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Abstract

For the goals of mechanistic interpretability, correlational methods are typically
easy to scale and use, and can provide strong predictivity of Neural Network (NN)
representations. However, they can lack causal fidelity which can limit their rel-
evance to NN computation and behavior. Alternatively, causal approaches can
offer strong behavioral control via targeted interventions, making them superior for
understanding computational cause and effect. However, what if causal methods
use out-of-distribution representations to produce their effects? Does this raise con-
cerns about the faithfulness of the claims that can be made about the NN’s native
computations? In this work, we explore this possibility of this representational
divergence. We ask to what degree do causally intervened representations diverge
from the native distribution, and in what situations is this divergence acceptable?
Using Distributed Alignment Search (DAS) as a case study, we first demonstrate
the existence of causally intervened representational divergence in interventions
that provide strong behavioral control, and we show that stronger behavioral control
can correlate with more divergent intervened representations. We then provide
a theoretical discussion showing sufficient ways for this divergence to occur in
both innocuous and potentially pernicious ways. We then provide a theoretical
demonstration that causal interventions typically assume principles of additivity,
calling into question the use of nonlinear methods for causal manipulations. Lastly,
for cases in which representational divergence is undesirable, we demonstrate how
to incorporate a counterfactual latent loss to constrain intervened representations
to remain closer to the native distribution. Together, we use our results to suggest
that although causal methods are superior for most interpretability goals, a com-
plete account of NN representations balances computational control with neural
predictivity, with the optimal weighting depending on the goals of the research.

1 Introduction

In the many recent mechanistic interpretability developments, researchers have used a variety of
methods to defend claims about how Neural Networks (NNs) perform their computations. These
methods can be broadly categorized into two groups based upon their objectives. The first group
analyzes NN activations to find associations between native, naturally occurring neural activity and
attributes of NN inputs and outputs. The second group focuses on causally manipulating neural
activity in an effort to produce an effect on the NN’s computations. We will broadly refer to the
former as predictive approaches and the latter as causal approaches.

Popular examples of the predictive variety include methods such as Principal Component Analysis
(PCA), linear prediction, and some variants of Sparse Auto-Encoders (SAEs) [31} 16l [1} 15} 9} 120].
These methods often attempt to decompose NN latent activity into a linear sum of features (i.e. vector
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Figure 1: Figure showing counterfactual latents in counting task. The squares represent latent vectors
produced from the recurrent state and the displayed input tokens. The C indicates the value of the
Count of the causal abstraction, the P indicates the phase. The counterfactual latent (CL) vectors are
the naturally occurring latent vectors that possess the same causal values as the post-intervention
latent vector. These CL vectors can be recorded from the forward pass on curated input data.

directions) whose variability corresponds to some (hopefully) interpretable attribute that can be used
to reconstruct the distribution of native latent activity. These approaches can lead to decompositions
that closely match and predict the native latent distribution and have been shown to provide insight
into the underlying mechanisms and neural structures of various types of NNs [5, 9]. However, they
often lack causal fidelity [8], and they can exhibit a number of undesirable traits such as failing
to identify atomic units [22]], producing brittle concept representations [23]], and under performing
on causal mediation tasks and out-of-distribution probing [2, [19]. Lampinen et al. [21] have even
questioned the foundations of predictive representational analyses due to disconnects between the
strength of learned features and their importance for computation [20].

Alternatively, popular examples of the causal variety include activation patching and Distributed
Alignment Search (DAS) [12} 114} 138,137,127, 28, 4]]. These methods use causal relevance (i.e. NN
outputs or behavior) as their main measure of success, where the goal is to controllably alter NN
outputs by manipulating internal representations such that cause-and-effect claims can be made about
internal mechanisms. Thus, these methods are, by definition, superior for determining cause-and-
effect relationships in neural circuitry, which is perhaps of utmost importance for making mechanistic
claims [30, (11} (10, 21]].

What if these causal approaches, however, rely on intervened representations that strongly diverge
from the distribution of native neural activity? Would that change what the methods tell us about
the NN’s natural mechanistic components? Some activation patching examples use features with
values that are multiplied by 10-15x [24], raising questions of what these experiments say about
the NN’s native mechanisms. In what situations and to what degree is it okay for causal methods
to deviate from the native distribution? In cases that these deviations occur, are there ways that we
can mitigate the deviation? In one sense, any perspective that is critical of analyzing representations
alone is suggesting that representational divergence is okay for understanding NN mechanisms, but
how much deviation and in what circumstances is this deviation tolerable?

