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Abstract

Performative prediction is a framework accounting for the shift in the data distri-
bution induced by the prediction of a model deployed in the real world. Ensuring
convergence to a stable solution—one at which the post-deployment data distri-
bution no longer changes—is crucial in settings where model predictions can
influence future data. This paper, for the first time, extends the Repeated Risk
Minimization (RRM) algorithm class by utilizing historical datasets from previ-
ous retraining snapshots, yielding a class of algorithms that we call Affine Risk
Minimizers that converges to a performatively stable point for a broader class of
problems. We introduce a new upper bound for methods that use only the final
iteration of the dataset and prove for the first time the tightness of both this new
bound and the previous existing bounds within the same regime. We also prove
that our new algorithm class can surpass the lower bound for standard RRM, thus
breaking the prior lower bound, and empirically observe faster convergence to
the stable point on various performative prediction benchmarks. We offer at the
same time the first lower bound analysis for RRM within the class of Affine Risk
Minimizers, quantifying the potential improvements in convergence speed that
could be achieved with other variants in our scheme.

1 Introduction

Decision-making systems are increasingly integral to critical judgments in sectors such as public
policy [Fire and Guestrin, 2019], healthcare [Bevan and Hood, 2006], and education [Nichols and
Berliner, 2007]. However, as these systems become more reliant on quantitative indicators, they
become vulnerable to the effects described by Goodhart’s Law: “When a measure becomes a target, it
ceases to be a good measure” [Goodhart, 1984]. This principle is particularly relevant when predictive
models not only forecast outcomes but also influence the behavior of individuals and organizations,
leading to performative effects that can subvert the original goals of these systems.

For example, in environmental regulation, companies might manipulate emissions data to meet regu-
latory targets without truly reducing pollution, thus distorting the intended environmental protection
efforts [Fowlie et al., 2012]. In healthcare, hospitals may modify patient care practices to improve
performance metrics, potentially prioritizing score improvements over actual patient health outcomes
[Bevan and Hood, 2006]. Similarly, in education, the emphasis on standardized test scores can lead
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schools to focus narrowly on test preparation, compromising the broader educational experience
[Nichols and Berliner, 2007]. These examples demonstrate how decision systems, when overly
focused on specific indicators, can be manipulated, resulting in the corruption of the very processes
they aim to enhance.
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Figure 1: An example showing that using older snap-
shots (purple) speeds up convergence to the stable point
(orange star) compared to only the latest snapshot (red).
The implementation is provided in the code.

Given these challenges, it is essential to develop
predictive models that are not only accurate
but also robust against the performative shifts
they may provoke. The work by Perdomo et al.
[2020] addresses this challenge within the frame-
work of Repeated Risk Minimization (RRM),
where they explore the dynamics of model re-
training in the presence of performative feed-
back loops. In their approach, the authors pro-
pose an iterative method that adjusts the pre-
dictive model based on the distributional shifts
caused by prior model deployments, aiming to
stabilize the model performance despite the con-
tinuous evolution of the underlying data distri-
bution. By characterizing the convergence prop-
erties of their method, they provide a theoretical
guarantee for the stability of the model at a per-
formative equilibrium.

Our work extends this framework by leveraging
the datasets collected at each snapshot during the
retraining process, introducing a new class of al-
gorithms called Affine Risk Minimizers (ARM).
By utilizing historical data from previous up-
dates, we show that it is possible to converge to
a stable point for a broader class of problems that
were previously unsolvable, extending beyond the bounds established in prior analyses [Mofakhami
et al., 2023]. We derive a new upper bound under less restrictive assumptions than Mofakhami et al.
[2023] and provide the first tightness analysis for the framework in Perdomo et al. [2020] as well
as for our newly established rate. Our method, which incorporates historical datasets, demonstrates
superior convergence properties both theoretically and experimentally.

Converging to a stable point is essential in decision-dependent learning systems. Without stability,
iterative retraining may lead to persistent fluctuations, preventing reliable long-term predictions. Prior
work has examined convergence rates and the range of problem classes in which iterative schemes can
achieve stability [Li and Wai, 2024, Narang et al., 2024, Perdomo et al., 2020]. This paper provides
the first analytical techniques for examining the tightness of the upper bounds for these methods. In
addition, we show that the ARM framework ensures convergence to a stable solution for a broader
class of problems, mitigating the limitations of existing approaches.
Contributions. 1 We establish a new upper bound, enhancing the convergence rate of RRM
under less restrictive conditions than [Mofakhami et al., 2023]; 2 We establish the tightness of
the analysis in both the framework proposed by [Perdomo et al., 2020] and our modification of
the framework from Mofakhami et al. [2023]; 3 We introduce a new class of algorithms, named
Affine Risk Minimizers (ARM), that provides convergence for a wider class of problems by utilizing
linear combinations of datasets from earlier training snapshots; 4 We provide both theoretical and
experimental enhancements, showcasing scenarios where ARM improves convergence; 5 Finally,
we present the first lower bound techniques for iterative retraining schemes and apply it to both
Perdomo et al. [2020] and our modified framework to establish theoretical lower bounds for ARM,
detailing the maximum potential improvement in convergence rates achievable through the use of
past datasets.

