 45 10 15 2025 2 3 45 10 15 2025
Number of steps Number of steps Number of steps Number of steps

TB gen. loss Rev. KL gen. loss

Figure 3: We compare performance of TB¢ (fixed var.), TBg (learned var.), TB g +TLM, TBy, , on three GMM
targets. The rightmost plot shows PIS-like generation process objectives on 40GMM. Results are compared
using ELBO. Mean and std over 3 seeds, collapsed runs excluded.

TBy (fixed var.) TBy (learned var.) TBg,, Ground truth
ELBO = -1.70 ELBO =-1.73 ELBO = -0.96 logZ =0

Figure 4: First two dimensions of target energy and samples from diffusion samplers trained on the Hard Funnel
energy. Samplers with fixed destruction process, and especially those with fixed generation process variance,
struggle to fit the narrow tails accurately.

In our experiment we use StyleGAN3 [31] trained on the 256 x 256 FFHQ dataset [32] with
diatent = 512. We take y to be a text prompt and log r(x, y) to be the ImageReward score [82]; thus
our aim is to sample latents that produce faces aligned with the specified text prompt. We use the same
value of § = 100 as in [81]. Note that the GAN itself is unconditional, and text-conditioning is only
achieved via sampling from the distribution defined through ImageReward. An optimal model should
trade off between high reward (satisfying the prompt) and high diversity (modelling all modes).

We train diffusion samplers with only 7 = 5 sampling steps to sample from the specified target
distribution in R%en | comparing the approach from [81] (TBy with fixed generation variances)
to TBg, , with learnable destruction process and generation variances. In addition to ELBO, we
report average ImageReward score and diversity, measured as average cosine distance of CLIP [57]
embeddings for 128 generated images. (Note that EUBO and 2-Wasserstein cannot be computed
here since we have no access to ground-truth samples.) We train separate models across 7 different
prompts and find improvements in ELBO and ImageReward on 5 of them, similar performance on 1,
and slight degradation in 1. A representative example of the improvement is shown in Fig. 2. Average
metrics are reported in Table 2. For further details see Appendix E.4.

E Experiment details

E.1 Definition of energies

We present contour levels of 2-dimensional Gaussian mixtures in Figure 5.

16

-10 -5 0 5 10

-10 =5 o 5 10
Figure 5: Contour levels of 2-dimensional Gaussian mixture densities used in the experiments.

-10 -5 0 5 10 -40 -20 0 20 40

25GMM. This is a mixture of 25 different Gaussians in a 2-dimensional space. Each component
is Gaussian with variance 0.3. The means are arranged on a grid given by the Cartesian product
{-10,-5,0, 5,10} x {-10,-5,0, 5, 10}.

Slightly Distorted 2SGMM. This environment is obtained by a slight modification of 25GMM.
The means are located in the same positions, but we distort the initial variance matrices with the

following rule:
.
c. = ([Y03 0 & Enf) (|VO3 0 1 ol&n & 22)

! &3 Eis 0 03 &3 &l
where C; is the covariance matrix of the i-th mode, &;; ~ N(0, 1), and d is set to 0.05. To achieve a

0 0.3
fair comparison, we sample the random variables with a predefined seed 42, hence all algorithms are
compared on the same distribution.

Distorted 2SGMM. The same as Slightly Distorted 25GMM, but with d equal 0.1.
125GMM. The same as 25GMM, but in R? with means at {—10, —5,0, 5, 10}°.

40GMM. This distribution is taken from [43]. It consists of 40 equally weighted mixture compo-
nents with components sampled as:

+d

e (x) = N (x5 pge, 1)
ur ~ U(-40,40).
Easy/Hard Funnel. The funnel distribution serves as a classical benchmark in the evaluation
of sampling methods. It is defined over a ten-dimensional space, where the first variable, xo, is
drawn from a normal distribution with mean 0 and variance 1 (Easy Funnel) or 9 (Hard Funnel),
xo ~ N(0, 1). Given x¢, the remaining components x.9 follow a multivariate normal distribution
with mean vector zero and covariance matrix exp(xg)/, where I denotes the identity matrix. This
conditional relationship is expressed as x1.9 | xo ~ N (0, exp(x)I).

Manywell. The distribution is defined over a 32-dimensional space and is constructed as the product
of 16 identical 2-dimensional double-well distributions. Each of these two-dimensional components
is governed by a potential function, u(xy,x2), given by u(x1,x2) = exp (x| + 6x7 +0.5x; — 0.5x3).

Distorted Manywell. We modify the Manywell potential function for each 2-dimensional compo-
nents:

u(xi-1,X2;) = exp (—ai’lxgifl + 6ai,2x§i71 +0.5a; 3x2i-1 — O.Sai,4x§i) ,
where a; ; ~ U(0.75,1.25).