In this work, we provide theoretical and empirical insight on these issues. We first empirically
explore representational divergence in a case study using DAS on Gated Recurrent Units (GRUs)
[3]. We explore how choices of causal abstractions and alignment functions (AFs) affect behavioral
control and faithfulness to native neural activity. We then theoretically show sufficient ways in which
representational divergence can occur, and we provide a discussion on how these deviations can be
okay for many mechanistic claims. Next, we show how causal interventions rely on principles of
additivity, raising concerns of what nonlinear interpretability methods show us. Lastly, for cases in
which researchers do care about representational divergence, we provide a demonstration on how to
use a counterfactual auxiliary loss on intervened latent vectors to mitigate representational divergence
between intervened and native latent vectors.

‘We summarize our contributions as follows:

1. We empirically explore how causally manipulated representations can control behavior,
but can deviate from native neural activity. Furthermore, we show that greater behavioral
accuracy can correlate with greater representational divergence.



2. We provide a theoretical discussion on two sufficient ways for representational divergence
to occur, showing that it can arise from dormant-null subspace interactions introduced in
[25] and from innocuous co-variation of causal subspaces. We use this result to suggest that
representational divergence is expected and okay for most mechanistic claims.

3. We provide a theoretical demonstration that causal interventions rely on principles of
additivity, which obfuscates claims of causal interpretability made with non-linear methods.

4. Lastly, we show how to use a counterfactual latent loss [17] to mitigate the divergence
between the intervened and native neural distributions, reducing the gap between behavioral
control and neural predictivity in causal methods.

We use our findings to inform a discussion on what our goals are as interpretability researchers. We
suggest that a complete understanding of NN representations includes both control and predictivity of
NN activity, while the notion of success with these criteria depends on the purpose of the research.

2 Background and Related Work

The majority of our empirical analyses use a specific form of activation patching [13} 136} 37 27]]
known as Distributed Alignment Search (DAS) [12} 14, 38]]. We provide a background on DAS here.

2.1 DAS Formulation

DAS is a framework for causally testing the degree of alignment between an NN’s latent vectors
and variables from causal abstractions (CAs) (e.g. computer programs or directed acyclic graphs).
DAS does this by testing the hypothesis that a latent state vector, h € R%m, within an NN can be
transformed into a vector z € R% that consists of orthogonal subspaces encoding interpretable
variables from CAs. The transformation is performed by a learnable, invertible Alignment Function
(AF), A, as follows: z = A(h) [18]. The benefit of this transformation is that it allows us to formulate
the NN’s neural activity in terms of interpretable variables, and it allows us to manipulate the value of
each variable without affecting the values of the others. We will refer to the space of h as the native
vector space and that of z as the aligned vector space.

Concretely, for a given CA with variables var; € {vary, vara, ..., var,, }, DAS tests the hypothesis that
2 is composed of subspaces Zy,, € R%wi corresponding to each of the variables from the CA. We
include a causally irrelevant subspace, Zexira € R to encode extraneous, functionally irrelevant
activity.
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Each Zyar, € R%=i is a column vector of potentially different lengths. We refer to dy,, as the
subspace size of var;, and all the subspace sizes together satisfy the relation dexy + Z?:l dyar, = dpm.
Under this assumption, the value of a single causal variable encoded in & can be freely exchanged by
performing an interchange intervention defined as follows:

h* = AT (1 = Dyar,)JA(h') + Dyar, A(R7)) )

Where Dy, € R%*4m is a manually defined, block diagonal, binary matrix that defines the subspace
size dyar,. Each Dy, has a set of dy,, contiguous ones along its diagonal to isolate the dimensions
that make up Zy,,. h*"¢ is the source vector from which the subspace activity is harvested, h'"9
is the trarget vector into which the harvested activity is substituted/patched, and h" is the resulting
intervened vector that we use to replace h!"9 in the model’s processing. This allows the model to
make predictions using a different value of variable var; assuming a successful intervention.

To train the AF, DAS uses counterfactual behavior from the pre-defined CA to create intervention
data that can be used as training labels for the model’s processing conditioned on the intervened
latent representation after an intervention. Counterfactual behavior for a given state of a CA and
its context is the behavior that would have occurred had a causal variable taken a different value



and everything else remained the same. We can simulate counterfactual behavior by freezing the
state of the environment, changing one or more values in the CA, and using the CA to generate new
behavior in the same environment using the new variable values. We can then use the counterfactual
behavior as training labels to train the AF after each intervention while keeping the model parameters
frozen. We train the AF to convergence and then use fresh intervention data to evaluate the robustness
of the AF and to make claims about the NN’s internal mechanisms. The model’s accuracy on the
counterfactual behavior following each intervention is referred to as the Interchange Intervention
Accuracy (ITIA).

