
Control and Predictivity in Neural Interpretability

Anonymous Author(s)
Affiliation
Address
email

Abstract

For the goals of mechanistic interpretability, correlational methods are typically1

easy to scale and use, and can provide strong predictivity of Neural Network (NN)2

representations. However, they can lack causal fidelity which can limit their rel-3

evance to NN computation and behavior. Alternatively, causal approaches can4

offer strong behavioral control via targeted interventions, making them superior for5

understanding computational cause and effect. However, what if causal methods6

use out-of-distribution representations to produce their effects? Does this raise con-7

cerns about the faithfulness of the claims that can be made about the NN’s native8

computations? In this work, we explore this possibility of this representational9

divergence. We ask to what degree do causally intervened representations diverge10

from the native distribution, and in what situations is this divergence acceptable?11

Using Distributed Alignment Search (DAS) as a case study, we first demonstrate12

the existence of causally intervened representational divergence in interventions13

that provide strong behavioral control, and we show that stronger behavioral control14

can correlate with more divergent intervened representations. We then provide15

a theoretical discussion showing sufficient ways for this divergence to occur in16

both innocuous and potentially pernicious ways. We then provide a theoretical17

demonstration that causal interventions typically assume principles of additivity,18

calling into question the use of nonlinear methods for causal manipulations. Lastly,19

for cases in which representational divergence is undesirable, we demonstrate how20

to incorporate a counterfactual latent loss to constrain intervened representations21

to remain closer to the native distribution. Together, we use our results to suggest22

that although causal methods are superior for most interpretability goals, a com-23

plete account of NN representations balances computational control with neural24

predictivity, with the optimal weighting depending on the goals of the research.25

1 Introduction26

In the many recent developments in mechanistic interpretability, researchers have used a variety of27

methods to defend claims about how Neural Networks (NNs) perform their computations. These28

methods can be broadly categorized into two groups based on their measures of success. The first29

group observes and analyzes NN activations derived from the NN’s naturally occurring neural activity30

without causally influencing the activity. The second group focuses on causally manipulating neural31

activity in an effort to determine cause and effect relationships in the NN’s computations. We will32

broadly refer to the former as the correlational approach and the latter as the causal approach.33

Popular examples of the correlative approach include methods such as Sparse Auto-Encoders (SAEs)34

and Principal Component Analysis (PCA) [31, 6, 1, 5, 9]. Both of these methods attempt to decompose35

NN latent activity into a linear sum of features, i.e. vector directions, whose variability corresponds to36

some interpretable attribute that can be used to construct the distribution of native latent activity. These37

approaches can lead to decompositions that closely match and predict the native latent distribution38

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

B D D T RTarget
Sequence

Source
Sequence B D D T R R

Count (C):
Phase (P):

C=1 C=2
P=-1

C=1
P=1

Count (C):
Phase (P):

C=1 C=2 C=1 C=0
P=-1 P=1P=1

R*

Patched
latent

D
A

S

C=0
P=1

Pre-recorded
latent

C=0
P=1

Natural Pre-recorded
Latents

Cos
MSE

Figure 1: Figure showing counterfactual latents in counting task. The squares represent latent vectors
produced from the recurrent state and the displayed input tokens. The C indicates the value of the
Count of the causal abstraction, the P indicates the phase. The counterfactual latent (CL) vectors are
the naturally occurring latent vectors that possess the same causal values as the post-intervention
latent vector. These CL vectors can be recorded from the forward pass on curated input data.

and have been shown to provide insight into the underlying mechanisms and neural structures of39

various types of NNs [5, 9]. However, these methods often lack causal fidelity [8] and can exhibit a40

number of undesirable traits such as failing to identify atomic units [22], producing brittle concept41

representations [23], and under performing on causal mediation tasks and out-of-distribution probing42

[2, 19]. Lampinen et al. [21] have even gone so far as to doubt the foundations of correlational43

neural analyses as a means of understanding NNs due to disconnects between the strength of learned44

features and their importance for computation [20].45

Alternatively, popular examples of the causal approach include activation patching and Distributed46

Alignment Search (DAS) [12, 14, 38, 37, 27, 28, 4]. These methods use causal relevance, i.e. behavior,47

as their main measure of success – here, the goal is to controllably alter NN outputs by manipulating48

internal representations such that cause-and-effect claims can be made about internal mechanisms.49

Thus, these methods are by definition superior for determining cause and effect relationships in neural50

circuitry, which is perhaps of utmost importance for making mechanistic claims [30, 11, 10, 21].51

What if these causal approaches, however, rely on intervened representations that strongly diverge52

from the distribution of native neural activity? Would that change what the methods tell us about53

the NN’s natural mechanistic components? Some activation patching examples use features with54

values that are multiplied by 10-15x [24], raising questions of what these experiments say about55

the NN’s native mechanisms. In what situations and to what degree is it okay for causal methods56

to deviate from the native distribution? In cases that these deviations occur, are there ways that we57

can mitigate the deviation? In one sense, any perspective that is critical of analyzing representations58

alone is suggesting that representational divergence is okay for understanding NN mechanisms, but59

how much deviation and in what circumstances is this deviation tolerable?60

In this work, we provide theoretical and empirical insight on these issues. We first empirically61

explore representational divergence in a case study using DAS on Gated Recurrent Units (GRUs)62

