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Abstract001

Modern BPE tokenizers often split calen-002
dar dates into meaningless fragments, e.g.,003
“20250312” → “202”, “503”, “12”, inflat-004
ing token counts and obscuring the inherent005
structure needed for robust temporal reason-006
ing. In this work, we (1) introduce a simple007
yet interpretable metric, termed date fragmen-008
tation ratio, that measures how faithfully a tok-009
enizer preserves multi-digit date components;010
(2) release DATEAUGBENCH, a suite of 6500011
examples spanning three temporal reasoning012
tasks: context-based date resolution, format-013
invariance puzzles, and date arithmetic across014
historical, contemporary, and future regimes;015
and (3) through layer-wise probing and causal016
attention-hop analyses, uncover an emergent017
date-abstraction mechanism whereby large lan-018
guage models sequentially assemble the frag-019
ments of month, day, and year components020
into a unified “date” concept. Our experi-021
ments show that excessive fragmentation cor-022
relates with accuracy drops of up to 10 points023
on uncommon dates like historical and futur-024
istic dates. Further, we find that the larger the025
model, the more quickly the emergent date ab-026
straction that heals date fragments is accom-027
plished. Lastly, we observe a reasoning path028
that LLMs follow to interpret dates, relying on029
subword fragments that statistically represent030
year, month and day, and stitch these fragments031
in a flexible order that is subject to date formats.032

1 Introduction033

Understanding and manipulating dates is a decep-034

tively complex challenge for modern large lan-035

guage models (LLMs). Unlike ordinary words,036

dates combine numeric and lexical elements in037

rigidly defined patterns—ranging from compact038

eight-digit strings such as 20250314 to more ver-039

bose forms like “March 14, 2025” or locale-specific040

variants such as “14/03/2025.” Yet despite their041

structured nature, these date expressions often fall042

prey to subword tokenizers that fragment them into043

semantically meaningless pieces. A tokenizer that044
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Figure 1: Internal processing of dates for temporal rea-
soning. Here F=0.4 shows the date fragmentation ratio.

splits “2025-03-14” into “20”, “25”, “-0”, “3”, “-1”, 045

“4” not only inflates the token count but also sev- 046

ers the natural boundaries of year, month, and day. 047

This fragmentation obscures temporal cues and in- 048

troduces a hidden bottleneck: even state-of-the-art 049

LLMs struggle to resolve, compare, or compute 050

dates accurately when their internal representations 051

have been so badly fragmented. This issue is criti- 052

cal for real-world applications: 053

Mis-tokenized dates can undermine scheduling 054

and planning workflows, leading to erroneous cal- 055

endar invites or appointments (Vasileiou and Yeoh, 056

2024). They can skew forecasting models in do- 057

mains ranging from time-series analysis (Tan et al., 058

2024; Chang et al., 2023) to temporal knowledge 059

graph reasoning (Wang et al., 2024). In digital 060

humanities and historical scholarship, incorrect 061

splitting of date expressions may corrupt time- 062

lines and misguide interpretative analyses (Zeng, 063

2024). As LLMs are increasingly deployed in 064

cross-temporal applications, such as climate pro- 065

jection(Wang and Karimi, 2024), economic fore- 066

casting (Carriero et al., 2024; Bhatia et al., 2024), 067

and automated curriculum scheduling (Vasileiou 068

and Yeoh, 2024), the brittleness introduced by sub- 069

word fragmentation poses a risk of propagating 070

temporal biases and inaccuracies into downstream 071

scientific discoveries and decision-making systems 072

(Tan et al., 2024). 073

In this work, we provide a pioneer outlook on 074

the impact of date tokenization on downstream tem- 075
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poral reasoning. Figure 1 illustrates how dates are076