E.2 Metrics

The ELBO and EUBO metrics are defined as follows:

exp(=E(X)) Py (Xo,....r-1)ar | X1)
""" PO Fass..1) [og Po(X0)Po(Xar...1 | Xo)
exp(-E(X1) Py (Xo,....(T-1)ar | X1)

""""" po(Xo)po(Xar...1 | Xo)

Both expectations are estimated using 2048 Monte Carlo samples. For the 2-Wasserstein distance
(W22), we also use 2048 ground truth and 2048 generated samples.

17

E.3 Synthetic tasks training details

Here we describe the chosen hyperparameters for the final results across synthetic tasks in §3.1. We
train all samplers for 25 000 iterations. The diffusion rate o is set to 5 for experiments with Gaussian
mixtures and to 1 for other energies. The batch size is 512. We apply zero initialisation for the final
layers of the neural networks to obtain a uniform output in the beginning of the training. Additionally,
we perform clipping on the output of the policy network by 10™*. We also apply gradient clipping
with value 200. The target neural network update speed 7 is set 0.05.

We set C; in (8) and C; in (9) to 4.0 and 0.9 respectively.

For all experiments, we set Irg (learning rate for generation policy neural network) to 1073, The
normalisation constant log Z is trained with learning rate 10~!. We tune Ir,, (learning rate for
destruction policy neural network) specifically for each energy and find that optimal Ir,, is always
less than or equal to Irg. For the samplers trained with TB loss, we set Ir, to Irg in experiments
with 25GMM and 125GMM, choose the optimal Ir,, between {Irg, 107! x Irg} for 40GMM, set Ir,,
to Iry for Easy Funnel and to 1073 x Iry for Hard Funnel, we set Ir, to 1073 x Iry for T = 5 and
to 107 x Irg for T = 10 and T = 20 in Manywell and Distorted Manywell. For PIS, we choose
optimal Ir,, between {Irg, 107! X Irg, 1072 X Irg} in experiments with Gaussian mixtures. We use an
exponential learning rate schedule, which multiplies learning rate by y after each on-policy gradient
step. We set y to 0.99988 in experiments with 25GMM and 40GMM and to 0.9999 in other tasks.

For off policy TB, we set the replay ratio to 2. We set the size of the experience replay buffer to 5000
and the size of the buffer used in local search to 600 000. All hyperparameters for local search are
taken from [64]. We use exploration factor of 0.3 for Gaussian mixtures, 0.2 for Easy Funnel and
Hard Funnel, and 0.1 for Manywell and Distorted Manywell. We note that we use replay buffers and
off-policy exploration in all methods and configurations that allow for off-policy training to ensure a
fair comparison.

We consider the architecture from [64], but we stack the time encoding with the state encoding rather
than summing them. We set state, time, and hidden dimension sizes to 64 across all environments
with the except for Manywell and Distorted Manywell, where we set these values to 256.

We use a harmonic discretisation scheme for all mixtures of Gaussians since this time discretisation
leads to better sampling quality compared to uniform. It partitions the time space unevenly, making
steps large around ¢ = 0 and smaller closer to ¢ = 1. The code for harmonic discretisation is presented
in Appendix E.3. For other energies, we apply uniform time discretization.

All models in this section were trained on CPUs. Our implementations are based upon the published
code of [64].

def harmonic_discretizer (batch_size: int, trajectory_length: int):
step_sizes = 1 / arange(l, trajectory_length + 1)
sum_step_sizes = sum(step_sizes)
step_proportions = step_sizes / sum_step_sizes
split_points = cumsum(step_proportions)
return concatenate ([0.0, split_points])

E.4 GAN latent sampler training details

We use similar setup and hyperparameters to the ones described in Appendix E.3, with a number of
differences. We use smaller values of C; = 1.0 and C, = 0.1, which we found to improve the training
stability and sampling quality in this task. We also use a smaller batch size of 128 and larger hidden
size of 1024 for the MLP network (note that [81] uses a variant of UNet architecture [61], while we
use a variant of the architecture from [64], see Appendix E.3). We set o2 = 1, which matches the
variance of the prior. We set Iry = 1073, Ir, =0.2 X1Irg, ¥ = 0.9999. The exploration factor is set
to 0.1 and the replay ratio is set to 5. We found it beneficial to set the target neural network update
speed 7 to a higher value of 0.15. We train all samplers for 20 000 iterations.

We note that replay buffers and off-policy exploration are used both for the baseline and for our
approach to ensure a fair comparison. We do not use the local search method proposed in [64] as it
requires access to gradients of the target energy function, which would require costly differentiation
through the GAN generator and ImageReward. Thus all models considered in this experiment require
access only to E(z).

18

For GAN latent space sampling experiments we used NVIDIA V100 GPUs. Our implementations
are based upon the published code of [64], as well as the official implementations of [31, 57, 82].

Extending the results from Table 2, Fig. 6 depicts metric differences across all prompts utilized in
this experiment.