2 Related Work

Performative prediction introduces a framework for learning under decision-dependent data [Perdomo
et al., 2020], and has been widely studied in various aspects, from stochastic optimization methods to
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find stable classifiers [Li and Wai, 2022, Mendler-Dünner et al., 2020] to approaches that focus on
performative optimal solutions, the minimizer of performative risk [Miller et al., 2021, Jagadeesan
et al., 2022, Lin and Zrnic, 2024]. In this work, we focus our analysis on performative stable solutions,
whose deployment removes the need for repeated retraining in changing environments [Perdomo
et al., 2020, Mendler-Dünner et al., 2020, Jagadeesan et al., 2021, Brown et al., 2022, Mofakhami
et al., 2023].

One of the main applications of this framework is strategic classification [Hardt et al., 2016] which
involves deploying a classifier interacting with agents who strategically adapt their features to alter the
classifier’s predictions and achieve their favorable outcomes. Strategic Classification has been widely
used in the literature of performative prediction [Perdomo et al., 2020, Mendler-Dünner et al., 2020,
Miller et al., 2021, Hardt et al., 2022, Mofakhami et al., 2023, Narang et al., 2024, Góis et al., 2025],
and we adopt this setting in our experiments to empirically demonstrate our theoretical contributions.

Prior work in performative prediction either assumes the data distribution is a function of the
parameters modeled as D(θ) [Perdomo et al., 2020, Izzo et al., 2021, Drusvyatskiy and Xiao, 2022,
Dong et al., 2023], or more realistically dependent on the predictions as in D(fθ) [Mofakhami et al.,
2023, Mendler-Dünner et al., 2022]. Although existing work only assumes one of these settings,
our work adheres to both, by providing a tightness analysis of the rates proposed in Perdomo et al.
[2020] and Mofakhami et al. [2023] and showcasing scenarios where we can provide an improved
convergence by considering the history of distributions. To the best of our knowledge, we are first
to provide a lower bound on the convergence rates achievable using any such affine combination of
previous snapshots.

For the assumptions, we adopt those in Mofakhami et al. [2023] and Perdomo et al. [2020]. While
several works pursue performatively optimal solutions by assuming convexity over the performative
risk itself, recent efforts such as Zheng et al. [2024], Cyffers et al. [2024] relax these requirements by
considering non-convex objectives or weaker regularity conditions. In contrast, our analysis imposes
no convexity assumption on the performative risk, relying only on convexity of the loss function to
establish convergence guarantees.

Most related to our idea of using previous distributions are works that study gradually shifting
environments considering history dependence [Brown et al., 2022, Li and Wai, 2022, Rank et al.,
2024]. Brown et al. [2022] brought up the notion of stateful performative prediction studying problems
where the distribution depends on the classifier and the previous state of the population. This is
modeled by a transition function that is fixed but a priori unknown and they show that by imposing
a Lipschitz continuity assumption similar to ϵ-sensitivity to the transition map, they can prove the
convergence of RRM to an equilibrium distribution-classifier pair. In our work, we consider a specific
dependence on history, by using an affine combination of previous distributions, and show that this
can lead to an improved convergence than prior work without imposing any additional assumption.

3 Performative Stability and RRM

In the context of performative prediction, two primary frameworks are commonly used to address the
challenge of shifting distributions due to the model’s influence: Repeated Risk Minimization (RRM)
and Repeated Gradient Descent (RGD). Throughout this paper, we focus on RRM.

RRM iteratively retrains the model on the distribution it induces until it converges to a performatively
stable classifier. Formally, consider a model fθ ∈ F with parameters θ ∈ Θ, and a distribution D(fθ)
that depends on these parameters. The performative risk is defined as:

PR(θ) = Ez∼D(fθ) [ℓ(fθ(x), y)] (1)

where ℓ(fθ(x), y) is the loss function for a data point z = (x, y). A classifier is performatively stable
if it minimizes the performative risk on the distribution it induces:

θPS = argmin
θ∈Θ

Ez∼D(fθPS )
[ℓ(fθ(x), y)] (2)

The RRM framework updates the model parameters by solving:
θt+1 = argmin

θ∈Θ
Ez∼D(fθt )

[ℓ(fθ(x), y)] (3)

until convergence, i.e., θt+1 ≈ θt.
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4 Improved Rates and Optimality of Analysis

Both Perdomo et al. [2020] and Mofakhami et al. [2023] derive convergence rates for RRM under
distinct assumptions. The assumptions made in these studies reflect the sensitivity of the distribution
map D(.) to changes in the model and the structural properties of the loss function. Specifically,
Perdomo et al. [2020] focuses on Wasserstein-based sensitivity and convexity with respect to the
model parameters, while Mofakhami et al. [2023] introduces a framework with Pearson χ2-based
sensitivity and strong convexity with respect to the predictions. Building on these foundations and
motivated by Mofakhami et al. [2023], we now outline the assumptions for our framework, which
departs from Mofakhami et al. [2023] only in Assumption 1 below.