processed internally for temporal reasoning. Our077

contributions are summarized as follows:078

(i) We introduce DATEAUGBENCH, a benchmark079

dataset comprising 6,500 examples with 21080

date formats. It is leveraged to evaluate a081

diverse array of LLMs from 8 model families082

in three temporal reasoning tasks.083

(ii) We present date fragmentation ratio, a metric084

that measures how fragmented the tokeniza-085

tion outcome is compared to the actual year,086

month, and day components. We find that087

the fragmentation ratio generally correlates088

with temporal reasoning performance, namely089

that the more fragmented the tokenization, the090

worse the reasoning performance.091

(iii) We analyse internal representations by tracing092

how LLMs “heal” fragmented date embed-093

dings in their layer stack—an emergent ability094

that we term date abstraction. We find that095

larger models quickly stitch fragmented date096

inputs into a unified “date” concept for tem-097

poral reasoning at early layers.098

(iv) We leverage causal analysis to interpret how099

LLMs understand dates. Our results show that100

LLMs follow a reasoning path that is typically101

not aligned with human interpretation (year102

→ month → day), but relies on subword frag-103

ments that statistically represent year, month,104

and day, and stitch them in a flexible order.105

Our work fills the gap between tokenisation re-106

search (Goldman et al., 2024; Schmidt et al., 2024)107

and temporal reasoning (Su et al., 2024; Fatemi108

et al., 2024), and motivates the design of date-aware109

vocabularies and adaptive tokenizers that preserve110

temporal coherence without sacrificing numeric111

flexibility for future models.112

2 Related Works113

Tokenisation as an information bottleneck. Re-114

cent scholarship interrogates four complementary115

facets of sub-word segmentation: (i) tokenisation116

fidelity, i.e. how closely a tokenizer preserves se-117

mantic units: Large empirical studies show that118

higher compression fidelity predicts better down-119

stream accuracy in symbol-heavy domains such120

as code, maths and dates (Goldman et al., 2024;121

Schmidt et al., 2024); (ii) numeric segmenta-122

tion strategies that decide between digit-level or123

multi-digit units: Previous work demonstrates that124

the choice of radix—single digits versus 1–3-digit125

chunks—induces stereotyped arithmetic errors and126

can even alter the complexity class of the com- 127

putations LLMs can realise (Singh and Strouse, 128

2024; Zhou et al., 2024); (iii) probabilistic or learn- 129

able tokenisers whose segmentations are optimised 130

jointly with the model: Theory frames tokenisa- 131

tion as a stochastic map whose invertibility con- 132

trols whether maximum-likelihood estimators over 133

tokens are consistent with the underlying word dis- 134

tribution (Gastaldi et al., 2024; Rajaraman et al., 135

2024) and (iv) pre-/post-tokenisation adaptations 136

that retrofit a model with a new vocabulary: Zheng 137

et al. (2024) introduce an adaptive tokenizer that 138

co-evolves with the language model, while Liu et al. 139

(2025) push beyond the “sub-word” dogma with 140

SuperBPE, a curriculum that first learns subwords 141

and then merges them into cross-whitespace “super- 142

words”, cutting average sequence length by 27 %. 143

Complementary studies expose and correct system- 144

atic biases introduced by segmentation (Phan et al., 145

2024) and propose trans-tokenization to transfer 146

vocabularies across languages without re-training 147

the model from scratch (Remy et al., 2024). Our 148

work builds on these insights but zooms in on calen- 149

dar dates—a hybrid of digits and lexical delimiters 150

whose multi-digit fields are routinely shredded by 151

standard BPE, obscuring cross-field regularities 152

crucial for temporal reasoning. 153

Temporal reasoning in large language models. 154

Despite rapid progress on chain-of-thought and 155

process-supervised reasoning, temporal cognition 156

remains a conspicuous weakness of current LLMs. 157

Benchmarks such as TIMEBENCH (Chu et al., 158

2024), TEMPREASON (Tan et al., 2023), TEST- 159

OF-TIME (Fatemi et al., 2024), MENATQA (Wei 160

et al., 2023) and TIMEQA (Chen et al., 2021) re- 161

veal large gaps between model and human perfor- 162

mance across ordering, arithmetic and co-temporal 163

inference. Recent modelling efforts attack the prob- 164

lem from multiple angles: temporal-graph abstrac- 165

tions (Xiong et al., 2024), instruction-tuned spe- 166

cialists such as TIMO (Su et al., 2024), pseudo- 167

instruction augmentation for multi-hop QA (Tan 168

et al., 2023), and alignment techniques that re- 169

ground pretrained models to specific calendar years 170

(Zhao et al., 2024). Yet these approaches assume 171

a faithful internal representation of the input dates 172

themselves. By introducing the notion of date frag- 173

mentation and demonstrating that heavier fragmen- 174

tation predicts up to ten-point accuracy drops on 175

DATEAUGBENCH, we uncover a failure mode that 176

is orthogonal to reasoning algorithms or supervi- 177

sion: errors arise before the first transformer layer, 178
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at the level of subword segmentation. Addressing179