ELBO A between TBy, , and TBy (fixed var.) E[logr(x, y)] A between TBy, , and TBy (fixed var.) CLIP diversity A between TBe, , and TBy (fixed var.)
0.14 0.0100

012 0.0075

0.0050

0.0025

Eflogr(x,y)1 A

-0.0025

CLIP diversity A

~0.0050

-0.0075

A person wearing a hat
A person wearing a hat
A person wearing a hat

A woman with disheveled hair
Asian woman with blond hair
A smiling middle aged woman
A man with blond or red hair
A woman with disheveled hair
Asian woman with blond hair
A smiling middle aged woman
A man with blond or red hair:
A woman with disheveled hair
Asian woman with blond hair
A smiling middle aged woman
A man with blond or red hair

Young man wearing suit and glasses
A person with medium length hair
Young man wearing suit and glasses
A person with medium length hair
Young man wearing suit and glasses
A person with medium length hair

Figure 6: FFHQ text-conditional latent sampling results across different prompts. The figure depicts the
difference in metrics between TBg, ,, (ours) and TBg (fixed var.). Left: ELBO, middle: average ImageReward,
right: CLIP diversity. Our method improves reward and ELBO in most prompts. Differences in CLIP diversity
are minor (less than 0.01 for all prompts), and on average both methods show the same diversity when rounded
up to two decimals.

19

F Supplementary tables

See Tables 4 to 8 on the following pages for full results.

Table 4: Comparison of 4 algorithms by ELBO, EUBO, and 2-Wasserstein between generated and ground truth
samples with varying number of discretisation steps on 125GMM. Mean and std over 3 runs are specified.

ELBO (1)
Energy | Method | Steps — T=2 T=3 T=4 T=5 T=10 T=20
TBy (fixed var.) —=7.36:0.09 —5.32+0.01 —4.29+0.03 —3.64:0.06 —2.39:0.03 —1.72+0.01
TBg + TLM,, (fixed var.) -7.33+0.13 -5.38+0.00 -3.76+0.15 -2.88:0.10 -1.22:0.06 -0.65:0.04
TBo,, (fixed var.) -8.21+0.13 -5.51x0.08 -3.96+0.02 -3.13:0.05 -1.29:0.05 -0.70+0.08
TBy (learnt var.) —4.92:0.16 —2.27+0.06 —1.31x0.06 —0.88+0.08 —0.36+0.02 —0.24+0.03
125GMM TBg + TLM,, (learnt var.) —3.82+1.11 —1.67+0.10 —1.31x0.02 —0.80:0.10 —0.34:0.05 —0.31x0.24
TBog,, (learnt var.) —=5.34+1.09 —2.06+0.06 —1.31x0.13 —0.86+0.08 —0.27+0.09 —0.06+0.00
PISy (fixed var.) —6.94+032 —5.34+0.63 —4.75:0.73 —-3.68:0.13 —4.85+0.13 —2.83x0.12
PISy (learnt var.) —3.18:0.59 —2.75:026 —2.09+0.04 —2.05:0.04 —1.87+0.01 —2.06+0.08
PISy + TLM,, (learnt var.) —1.06£0.34 —1.29+0.15 —1.31+0.13 —1.05:0.28 —1.20:0.20 —1.80+0.31
PIS4 + VarGrad,, (learnt var.) —4.83:0.00 —4.83+0.00 —2.25+0.25 —2.04:0.01 —2.13:047 —2.16+0.54
EUBO (})
Energy | Method | Steps — T=2 T=3 T=4 T=35 T=10 T=20
TBe (fixed var.) 10.71x0.33 9.51+0.08 8.82+0.14 8.15x0.15 6.04+032 4.86+0.88
TBy + TLM,, (fixed var.) 13.00+0.55 6.08+0.12 4.46+0.21 3.03+0.09 1.26+0.16 0.63+0.02
TBy,, (fixed var.) 14.23+046 10.75:0.27 6.18+0.13 4.89+0.22 1.27+0.08 0.69+0.08
TBy (learnt var.) 2.19:0.07 1.15+0.04 0.77+0.03 0.56+0.02 0.27+0.01 0.18+0.03
125GMM TBy + TLM,, (learnt var.) 1.58:0.36 1.01x0.02 0.81+0.03 0.52:0.06 0.30:0.06 0.50+0.53
TBo,, (learnt var.) 2.06+0.31 1.15:0.10 0.72:0.03 0.51:0.04 0.21:0.05 0.06+0.00
PISy (fixed var.) 11.68+0.69 10.71:0.70 11.68+0.61 11.68+0.61 12.47+0.44 12.83+0.20
PIS¢ (learnt var.) 11.70+1.57 12.70:0.23 12.81+0.15 12.70+0.15 12.57+020 11.61+0.57
PISy + TLM, (learnt var.) 4.98:0.86 4.53:036 4.01:0.39 3.30:1.56 3.67:0.87 4.37:0.44
PISy + VarGrad, (learnt var.) 8.80:2.96 10.50+3.13 11.89x1.12 11.42+1.41 7.88+3.26 7.60+3.75
2-Wasserstein (|)
Energy | Method | Steps — T=2 T=3 T=4 T=5 T=10 T=20
TBg (fixed var.) 8.12+0.12 7.61:0.15 7.2620.14 6.95:0.10 6.28+0.03 5.65+0.23
TBy + TLM,, (fixed var.) 7.76+0.35 6.49:0.15 5.85:0.04 5.25:0.13 3.48z0.12 2.49:0.06
TBg,, (fixed var.) 7.68+0.16 6.80+0.18 6.01x0.11 5.67+0.17 3.52+0.09 2.63:0.12
TBe (learnt var.) 3.46+0.09 3.09:0.13 2.95:020 2.74:0.04 2.43+0.05 1.93+0.05
TBy + TLM,, (learnt var.) 1.97:0.16 2.82x0.15 2.60:0.14 2.23:031 2.27:036 2.37+1.04
125GMM TBy,, (learnt var.) 2.54+0.46 2.95:029 2.47+0.08 2.21:0.19 1.85z0.11 1.84+0.09
PISy (fixed var.) 7.60+0.14 7.01:036 7.32+0.54 6.91:048 7.19:0.31 7.94+0.47
PISy (learnt var.) 7.28+1.92 7.32:0.59 5.82+0.06 5.91:0.14 5.73+0.07 6.12+0.26
PISy + TLM,, (learnt var.) 3.25:0.82 4.61x033 4.96x0.05 4.24+085 5.01:0.18 5.34+0.20
PISg + VarGrad,, (learnt var.) 6.97+1.23 7.83+1.06 5.68+0.07 5.54:0.04 6.22+1.09 6.38+1.20
Ground Truth 1.81=0.11