[3]. We explore how choices of causal abstractions and alignment functions (AFs) affect behavioral63

control and faithfulness to native neural activity. We then theoretically show sufficient ways in which64

representational divergence can occur, and we provide a discussion on how these deviations can be65

okay for many mechanistic claims. Next, we show how causal interventions rely on principles of66

additivity, raising concerns of what nonlinear interpretability methods show us. Lastly, for cases in67

which researchers do care about representational divergence, we provide a demonstration on how to68

use a counterfactual auxiliary loss on intervened latent vectors to mitigate representational divergence69

between intervened and native latent vectors.70

We summarize our contributions as follows:71

1. We empirically explore how causally manipulated representations can control behavior,72

but can deviate from native neural activity. Furthermore, we show that greater behavioral73

accuracy can correlate with greater representational divergence.74

2. We provide a theoretical discussion on two sufficient ways for representational divergence75

to occur, showing that it can arise from dormant-null subspace interactions introduced in76

2

[25] and from innocuous co-variation of causal subspaces. We use this result to suggest that77

representational divergence is expected and okay for most mechanistic claims.78

3. We provide a theoretical demonstration that causal interventions rely on principles of79

additivity, which obfuscates claims of causal interpretability made with non-linear methods.80

4. Lastly, we show how to use a counterfactual latent loss [17] to mitigate the divergence81

between the intervened and native neural distributions, reducing the gap between behavioral82

control and neural predictivity in causal methods.83

We use our findings to inform a discussion on what our goals are as interpretability researchers. We84

suggest that a complete understanding of NN representations includes both control and predictivity of85

NN activity, while the notion of success with these criteria depends on the purpose of the research.86

2 Background and Related Work87

The majority of our empirical analyses use a specific form of activation patching [13, 36, 37, 27]88

known as Distributed Alignment Search (DAS) [12, 14, 38]. We provide a background on DAS here.89

2.1 DAS Formulation90

DAS is a framework for causally testing the degree of alignment between an NN’s latent vectors91

and variables from causal abstractions (CAs) (e.g. computer programs or directed acyclic graphs).92

DAS does this by testing the hypothesis that a latent state vector, h ∈ Rdm , within an NN can be93

transformed into a vector z ∈ Rdm that consists of orthogonal subspaces encoding interpretable94

variables from CAs. The transformation is performed by a learnable, invertible Alignment Function95

(AF),A, as follows: z = A(h) [18]. The benefit of this transformation is that it allows us to formulate96

the NN’s neural activity in terms of interpretable variables, and it allows us to manipulate the value of97

each variable without affecting the values of the others. We will refer to the space of h as the native98

vector space and that of z as the aligned vector space.99

Concretely, for a given CA with variables vari ∈ {var1, var2, ..., varn}, DAS tests the hypothesis that100

z is composed of subspaces z⃗vari ∈ Rdvari corresponding to each of the variables from the CA. We101

include a causally irrelevant subspace, z⃗extra ∈ Rdextra , to encode extraneous, functionally irrelevant102

activity.103

A(h) = z =


z⃗var1
z⃗var2
· · ·
z⃗varn
z⃗extra

 (1)

Each z⃗vari ∈ Rdvari is a column vector of potentially different lengths. We refer to dvari as the104

subspace size of vari, and all the subspace sizes together satisfy the relation dextra +
∑n

i=1 dvari = dm.105

Under this assumption, the value of a single causal variable encoded in h can be freely exchanged by106

performing an interchange intervention defined as follows:107

hv = A−1((1−Dvari)A(htrg) +DvariA(hsrc)) (2)

Where Dvar ∈ Rdm×dm is a manually defined, block diagonal, binary matrix that defines the subspace108

size dvari . Each Dvari has a set of dvari contiguous ones along its diagonal to isolate the dimensions109

that make up z⃗vari . hsrc is the source vector from which the subspace activity is harvested, htrg110

is the target vector into which the harvested activity is substituted/patched, and hv is the resulting111

intervened vector that we use to replace htrg in the model’s processing. This allows the model to112

make predictions using a different value of variable vari assuming a successful intervention.113

To train the AF, DAS uses counterfactual behavior from the pre-defined CA to create intervention114

data that can be used as training labels for the model’s processing conditioned on the intervened115

latent representation after an intervention. Counterfactual behavior for a given state of a CA and116

its context is the behavior that would have occurred had a causal variable taken a different value117

and everything else remained the same. We can simulate counterfactual behavior by freezing the118

state of the environment, changing one or more values in the CA, and using the CA to generate new119

3

behavior in the same environment using the new variable values. We can then use the counterfactual120

behavior as training labels to train the AF after each intervention while keeping the model parameters121

frozen. We train the AF to convergence and then use fresh intervention data to evaluate the robustness122

of the AF and to make claims about the NN’s internal mechanisms. The model’s accuracy on the123

counterfactual behavior following each intervention is referred to as the Interchange Intervention124

Accuracy (IIA).125

In our experiments, we train the same AF on interventions for all causal subspaces including the126

extraneous subspace. We consider a trial correct when the model correctly predicts all deterministic127

tokens using the argmax over logits. We report the proportion of trials correct as the IIA. See128

Appendix A.2 for further detail.129

DAS Alignment Functions: We consider three types of AFs in this work.130

1. Orthogonal Alignment Functions (OAFs): A(h) = Qh and A−1(h) = Q−1h where131

Q ∈ Rdm×dm is an orthogonal matrix.132

2. Linear Alignment Functions (LAFs): A(h) = W (h+b) andA−1(z) = W−1z−b where W133

is a symmetric invertible matrix [18]. See Appendix A.3 for details on how W is constructed.134