this front-end bottleneck complements, rather than180

competes with, existing efforts to improve temporal181

reasoning in LLMs.182

3 DateAugBench183

We introduce DATEAUGBENCH, benchmark de-184

signed to isolate the impact of date tokenisation on185

temporal reasoning in LLMs. DATEAUGBENCH186

comprises 6,500 augmented examples drawn from187

two established sources, TIMEQA (Chen et al.,188

2021) and TIMEBENCH (Chu et al., 2024), dis-189

tributed across three tasks splits (see Table 1).190

Across all the splits, our chosen date formats cover191

a spectrum of common regional conventions (nu-192

meric with slashes, dashes, or dots; concatenated193

strings; two-digit versus four-digit years) and de-194

liberately introduce fragmentation for atypical his-195

torical (e.g. “1799”) and future (e.g. “2121”) dates.196

This design enables controlled measurement of how197

tokenization compression ratios and subsequent198

embedding recovery influence temporal reasoning199

performance.200

Context-based task. In the Context-based split,201

we sample 500 question–context pairs from202

TIMEQA, each requiring resolution of a date203

mentioned in the passage (e.g. Which team did204

Omid Namazi play for in 06/10/1990?). Every205

date expression is systematically rendered in six206

canonical serialisations—including variants such as207

MM/DD/YYYY, DD-MM-YYYY, YYYY.MM.DD and con-208

catenations without delimiters—yielding 3,000 ex-209

amples that jointly probe tokenisation fragmenta-210

tion and contextual grounding.211

Simple Format Switching task. The Simple For-212

mat Switching set comprises 150 unique date pairs213

drawn from TIMEBENCH, posed as binary same-214

day recognition questions (e.g. “Are 20251403 and215

14th March 2025 referring to the same date?”).216

Each pair is presented in ten different representa-217

tions, spanning slash-, dash-, and dot-delimited for-218

mats, both zero-padded and minimally notated, to219

stress-test format invariance under maximal tokeni-220

sation drift. This produces 1,500 targeted examples221

of pure format robustness. We also have examples222

where the dates are not equivalent, complicating223

the task.224

Date Arithmetic task. The Date Arithmetic split225

uses 400 arithmetic instances from TIMEBENCH226

(e.g. What date is 10,000 days before 5/4/2025?).227

With the base date serialised in five distinct ways—228

from month-day-year and year-month-day with var- 229

ious delimiters to compact eight-digit forms. This 230

results in 2,000 examples that examine the model’s 231

ability to perform addition and subtraction of days, 232

weeks, and months under various token fragmenta- 233

tion. 234

4 Experiment Design 235

4.1 Date Tokenization 236

Tokenizers. For tokenization analysis, we com- 237

pare a deterministic, rule-based baseline tokenizer 238

against model-specific tokenizers. The base- 239

line splits each date into its semantic compo- 240

nents—year, month, day or Julian day—while 241

preserving original delimiters. For neural mod- 242

els, we invoke either the OpenAI tiktoken en- 243

codings (for gpt-4, gpt-3.5-turbo, gpt-4o, 244

text-davinci-003) or Hugging Face tokenizers 245

for open-source checkpoints. Every date string is 246

processed to record the resulting sub-tokens, token 247

count, and reconstructed substrings. 248

Distance metric. To capture divergence from the 249

ideal, we define a distance metric θ between a 250

model’s token distribution and the baseline’s: 251

θ(t,b) = 1− t · b
|t|, |b|

, (1) 252

where t and b are vectors of sub-token counts for 253

the model and baseline, respectively. A larger θ 254

indicates greater sub-token divergence. 255

Date fragmentation ratio. Building on θ, we 256

introduce the date fragmentation ratio F , which 257

quantifies how fragmented a tokenizer’s output is 258

relative to the baseline. We initialise F = 0.0 for 259

a perfectly aligned segmentation and apply down- 260

ward adjustments according to observed discrepan- 261

cies: a 0.10 penalty if the actual year/month/day 262

components are fragmented (i.e., 1split = 1) , a 263

0.10 penalty if original delimiters are lost (i.e., 264

1delimiter = 1), a 0.05 penalty multiplied by the 265

token count difference (N − Nb

)
between a tok- 266

enizer and the baseline, and a 0.30× θ penalty for 267

distributional divergence. The resulting F ∈ [0, 1] 268

provides an interpretable score: values close to 0 269

denote minimal fragmentation, and values near 1 270

indicate severe fragmentation. 271

F = 0.10 ∗ 1split + 0.10 ∗ 1delimiter

+ 0.05 ∗
(
N −Nb

)
+ 0.30 ∗ θ

(2) 272
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Dataset and Task # Formats # Raw Size Evaluation

Example GT

Context based 6 500 3000 Which team did Omid Namazi
play for in 06/10/1990?

Maryland Bays

Date Format Switching 10 150 1500 Are 20251403 and March 14th
2025 referring to the same
date?

Yes

Date Arithmetic 5 400 2000 What date is 10,000 days be-
fore 5/4/2025?

18 November 1997; 17 Decem-
ber 1997

Total 21 1500 6500

Table 1: Overview and examples of task splits in DATEAUGBENCH.