20

Table 5: Comparison of 4 algorithms by ELBO, EUBO and 2-Wasserstein between generated and ground truth
samples with varying number of discretisation steps on 3 variants of 25GMM. Mean and std over 3 runs are
specified.

ELBO ()

Energy | Method | Steps — T=2 T=3 T=4 T=5 T=10 T=20
TBgy (fixed var.) —4.92:0.06 —3.53:005 —2.80:0.03 —2.35:0.04 —1.53:0.01 —1.11x0.02
TBy + TLM, (fixed var.) -4.75:005 -3.3120.05 -2.39:0.02 -1.79:0.05 -0.70z0.04 -0.37:0.03
TBo,, (fixed var.) -5.34+0.11 -3.76:006 -2.61:0.04 -2.01:0.06 -0.75:0.05 -0.37+0.03
TBy (learnt var.) —3.10z0.07 —1.44x0.07 —0.80:0.07 —0.54z0.02 —0.30x0.15 —0.12x0.02
TBy + TLM,, (learnt var.) —2.05:0.55 —1.01x0.09 —0.59:0.01 —0.36:0.01 —0.07x0.01 —0.18x0.10
25GMM TBo,, (learnt var.) —1.8320.04 —1.192003 —0.70:0.001 —0.42:0.03 —0.09:0.02 —0.03z0.01
PIS, (fixed var.) —4.36:0.04 —3.2320.01 —2.65:0.01 —2.36:0.04 —1.92:0.09 —1.64z0.14
PISy (learnt var.) —2.14:081 —1.45:002 —1.37z001 —1.31:001 —1.20z0.01 —1.34:0.13
PISy + TLM, (learnt var.) —1.13z0.19 —0.76:0.04 —0.82:0.16 —1.132001 —1.01x0.17 —1.81x0.30
PISy + VarGrad,, (learnt var.) —2.37=0.00 —1.75x038 —1.29:0.00 —1.1820.10 —1.19x0.00 —1.13=0.01

EUBO (1)

Energy | Method | Steps — T=2 T=3 T=4 T=5 T=10 T=20
TBg (fixed var.) 7.01x0.08 5.91x0.07 5.33z0.13 5.07:0.22 4.11:0.52 2.43:0.13
TBy + TLM,, (fixed var.) 7.25:0.50 3.57+0.08 2.3320.07 1.64x0.06 0.67+0.02 0.35:0.01
TBo., (fixed var.) 9.39:0.19 7.7720.96 3.93z0.66 2.67+0.45 0.70+0.06 0.35:0.01
TBgy (learnt var.) 1.41:0.04 0.7420.01 0.47:0.01 0.35z0.01 0.90:1.05 0.09:0.00
TBg + TLM,, (learnt var.) 0.99:0.14 0.56:0.05 0.36:0.01 0.24=0.01 0.07x0.00 1.87=1.66
25GMM TBy,, (learnt var.) 0.94:0.03 0.60:0.02 0.37:0.02 0.24:0.00 0.07z0.01 0.03:0.00
PISgy (fixed var.) 7.07:023 7.19:022 7.31:054 7.12:020 8.51:0.06 8.51:0.06
PISy (learnt var.) 8.41:0.20 8.40:0.06 8.42:0.04 8.44:0.03 8.40:0.16 7.02+0.05
PISg + TLM,, (learnt var.) 6.03+0.61 5.41+043 3.45:0.63 5.50+2.13 4.25:1.77 7.61x1.29