In our experiments, we train the same AF on interventions for all causal subspaces including the
extraneous subspace. We consider a trial correct when the model correctly predicts all deterministic
tokens using the argmax over logits. We report the proportion of trials correct as the IIA. See
Appendix [A.2]for further detail.

DAS Alignment Functions: We consider three types of AFs in this work.

1. Orthogonal Alignment Functions (OAFs): A(h) = Qh and A~*(h) = Q 'h where
Q € R¥m*dm is an orthogonal matrix.

2. Linear Alignment Functions (LAFs): A(h) = W (h+b) and A~1(z) = W12 —b where W
is a symmetric invertible matrix [18]]. See Appendix[A.3|for details on how W is constructed.

3. Reverse Resnet Alignment Functions (RRAFs): A(h) = RevRes(h) and A7'(2) =
RevRes™1(z) where RevRes is a reversible residual network [15, 34]. We use 3 lay-
ers with no changes in dimensionality.

3 Methods

The majority of this work consists of DAS analyses performed on Gated Recurrent Unit recurrent
neural networks (GRUs) autoregressively trained on sequence-based tasks. We use DAS to align
these NNs to Causal Abstractions (CAs) by performing interchange interventions on the GRUSs’
representations. We consider a single numeric equivalence task which has been used in prior work on
human cognition [[16} 7] and alignment functions 18 [17].

3.1 Numeric Equivalence Task:

This task consists of a sequence of tokens produced by an environment. Each sequence starts with
a beginning of sequence token, B, and ends with an end of sequence token, E. After the B token,
the environment presents some number of demonstration (demo) tokens that are each sampled with
replacement from the set {D,, Dy, D.}. The task is to produce the same number of response (R)
tokens as D tokens, and end with the E token. The environment signals the end of the D tokens
by producing a trigger (T) token. The number of D tokens at this point is referred to as the object
quantity for the trial, which is uniformly sampled from 1 to 20 at the beginning. The set of possible
tokens includes {B, D,, Dy, D., T, R, E}. An example sequence with an object quantity of 2 is: "B
D. D, T R R E" Each trial is considered correct when all deterministic tokens are correctly predicted.
During the model training, we include all token types in a NTP cross entropy loss, even though the D
and T tokens are unpredictable.

3.2 Model Architectures

In this work we consider Gated Recurrent Unit (GRU) Recurrent Neural Networks (RNNs) [3] that
are autoregressively trained to perform the Numeric Equivalence task. We train 3 model seeds for
each task variant up to > 99.99% accuracy on both training and validation data and freeze the weights
before analysis and interpretation. The GRUs have a dimensionality of 128. We perform all DAS
analyses on the output of the GRU recurrent cell, denoted h. We leave further details of the GRU
recurrent cell to Appendix and the referenced paper.



3.3 Causal Abstractions (CAs)

In this work, we evaluate 2 different CAs using DAS. We briefly describe them here and offer
Algorithms[T]and [2)in the appendix in addition to intervention data samples in Appendix[A.3.1] Also,
refer to Figure ] for a visual depiction of the CAs.

Up-Down Abstraction: uses a single numeric variable, called the Count, to track the difference
between the number of demo tokens and resp tokens at each step in the sequence. It also contains
a Phase variable to determine whether it is in the demo phase—counting up—or response phase—
counting down. The program ends when the Count is equal to O during the response phase.

Increment-Up Abstraction: this program uses progress along an interval from O to 1 to track
quantities. To do this, it first increments a Progress variable by the value of an Increment variable. The
value of the Increment is initially set to — 1coum (in our case 2—10). The value of the Progress variable is
then incremented with each new demo token to track the object count (number of demo tokens) during
the demo phase. Upon encountering the trigger token, a new value of the Increment is calculated as

the inverse of the Progress divided by the max count: Increment = -+ max count. The

Progress

Progress is then reset to 0. The new value of Increment is now equal to m and is used as a step

size to increment the Progress variable with each new response token. The program finishes when the
Progress variable is greater than 1.