3. Reverse Resnet Alignment Functions (RRAFs): A(h) = RevRes(h) and A−1(z) =135

RevRes−1(z) where RevRes is a reversible residual network [15, 34]. We use 3 lay-136

ers with no changes in dimensionality.137

3 Methods138

The majority of this work consists of DAS analyses performed on Gated Recurrent Unit recurrent139

neural networks (GRUs) autoregressively trained on sequence-based tasks. We use DAS to align140

these NNs to Causal Abstractions (CAs) by performing interchange interventions on the GRUs’141

representations. We consider a single numeric equivalence task which has been used in prior work on142

human cognition [16, 7] and alignment functions [18, 17].143

3.1 Numeric Equivalence Task:144

This task consists of a sequence of tokens produced by an environment. Each sequence starts with145

a beginning of sequence token, B, and ends with an end of sequence token, E. After the B token,146

the environment presents some number of demonstration (demo) tokens that are each sampled with147

replacement from the set {Da, Db, Dc}. The task is to produce the same number of response (R)148

tokens as D tokens, and end with the E token. The environment signals the end of the D tokens149

by producing a trigger (T) token. The number of D tokens at this point is referred to as the object150

quantity for the trial, which is uniformly sampled from 1 to 20 at the beginning. The set of possible151

tokens includes {B, Da, Db, Dc, T, R, E}. An example sequence with an object quantity of 2 is: "B152

Dc Da T R R E" Each trial is considered correct when all deterministic tokens are correctly predicted.153

During the model training, we include all token types in a NTP cross entropy loss, even though the D154

and T tokens are unpredictable.155

3.2 Model Architectures156

In this work we consider Gated Recurrent Unit (GRU) Recurrent Neural Networks (RNNs) [3] that157

are autoregressively trained to perform the Numeric Equivalence task. We train 3 model seeds for158

each task variant up to > 99.99% accuracy on both training and validation data and freeze the weights159

before analysis and interpretation. The GRUs have a dimensionality of 128. We perform all DAS160

analyses on the output of the GRU recurrent cell, denoted h. We leave further details of the GRU161

recurrent cell to Appendix A.1 and the referenced paper.162

3.3 Causal Abstractions (CAs)163

In this work, we evaluate 2 different CAs using DAS. We briefly describe them here and offer164

Algorithms 1 and 2 in the appendix in addition to intervention data samples in Appendix A.3.1. Also,165

refer to Figure 4 for a visual depiction of the CAs.166

4

RRAF LAF OAF

A
lig

ne
d

Sp
ac

e
N

eu
ra

l S
pa

ce

Figure 2: Principal component projections of the native latent states (in red) and the intervened latent
states (blue). The top row shows the vectors in the native latent space. The bottom row shows them
in the aligned space in which the extraneous subspace has been set to 0.

Up-Down Program: uses a single numeric variable, called the Count, to track the difference between167

the number of demo tokens and resp tokens at each step in the sequence. It also contains a Phase168

variable to determine whether it is in the demo phase—counting up—or response phase—counting169

down. The program ends when the Count is equal to 0 during the response phase.170

Increment-Up Program: this program uses progress along an interval from 0 to 1 to track quantities.171

To do this, it first increments a Progress variable by the value of an Increment variable. The value of172

the Increment is initially set to 1
max count (in our case 1

20). The value of the Progress variable is then173

incremented with each new demo token to track the object count (number of demo tokens) during174

the demo phase. Upon encountering the trigger token, a new value of the Increment is calculated as175

the inverse of the Progress divided by the max count: Increment = 1
Progress ÷max count. The176

Progress is then reset to 0. The new value of Increment is now equal to 1
obj count and is used as a step177

size to increment the Progress variable with each new response token. The program finishes when the178

Progress variable is greater than 1.179

3.4 Counterfactual Latent Auxiliary Loss180

To encourage intervened representations to be more similar to the native distribution of NN repre-181

sentations, we re-purpose the counterfactual latent auxiliary loss from [17]. This auxiliary objective182

relies on Counterfactual Latent (CL) vectors as vector objectives. CL vectors are defined as vectors183

that encode the causal variable values that we would expect to exist in the intervened vector, hv.184

We can obtain CL vectors by searching through a pre-recorded set of h vectors for situations and185

behaviors that are consistent with the values of the CA to which we are aligning. See Figure 1 for a186

visualization.187

As an example, assume we have a CA with variables vary, varw, and varextra, and following a188

causal intervention we expect hv to have a value of y for variable vary and w for variable varw. For189

this example, the CL vector can be obtained from a pre-recorded representation, hCL, that has the190

same expected variable values: vary = y and varw = w, as the intervened vector. The auxiliary loss191

X (k) for a single intervention sample is composed of an L2 and a cosine distance using CL vectors as192

the labels:193

XL2 =
1

2
||hv − hCL||22 (3)

Xcos = −1

2

hv · hCL

||hv||2 ||hCL||2
(4)

where hv is the intervened vector. We combine the CL auxiliary loss with the DAS autoregressive194

loss into a single loss term using a weighted sum where ϵ is a hyperparameter: Ltotal = ϵ(XL2 +195

Xcos) + LDAS196

5

4 Results197

4.1 Intervened representations have varying degrees of divergence from the native198

distribution199

We can see in Figure 2 scatter plots of NN latent vectors projected into the top two principal200

components. The red points come from naturally occurring latent states. The blue come from201

intervened latent states that have a new value of the Count subspace. The top row shows projections202

from latents in the model’s native neural space; the intervened latents were transformed back from203

the aligned space, and the native were left unchanged. The bottom row shows PCA projections of the204

same latent vectors in the aligned space using only the Count and Phase subspaces—the extraneous205

subspace was set to zero. All of these PCA projections together are a qualitative demonstration of the206

possible divergence between the intervened and native representational distributions. It is important207

to note that these AFs each exhibit a relatively high IIA as shown in Figure 3. Furthermore, we can208

see that the divergence tends to increase for less restrictive AFs, and, from Supplemental Figure 4,209

we can see that CAs can differ in both IIA and aligned representational divergence.210