PIS¢ + VarGrad,, (learnt var.) 8.40:0.06 8.42+0.08 8.43:0.08 6.76+1.25 3.58:049 5.71:2.01
2-Wasserstein ()

Energy | Method | Steps — T=2 T=3 T=4 T=5 T=10 T =20
TBgy (fixed var.) 6.47x0.05 6.08:0.07 5.70:0.02 5.52:0.08 5.0320.17 4.39:0.01
TBg + TLM,, (fixed var.) 6.27:0.00 5.11z0.10 4.44z006 3.87:0.04 2.38z0.11 1.66:0.07
TBo,, (fixed var.) 6.36:0.07 5.74z0.18 4.75z0.10 4.32:0.06 2.56+0.15 1.77+0.08
TBy (learnt var.) 2.47:0.03 2.31:0.10 2.18:0.06 2.04:0.10 2.11x090 1.4620.30
TBy + TLM,, (learnt var.) 1.37:0.16 1.45:0.03 1.07:0.11 1.0120.09 0.91:0.03 2.14:1.68

25GMM TBo.y (learnt var.) 1.77:0.17 1.76x027 1.07z0.15 1.13z0.11 1.0520.20 1.1720.24
PISy (fixed var.) 5.71:0.10 5.4310.07 5.22:0.04 5.24:008 5.63:0.29 5.31:0.36
PISy (learnt var.) 5.90+1.46 4.68+0.08 4.56+0.09 4.46+0.06 4.58:0.08 4.87:0.26
PISg + TLM,, (learnt var.) 4.09:0.53 3.47+026 3.75:0.38 4.39:0.04 4.37:0.11 6.10+1.24
PIS¢ + VarGrad, (learnt var.) 6.98:0.03 5.80+1.08 4.35:0.09 4.17:027 4.38:0.05 4.40=0.11
Ground Truth 1.10£0.14

Table 6: Comparison of 4 algorithms by ELBO, EUBO, and 2-Wasserstein between generated and ground truth
samples with varying number of discretisation steps on 40GMM. Mean and std over 3 runs are specified.

ELBO (1)
Energy | Method | Steps — T=2 T=3 T=4 T=5 T=10 T=15 T=20 T=25
TBg (fixed var.) —4.52:1.06 —12.95+1336 —3.75:081 —3.60+1.03 —2.40:0.06 —2.30:0.02 —2.83:0.82 —2.29:0.12
TBy + TLM,, (fixed var.) -4.96+0.78 -3.11+0.21 -2.62+0.09 -2.46+0.05 -2.17:0.01 -2.04:0.07 -1.98:0.04 -1.96:0.04
TBo,, (fixed var.) -4.18+1.18 -3.350.02 -2.81£0.07 -2.48+0.06 -2.26x0.03 -2.06+0.08 -1.95:0.09 -2.00:0.08
TBg (learnt var.) —5.30+0.65 —3.96+0.92 —4.96+1.15 —3.58+0.04 —2.88:0.64 —2.26+0.13 —2.08:0.14 —1.94+0.04
40GMM TBy + TLM,, (learnt var.) —3.76+0.34 —2.64+0.12 —2.03:0.06 —1.74+0.03 —1.28+0.03 —1.1420.13 —1.25:0.19 —1.34+0.15
TBo,, (learnt var.) —4.12:0.31 —2.60+0.12 —2.44:017 —1.90:0.03 —1.26:0.11 —1.15:0.10 —0.99:0.00 —1.03z0.21
PISy (fixed var.) —4.45:0.03 —3.67+0.70 —=3.56:0.66 —3.95+0.00 —3.83x0.01 —3.33x0.64 —3.31x0.64 —3.76+0.00
PISy (learnt var.) —3.34+0.49 —2.93+0.53 —2.90+0.55 —2.87+0.58 —2.38+0.01 —3.20£0.60 —2.77+0.65 —2.29+0.08
PISy + TLM,, (learnt var.) —2.53z0.11 —2.62+0.00 —2.22+0.08 —2.34:0.02 —2.29:0.05 —2.33:0.01 —2.32:0.01 —2.32+0.01
PIS4 + VarGrad,, (learnt var.) —2.69:0.04 —2.55:0.13 —2.47:006 —2.79:0.64 —2.73:0.60 —2.72:0.69 —2.27+0.09 —2.26+0.09
EUBO (])
Energy | Method | Steps — T=2 T=3 T=4 T=5 T=10 T=15 T=20 T=25
TBg (fixed var.) 141.80:22.85 97.40x4.91 251.06:95.60 102.98+29.73 102.84x10.99 2732.36+3753.31 121.65:26.31 98.32+22.12
TBy + TLM, (fixed var.) 76.05+2.25 70.30+14.86 98.52+7.47 82.801+8.02 117.9648.84 114.55+12.78 108.29+18.38 84.96+23.71
TBy., (fixed var.) 87.03+26.30 58.65+2.54 97.50+17.17 104.46+15.08 116.41+12.13 116.25+34.53 115.79+24.49 107.8016.42
TBy (learnt var.) 5.33:0.15 7.8642.26 4.44+0.77 38.06447.29 5.98+2.29 6.89+4.76 5.29+3.08 37.75+46.22
40GMM TBy + TLM, (learnt var.) 2.74+0.19 3.38+0.18 3.8810.25 6.11+1.44 7.25+0.88 5.84+0.50 8.26+2.03 14.95+10.41
TBy,, (learnt var.) 3.17x0.14 3.20+0.52 3.1810.29 5.34+0.66 4.56:0.22 4.64:0.17 4.70+0.36 5.90+1.03
PISy (fixed var.) 108.22:038 106.93+1.45 106.20+2.48 108.22+0.38 108.22+0.38 108.22+0.38 106.84+1.57 106.39+2.21
PISy (learnt var.) 106.96:0.43 106.97:0.45 104.85:2.55 106.97+0.46 106.99+0.48 104.08+3.64 104.94+3.17 99.36+5.90
PISy + TLM,, (learnt var.) 106.95+0.42 106.95:0.44 106.95:0.42 106.99+0.37 106.98+0.40 107.00+0.40 99.51+11.0s 105.41+2.71