This date fragmentation ratio is pivotal be-273

cause tokenisation inconsistencies directly impair274

a model’s ability to represent and reason over tem-275

poral inputs. When date strings are split non-276

intuitively, models face inflated token sequences277

and fragmented semantic cues, potentially leading278

to errors in tasks such as chronological compari-279

son, date arithmetic, and context-based resolution.280

By quantifying fragmentation explicitly through281

F , we reveal hidden limitations in existing tokeniz-282

ers, inform selections of robust architectures for283

time-sensitive applications.284

4.2 Temporal Reasoning Evaluation285

Models. We evaluate a spectrum of model rang-286

ing from 0.5 B to 14 B parameters: five open-287

source Qwen 2.5 models (0.5 B, 1.5 B, 3 B, 7288

B, 14 B) (Yang et al., 2024), two Llama 3 mod-289

els (3 B, 8 B) (Touvron et al., 2023b), and two290

OLMo (Groeneveld et al., 2024) models (1 B, 7291

B). For comparison with state-of-the-art closed292

models, we also query the proprietary GPT-4o and293

GPT-4o-mini endpoints via the OpenAI API (Ope-294

nAI et al., 2024).295

LLM-as-a-judge. To measure how date tokeniza-296

tion affects downstream reasoning, we employ an297

LLM-as-judge framework using GPT-4o. For each298

test instance in DATEFRAGBENCH, we construct a299

JSONL record that includes the question text, the300

model’s predicted answer, and a set of acceptable301

gold targets to capture all semantically equivalent302

date variants (e.g., both “03/04/2025” and “April 3,303

2025” can appear in the gold label set). This record304

is submitted to GPT-4o via the OpenAI API with a305

system prompt instructing it to classify the predic-306

tion as CORRECT, INCORRECT, or NOT ATTEMPTED.307

A prediction is deemed CORRECT if it fully contains308

any one of the gold target variants without con-309

tradiction; INCORRECT if it contains factual errors310
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Figure 2: Illustration of how LLMs with various model
sizes process dates. TCP means Tokenization Compen-
sation Point, defined as the earliest layer at which LLMs
achieve above-chance accuracy (see more details in Sec-
tion 6).

relative to all gold variants; and NOT ATTEMPTED if 311

it omits the required information. We validate GPT- 312

4o’s reliability by randomly sampling 50 judged in- 313

stances across all splits and obtaining independent 314

annotations from four human reviewers. GPT-4o’s 315

classifications agree with the human consensus on 316

97% of cases, yielding a Cohen’s κ of 0.89, which 317

affirms the reliability of our automated evaluation. 318

4.3 Internal Representations 319

Layerwise probing. We use four Qwen2.5 (Yang 320

et al., 2024) model checkpoints (0.5B, 1.5B, 3B, 321

and 7B parameters) to trace how temporal informa- 322

tion is processed internally across different layers. 323

During inference, each question is prefixed with a 324

fixed system prompt and a chain-of-thought cue, 325

then passed through the model in evaluation mode. 326

At each layer i, we extract the hidden-state vector 327

corresponding to the final token position, yielding 328

an embedding hi ∈ Rd for that layer. Repeating 329

over all examples produces a collection of layer- 330

wise representations for positive and negative cases. 331

We then quantify the emergence of temporal reason- 332

ing by training lightweight linear probes on these 333

embeddings. For layer i, the probe is trained to dis- 334

tinguish “same-date” vs “different-date” examples. 335
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To explain when the model’s date understanding is336