Assumption 1 ϵ-sensitivity w.r.t. Pearson χ2 divergence: The distribution map D(fθ), with pdf pfθ ,
maintains ϵ-sensitivity with respect to Pearson χ2 divergence. Formally, for any fθ, fθ′ ∈ F:

χ2(D(fθ′),D(fθ)) ≤ ϵ∥fθ − fθ′∥2fθ , (4)

where

∥fθ − fθ′∥2fθ∗ :=

∫
∥fθ(x)− fθ′(x)∥2pfθ∗(x)dx ∀ fθ∗ ∈ F , (5)

and

χ2(D(fθ′),D(fθ)) :=

∫ (
pfθ′ (z)− pfθ (z)

)2
pfθ (z)

dz . (6)

This assumption, inspired by prior work, is Lipschitz continuity on D(.), implying that if two models
with similar prediction functions are deployed, the distributions they induce should also be similar.

Assumption 2 Norm equivalency: The distribution map D(fθ) satisfies norm equivalency with
parameters C ≥ 1 and c ≤ C. For all fθ, fθ′ , fθ∗ ∈ F:

c∥fθ − fθ′∥2fθ∗ ≤ ∥fθ − fθ′∥2 ≤ C∥fθ − fθ′∥2fθ∗ , (7)

where

∥fθ − fθ′∥2 =

∫
∥fθ(x)− fθ′(x)∥2 p(x) dx, (8)

and p(x) is the initial distribution, referred to as the base distribution.

The base distribution p(x), following prior formulations in the literature [Perdomo et al., 2020,
Mofakhami et al., 2023, Brown et al., 2022], corresponds to the pre-deployment data distribution.
This interpretation of p(x) as an intervention-free or organic distribution is also consistent with
other areas of the literature. Schnabel et al. [2016] demonstrate this in the context of recommender
systems, where unbiased test sets like Yahoo! R3 are constructed to reflect user behavior prior to any
algorithmic influence.

This assumption holds whenever the distribution map satisfies the bounded density ratio property,
i.e., c pfθ (x) ≤ p(x) ≤ C pfθ (x) for all fθ ∈ F . In such cases, one can define small constants
c := infθ,x

pfθ
(x)

p(x) and C := supθ,x
pfθ

(x)

p(x) . We measure these constants in Appendix I for our
experimental setup in Section 7.

Assumption 3 Strong convexity w.r.t. predictions: The loss function ŷ 7→ ℓ(ŷ, y) is γ-strongly convex.
For any differentiable function ℓ, and for all y, ŷ1, ŷ2 ∈ Y:

ℓ(ŷ1, y) ≥ ℓ(ŷ2, y) + (ŷ1−ŷ2)
⊤∇ŷℓ(ŷ2, y) +

γ

2
∥ŷ1 − ŷ2∥2.

Assumption 4 Bounded gradient norm: The loss function ℓ(fθ(x), y) has a bounded gradient norm,
with an upper bound M = supx,y,θ ∥∇ŷℓ(fθ(x), y)∥.

Building upon Mofakhami et al. [2023], we introduce a new theorem that demonstrates faster linear
convergence for RRM, showing that stability can be achieved under less restrictive conditions.
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Theorem 1 (RRM convergence modified Mofakhami’s framework) Suppose the loss ℓ(fθ(x), y)
is γ-strongly convex with respect to fθ(x) (A3) and that the gradient norm with respect to fθ(x) is
bounded by M = supx,y,θ ∥∇ŷℓ(fθ(x), y)∥ (A4). Let the distribution map D(·) be ϵ-sensitive with
respect to the Pearson χ2 divergence (A1), satisfy norm equivalency with parameters C ≥ 1 and
c ≤ C (A2), and the function space F be convex and compact under the norm ∥ · ∥.

Then, for G(θt) = argmin
θ∈Θ

Ez∼D(fθt )
ℓ(fθ(x), y), with z = (x, y), we have2:

∥fG(θ) − fG(θ′)∥fθ ≤
√
ϵM

γ
∥fθ − fθ′∥fθ .

By the Schauder fixed-point theorem, a stable classifier fθPS exists, and if
√
ϵM
γ < 1, RRM converges

to a unique stable point fθPS at a linear rate:

∥fθt − fθPS∥fθPS
≤
(√

ϵM

γ

)t

∥fθ0 − fθPS∥fθPS
.