3.4 Counterfactual Latent Auxiliary Loss

To encourage intervened representations to be more similar to the native distribution of NN repre-
sentations, we re-purpose the counterfactual latent auxiliary loss from [17]. This auxiliary objective
relies on Counterfactual Latent (CL) vectors as vector objectives. CL vectors are defined as vectors
that encode the causal variable values that we would expect to exist in the intervened vector, h".
We can obtain CL vectors by searching through a pre-recorded set of h vectors for situations and
behaviors that are consistent with the values of the CA to which we are aligning. See Figure|[I|for a
visualization.

As an example, assume we have a CA with variables vary, var,, and varez¢rq, and following a
causal intervention we expect h" to have a value of y for variable var, and w for variable var,,. For
this example, the CL vector can be obtained from a pre-recorded representation, hcp, that has the
same expected variable values: var, = y and var,, = w, as the intervened vector. The auxiliary loss

X for a single intervention sample is composed of an L2 and a cosine distance using CL vectors as
the labels:

1 v
X = §Hh —herll3 3
1 h' - hcr
Xeos = —comor— 4
2 |[h*]l2 [[herll2

where h” is the intervened vector. We combine the CL auxiliary loss with the DAS autoregressive
loss into a single loss term using a weighted sum where ¢ is a hyperparameter: Liorq; = (X2 +
Xcos) + ['DAS

4 Results

4.1 Intervened representations have varying degrees of divergence from the native
distribution

We can see in Figure [2] scatter plots of NN latent vectors projected into the top two principal
components. The red points come from naturally occurring latent states. The blue come from
intervened latent states that have a new value of the Count subspace. The top row shows projections
from latents in the model’s native neural space; the intervened latents were transformed back from
the aligned space, and the native were left unchanged. The bottom row shows PCA projections of the
same latent vectors in the aligned space using only the Count and Phase subspaces—the extraneous
subspace was set to zero. All of these PCA projections together are a qualitative demonstration of the
possible divergence between the intervened and native representational distributions. It is important
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Figure 2: Principal component projections of the native latent states (in red) and intervened latent
states (blue) for the Up-Down abstraction using the Count variable on a single model seed. The top
row of panels show PCA performed on latent vectors in the native latent space. The bottom panels
show PCA performed on vectors in the aligned space in which the extraneous subspace, Zexa, 1S set
to 0. These alignments do not use the counterfactual latent loss, which is equivalent to a CL Epsilon
of 0 in Figure 3]

to note that these AFs each exhibit a relatively high ITA as shown in Figure[3] Furthermore, we can
see that the divergence tends to increase for less restrictive AFs, and, from Supplemental Figure 4]
we can see that CAs can differ in both ITA and aligned representational divergence.

4.2 How can causal interventions lead to representational divergence?

In this section, we enumerate distinct cases in which systematic intervened representational divergence
can occur. The first draws on the work of [25] who demonstrated that it is possible for an interaction
between dormant and null subspaces to occur that can create interventions that produce the correct
counterfactual behavior without using native causal subspaces, where dormant subspaces are those
that do not vary between inputs, null subspaces are those that exist in the null space of the NN’s
next layer, and causal subspaces are those that both vary between inputs and causally affect behavior.
These cases of null-dormant subspace interactions can lead to representations that deviate from the
native distribution by definition, due to the fact that the value along the dormant direction is different
than the native dormant value.

Another way in which representational divergence can occur that ignores null and dormant subspaces
is in cases where segregated causal subspaces have covariance within the bounds of their behavioral
decision boundaries. We use a behaviorally binary subspace as a concrete example, where we define
a behaviorally binary subspace as one in which the behavior of the NN depends on the sign of the
subspace and is invariant to magnitude and angle.

Suppose we have an NN with two causal subspaces, Zy,r, and Zy,,, with values z”v(;f;') and Ev(af;') fora
model input x;, where we use the bold notation to distinguish variables from their (non-bold) values.
Furthermore, assume that Z,,,, is a behaviorally binary subspace that co-varies with Zy,, . Using

h() and z(#4) from Equationunder a given input z;, we use the following definition:

5 (x1) _ >(wi)

A0 = 200 = | ~ 2y ®)
varp varg

Due to the assumption of covariance in Zy,, and Zy,, , it is reasonable to assume that the values

(Zlow) >(Thigh)
ZVﬂIb

Zvar, " and are systematically distinct for distinct values of Z,,, under some pedagogically

contrived classes of inputs o, and Tpign, while sign(z"vg‘fé"”)) = sz‘gn(zvi;’f:igh)). Under these

assumptions, if we perform an interchange intervention on Z,,, using source representations from
input x;,,, and target representations from input x,;4y,, the intervened representation will have values:

~ ——(Ihi_qh)

2V = Zyar, = Rvar, (©6)
= i _’(xlow)
Zyary, = Rvary
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Figure 3: All panels show results for DAS trained on the Up-Down abstraction in which the reported
ITA is for the Count variable for 3 model seeds. (a) The final validation Interchange Intervention
Accuracy (ITA) for different weights (values of epsilon) of the Counterfactual Latent (CL) loss for the
Orthogonal (OAF), Linear (LAF), and Reverse Resnet (RRAF) Alignment Functions. (b) The Earth
Mover’s Distance between native latent vectors and intervened latent vectors in the NN’s neural space
in which only the Count subspace has been manipulated. (¢) The Earth Mover’s Distance between
native latent vectors and intervened latent vectors in the aligned space with the extraneous subspaces
set to zero. (d) PCA projections of the intervened and native latent states in the native space for an
LAF using a CL epsilon of 5. This panel is the same as the top panel for the LAF from Figure 2]
except that the CL epsilon is non-zero. Blue shows projections from intervened latents whereas red
shows native latents.

Because we assumed that the value of Z’V(ﬂm”) is systematically unique due to covariance in Z,,, and
2(Thign) > (@1ow)

Zyar,, » then the values Zyr, and Zy,r,”"” in Equation |6/ will have never existed together in the native
distribution, but the behavior of the NN will remain unchanged because Z,, is behaviorally binary
and its sign has not changed.

We note that this divergent effect stemming from covariance could occur in the null-space as well as
causal subspaces. We argue that due to the causal irrelevance of such divergence, these deviations are
innocuous to causal mechanistic claims. We provide the lower half of Figure [2]to visualize how the
intervened values of z can diverge in practice even in the absence of the extraneous/null subspace.
These panels show the top two PCs of aligned z vectors in which the extraneous subspace has been
projected out of both the intervened and native latent vectors.

If we focus only on the divergence in causal subspaces and ignore cases of null and dormant
interactions, what claims can we make about the model’s native neural mechanisms using divergent,
intervened representations? An interpretation consistent with the principles of superposition [33,
32,126, 16]] is that differences in the exact values of each causal subspace do not matter, only the
decision boundaries along these subspaces matter. Under this interpretation, any divergence in the
intervened distribution arising from covariance in causal subspaces is okay, because the separation
of the causal subspaces and their decision boundaries—the functionally important aspects of the
NN—are respected in the alignment. This interpretation allows us to ignore/abstract away functionally
irrelevant covariance between the causal subspaces in our attempt to understand the NN mechanisms,
allowing us to focus entirely on the functional/behavioral computations. This perspective emphasizes
behavioral control over neural predictivity and is the perspective that we subscribe to.

4.3 Non-linear alignment functions violate assumptions of additivity

In this section we explore how the DAS method for computing interchange interventions (Equation[2)
assumes that the AF exhibits principles of additivity, corroborating Sutter et al.’s [[34] concerns about
the validity of non-linear AFs, as additivity is only guaranteed in linear AFs.

Let A : R% — R% be an AF that maps a model’s native latent representation i € R% to a shared
aligned space z = A(h). We assume that A is invertible and denote its inverse as A~". In practice,
A is a learned transformation.

Interchange interventions are motivated by the desire to substitute values of causal subspaces between
latent vectors, where the resulting intervened vector h¥ can be defined equivalently to Equation 2] as
follows:

W= AT s s (7
Jj#i



Each Zy,;; € R? corresponds to a masked subspace of the aligned representation defined as:
évarj = Dvarjz (3

and Dy,,; € R%mxdm 5 a block diagonal binary matrix isolating the subspace dimensions associated
with variable var;. The D matrices form a partition of the aligned space: 2?21 Dyy; = I and
Dyar; Dyar; = 0 when i # j.

The standard implementation of interchange interventions assumes that one can perform the sub-
stitution at the level of aligned representations, and then apply the inverse transform to return the

representation to the native space (defined in Equation 2} or equlvalently in Equatlon. However,
this procedure implicitly assumes that the inverse transform A~! is additive, i.e., for any x, y € R%:

A @ +y) = A7 (2) + A7 (y) ©

Without this property, the inverse of a sum is not equal to the sum of the inverses, which breaks the
modular interpretation of subspace substitutions.

To illustrate this, consider the decomposition of a target latent vector:

2" = A(h"®) = Z 2E (10)
g _ strg
h Z B (11)
If A~ is additive, this becomes:
hie = Z AT (EE ) (12)

Thus, we may cleanly isolate and manipulate 1nd1v1dua1 subspace contributions in the aligned space
before inverting.