achieved, we define the tokenization compensation337

point as the layer at which the model’s represen-338

tation correctly represents the date in the given339

prompt. We experiment with this idea across var-340

ious model sizes, aiming to test our hypothesis:341

larger models would recover calendar-level seman-342

tics from fragmented tokens at earlier stages, i.e.,343

tokenization compensation is accomplished at early344

layers, as illustrated in Figure 2.345

Causal attention-hop analysis. To reveal the346

mechanisms by which LLMs parse and resolve347

date strings, we conduct a two-stage causal analy-348

sis (Lindsey et al., 2025) that combines activation349

tracing with targeted interventions. First, we instru-350

ment the model’s residual stream across all layers351

to capture when and where temporal information352

emerges. Given an input prompt requiring a date353

resolution (e.g., “Is 12/05/2020 the same date as354

12th of May 2020?”), we identify two sets of to-355

kens: (1) concept tokens corresponding to year,356

month, and day fragments, and (2) decision tokens357

corresponding to the final “yes” or “no” output. For358

each layer-wise token, we project its hidden state359

through the output embedding, producing an activa-360

tion map whose peaks locate the layer and position361

that best encode each fragment or verdict. Atten-362

tion peaks indicate the layer and position where363

temporal fragments and the judgment receive the364

most attention from input tokens. In the second365

stage, we perform causal interventions at the final366

transformer layer to quantify each token’s influence367

on the model’s decision. For each concept token368

that shows a strong activation peak, we generate a369

corrupted prompt by replacing that fragment with370

a contrasting value (e.g., swapping “12” for “31”).371

We then re-evaluate the model on the corrupted372

prompt and measure the change in the logit differ-373

ence between “yes” and “no.” The magnitude of374

this change reflects the causal strength of the origi-375

nal token’s contribution to the final judgment. To376

build a sparse importance map, we multiply each377

token’s normalised peak height by the absolute size378

of its causal effect. This causal framework not only379

pinpoints where and when temporal concepts are380

represented, but also how they sequentially com-381

bine to drive the model’s final decision.382

5 Experiment Results383

5.1 Date fragmentation384

Cross-temporal performance. Table 2 reports385

the mean date fragmentation ratio across four386

Model Past Near Past Present Future Avg

Baseline 0.00 0.00 0.00 0.00 0.00
OLMo 0.15 0.14 0.07 0.25 0.15
GPT-3 0.17 0.14 0.06 0.25 0.16
Llama 3 0.29 0.28 0.27 0.30 0.29
GPT-4o 0.32 0.31 0.22 0.30 0.29
GPT-3.5 0.47 0.22 0.26 0.36 0.33
GPT-4 0.36 0.26 0.29 0.39 0.33
Qwen 0.58 0.55 0.49 0.58 0.55
Gemma 0.58 0.55 0.49 0.58 0.55
DeepSeek 0.58 0.55 0.49 0.58 0.55
LlaMa 0.63 0.63 0.63 0.63 0.63
Phi 0.63 0.63 0.63 0.63 0.63

Table 2: Date fragmentation ratio across models and
data splits over time.

Models Context Rlt Fmt Switch Date Arth. Avg.

GPT-4o-mini 53.20 95.66 56.67 68.51
OLMo-2-7B 32.13 97.24 64.72 64.70
Qwen2.5 14B 47.56 94.56 51.35 64.49
Qwen2.5 7B 39.56 91.24 40.56 57.12
Qwen2.5 3B 25.45 90.10 39.45 51.67
LLama3.1 8B 26.20 90.22 34.50 50.31
Qwen2.5 1.5B 21.32 89.65 32.34 47.77
Qwen2.5 0.5B 10.23 88.95 31.32 43.50
OLMo-2-1B 9.26 90.09 25.90 41.75
LLama3.2 3B 9.51 88.45 23.66 40.54

Table 3: Average accuracies per task. Context Rlt stands
for context based resolution task, Fmt Switch refers to
the format switching task, and Date Arth. refers to the
date arithmetic task.

temporal regimes—Past (pre–2000), Near Past 387

(2000–2009), Present (2010–2025), and Future 388

(post–2025)—for each evaluated model. A ra- 389

tio of 0.00 signifies perfect alignment with our 390

rule-based baseline tokenizer, whereas higher val- 391

ues indicate progressively greater fragmentation. 392

The rule-based Baseline unsurprisingly attains the 393

maximal ratio of 0.00 in all periods, serving as a 394

lower bound. Among neural architectures, OLMo 395

(Groeneveld et al., 2024) demonstrates the high- 396

est robustness, with an average fragmentation ratio 397

of 0.15, closely followed by GPT-3 at 0.16. Both 398

maintain strong fidelity across temporal splits, al- 399

though performance dips modestly in the Future 400

category (0.25), reflecting novel token sequences 401

not seen during pre-training. 402

Impact of subtoken granularity. A closer look, 403

from Table 4, at sub-token granularity further ex- 404

plains these trends. Llama 3 (Touvron et al., 2023b) 405

and the GPT (OpenAI et al., 2023) families typi- 406

cally segment each date component into three-digit 407

sub-tokens (e.g., “202”, “504”, “03”), thus pre- 408

serving the semantic unit of “MMDDYYYY” as 409

compact pieces. OLMo (Groeneveld et al., 2024) 410

5



Model Tokenized output Frag-ratio

Baseline 10 27 1606 0.00
OLMo 10 27 16 06 0.34
Llama 3 102 716 06 0.40
GPT-3 1027 16 06 0.40
GPT-4o 102 716 06 0.40
Gemma 1 0 2 7 1 6 0 6 0.55
DeepSeek 1 0 2 7 1 6 0 6 0.55
Cohere 1 0 2 7 1 6 0 6 0.55
Qwen 1 0 2 7 1 6 0 6 0.55
Phi 3.5 _ 1 0 2 7 1 6 0 6 0.60
Llama 2 _ 1 0 2 7 1 6 0 6 0.60

Table 4: Tokenisation of the MMDDYYYY string
“10271606” across models.
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Figure 3: Date fragmentation ratio versus date reso-
lution accuracy, stratified by temporal regime and six
LLMs: OLMo, Llama 3, GPT-4o, Qwen, Gemma, Phi.

splits the date tokens into two digit tokens (e.g.,411

“20”, “25”). By contrast, Qwen (Yang et al., 2024)412

and Gemma (Team et al., 2024) models break dates413

into single-digit tokens (e.g., “2”, “5”), whereas414

Phi (Abdin et al., 2024) and LLama (Touvron et al.,415

2023a) divide it into single-digit tokens with an416

initial token (e.g. “_”, “2”, “0”, “2”, “5”), inflating417

the token count. Although single-digit tokenisation418

can enhance models’ ability to perform arbitrary419

numeric manipulations (by treating each digit as an420

independent unit), it comes at the expense of tem-421

poral abstraction: the tight coupling between day,422

month, and year is lost, inflating the compression423

penalty and increasing the θ divergence from the424

baseline.425

5.2 DATEFRAGBENCH Evaluation426

Performance on temporal reasoning tasks. We427

compare model accuracies in three tasks: Context-428

based Resolution, Format Switching, and Date429

Arithmetic (see the results in Table 3). All mod-430

els effectively solve Format Switching (e.g. 97.2%431
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Figure 4: Date fragmentation ratio versus date resolu-
tion accuracy, stratified by six formats and six LLMs.