This shows that RRM achieves linear convergence to a stable classifier, provided that
√
ϵM
γ < 1,

ensuring that the mapping is contractive and guarantees convergence. This result improves upon
Mofakhami et al. [2023] by eliminating the constant C from the rate, as defined in Assumption 2.
Additionally, this approach can achieve improved rates of convergence, as discussed in Theorem 8,
where we show how the new definition of ϵ-sensitivity leads to faster convergence.

Despite these improvements, the following theorem establishes for the first time a lower bound
under the given assumptions, indicating that the convergence rate cannot be further improved without
additional conditions:

Theorem 2 (Tight lower bound modified Mofakhami’s framework) Suppose that Assump-
tions 1-4 hold, with parameters ϵ, M , and γ such that

√
ϵM
γ ≤ 1. Under these conditions, there exists

a problem instance such that, utilizing RRM, the following holds:

∥fθt − fθPS∥fθPS
= Ω

((√
ϵM

γ

)t)
. (9)

If instead
√
ϵM
γ > 1, the bound is Ω(1), indicating non-convergence.

This result establishes the tightness of the convergence rate under the specific assumptions outlined
earlier, demonstrating that the bound cannot be improved without imposing more restrictive assump-
tions. The full proof of this theorem can be found in Appendix D. A similar tightness analysis for the
framework proposed by Perdomo et al. [2020] is provided in the following section, confirming that
both frameworks achieve optimal convergence guarantees given their respective conditions.

4.1 Tightness Analysis in Perdomo et al. [2020]’s Framework

In their work, Perdomo et al. [2020] make a set of assumptions that differ from Assumption 1-4.
Their ϵ-sensitivity assumption is with respect to the Wasserstein distance, and their strong convexity
assumption is with respect to the parameters. Formally, they make the following set of assumptions
to show the convergence of RRM

Assumption 5 The distribution map θ 7→ D(θ) is ϵ-sensitive w.r.t W1:

W1(D(θ),D(θ′)) ≤ ϵ∥θ − θ′∥2,

the loss function θ 7→ ℓ(z : θ) of the performative risk (1) is γ-strongly convex for any z ∈ Z and
z 7→ ∇θℓ(z : θ) is β-Lipschitz for any θ ∈ Θ.

2Throughout this work, whenever we refer to fG(θ), it denotes fθ̂ , where θ̂ ∈ G(θ).
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Under these assumptions and for βϵ
γ < 1, Perdomo et al. [2020] showed that RRM does converge to

a performatively stable point at a rate:3

∥θt − θPS∥ ≤
(
βϵ

γ

)t

∥θ0 − θPS∥ . (10)

We note that ϵ-sensitivity with respect to the χ2 divergence (Assumption 1) is generally a stronger
condition than ϵ-sensitivity with respect to the Wasserstein distance W1, particularly when the input
space has small diameter [Mofakhami et al., 2023]. While χ2 sensitivity implies tighter control over
the induced distributional shifts, the two notions are not equivalent, and one does not necessarily
imply the other. Hence, each framework is analyzed under its respective assumption.

Theorem 3 (Tight lower bound Perdomo’s framework) There exists a problem instance and an
initialization θ0 following Assumption 5 such that employing RRM, we have:

∥θt − θPS∥ = Ω

((
ϵβ

γ

)t

∥θ0 − θPS∥

)
. (11)

The proof uses a quadratic loss ℓ(z, θ) = γ
2 ∥θ−

β
γ z∥

2 and a performative distribution z ∼ N (ϵθ, σ2)

satisfying ϵ-sensitivity under W1. Hence, the RRM update θt+1 = ϵβγ θ
t matches the contraction

factor (ϵβγ )
t in Perdomo et al. [2020], confirming the bound’s tightness. More detailed proof of this

result is provided in Appendix C.

Our theorems show that given the assumptions in either framework, the convergence rate for RRM
reaches a fundamental lower bound. This implies that further improvements in convergence speed
would require either more restrictive assumptions or a novel optimization framework.

In the next section, we present, for the first time, an approach that breaks the RRM algorithm class by
exploiting data from earlier training snapshots, and thereby surpasses the established lower bound,
providing improved convergence guarantees.

5 Usage of Old Snapshots: Affine Risk Minimizers

Instead of relying solely on the current data distribution induced by D(fθt), we leverage datasets
from previous training snapshots {D(fθi)}t−1

i=0 . The new scheme optimizes model parameters over
an aggregated distribution:

θt+1 = argmin
θ∈Θ

E(x, y)∼Dt
[ℓ(fθ(x), y)] (12)

where Dt is an affine combination of previous distributions, formulated as:

Dt =

t−1∑
i=0

α
(t)
i D(fθi), s.t.

t−1∑
i=0

α
(t)
i = 1 (13)

We refer to this class of algorithms as Affine Risk Minimizers. As demonstrated in Appendix A
(Lemma 9), the set of stable points for this class of algorithms coincides with those obtained
through standard RRM. The following lemma formalizes the convergence of ARM under the stated
assumptions, using only the average of the final two training snapshots.