PISg + VarGrad,, (learnt var.) 106.95x0.42 106.95+0.44 106.95:0.42 106.99+0.37 106.98+0.40 102.54+5.94 106.51+1.12 104.24+4.27

2-Wasserstein ()

Energy | Method | Steps — T=2 T=3 T=4 T=5 T=10 T=15 T=20 T=25
TBg (fixed var.) 38.72:5.09 33.46:2.17 33.93:224 31.12:234 29.18+1.39 29.93x0.16 27.91:2.44 29.97:0.63
TBy + TLM,, (fixed var.) 34.00:2.88 29.13:0.14 29.27:0.15 29.19:0.08 28.28:0.13 27.45:036 25.74:1.76 24.9412.66
TBy,, (fixed var.) ~ 31.65:2.70 29.21:0.00 28.97:027 28.42:057 27.000.53 26.84x0.65 26.21+1.33 25.54x1.74
TBg (learnt var.) 18.36+0.71 20.59+2.00 16.34+1.75 21.99:6.57 15.63+2.28 15.14+1.33 14.02:0.28 19.38+7.77

40GMM TBg + TLM,, (learnt var.) 10.02:0.23 12.10:2.73 15.53z0.71 19.84+1.53 18.85:0.74 18.08+1.74 19.64x1.49 20.98+1.49
TBo,, (learnt var.) 10.79:x0.39 11.47+138 11.29:1.60 19.37+1.51 16.45:0.79 16.18z0.61 16.82:1.22 17.83:1.77
PISy (fixed var.) 30.4410.07 30.45:0.05 30.44:0.08 30.43:0.07 30.46+0.04 30.47+0.09 30.46:0.05 30.46+0.06
PISy (learnt var.) 30.43:0.07 30.37z0.14 30.15:0.18 30.09:0.28 30.09:0.21 30.15:0.35 30.1420.45 29.73:0.60
PISy + TLM,, (learnt var.) 30.22:0.35 30.14:0.21 29.93:0.57 29.92:0.07 29.63x0.27 29.91:0.26 29.85:0.17 29.86:0.34
PISy + VarGrad,, (learnt var.) 28.33+3.00 30.42:+0.08 30.08:0.25 30.06+0.50 30.46+0.06 30.15+0.49 30.22:0.24 30.16+0.39
Ground Truth 3.95:0.51

21

Table 7: Comparison of 4 algorithms by ELBO, EUBO, and 2-Wasserstein between generated and ground truth
samples with varying number of discretisation steps on Easy Funnel and Hard Funnel. Mean and std over 3 runs
are specified.