4.2 How can causal interventions lead to representational divergence?211

In this section, we enumerate distinct cases in which systematic intervened representational divergence212

can occur. The first draws on the work of [25] who demonstrated that it is possible for an interaction213

between dormant and null subspaces to occur that can create interventions that produce the correct214

counterfactual behavior without using native causal subspaces, where dormant subspaces are those215

that do not vary between inputs, null subspaces are those that exist in the null space of the NN’s216

next layer, and causal subspaces are those that both vary between inputs and causally affect behavior.217

These cases of null-dormant subspace interactions can lead to representations that deviate from the218

native distribution by definition, due to the fact that the value along the dormant direction is different219

than the native dormant value.220

Another way in which representational divergence can occur that ignores null and dormant subspaces221

is in cases where segregated causal subspaces have covariance within the bounds of their behavioral222

decision boundaries. We use a behaviorally binary subspace as a concrete example, where we define223

a behaviorally binary subspace as one in which the behavior of the NN depends on the sign of the224

subspace and is invariant to magnitude and angle.225

Suppose we have an NN with two causal subspaces, z̃vara and z̃varb with values z⃗ (xi)
vara and z⃗

(xi)
varb for a226

model input xi, where we use the bold notation to distinguish variables from their (non-bold) values.227

Furthermore, assume that z̃varb is a behaviorally binary subspace that co-varies with z̃vara . Using228

h(xi) and z(xi) from Equation 1 under a given input xi, we use the following definition:229

A(h(xi)) = z(xi) =

[
z̃

(xi)
vara = z⃗

(xi)
vara

z̃
(xi)

varb = z⃗
(xi)

varb

]
(5)

Due to the assumption of covariance in z̃vara and z̃varb , it is reasonable to assume that the values230

z⃗
(xlow)

varb and z⃗
(xhigh)

varb are systematically distinct for distinct values of z̃vara under some pedagogically231

contrived classes of inputs xlow and xhigh, while sign(z⃗
(xlow)

varb) = sign(z⃗
(xhigh)

varb). Under these232

assumptions, if we perform an interchange intervention on z̃varb using source representations from233

input xlow and target representations from input xhigh, the intervened representation will have values:234

zv =

[
z̃vara = z⃗

(xhigh)
vara

z̃varb = z⃗
(xlow)

varb

]
(6)

Because we assumed that the value of z⃗ (xlow)
varb is systematically unique due to covariance in z̃vara and235

z̃varb , then the values z⃗ (xhigh)
vara and z⃗

(xlow)
varb in Equation 6 will have never existed together in the native236

distribution, but the behavior of the NN will remain unchanged because z̃varb is behaviorally binary237

and its sign has not changed.238

We note that this divergent effect stemming from covariance could occur in the null-space as well as239

causal subspaces. We argue that due to the causal irrelevance of such divergence, these deviations are240

6

(d)

Figure 3: (a) The final validation interchange intervention accuracy for different weights (values of
epsilon) of the Counterfactual Latent (CL) loss. (b) The Earth Mover’s Distance between native latent
vectors and intervened latent vectors (in which only the Count subspace has been manipulated) in
the NN’s neural space. (c) The Earth Mover’s Distance between native latent vectors and intervened
latent vectors in the aligned space with non-causal subspaces set to zero. (d) PCA projections of the
intervened and native latent states for a LAF using a CL epsilon of 5. Similar to Figure 2, blue shows
projections from intervened latents whereas red shows native latents.

innocuous to causal mechanistic claims. We provide the lower half of Figure 2 to visualize how the241

intervened values of z can diverge in practice even in the absence of the extraneous/null subspace.242

These panels show the top two PCs of aligned z vectors in which the extraneous subspace has been243

projected out of both the intervened and native latent vectors.244

If we focus only on the divergence in causal subspaces and ignore cases of null and dormant245

interactions, what claims can we make about the model’s native neural mechanisms using divergent,246

intervened representations? An interpretation consistent with the principles of superposition [33,247

32, 26, 6] is that differences in the exact values of each causal subspace do not matter, only the248

decision boundaries along these subspaces matter. Under this interpretation, any divergence in the249

intervened distribution arising from covariance in causal subspaces is okay, because the separation250

of the causal subspaces and their decision boundaries—the functionally important aspects of the251

NN—are respected in the alignment. This interpretation allows us to ignore/abstract away functionally252

irrelevant covariance between the causal subspaces in our attempt to understand the NN mechanisms,253

allowing us to focus entirely on the functional/behavioral computations. This perspective emphasizes254

behavioral control over neural predictivity and is the perspective that we subscribe to.255

4.3 Non-linear alignment functions violate assumptions of additivity256

In this section we explore how the DAS method for computing interchange interventions (Equation 2)257

assumes that the AF exhibits principles of additivity, raising concerns about the validity of non-linear258

AFs used in [34], as additivity is only guaranteed in linear AFs.259

Let A : Rdm → Rda be an AF that maps a model’s native latent representation h ∈ Rdm to a shared260

aligned space z = A(h). We assume that A is invertible and denote its inverse as A−1. In practice,261

A is a learned transformation.262

Interchange interventions are motivated by the desire to substitute values of causal subspaces between263

latent vectors, where the resulting intervened vector hv can be defined equivalently to Equation 2 as264

follows:265

hv = A−1

∑
j ̸=i

ẑtrg
varj + ẑsrc

vari

 (7)

Each ẑvarj ∈ Rdm corresponds to a masked subspace of the aligned representation defined as:266

ẑvarj = Dvarjz (8)

and Dvarj ∈ Rdm×dm is a block diagonal binary matrix isolating the subspace dimensions associated267

with variable varj . The D matrices form a partition of the aligned space:
∑n

j=1 Dvarj = I and268

DvariDvarj = 0 when i ̸= j.269

The standard implementation of interchange interventions assumes that one can perform the sub-270

stitution at the level of aligned representations, and then apply the inverse transform to return the271

representation to the native space (defined in Equation 2, or equivalently in Equation 7). However,272