Lemma 1 (2-Snapshots ARM recurrence) Consider the class of problems for which Assump-
tions 1-4 are satisfied, and let the distribution map D(.) be ϵ

C -sensitive with respect to the base
distribution within the convex function space F . Formally, for any fθ, fθ′ ∈ F ,

χ2(D(fθ′),D(fθ)) ≤
ϵ

C
∥fθ − fθ′∥2,

3Note that if βϵ
γ

≥ 1 the convergence rate is vacuous. In that case, a performatively stable point may not
even exist.

6



where ∥fθ − fθ′∥2 is defined in Equation 8. The distribution at iteration t is given by

Dt =
1

2
D(fθt) +

1

2
D(fθt−1). (14)

Under these conditions, the following convergence property holds for the iterative sequence generated
by Equation 12:

∥fθt+1 − fθt∥ =

(√
3

2

√
ϵM

γ

)
mt, (15)

where mt = max{∥fθt − fθt−1∥, ∥fθt−1 − fθt−2∥}.

The problem class defined here aligns with that in Theorem 2 for the case C ≈ 1. Now, the following
theorem provides theoretical evidence of improved convergence, which will be further supported by
experiments in Section 7.

Theorem 4 (2-Snapshots ARM convergence) If
(√

3
2

√
ϵM
γ

)
< 1, the sequence described in

Lemma 1 forms a Cauchy sequence, converging to a stable point.

Relaxing the earlier condition
√
ϵM
γ ≤ 1 to the threshold 2√

3
≈ 1.155, this theorem demonstrates a

modest but tangible improvement allowing ARM to breach the lower bound of Theorem 2 and shows
that when

√
ϵM
γ < 2√

3
≈ 1.155 with C ≈ 1, convergence to a stable point remains possible under

the same conditions, in contrast to standard RRM, which does not converge. A detailed proof of
this theorem, along with Lemma 1, is provided in Appendix E, where we show that the algorithm
generates a Cauchy sequence and converges to the stable point. We prove the convergence for
schemes that use the average of the last n snapshots, for any n, but the best result is obtained for
n = 2 so far.

In the following section, we explore the lower bound for the convergence rates achievable using any
affine combination of previous snapshots.

6 Lower Bounds for Affine Risk Minimizers

We established the potential for convergence across a wider class of problems using ARMs. This
prompts the question of how much the convergence class can be improved, which we address in this
section.

We propose the first distinct lower bounds for the framework described in Section 4 and that of
Perdomo et al. [2020] for the class of Affine Risk Minimizers. The lower bound for our framework is
presented in this section, while the corresponding result for Perdomo et al. [2020] is detailed in the
following.

Theorem 5 (ARM lower bound modified Mofakhami’s framework) Suppose that Assump-
tions 1-4 hold. Then, there exists a problem instance in this regime, and for any algorithm in the
Affine Risk Minimizers class, such that:

∥fθt − fθPS
∥fθPS

= Ω

((
1

1
e + 2

√
ϵM

γ

)t
)
. (16)

This demonstrates that the convergence rate for the class of problems satisfying Assumptions 1-4
cannot exceed the given lower bound.

6.1 Lower Bound with Perdomo et al. [2020]’s Assumption

We show that the convergence rate for RRM provided in Equation 10 is optimal among the class of
Affine Risk Minimizers up to a factor 2.
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Theorem 6 (ARM lower bound Perdomo’s framework) There exists a problem instance and an
initialization θ0 following Assumption 5 such that for any algorithm in the Affine Risk Minimizers
class, we have:

∥θt − θPS∥ = Ω

((
ϵβ

2γ

)t

∥θ0 − θPS∥

)
. (17)

Proof Sketch. The proofs of Theorems 5 and 6 are inspired by the idea of introducing a new
dimension at each iteration by Nesterov’s lower bound for convex smooth functions [Nesterov, 2014].
We construct a problem instance satisfying Assumption 5 and derive the iteration dynamics of RRM
to establish a lower bound on its convergence rate.

We introduce a structured transformation of the parameter space, different from the one introduced in
Nesterov [2014], using the matrix

A =


1 0 0 . . . 0
1 1 0 . . . 0
0 1 1 . . . 0
...

...
. . . . . .

...
0 . . . 0 1 1

 ∈ Rd×d.

This matrix ensures that if a vector v is in the span of {e1, ..., ei}, where ei is the standard basis
vector in Rd, then Av extends the span to include ei+1. This property allows us to control the iterative
exploration of dimensions in the distribution mapping.