for OLMo-2-7B, 95.7% for GPT-4o-mini, 94.6% 432

for Qwen2.5-14B, 90.2% for Llama3.1-8B). By 433

contrast, Context Resolution and Arithmetic re- 434

main challenging: GPT-4o-mini scores 53.2% and 435

56.7%, Qwen2.5-14B 47.6% and 51.4%, Llama3.1- 436

8B 26.2% and 34.5%, and OLMo-2-7B 32.1% and 437

64.7%, respectively. The fact that arithmetic per- 438

formance consistently exceeds resolution suggests 439

that, given a correctly tokenized date, performing 440

addition or subtraction is somewhat easier than re- 441

solving the date within free text—which requires 442

encyclopedic knowledge. 443

Correlating date fragmentation with model ac- 444

curacy over time. Figure 3 plots date fragmen- 445

tation ratio against resolution accuracy, with 24 446

data points across six models and four temporal 447

splits. Accuracy rises as we move from Past (1600- 448

2000) to the Near Past (2000–2009) and peaks in 449

the Present (2010–2025), mirroring the negative 450

correlation between fragmentation and accuracy 451

(dashed line, Pearson correlation of −0.61). We 452

note that the correlation is not particularly strong. 453

This is because (i) for some models, their date frag- 454

mentation ratios remain unchanged across temporal 455

data splits and (ii) models differ greatly by their 456

sizes: a larger model often outperforms a substan- 457

tially smaller model in resolution accuracy, even if 458

the former has a much higher fragmentation ratio. 459

As seen from Table 5, GPT-4o-mini climbs from 460

61.7 % in the Past to 67.9 % in the Near Past, peaks 461

at 70.5 % for Present, and falls to 58.2 % on Future 462

dates. Qwen-2.5-14B and Llama-3.1-8B trace the 463

same contour at lower absolute levels. OLMo-2-7B 464
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shows the steepest Near-Past jump (49.5 → 62.4465