7

this procedure implicitly assumes that the inverse transform A−1 is additive, i.e., for any x, y ∈ Rda :273

A−1(x+ y) = A−1(x) +A−1(y) (9)

Without this property, the inverse of a sum is not equal to the sum of the inverses, which breaks the274

modular interpretation of subspace substitutions.275

To illustrate this, consider the decomposition of a target latent vector:276

ztrg = A(htrg) =

n∑
j=1

ẑtrg
varj (10)

htrg = A−1

 n∑
j=1

ẑtrg
varj

 (11)

If A−1 is additive, this becomes:277

htrg =

n∑
j=1

A−1(ẑtrg
varj) (12)

Thus, we may cleanly isolate and manipulate individual subspace contributions in the aligned space278

before inverting.279

The same logic applies to an intervention where the i-th subspace is replaced from a source latent280

vector:281

hv = A−1

∑
j ̸=i

ẑtrg
varj + ẑsrc

vari

 (13)

=
∑
j ̸=i

A−1(ẑtrg
varj) +A

−1(ẑsrc
vari) (if A−1 is additive) (14)

The standard interchange intervention approach to computing and isolating
∑

j ̸=i ẑ
trg
varj and ẑsrc

vari first282

independently computes each ẑ from the respective htrg and hsrc before adding them together. Thus,283

the standard method for computing hv relies on the principle of additivity.284

Proposition. Suppose A−1 is not additive. Then there exist vectors x, y ∈ Rda such that:285

A−1(x+ y) ̸= A−1(x) +A−1(y). (15)

Consequently, there exist source and target latent representations for which:286

hv = A−1

∑
j ̸=i

ẑtrg
varj + ẑsrc

vari


does not equal:287 ∑

j ̸=i

A−1(ẑtrg
varj) +A

−1(ẑsrc
vari).

This means that the inverse transform introduces non-linear interactions between subspaces, under-288

mining any clean attribution of hv to its constituent parts.289

Implication. The correctness and interpretability of standard interchange interventions depend on290

the additivity of A−1. In the absence of this property, it becomes unclear whether the reconstructed291

vector hv reflects an interpretable combination of the intended latent subspaces. Instead, A−1 may292

behave like an arbitrary function F with no guaranteed semantic alignment to A.293

8

4.4 Counterfactual Latent Vectors alleviate post-intervention divergence294

Although we have shown in Section 4.2 why some types of representational divergence are acceptable295

for many mechanistic claims, there are still some cases in which it may be desirable for intervened296

representations to be predictive of the native distribution. For these cases, we explore the use of a CL297

auxiliary loss, which is one that minimizes the L2 and cosine distances between the intervened and298

native representations. We can see in Figure 3 that we can successfully reduce the Earth Mover’s299

distance between the intervened and native distributions by applying the CL loss during the DAS300

training. This is a step towards making DAS more relevant for goals of neural predictivity.301

5 Limitations/Future Directions302

The results presented in this work has been confined to synthetic GRUs and simplistic tasks. A more303

complete demonstration of the intervened distribution shift would include evaluations performed304

on larger, more practically oriented transformers and Large Language Models (LLMs). This is305

particularly noteworthy for this work as the GRU architecture imposes a Tanh nonlinearity on the306

representations analyzed in this work, whereas Transformers potentially have more linear representa-307

tions due to the nature of their residual stream [6]. We look forward to exploring LLMs in future308

work.309

6 Discussion/Conclusion310

In this work we examined autoregressive GRUs trained on numeric tasks to demonstrate the following:311

we showed the degree to which intervened representations can diverge from naturally occurring; we312

showed how intervened representations can occur in ways that are mechanistically innocuous to many313

claims; we showed how AFs that don’t exhibit principles of additivity violate implicit assumptions in314

interchange interventions; and we showed how to use a CL auxiliary loss to reduce the divergence315

between native and intervened representations. Where does this leave us with respect to neural316

interpretability?317

We return to our goals underlying the notion of "understanding" neural activity. In general, it is318

reasonable to equate the notion of "understanding neural activity" to one’s ability to predict and/or319

control the activity in ways that are deemed interpretable. Causal methods such as DAS manage to320

control NN behavior quite well as exemplified by the strong IIA in this work, and these methods321

do so through interpretable causal abstractions. However, causal methods may be limited in their322

ability to predict native neural activity. Different research objectives will place different weights on323

the importance of neural predictivity and behavioral control. In some cases, for example, we may324

wish to classify native neural activity, in which case, predictivity is potentially useful. In other cases,325

we may wish to exert influence over the computations of the NN for the purpose of AI safety or to326

characterize the space of potential computations as a means of predicting NN generalization.327

In light of classic causal mediation philosophy corroborated by more recent findings of complications328

in non-causal representational analyses, we find ourselves favoring causal methods for their ability329

to ignore computationally irrelevant NN details as shown in this work, and their ability to unify330

diverse neural systems [17, 20, 21] while providing useful ways of understanding neural mechanisms331

[11, 10]. We hesitate to diminish goals of neural predictivity, however, and we remind ourselves that332

there are no guarantees that we find satisfying, interpretable ways of understanding the complete333

complexities of NNs.334

References335

[1] Trenton Bricken, Neel Nanda, Nicholas Joseph, Arthur Conmy, Andy Jones, Anna Chen, Neal336

DasSarma, Nelson Elhage, Ben Mann, Catherine Olsson, Kamal Ndousse, Sam Ringer, Alex337

Tran-Johnson, Yuntao Bai, Liane Lovitt, Zac Hatfield-Dodds, Amanda Askell, Dario Amodei,338

Tom Brown, Jack Clark, Jared Kaplan, and Sam McCandlish. Towards monosemanticity:339