We define the loss function as ℓ(fθ(x), y) = γ
2 ∥θ −

β
γ z∥

2, and set the distribution map to D(θ) =

N
(
ϵ
2Aθ + e1, σ

2
)
. This choice ensures that each RRM iteration follows the update rule

θt+1 =
β

γ

( ϵ
2
Aθt + e1

)
.

From Lemma 9 (Appendix A), we know that any Affine Risk Minimizer converges to the same set
of stable points as RRM. Since the problem instance we constructed has a unique stable point, it
remains to explicitly compute this point and derive a lower bound by summing the contributions from
undiscovered dimensions, completing the proof. A detailed proof is provided in Appendix F. □

To further illustrate this, Figure 2 provides empirical evidence supporting the theoretical lower bound
derived for Perdomo et al. [2020]. The figure shows the convergence of ∥θ − θPS∥ over multiple
iterations for various combinations of previous snapshots. As indicated by the dotted line, the lower
bound is never violated, demonstrating that the theoretical result holds in practice. The experimental
setup for these results is also detailed in Appendix F. We also extend our result to a more general
case for ARM in the following theorem (with proof in Appendix F.1).

Theorem 7 (Proximal ARM lower bound) Let Assumption 5 hold and generate the iterates via

θt+1 = argmin
θ∈Θ

E(x,y)∼Dt

[
ℓ(fθ(x), y)

]
+

λ

2
∥θ − θt∥2, (18)

where Dt is any mixture distribution defined in Equation 13. Then there exists a problem instance
and an initialization θ0 such that every algorithm in the Affine Risk Minimizers class satisfies

∥θt − θPS∥ = Ω

((
ϵβ

2γ

)t

∥θ0 − θPS∥

)
. (19)

The proximal ARM update in Equation 18 is the ARM version of the proximal formulation of RRM
introduced by Drusvyatskiy and Xiao [2022]. In fact, the lower bound of Theorem 7 continues to
hold for the standard RRM method, since RRM corresponds to the special case of ARM in which the
mixture distribution Dt places all its weight on the most recent iterate. Thus, this result demonstrates
that the proof technique we have developed for establishing exponential lower bounds is not limited to
the ARM family but extends naturally to other iterative decision-dependent optimization procedures.
In the supplementary material, we also present convergence rates for Proximal RRM for the first time
on the framework of Perdomo et al. [2020], filling a gap in the literature, though these rates offer no
improvement over standard RRM.
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Figure 2: Convergence of ∥θt − θPS∥ over iter-
ations t for different values of τ , which defines
the aggregation of datasets from training snap-
shots: Dt =

∑t
i=t−τ+1

1
τD(θi). The dotted

line shows our lower bound from Perdomo et al.
[2020], with ϵ = 2.49, β = 1, and γ = 5.0.
The experiment, consistent across all methods,
validates the bound by showing that ∥θt − θPS∥
does not drop below it, supporting our theory.
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Figure 3: Loss shift due to performativity for
the credit-scoring environment. To accurately
measure Performative Risk, we average over 500
runs per method. Increasing the aggregation win-
dow τ (1 → 2 → 4 → t/2 → all) reduces the
loss shifts and, consequently, reaches the stable
point faster.

7 Experiments

We conduct experiments in two semi-synthetic environments to evaluate whether aggregating past
snapshots improves convergence to the performatively stable point. We present an empirical com-
parison of different averaging windows for prior snapshots. At each time step t, we form Dt by
aggregating the datasets from the training snapshots as

Dt =
1

τ

t∑
i=t−τ+1

D(fθi),

where we compare methods using various values of τ , including τ = 1, 2, 4, t
2 , and ’all’ (which

includes all snapshots up to time t).

We first discuss our evaluation metric, then present detailed case studies on the credit scoring
environment Mofakhami et al. [2023] (Section 7.1) and the rideshare markets Narang et al. [2024]
(Appendix J).

Evaluation Metric. Throughout our experiments, we focus on changes in loss as a result of
performativity. We define ∆Rt, i.e. the loss shift due to performativity at time t, as the absolute
difference in loss observed by a model before and after the data distribution has changed due to
performative effects while keeping the model’s state constant.

∆Rt =|Ez∼D(fθt )
[ℓ(fθt(x), y)]− Ez∼D(fθt−1 )[ℓ(fθt(x), y)]| (20)

This metric allows for clearer comparisons between methods by minimizing overlap in the plots,
unlike the performative risk (Equation 1).

7.1 Credit Scoring

Setup. Inspired by Mofakhami et al. [2023], we use the Resample-if-Rejected (RIR) procedure
to model distribution shifts in a controlled experimental setting. This methodology involves users
strategically altering their data to influence the classification outcome.

Let us consider a base distribution with probability density function p and a function g : fθ(x) 7→
g(fθ(x)) indicating the probability of rejection based on the prediction fθ(x) ∈ R. The modified
distribution pfθ , under the RIR mechanism, evolves as follows:

• Sample x from p.
• With probability 1− g(fθ(x)), accept and output x. Otherwise, resample from p.