%) and achieves the highest Present accuracy (73.6466

%), consistent with its finer-grained tokenisation of467

“20XX” patterns. These results indicate that while468

finer date tokenisation (i.e., lower fragmentation469

ratios) boosts performance up to contemporary ref-470

erences, today’s models still generalise poorly to471

genuinely novel (post-2025) dates, highlighting an472

open challenge for robust temporal reasoning.473

Correlating date fragmentation with model ac-474

curacy over formats. Figure 4 plots model ac-475

curacy against date fragmentation ratio across six476

date formats and six LLMs. A moderate nega-477

tive trend emerges (dashed line, Pearson corre-478

lation of −0.42): formats that contain explicit479

separators (DD-MM-YYYY, DD/MM/YYYY,480

YYYY/MM/DD) are tokenised into more pieces481

and, in turn, resolved more accurately than com-482

pact, separator-free strings (DDMMYYYY, MMD-483

DYYYY, YYYYMMDD). As shown in Table484

6, GPT-4o-mini tops every format and receives485

a moderate performance drop from 71.2 % on486

DD/MM/YYYY to 61.2 % on DDMMYYYY, with487

the highest overall average (66.3 %). OLMo-2-7B488

and Qwen-2.5-14B both exceed 70 % on the highly489

fragmented YYYY/MM/DD form, but slip into490

the low 50s on MMDDYYYY and YYYYMMDD.491

Lower date fragmentation ratio models, such as492

Llama-3.1-8B and Phi-3.5, lag behind; their accu-493

racy plunges below 40 %. Even so, all models score494

much better on separator-rich formats compared495

to the date formats without separators. In sum-496

mary, model accuracy is correlated to how cleanly497

a model can tokenize the string into interpretable498

tokens: more visual structure (slashes or dashes)499

means lower fragmentation, which suggests more500

straightforward reasoning, and in turn, leads to bet-501

ter performance.502

6 When do LLMs understand dates?503

Layerwise linear probing. To pinpoint in which504

layer a model learns to recognize two equiva-505

lent dates, we define the tokenization compensa-506

tion point (TCP) as the earliest layer at which507

a lightweight linear probe on the hidden state508

achieves above-chance accuracy, which is defined509

as 80%, on the date equivalence task. Figure 5a510

reports TCPs for the DATES_PAST benchmark511

(1600–2010): Qwen2.5-0.5B reaches TCP at layer512

12 (50% depth), Qwen2.5-1.5B at layer 15 (53.6%),513

Qwen2.5-3B at layer 8 (22.2%), and Qwen2.5-514

7B at layer 4 (14.3%). The leftward shift of515

the 3B and 7B curves suggests how larger mod- 516

els recover calendar-level semantics from frag- 517

mented tokens more rapidly. Figure 5b shows the 518

DATES_PRESENT benchmark (2010–2025), where 519

only the 1.5B, 3B, and 7B models surpass TCP—at 520

layers 16 (57.1%), 21 (58.3%), and 17 (60.7%), re- 521

spectively—while the 0.5B model never does. The 522

deeper TCPs here reflect extra layers needed to 523

recombine the two-digit “20” prefix, which is frag- 524

mented unevenly by the tokenizer. In Figure 10, 525

we evaluate DATES_FUTURE (2025–2599), where 526

novel four-digit sequences exacerbate fragmenta- 527

tion. Remarkably, TCPs mirror the Past regime: 528

layers 12, 15, 8, and 4 for the 0.5B, 1.5B, 3B, and 529

7B models, respectively. This parallelism indicates 530

that model scale dictates how quickly fragmented 531

inputs are stitched into a unified “date” concept for 532

temporal reasoning, even when dates are novel. 533

Tokenization compensation point. Overall, we 534

observe a sharp decline in TCP as model size in- 535

creases: small models defer date reconstruction to 536

middle layers, whereas the largest model does so 537

within the first quarter of layers. Across all the 538

three temporal benchmarks, TCP shifts steadily 539

toward the first layers as model size grows, and 540

its absolute position is mainly independent of date 541

ranges being tested. 542

7 How do LLMs understand dates? 543

Causal path tracing. To investigate how LLMs 544

like Llama 3 (Touvron et al., 2023b) internally un- 545

derstand a date string, we traced the dominant at- 546

tention “hops” from the model answer token back 547

through the input digits. Figure 6 plots model lay- 548

ers on the y axis against prompt tokens (e.g., Is 549

03122025 a valid date?) on the x axis. Green 550

arrows mark the attention path with the highest 551

weight that is responsible for generating the answer 552

“yes”. Activation peaks at the final layers sequen- 553

tially highlight the different fragments “25”, “220”, 554

“031”, the abstract “date” concept, and finally the 555

“yes” output. The model tokenizes the input into 556

“220”, “031”, and “25” as tokens. The LLM under- 557

stands these tokens differently from the input. This 558

chain of token-level jumps reveals that the LLM 559

performs a kind of discrete, step-by-step pattern ag- 560

gregation, stitching together substrings of the input 561

until a binary valid/invalid verdict emerges. 562

Date understanding and explainability. In con- 563

trast, human readers parse dates by immediately 564

mapping each component to a coherent temporal 565

schema: “03” is March, “12” is day of month, 566
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(a) Past (b) Present

Figure 5: Layer-wise accuracies in the two periods: Past and Present.

Figure 6: Causal-tracing of the “03122025 is a valid date” judgment.

“2025” is year, and then checking whether the567

day falls within the calendar bounds of that month.568

Humans bring rich world knowledge of calendars569

and leap-year rules to bear in parallel. However,570

LLMs exhibit no explicit calendar “module”; in-571

stead, they rely on learned statistical associations572

between digit-patterns and the training-time super-573

visory signal for “valid date.” The causal-tracing574

path in Figure 6 thus illustrates a fundamentally dif-575

ferent mechanism of date comprehension in LLMs,576

based on token-level attention re-routing rather577

than holistic semantic interpretation. We repeated578

causal tracing on 100 date strings in 6 different date579

formats to test whether this attention trajectory is580

consistent across date formats. In most of cases, we581

observe that the model’s attention hops (i.e., reason-582

ing paths) are not aligned with human interpretation583

(year → month → day), rather sub-word fragments584

that statistically represent year, month, and day in585

a flexible order that is subject to date formats (see586

examples in Figures 7-8). However, such date un-587

derstanding becomes tricky when a date is greatly588

fragmented: given the date abstraction is learned589

from frequency rather than hard-coded rules, the590

abstraction is biased toward standard Western for-591

mats and contemporary years. As a result, a model 592

often addresses popular dates with higher model 593

accuracy and similar date reasoning paths. How- 594

ever, the reasoning path becomes obscure on rare, 595

historical, or locale-specific strings outside the dis- 596

tribution of pre-training data (see Figure 9). 597

8 Conclusion 598

In this paper, we identified date tokenization as a 599

critical yet overlooked bottleneck in temporal rea- 600

soning with LLMs. We demonstrated a correlation 601

between date fragmentation and task performance 602

in temporal reasoning, i.e., the more fragmented the 603

tokenization, the worse the reasoning performance. 604

Our layerwise and causal analyses in LLMs further 605

revealed an emergent “date abstraction” mecha- 606

nism that explains when and how LLMs under- 607

stand and interpret dates. Our results showed that 608

larger models can compensate for date fragmen- 609

tation by stitching fragments into a unified “date” 610

concept, while the stitching process appears to be 611

accomplished via a reasoning path that connects 612

date fragments in a flexible order, differing from 613

human interpretation from year to month to day. 614
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Limitations615