Decomposing language models with dictionary learning. Transformer Circuits Thread, 2023.340

[2] Maheep Chaudhary and Atticus Geiger. Evaluating open-source sparse autoencoders on disen-341

tangling factual knowledge in gpt-2 small. arXiv, 2024. arXiv preprint.342

9

[3] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk,343

and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical344

machine translation. CoRR, abs/1406.1078, 2014.345

[4] Róbert Csordás, Christopher Potts, Christopher D. Manning, and Atticus Geiger. Recurrent346

neural networks learn to store and generate sequences using non-linear representations, 2024.347

[5] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-348

coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,349

2023.350

[6] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna351

Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse,352

Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah.353

Toy models of superposition. Transformer Circuits Thread, 2022. https://transformer-354

circuits.pub/2022/toy_model/index.html.355

[7] Michael C. Frank, Daniel L. Everett, Evelina Fedorenko, and Edward Gibson. Number as a356

cognitive technology: Evidence from pirahã language and cognition. Cognition, 108(3):819–357

824, 2008.358

[8] Dan Friedman, Andrew Lampinen, Lucas Dixon, Danqi Chen, and Asma Ghandeharioun. Inter-359

pretability illusions in the generalization of simplified models. arXiv preprint arXiv:2312.03656,360

2023.361

[9] Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya362

Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv363

preprint arXiv:2406.04093, 2024.364

[10] Atticus Geiger, Jacqueline Harding, and Thomas Icard. How causal abstraction underpins365

computational explanation. arXiv preprint arXiv:2508.11214, 2025.366

[11] Atticus Geiger, Duligur Ibeling, Amir Zur, Maheep Chaudhary, Sonakshi Chauhan, Jing Huang,367

Aryaman Arora, Zhengxuan Wu, Noah Goodman, Christopher Potts, and Thomas Icard. Causal368

abstraction: A theoretical foundation for mechanistic interpretability, 2024.369

[12] Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of neural370

networks. CoRR, abs/2106.02997, 2021.371

[13] Atticus Geiger, Kyle Richardson, and Christopher Potts. Neural natural language inference mod-372

els partially embed theories of lexical entailment and negation. arXiv preprint arXiv:2004.14623,373

2020.374

[14] Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah D. Goodman.375

Finding alignments between interpretable causal variables and distributed neural representations,376

2023.377

[15] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible resid-378

ual network: Backpropagation without storing activations. Advances in neural information379

processing systems, 30, 2017.380

[16] Peter Gordon. Numerical cognition without words: Evidence from Amazonia. Science,381

306(5695):496–499, 2004.382

[17] Satchel Grant. Model alignment search. arXiv preprint arXiv:2501.06164, 2025.383

[18] Satchel Grant, Noah D. Goodman, and James L. McClelland. Emergent symbol-like number384

variables in artificial neural networks. Transactions on Machine Learning Research, 2024.385

[19] Subhash Kantamneni, Joshua Engels, Senthooran Rajamanoharan, Max Tegmark, and Neel386

Nanda. Are sparse autoencoders useful? a case study in sparse probing. arXiv preprint387

arXiv:2502.16681, 2025.388

10

[20] Andrew Kyle Lampinen, Stephanie CY Chan, and Katherine Hermann. Learned feature389

representations are biased by complexity, learning order, position, and more. arXiv preprint390

arXiv:2405.05847, 2024.391

[21] Andrew Kyle Lampinen, Stephanie CY Chan, Yuxuan Li, and Katherine Hermann. Represen-392

tation biases: will we achieve complete understanding by analyzing representations? arXiv393

preprint arXiv:2507.22216, 2025.394

[22] Patrick Leask, Bart Bussmann, Michael Pearce, Joseph Bloom, Curt Tigges, Noura395

Al Moubayed, Lee Sharkey, and Neel Nanda. Sparse autoencoders do not find canonical396

units of analysis. arXiv, 2025. arXiv preprint.397

[23] Aaron J. Li, Suraj Srinivas, Usha Bhalla, and Himabindu Lakkaraju. Interpretability illusions398

with sparse autoencoders: Evaluating robustness of concept representations. arXiv, 2025. arXiv399

preprint.400

[24] Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,401

Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,402

Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,403

Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,404

Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large405

language model. Transformer Circuits Thread, 2025.406

[25] Aleksandar Makelov, Georg Lange, and Neel Nanda. Is this the subspace you are looking for?407

an interpretability illusion for subspace activation patching. arXiv preprint arXiv:2311.17030,408

2023.409

[26] J. L. McClelland, D. E. Rumelhart, and PDP Research Group, editors. Parallel Distributed410

Processing. Volume 2: Psychological and Biological Models. MIT Press, Cambridge, MA,411

1986.412

[27] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual413

associations in gpt, 2023.414

[28] Neel Nanda. Attribution patching: Activation patching at industrial scale. https://www.415

neelnanda.io/mechanistic-interpretability/attribution-patching, 2022.416

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,417

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas418

Köpf, Edward Z. Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,419

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,420

high-performance deep learning library. CoRR, abs/1912.01703, 2019.421

[30] Judea Pearl. An Introduction to Causal Inference. The International Journal of Biostatistics,422

6(2):7, February 2010.423

[31] Karl Pearson. On lines and planes of closest fit to systems of points in space. The London,424

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.425

[32] D. E. Rumelhart, J. L. McClelland, and PDP Research Group, editors. Parallel Distributed426

Processing. Volume 1: Foundations. MIT Press, Cambridge, MA, 1986.427

[33] Paul Smolensky. On the proper treatment of connectionism. Behavioral and Brain Sciences,428