9



Our data comes from Kaggle’s Give Me Some Credit dataset4, which includes features x ∈ R11

and labels y ∈ {0, 1}, where y = 1 indicates a defaulting applicant. We partition the features into
two sets: strategic and non-strategic. We assume independence between strategic and non-strategic
features. While non-strategic features remain fixed, the strategic features are resampled using the RIR
procedure with a rejection probability g(fθ(x)) = fθ(x) + δ. We use a scaled sigmoid function after
the second layer. This scales fθ(x) to the interval [0, 1− δ], ensuring that g(fθ(x)) ∈ [δ, 1] remains
a valid probability. Further implementation details are available in Appendix I.

Theorem 8 Let fθ(x) ∈ [0, 1 − δ] for all θ ∈ Θ, where 0 < δ < 1 is fixed. Then, for g(fθ(x)) =
fθ(x) + δ, RIR is ϵ-sensitive as defined in Assumption 1 with ϵ = O(δ−

3
2 ).

This result provides an example where our rate surpasses the rate previously derived in Mofakhami
et al. [2023] (O(δ−2) within the same framework). In addition, Mofakhami et al. [2023] derived the
remaining constants in the rate for this setup, and these constants remain unchanged in our result.
Furthermore, for any value of M and γ, our rate can guarantee convergence for a wider class of
problems. The proof of this theorem, along with justifications for the improved rate, is presented in
Appendix H. Mofakhami et al. [2023] derive the

Results. The outcomes of this case study are shown in Figure 3. For larger window sizes (τ ), we
omit the initial iterations in the figure because they follow the same update rule as smaller τ methods,
leading to identical values. Figure 3 demonstrates the advantage of using older snapshots in the
optimization process. As the window size increases from 1 to 2, we observe a near-half reduction
in the loss shift, particularly in the early iterations, with the improvement persisting even after 50
iterations. While larger windows continue to reduce the loss shift, the marginal gains decrease as
window size increases. This is evident from the similarity between the curves for window sizes t/2,
and ’all’. The decreasing marginal gains elicit a trade-off against the time, memory, and resource
consumption. As the window size increases, both time per iteration and the memory consumption
increase linearly. Thus, the user has to pick the right aggregation window τ based on the application
and the resources available to achieve the desired convergence speed while respecting the logistical
constraints. The corresponding performative risk plot can also be found in Appendix I.

8 Conclusion

In this paper, we introduced a new class of algorithms for improved convergence in performative
prediction by utilizing historical datasets from previous retraining snapshots. Our theoretical contri-
butions include establishing a new upper bound for last-iterate methods, demonstrating the tightness
of this bound, and surpassing existing lower bounds through the aggregation of historical datasets.
We have also presented the first lower bound analysis for Repeated Risk Minimization (RRM) within
the class of Affine Risk Minimizers. Our empirical results validate the theoretical findings, showing
that using prior snapshots leads to more effective convergence to a stable point. These contributions
provide new insights into performative prediction and offer an alternative approach to enhancing
learning in dynamic environments.
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A Auxiliary Lemmas and Technical Results

Lemma 2 (Expectation of a Gaussian-Weighted Exponential Function) Let x ∼ N(µ, σ2I). Then
the expected value of x exp

(
− 1

2e∥x∥
2
)

is given by:

E
[
x exp

(
− 1

2e
∥x∥2

)]
= exp

(
−∥µ∥2

2σ2

(
1− 1

σ2
(
1
e + 1

σ2

))) · µ

σ2
(
1
e + 1

σ2

) .
Proof: The expected value is expressed as:

E
[
x exp

(
− 1

2e
∥x∥2

)]
=

∫
Rn

x exp

(
− 1

2e
∥x∥2

)
1

(2πσ2)n/2
exp

(
− 1

2σ2
∥x− µ∥2

)
dx.

Merging the exponentials:

exp

(
−1

2

(
1

e
+

1

σ2

)
∥x∥2 + 1

σ2
xTµ

)
· exp

(
−∥µ∥2

2σ2

)
.

Completing the square yields:

exp

(
−1

2

(
1

e
+

1

σ2

)∥∥∥∥x− µ/σ2

1
e + 1

σ2

∥∥∥∥2
)

· exp

(
−∥µ∥2

2σ2

(
1− 1

σ2
(
1
e + 1

σ2

)))

Since the integral is over a Gaussian distribution with mean µ/σ2

1
e+

1
σ2

, after multiplying by the constant

term, we obtain:

E[x exp

(
− 1

2e
∥x∥2

)
] = exp

(
−∥µ∥2

2σ2

(
1− 1

σ2
(
1
e + 1

σ2

))) · µ

σ2
(
1
e + 1

σ2

) .
Lemma 3 (Young’s Product Inequality) Let a, b ≥ 0 and let p, q > 1 be conjugate exponents, i.e.
1
p + 1

q = 1. Then

ab ≤ ap

p
+

bq

q
,

which, as a result, one can derive,

(a+ b)2 ≤ 2a2 + 2b2.