The same logic applies to an intervention where the i-th subspace is replaced from a source latent
vector:

e DI ) 9
j#i
_ Z ATH(ERE )+ ATH (5 ) (f ATV s additive) (14)
J#

The standard interchange intervention approach to computing and isolating > . ot zvar] and 2y, first

independently computes each 2 from the respective h'"9 and h*" before adding them together. Thus,
the standard method for computing A" relies on the principle of additivity.

Proposition. Suppose A~! is not additive. Then there exist vectors =,y € R% such that:

A @+ y) # A ) + A (). (15)

Consequently, there exist source and target latent representations for which:

§ Atrg £Src
Tt ZvarL

J#i

does not equal:
YOATHER) AR,
J#i

This means that the inverse transform introduces non-linear interactions between subspaces, under-
mining any clean attribution of A" to its constituent parts.



Implication. The correctness and interpretability of standard interchange interventions depend on
the additivity of A1, In the absence of this property, it becomes unclear whether the reconstructed
vector hV reflects an interpretable combination of the intended latent subspaces. Instead, A~ may
behave like an arbitrary function F with no guaranteed semantic alignment to .A.

4.4 Counterfactual Latent Vectors alleviate post-intervention divergence

Although we have shown in Section[4.2] why some types of representational divergence are acceptable
for many mechanistic claims, there are still some cases in which it may be desirable for intervened
representations to be predictive of the native distribution. For these cases, we explore the use of a CL
auxiliary loss, which is one that minimizes the L2 and cosine distances between the intervened and
native representations. We can see in Figure [3|that we can successfully reduce the Earth Mover’s
distance between the intervened and native distributions by applying the CL loss during the DAS
training. This is a step towards making DAS more relevant for goals of neural predictivity.

5 Limitations/Future Directions

The results presented in this work has been confined to synthetic GRUs and simplistic tasks. A more
complete demonstration of the intervened distribution shift would include evaluations performed
on larger, more practically oriented transformers and Large Language Models (LLMs). This is
particularly noteworthy for this work as the GRU architecture imposes a Tanh nonlinearity on the
representations analyzed in this work, whereas Transformers potentially have more linear representa-
tions due to the nature of their residual stream [6]. We look forward to exploring LLMs in future
work.

6 Discussion/Conclusion

In this work we examined autoregressive GRUs trained on numeric tasks to demonstrate the following:
we showed the degree to which intervened representations can diverge from naturally occurring; we
showed how intervened representations can occur in ways that are mechanistically innocuous to many
claims; we showed how AFs that don’t exhibit principles of additivity violate implicit assumptions in
interchange interventions; and we showed how to use a CL auxiliary loss to reduce the divergence
between native and intervened representations. Where does this leave us with respect to neural
interpretability?

We return to our goals underlying the notion of "understanding" neural activity. In general, it is
reasonable to equate the notion of "understanding neural activity" to one’s ability to predict and/or
control the activity in ways that are deemed interpretable. Causal methods such as DAS manage to
control NN behavior quite well as exemplified by the strong ITA in this work, and these methods
do so through interpretable causal abstractions. However, causal methods may be limited in their
ability to predict native neural activity. Different research objectives will place different weights on
the importance of neural predictivity and behavioral control. In some cases, for example, we may
wish to classify native neural activity, in which case, predictivity is potentially useful. In other cases,
we may wish to exert influence over the computations of the NN for the purpose of Al safety or to
characterize the space of potential computations as a means of predicting NN generalization.

In light of classic causal mediation philosophy corroborated by more recent findings of complications
in non-causal representational analyses, we find ourselves favoring causal methods for their ability
to ignore computationally irrelevant NN details as shown in this work, and their ability to unify
diverse neural systems [17, 120} [21]] while providing useful ways of understanding neural mechanisms
[L1L110]. We hesitate to diminish goals of neural predictivity, however, and we remind ourselves that
there are no guarantees that we find satisfying, interpretable ways of understanding the complete
complexities of NNs.
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Input Tokens — B D D T R R E

Count Up Down Count: 0 1 2 2 1 0 NA
Variables Phase: 0 0 0 1 1 1 NA

Increment Up Up_» Progress: 1/21 1/21 2/21 0 1/2 1 NA
Variables Increment:  1/21 1/21 1/21 12 12 12 NA