11(1):1–23, 1988.429

[34] Denis Sutter, Julian Minder, Thomas Hofmann, and Tiago Pimentel. The non-linear represen-430

tation dilemma: Is causal abstraction enough for mechanistic interpretability? arXiv preprint431

arXiv:2405.05847, 2025.432

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,433

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.434

[36] Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Simas Sakenis,435

Jason Huang, Yaron Singer, and Stuart Shieber. Causal mediation analysis for interpreting436

neural nlp: The case of gender bias. arXiv preprint arXiv:2004.12265, 2020.437

11

https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching

[37] Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.438

Interpretability in the wild: a circuit for indirect object identification in gpt-2 small, 2022.439

[38] Zhengxuan Wu, Atticus Geiger, Thomas Icard, Christopher Potts, and Noah D. Goodman.440

Interpretability at scale: Identifying causal mechanisms in alpaca, 2024.441

12

B D D T R R EInput Tokens

Count Up Down
Variables

Increment Up Up
Variables

Progress:
Increment:

1/21
1/21

1/21
1/21

2/21
1/21

0
1/2

1/2
1/2

1
1/2

NA
NA

Count:
Phase:

0
0

1
0

2
0

2
1

1
1

0
1

NA
NA

Figure 4: Visual depiction of the causal abstractions considered in this work.

OAF LAF RRAF
Alignment Function

(a)

0.0

0.5

1.0

IIA

OAF LAF RRAF
Alignment Function

(b)

0
20
40
60
80

100
120

Na
tu

ra
l E

M
D

CountUpDown
IncrementUpUp

OAF LAF RRAF
Alignment Function

(c)

0

2

4

Al
ig

ne
d

EM
D

Figure 5: (a) The final validation interchange intervention accuracy for different causal abstractions
aligned to the same models. (b) The Earth Mover’s Distance between naturally occurring latent
vectors and intervened latent vectors (in which only the Count subspace or the Progress subspace
have been manipulated depending on the causal abstraction) in the NN’s neural space. (c) The Earth
Mover’s Distance between naturally occurring vectors and intervened vectors in the aligned space
with non-causal subspaces set to zero.

OAF LAF RRAF
Alignment Function

(a)

0.0

0.5

1.0

IIA

OAF LAF RRAF
Alignment Function

(b)

0

60

120

Na
tu

ra
l E

M
D

Subspace
Size

2
4
16
32

OAF LAF RRAF
Alignment Function

(c)

0

15

30

Al
ig

ne
d

EM
D

Figure 6: (a) The final validation interchange intervention accuracy for different causal subspace
sizes. Each subspace size is used for both the Count and Phase variables from the Count Up Down
causal abstraction in each alignment. (b) The Earth Mover’s Distance between naturally occurring
latent vectors and intervened latent vectors (in which only the Count subspace has been manipulated)
in the NN’s neural space. (c) The Earth Mover’s Distance between naturally occurring vectors and
intervened vectors in the aligned space with non-causal subspaces set to zero.

A Appendix442

A.1 Model Details443

All artificial neural network models were implemented and trained using PyTorch [29] on Nvidia444

Titan X GPUs. Unless otherwise stated, all models used an embedding and hidden state size of 128445

dimensions. To make the token predictions, each model used a two layer multi-layer perceptron446

(MLP) with GELU nonlinearities, with a hidden layer size of 4 times the hidden state dimensionality447

with 50% dropout on the hidden layer. The model consisted of a single GRU recurrent cell followed448

13

by an output multi-layer perceptron (MLP). We show the GRU model structure:449

ht+1 = f(ht, xt) (16)
x̂t+1 = g(ht+1) (17)

Where ht is the hidden state vector at step t, xt is the input token at step t, f is the GRU cell, and g is450

a two layer (two matrix) MLP used to make a prediction, x̂t+1, of the token at step t+ 1 from the451

updated hidden state ht+1. Models were trained using a learning rate scheduler, which consisted of452

the original transformer [35] scheduling of warmup followed by decay. We used 100 warmup steps, a453

maximum learning rate of 0.0001 , a minimum of 1e-7, and a decay rate of 0.5. We used a batch size454

of 128, which caused each epoch to consist of 8 gradient update steps.455

A.2 DAS Details456

In our experiments, we perform causal interventions on individual time steps in the sequence. We457

run the model up to a sampled timestep t in the target sequence, taking its latent representation458

at that point as the target vector, htrg
t . We do the same for the source vector, hsrc

u , at timestep u459

from a separate source sequence. We then construct hv
t using Equation 2, and continue the model’s460

predictions starting from time t, using hv
t in place of htrg

t .461

We use 10,000 intervention samples for training and 1,000 samples for validation and testing. For all462

data, we uniformly sample trial object quantities, and unless otherwise stated, we uniformly sample463

intervention time points, t and u, from sequence positions containing demo tokens or response tokens464

(excluding BOS, trigger, and EOS tokens).465

We orthogonalize the rotation matrix for OAFs using PyTorch’s orthogonal parameterization with466

default settings. We train Q with a batch size of 512 until convergence, selecting the checkpoint with467

the best validation performance for analysis. We use a learning rate of 0.001 and an Adam optimizer.468

To train the AFs, we sampled 10,000 sequence pairs for the intervention training datasets. See469

Supplement A.3.1 for more details on intervention data construction and examples. We use a learning470

rate of 0.001 and a batch size of 512. We removed models with performance below 99% to limit our471

DAS results to perfectly performing models thus simplifying our interpretations of the results. We472

chose 99% accuracy instead of 100% due to slight numerical underflow in accuracy calculations and473

due the fact that half of the Variable-Length Same-Object models would have been dropped due to474

low performance.475

A.3 Linear Alignment Functions476

To construct the W matrix used in the LAF, we use the following equation: W = (MM⊤ +477