ELBO (T)
Energy | Method | Steps — T=5 T=10 T=15 T=20 T=25 T =30
TBy (fixed var) —0.61x0.00 —0.3420.02 —0.2320.02 —0.1920.01 —0.1520.00 —0.14+0.00
TBy + TLM,, (fixed var.) -0.58:0.02 -0.31x0.01 diverged diverged diverged diverged
Easy TBog,, (fixed var.) -0.62+0.03 -0.33x0.01 -0.22+0.01 -0.17+0.00 -0.16+0.01 -0.13+0.01
Funnel TBy (learnt var.) —0.34:0.01 —0.17x0.00 —0.11x0.00 —0.08+0.01 —0.07x0.01 —0.07x0.01
TBy + TLM,, (learnt var.) —0.08:0.04 —0.11x0.01 diverged diverged diverged diverged
TBog,, (learnt var.) —0.15:0.01 —0.11x0.01 —0.08z0.00 —0.06=0.01 —0.05+0.00 —0.05+0.00
TBy (fixed var.) —1.68+0.02 —1.17+0.03 —0.98+0.01 —0.89:0.02 —0.79:0.00 —0.76+0.01
TBy + TLM,, (fixed var.) -1.43z0.01 -1.09+0.03 diverged diverged diverged diverged
Hard TBoe,, (fixed var.) -1.83+0.08 -1.58+045 -0.95+0.01 -0.85x0.02 -0.79:0.03 -0.76x0.01
Funnel TBy (learnt var.) —1.72+0.04 —1.25+0.03 —0.91x0.05 —0.61x0.01 —0.48+0.02 —0.44+0.01
TBy + TLM,, (learnt var.) —0.63:0.26 —0.45x0.04 diverged diverged diverged diverged
TBo,, (learnt var.) —1.01:0.04 —0.69:0.01 —0.56+0.03 —0.55+0.08 —0.41:0.02 —0.41+0.03
EUBO (])
Energy | Method | Steps — T=5 T=10 T=15 T=20 T=25 T =30
TBy (fixed var.) 0.73=0.01 0.40+0.02 0.28+0.01 0.21=0.01 0.17+0.00 0.15+0.00
TBg + TLM,, (fixed var.) 0.64:0.02 0.35x0.01 2.80+0.11 diverged diverged diverged
Easy TBo,, (fixed var.) 0.84:0.03 0.39:0.04 0.26=0.01 0.20+0.01 0.18=0.01 0.1520.02
Funnel TBo (learnt var.) 0.38+0.02 0.18=x0.01 0.12+0.00 0.09+0.00 0.08+0.00 0.06+0.00
TBe + TLM,, (learnt var.) 0.08:+0.03 0.12:0.01 diverged diverged diverged diverged
TBo,, (learnt var.) 0.17+0.03 0.12=0.01 0.08+0.00 0.07=0.01 0.05+0.00 0.05+0.00
TBy (fixed var.) 95.36+8.41 78.77+8.35 75.40+3.35 72.8315.15 70.99:4.26 68.93+5.01
TBg + TLM,, (fixed var.) 109.52+52.22 55.76+17.37 285.59+53.98 diverged diverged diverged
Hard TBo,, (fixed var.) 374.26+228.11 694.95+901.63 79.03+50.28 69.47+30.67 56.34+26.13 95.48+24.76
Funnel TBy (learnt var.) 155.51+£19.60 102.97+41.86 105.67+6.26 121.76+41.45 349.17+406.05 79.37+33.30
TBy + TLM,, (learnt var.) 1509.44+2037.59 22.77+14.77 diverged diverged diverged diverged
TBo,, (learnt var.) 2800.63x1351.92 21.48+13.09 62.95+75.95 30.35+20.62 8.60+0.97 17.29:8.63
2-Wasserstein ()
Energy | Method | Steps — T=5 T=10 T=15 T=20 T=25 T =30
TBg (fixed var.) 2.45+0.04 2.43+0.03 2.45+0.04 2.49+0.01 2.47+0.02 2.48+0.03
TBg + TLM,, (fixed var.) 2.44+0.02 2.45:0.03 2.60+0.03 diverged diverged diverged
Easy Funnel TBg,, (fixed var.) 2.45+0.04 2.45+0.01 2.45+0.01 2.47+0.02 2.49+0.03 2.49+0.03
sy TBy (learnt var.) 2.49:0.02 2.50+0.03 2.49:0.03 2.49:0.02 2.50+0.02 2.53:0.01
TBy + TLM,, (learnt var.) 2.51x0.0s 2.53x0.02 diverged diverged diverged diverged
TBo,, (learnt var.) 2.52:0.01 2.49:0.02 2.51x0.03 2.53:0.02 2.52+0.02 2.50:0.02
Ground Truth 2.58:0.05
TBg (fixed var.) 22.82:0.73 22.50:0.75 22.36+0.78 22.17+0.81 22.08+0.79 21.99+0.79
TBy + TLM,, (fixed var.) 22.43:2.39 22.05:2.41 23.07:2.36 diverged diverged diverged
Hard Funnel TBy,, (fixed var.) 22.53+239 22.47:250 21.90+2.40 21.53:253 21.26+2.48 21.18+2.52
TBy (learnt var.) 22.45+0.79 21.94:0.85 21.63x0.80 21.53:0.76 21.44x0.81 21.36+0.81
TBy + TLM,, (learnt var.) 21.32:0.90 21.04z0.84 diverged diverged diverged diverged
TBg,, (learnt var.) 21.48:0.81 20.96:0.88 21.04+0.91 20.91:0.86 21.03+0.80 21.01+0.90
Ground Truth 24.24+4.20

22

Table 8: Comparison of 4 algorithms by ELBO gap, EUBO gap, and 2-Wasserstein between generated and
ground truth samples with varying number of discretisation steps on Manywell and Distorted Manywell. Mean
and std over 3 runs are specified.