Figure 4: Visual depiction of the causal abstractions considered in this work.
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Figure 5: Compares results from different CAs. CountUpDown refers to the Count variable from the
Up-Down abstraction, and IncrementUpUp refers to the Progress variable from the Increment-Up
abstraction. (a) The final validation interchange intervention accuracy for different AFs on the
x-axis and causal abstractions denoted by color. (b) The Earth Mover’s Distance between naturally
occurring latent vectors and intervened latent vectors (in which only the Count subspace or the
Progress subspace have been manipulated depending on the causal abstraction) in the NN’s neural
space. (c) The Earth Mover’s Distance between naturally occurring vectors and intervened vectors in
the aligned space with the extraneous (i.e. non-causal) subspace set to zero.
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Figure 6: All panels show results for DAS trained on the Up-Down abstraction in which the reported
ITA is for the Count variable for 3 model seeds. (a) The final validation IIA for different causal
subspace sizes denoted by color. Each subspace size is used for both the Count and Phase variables in
each alignment training. (b) The Earth Mover’s Distance between naturally occurring latent vectors
and intervened latent vectors (in which only the Count subspace has been manipulated) in the NN’s
neural space. (¢) The Earth Mover’s Distance between naturally occurring vectors and intervened
vectors in the aligned space with the extraneous (i.e. non-causal) subspace set to zero.

A Appendix

A.1 Model Details

All artificial neural network models were implemented and trained using PyTorch [29] on Nvidia
Titan X GPUs. Unless otherwise stated, all models used an embedding and hidden state size of 128

dimensions. To make the token predictions, each model used a two layer multi-layer perceptron
(MLP) with GELU nonlinearities, with a hidden layer size of 4 times the hidden state dimensionality

13



with 50% dropout on the hidden layer. The model consisted of a single GRU recurrent cell followed
by an output multi-layer perceptron (MLP). We show the GRU model structure:

ht+1 = f(ht,l't) (16)
9ACt+1 = g(ht+1) an

Where h; is the hidden state vector at step ¢, x; is the input token at step ¢, f is the GRU cell, and g is
a two layer (two matrix) MLP used to make a prediction, Z;1, of the token at step ¢t + 1 from the
updated hidden state h; ;. Models were trained using a learning rate scheduler, which consisted of
the original transformer [35]] scheduling of warmup followed by decay. We used 100 warmup steps, a
maximum learning rate of 0.0001 , a minimum of le-7, and a decay rate of 0.5. We used a batch size
of 128, which caused each epoch to consist of 8 gradient update steps.

A.2 DAS Details

In our experiments, we perform causal interventions on individual time steps in the sequence. We
run the model up to a sampled timestep ¢ in the target sequence, taking its latent representation
at that point as the target vector, hirg . We do the same for the source vector, i."¢, at timestep u
from a separate source sequence. We then construct i} using Equation[2] and continue the model’s

predictions starting from time ¢, using h? in place of k™.

We use 10,000 intervention samples for training and 1,000 samples for validation and testing. For all
data, we uniformly sample trial object quantities, and unless otherwise stated, we uniformly sample
intervention time points, ¢ and u, from sequence positions containing demo tokens or response tokens
(excluding BOS, trigger, and EOS tokens).

We orthogonalize the rotation matrix for OAFs using PyTorch’s orthogonal parameterization with
default settings. We train @) with a batch size of 512 until convergence, selecting the checkpoint with
the best validation performance for analysis. We use a learning rate of 0.001 and an Adam optimizer.

To train the AFs, we sampled 10,000 sequence pairs for the intervention training datasets. See
Supplement [A.3.T]for more details on intervention data construction and examples. We use a learning
rate of 0.001 and a batch size of 512. We removed models with performance below 99% to limit our
DAS results to perfectly performing models thus simplifying our interpretations of the results. We
chose 99% accuracy instead of 100% due to slight numerical underflow in accuracy calculations and
due the fact that half of the Variable-Length Same-Object models would have been dropped due to
low performance.

A.3 Linear Alignment Functions

To construct the W matrix used in the LAF, we use the following equation: W = (MM T +
el)S. M € R4m*dm is a matrix of learned parameters initially sampled from a centered gaussian
distribution with a standard deviation of %’ I € R¥m>dm ig the identity matrix, ¢ = 0.1 to prevent

singular values equal to 0, and S € R%m*m is a diagonal matrix to learn a sign for each column of
X using diagonal values s; ; = Tanh(a;) + €(sign(Tanh(a;))) where each q; is a learned parameter
and € = 0.1 to prevent O values.