ϵI)S. M ∈ Rdm×dm is a matrix of learned parameters initially sampled from a centered gaussian478

distribution with a standard deviation of 1
dm

, I ∈ Rdm×dm is the identity matrix, ϵ = 0.1 to prevent479

singular values equal to 0, and S ∈ Rdm×dm is a diagonal matrix to learn a sign for each column of480

X using diagonal values si,i = Tanh(ai) + ϵ(sign(Tanh(ai))) where each ai is a learned parameter481

and ϵ = 0.1 to prevent 0 values.482

A.3.1 DAS Intervention Data483

In this section we provide intervention data examples. To construct an intervention sample, we first484

sample a target sequence and a source squence and a positional index from each sequence. We485

exclude trigger tokens and beginning and end of sequence tokens from the possible positional indices.486

We then compute the values of each of the variables at the sampled indices using the specified CA for487

both the target and source. We then transfer the value of the variable of focus from the source into the488

the target variable in the CA. We then continue the CA using the new variable values to produce the489

counterfactual sequence.490

A.3.2 Up-Down Program Examples491

Count Variable: Interventions attempt to transfer the representation corresponding to the difference492

between the number of resp tokens and demo tokens. Interventions are only performed at positional493

indices corresponding to demo or resp tokens. The target sequence maintains its original object count494

14

when the Count variable is changed in the demo phase. In cases where the new value exceeds the495

object count, the CA immediately produces the trigger token.496

497
Multi-Object Examples 1 2 3 4

Source Sequence BOS D1 BOS D2 D1 D1 BOS D2 D1 T R BOS D1 D3 T R R
Target Sequence BOS D3 D2 BOS D2 T R BOS D1 D2 D1 T R BOS D2

Original Labels D2 D3 T R R R R EOS EOS R R EOS D2 T R R EOS
Counterfactual D2 D3 T R R R EOS R R R EOS R EOS D2 T R EOS

Single-Object Examples 1 2 3 4
Source Sequence BOS D BOS D D D BOS D D T R BOS D D T R R
Target Sequence BOS D D BOS D T R BOS D D D T R BOS D
Original Labels D D T R R R R EOS EOS R R EOS D T R R EOS
Counterfactual D D T R R R EOS R R R EOS R EOS D T R EOS

Same-Object Examples 1 2 3 4
Source Sequence BOS C BOS C C C BOS C C T C BOS C C T C C
Target Sequence BOS C C BOS C T C BOS C C C T C BOS C
Original Labels C C T C C C C EOS EOS C C EOS C T C C EOS
Counterfactual C C T C C C EOS C C C EOS C EOS C T C EOS

498

Phase Variable: Interventions transfer the representation corresponding to the Phase of the sequence499

(whether it is counting up or counting down). Interventions are only performed at positional indices500

corresponding to demo or resp tokens.501

502
Multi-Object Examples 1 2 3 4

Source Sequence BOS D1 BOS D3 D1 D2 BOS D2 D1 T R BOS D2 D3 T R R
Target Sequence BOS D2 D1 BOS D3 T R BOS D1 D3 D1 T R BOS D2

Original Labels D3 D1 T R R R R EOS EOS R R EOS D1 T R R EOS
Counterfactual D3 D1 T R R R R EOS D2 T R EOS R R EOS R EOS

Single-Object Examples 1 2 3 4
Source Sequence BOS D BOS D D D BOS D D T R BOS D D T R R
Target Sequence BOS D D BOS D T R BOS D D D T R BOS D
Original Labels D D T R R R R EOS EOS R R EOS D T R R EOS
Counterfactual D D T R R R R EOS D T R EOS R R EOS R EOS

Same-Object Examples 1 2 3 4
Source Sequence BOS C BOS C C C BOS C C T C BOS C C T C C
Target Sequence BOS C C BOS C T C BOS C C C T C BOS C
Original Labels C C T C C C C EOS EOS C C EOS C T C C EOS
Counterfactual C C T C C C C EOS C T C EOS C C EOS C EOS

503

15

Algorithm 1 One sequence step of the Up-Down Program

q ← Count
p← Phase
y ← input token
if y == BOS then ▷ BOS is beginning of sequence token

q ← 0, p← 0
return sample(D) ▷ sample a demo token

else if y ∈ D then ▷ D is set of demo tokens
q ← q + 1
return sample(D)

else if y == T then ▷ T is trigger token
p← 1

else if y == R then ▷ R is response token
q ← q − 1

end if
if (q == 0) & (p == 1) then

return EOS ▷ EOS is end of sequence token
end if
return R

Algorithm 2 One sequence step of the Increment-Up Program

m← Interval
q ← Progress
p← Phase
i← Increment
y ← input token
if y == BOS then ▷ BOS is beginning of sequence token

q ← 0, p← 0, i← 1
m

return sample(D) ▷ sample a demo token
else if (y ∈ D or y == R) and q < m then

q ← q + i ∗m
else if y == T then ▷ T is trigger token

p← 1
i← 1

q

q ← 0
end if
if (q ≥ m) and (p == 1) then

return EOS ▷ EOS is end of sequence token
else if q ≥ m and p == 0 then

return T
else if p == 0 then

return sample(D)
else

return R
end if

16

	Introduction
	Background and Related Work
	DAS Formulation

	Methods
	Numeric Equivalence Task:
	Model Architectures
	Causal Abstractions (CAs)
	Counterfactual Latent Auxiliary Loss

	Results
	 Intervened representations have varying degrees of divergence from the native distribution
	 How can causal interventions lead to representational divergence?
	 Non-linear alignment functions violate assumptions of additivity
	 Counterfactual Latent Vectors alleviate post-intervention divergence

	Limitations/Future Directions
	Discussion/Conclusion
	Appendix
	Model Details
	DAS Details
	Linear Alignment Functions
	DAS Intervention Data
	Up-Down Program Examples