ELBO gap (1)
Energy | Method | Steps — T=5 T=10 T=20
TBy (fixed var.) —36.25+13.68 —12.36+0.10 —5.67+0.05
ManyWell TBg (learnt var.) —2.40+0.03 —0.78+0.02 —0.41+0.09
y TBy + TLM,, ~2.16:0.12 —0.79s001 diverged
TBo,e —2.22+0.05 —0.83x0.02 —0.32z0.01
TBy (fixed var.) —77.74:6.27 —25.75:9.45 —11.96z0.16
Distorted TBg (learnt var.) —8.36+0.73 —5.70+1.04 —3.83+0.13
ManyWell TBy +TLM,, —6.47+1.12 —3.99:2.31 diverged
TBg,, —7.33£1.34 —4.07+238 —2.90+1.60
EUBO gap ({)
Energy | Method | Steps — T=5 T=10 T=20
TBy (fixed var.) 12.80+3.02 6.72+0.02 4.06x0.04
TBy (learnt var.) 1.68+0.02 0.63z0.01 0.36+0.09
Many Well TBy + TLM,, 1.69z0.01 0.72+0.02 diverged
TBy,, 1.61x0.01 0.64z0.01 0.31x0.01

TBy (fixed var.) 19.68+0.62 10.46+230 6.19z0.10
Distorted TBg (learnt var.) 4.53+0.30 3.16+0.37 2.15+0.08
ManyWell TBgy + TLM,, 4.09:049 2.39:1.09 diverged
TBy,, 4.29:0.42 2.38x1.19 1.77x0.80

2-Wasserstein (|)
Energy | Method | Steps — T=5 T=10 T =20

TBy (fixed var.) 5.57+0.11 5.40+0.02 5.38+0.01
TBy (learnt var.) 5.35+0.01 5.3820.01 5.41x0.03

ManyWell

TBgy + TLM,, 5.3310.03 5.36:0.02 diverged
TBg,, 5.36+0.02 5.39:0.01 5.40+0.01
Ground Truth 5.42+0.02

TBy (fixed var.) 5.87+0.03 5.66x0.02 5.53+0.06
Distorted TBg (learnt var.) 5.53+0.00 5.44+0.03 5.40+0.01

ManyWell TBg + TLM,, 5.50+0.02 5.42:0.09 diverged
TBy,, 5.5410.01 5.41:0.08 5.37+0.06
Ground Truth 5.30=0.01

23

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We introduce the main topic of our work — adaptive destruction processes for
diffusion samplers — in the abstract and introduction, which is the main focus of the whole
paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations are discussed where relevant throughout the text, such as instability
of some methods considered (Appendix D.1), unsuccessful techniques (Appendix C.1), and
the introduction of new hyperparameters that need to be tuned.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

24

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have no (significant) theoretical results, but Appendix B.1 contains a
derivation that holds under assumptions from [7], as mentioned in the main text, and
Appendix B.4 extends a known connection between sampling and soft RL to the diffusion
samplers case.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See §3, Appendix E.3 and Appendix E.4.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

25

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The workshop does not allow for uploading of additional supplementary
materials.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See §3, Appendix E.3 and Appendix E.4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results on synthetic targets are reported taking statistical significance into
account, e.g., see Table 3 and other tables in Appendix F. We do not report error bars on the
GAN experiments due to computation constraints.

Guidelines:

* The answer NA means that the paper does not include experiments.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialisation, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix E.3 and Appendix E.4.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of our knowledge, we follow the NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The authors do not believe that this question is applicable to the main problem
studied in this paper (diffusion sampling). Improved sampling algorithms have downstream
applications, but we do not feel there is any specific impact of our work that must be
discussed.

27

https://neurips.cc/public/EthicsGuidelines

11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The authors believe this question is not applicable to the topic of the paper.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All code and data we use is free to use in academic research and we credit it
where required.

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

28

13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Full code for reproducing experiments will be released with the publication of
the paper. A detailed explanation of the training setup can be found in Appendix E.3

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Crowdsourcing and research with human subjects were not used for this paper.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This question is not applicable to the content of this paper.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

29

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The topic of this paper is not directly relevant to LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

30

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methodology
	Setting and background
	Relaxing constraints on transitions
	Training objectives for generation and destruction processes
	Techniques for stable joint optimisation

	Experiments
	Synthetic tasks
	Scalability: Sampling in GAN latent space for conditional image generation

	Conclusion
	Related work
	More on diffusion samplers
	On KL divergence between processes with different variances.
	Training objectives.
	Details on process parametrisations
	On soft RL equivalence.

	Techniques for stability
	Implementation details of techniques for stability
	Ablation study

	Extended results and findings
	Results on synthetic tasks
	Scalability: Sampling in GAN latent space for conditional image generation

	Experiment details
	Definition of energies
	Metrics
	Synthetic tasks training details
	GAN latent sampler training details

	Supplementary tables