A.3.1 DAS Intervention Data

In this section we provide intervention data examples. To construct an intervention sample, we first
sample a target sequence and a source squence and a positional index from each sequence. We
exclude trigger tokens and beginning and end of sequence tokens from the possible positional indices.
We then compute the values of each of the variables at the sampled indices using the specified CA for
both the target and source. We then transfer the value of the variable of focus from the source into the
the target variable in the CA. We then continue the CA using the new variable values to produce the
counterfactual sequence.

A.3.2 Up-Down Program Examples

Count Variable: Interventions attempt to transfer the representation corresponding to the difference
between the number of resp tokens and demo tokens. Interventions are only performed at positional
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indices corresponding to demo or resp tokens. The target sequence maintains its original object count
when the Count variable is changed in the demo phase. In cases where the new value exceeds the
object count, the CA immediately produces the trigger token.

Multi-Object Examples || 1 2 3 4
Source Sequence BOS D, BOSD; D; D; | BOSDy;D; TR BOSD; D3 TRR
Target Sequence BOS D3 Dy BOS D> TR BOS D; Dy, D; TR | BOS Dy
Original Labels D, D3 TRRRREOS | EOS RR EOS D, TRR EOS
Counterfactual D, Ds TRR R EOS RRREOS R EOS D, TR EOS
Single-Object Examples || 1 2 3 4
Source Sequence BOS D BOSDDD BOSDDTR BOSDDTRR
Target Sequence BOSDD BOSDTR BOSDDDTR BOS D
Original Labels DDTRRRREOS EOS RR EOS DTRREOS
Counterfactual DDTRRREOS RRREOS R EOS DTREOS
Same-Object Examples || 1 2 3 4
Source Sequence BOS C BOSCCC BOSCCTC BOSCCTCC
Target Sequence BOSCC BOSCTC BOSCCCTC BOS C
Original Labels CCTCCCCEOS EOS CCEOS CTCCEOS
Counterfactual CCTCCCEOS CCCEOS CEOS CT CEOS

Phase Variable: Interventions transfer the representation corresponding to the Phase of the sequence
(whether it is counting up or counting down). Interventions are only performed at positional indices
corresponding to demo or resp tokens.

Multi-Object Examples || 1 2 3 4
Source Sequence BOS D, BOS D3 D; Dy, | BOSD,; D; TR BOSD; D3 TRR
Target Sequence BOS D, Dy BOS D3 TR BOS D; D3 D; TR | BOS Dy
Original Labels D; Dy TRRRREOS | EOS RREOS D; TRREOS
Counterfactual D3; D; TRRRREOS | D; TR EOS R R EOS R EOS
Single-Object Examples || 1 2 3 4
Source Sequence BOS D BOSDDD BOSDDTR BOSDDTRR
Target Sequence BOSDD BOSDTR BOSDDDTR BOS D
Original Labels DDTRRRREOS EOS RREOS DTRREOS
Counterfactual DDTRRRREOS D TREOS R R EOS R EOS
Same-Object Examples || 1 2 3 4
Source Sequence BOS C BOSCCC BOSCCTC BOSCCTCC
Target Sequence BOSCC BOSCTC BOSCCCTC BOS C
Original Labels CCTCCCCEOS EOS CCEOS CTCCEOS
Counterfactual CCTCCCCEOS CTCEOS C CEOS CEOS
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Algorithm 1 One sequence step of the Up-Down Program

q < Count

p < Phase

y < input token

if y == BOS then
g+ 0,p«<0
return sample(D)

else if y € D then
q+—q+1
return sample(D)

else if y == T then

p<+1

else if y == R then
g+—q—1

end if

if (¢ ==10) & (p == 1) then
return EOS

end if

return R

> BOS is beginning of sequence token
> sample a demo token

> D is set of demo tokens

> T is trigger token

> R is response token

> EOS is end of sequence token

Algorithm 2 One sequence step of the Increment-Up Program

m < Interval
q + Progress
p < Phase
1 < Increment
y < input token
if y == BOS then
g 0,p+0,i+ L
return sample(D)
else if (y € D or y == R) and ¢ < m then
qg+—q+ixm
else if y == T then
p1
i+ L
q
qg<+0
end if
if (¢ > m) and (p == 1) then
return EOS
else if ¢ > m and p == 0 then
return T
else if p == 0 then
return sample(D)
else
return R
end if

> BOS is beginning of sequence token

> sample a demo token

> T is trigger token

> EOS is end of sequence token
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