While our work demonstrates the impact of date to-616

kenization on LLMs for temporal reasoning, there617

are several limitations. First, DATEAUGBENCH fo-618

cuses on a finite set of canonical date serialisations619

and does not capture the full diversity of natural-620

language expressions (e.g., “the first Monday of621

May 2025”) or noisy real-world inputs like OCR622

outputs. Second, our experiments evaluate a repre-623

sentative but limited pool of tokenizers and model624

checkpoints (up to 14B parameters); therefore, the625

generalizability of date fragmentation ratio and our626

probing and causal analyses to very large models627

with 15B+ parameters remains unknown. Finally,628

while the fragmentation ratio measures front-end629

segmentation fidelity, it does not account for deeper630

world-knowledge factors such as leap-year rules,631

timezone conversions, and culturally grounded cal-632

endar systems, all of which would influence tem-633

poral interpretation. Future work should extend634

to more diverse date expressions, broader model635

and tokeniser families, and equipping tokenisers636

with external calendar-wise knowledge to further637

improve robust temporal reasoning.638

Ethical Considerations639

DATEAUGBENCH is derived solely from the public,640

research-licensed TIMEQA and TIMEBENCH cor-641

pora that do not contain sensitive data; our augmen-642

tation pipeline rewrites only date strings. However,643

our dataset focuses on 21 Anglo-centric Gregorian644

formats. Therefore, our data potentially reinforce a645

Western default and overlook calendars or numeral646

systems used in many other cultures, and our date647

fragmentation metric may over-penalise tokenisers648

optimised for non-Latin digits.649
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C. We then compute three core metrics: overall827

accuracy (proportion of A scores), given-attempted828

accuracy (A over A+B), and the F1 score, de-829

fined as the harmonic mean of overall and given-830

attempted accuracy. Results are reported both glob-831

ally and stratified by task split (Context-based, For-832

mat Switching, Date Arithmetic) and by temporal833

category (Past, Near Past, Present, Future).834

Date ambiguities. We explicitly enumerate all835

valid variants in the gold label set for each ex-836

ample to handle multiple correct answers arising837

from date-format ambiguities. This ensures that838

any prediction matching one of these variants is839

marked correct, avoiding penalisation for format840

differences.841

Synthetic benchmark construction for lin-842

ear probing. We construct a suite of syn-843

thetic true–false benchmarks to isolate tempo-844

ral reasoning across different reference frames.845

For the DATES_PAST, DATES_PRESENT, and846

DATES_FUTURE datasets, we sample 1,000847

date–date pairs each, drawing calendar dates uni-848

formly from the appropriate range and rendering849

them in two randomly chosen, distinct formatting850

patterns (Ymd vs d/m/Y). Exactly half of each set851

are “YES” examples (identical dates under differ-852

ent formats), which are our positive examples, and853

half are “NO” (different dates), which are our neg-854

ative examples. All three datasets are balanced,855

shuffled, and split into equal positive and negative856

subsets to ensure fair probing.857

Models Past Near Past Present Future

GPT-4o-mini 61.66 67.93 70.51 58.23
OLMo-2-7B 49.45 62.35 73.56 43.45
Qwen2.5 14B 58.97 64.80 67.22 55.69
Qwen2.5 7B 51.41 55.98 57.98 48.55
Qwen2.5 3B 46.50 50.25 51.98 43.91
LLama3.1 8B 45.28 48.82 50.48 42.76
Qwen2.5 1.5B 42.99 46.16 47.69 40.60
Qwen2.5 0.5B 39.15 41.68 43.00 36.98
OLMo-2-1B 36.07 38.09 40.49 34.07
LLama3.2 3B 36.48 38.57 39.74 34.46

Table 5: Model accuracy on context-based questions
across four data splits over time.
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Figure 7: Causal-tracing of the “03/12/2025 is a valid date” judgment.

Figure 8: Causal-tracing of the “03-12-2025 is a valid date” judgment.

Figure 9: Causal-tracing of the “03121325 is a valid date” (Date in past) judgment.
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Figure 10: Layer-wise accuracies in the Future period

Model DD-MM-YYYY DD/MM/YYYY YYYY/MM/DD DDMMYYYY MMDDYYYY YYYYMMDD Avg.

OLMo 64.70 64.56 65.35 52.35 54.56 50.41 58.65
Llama 3 50.31 50.89 53.45 38.45 40.24 34.56 44.65
GPT-4o 68.51 71.23 69.24 61.23 62.34 64.98 66.25
Qwen 64.49 62.35 73.56 46.50 50.25 51.98 58.19
Gemma 58.90 58.97 64.80 47.22 46.50 50.25 54.44
Phi 47.23 46.07 48.09 39.15 41.68 43.00 44.20

Table 6: Model accuracy on context-based questions across date formats.
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