Lemma 4 (Bound on Chi-Square Divergence for Convex Combinations) Let P and Q and R be
probability distributions on Rn. For any α ∈ [0, 1], the following inequality holds:

χ2
(
αP + (1− α)R, αQ+ (1− α)R

)
≤ α3 χ2(P,Q) + 2α2(1− α)

[
χ2(P,R) + χ2(Q,R)

]
.

Proof: We begin by expanding the chi-square divergence using its definition, followed by applying
Young’s inequality.

χ2(αP + (1− α)R,αQ+ (1− α)R) =

∫ ∞

−∞

(αp(x) + (1− α)r(x)− (αq(x) + (1− α)r(x)))2

αq(x) + (1− α)r(x)
dx

= α2

∫ ∞

−∞

(p(x)− q(x))2

αq(x) + (1− α)r(x)
dx

≤ α3

∫ ∞

−∞

(p(x)− q(x))2

q(x)
+ α2(1− α)

∫ ∞

−∞

(p(x)− q(x))2

r(x)
dx

(by convexity of
1

x
for positive x)

≤ α3χ2(P, Q) + 2α2(1− α)χ2(P, R) + 2α2(1− α)χ2(Q, R)

(by Young’s inequality Lemma 3 on the last term)
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Lemma 5 (Inverse of an antisymmetric of a Jordan Normal Form Matrix) Let A ∈ Rd×d be defined
as:

A =


1 0 0 . . . 0
1 1 0 . . . 0
0 1 1 . . . 0
...

...
. . .

. . .
...

0 . . . 0 1 1

 ,

and let bI − cA be an invertible matrix where c
b ≤ 1

2 and A is as defined above. Then the inverse of
(bI − cA) applied to e1, the first standard basis vector, has the following form for large d:

v = (bI − cA)−1 e1
L

=
1

cL


( bc − 1)−1

( bc − 1)−2

( bc − 1)−3

...
( bc − 1)−d

 .

Moreover, the sum below is:
d∑

i=t

vi = Ω

((c
b

)t)
,

for d ≥ 2T when T is large, and t ≤ T .

Proof: The matrix A has the following form:

A =


1 0 0 . . . 0
1 1 0 . . . 0
0 1 1 . . . 0
...

...
. . . . . .

...
0 . . . 0 1 1

 .

Thus, (bI − cA) takes the form:

bI − cA = c


b
c − 1 0 0 . . . 0
−1 b

c − 1 0 . . . 0
0 −1 b

c − 1 . . . 0
...

...
. . . . . .

...
0 . . . 0 −1 b

c − 1

 .

We continue by computing the inverse of the lower triangular matrix with diagonal entries
λ1, λ2, . . . , λd and subdiagonal entries of −1 as shown below:


λ1 0 0 . . . 0
−1 λ2 0 . . . 0
0 −1 λ3 . . . 0
...

...
. . . . . .

...
0 . . . 0 −1 λd


−1

=


λ−1
1 0 0 . . . 0

λ−1
1 λ−1

2 λ−1
2 0 . . . 0

λ−1
1 λ−1

2 λ−1
3 λ−1

2 λ−1
3 λ−1

3 . . . 0
...

...
. . . . . .

...
λ−1
1 λ−1

2 . . . λ−1
d . . . λ−1

d−1λ
−1
d λ−1

d

 .

Using the formula above (diagonal entries λ1 = b
c − 1, λ2 = b

c − 1, . . . , λd = b
c − 1 and subdiagonal

entries of −1) the inverse of bI − cA will have the form:

1

c


( bc − 1)−1 0 0 . . . 0
( bc − 1)−2 ( bc − 1)−1 0 . . . 0
( bc − 1)−3 ( bc − 1)−2 ( bc − 1)−1 . . . 0

...
...

. . . . . .
...

( bc − 1)−d . . . ( bc − 1)−2 ( bc − 1)−1

 .
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Now, applying this inverse to the vector e1
L , where e1 = [1 0 . . . 0]

T , we get the following:

v = (bI − cA)−1 e1
L

=
1

cL


( bc − 1)−1

( bc − 1)−2

( bc − 1)−3

...
( bc − 1)−d

 .

Sum of the entries from index t to d is:

d∑
i=t

vi =
1

cL

(
(
b

c
− 1)−t + (

b

c
− 1)−t−1 + · · ·+ (

b

c
− 1)−d

)
.

This is a geometric series. The closed form of the sum is:

d∑
i=t

vi =
1

cL
· (b

c
− 1)−t ·

1− ( bc − 1)−(d−t+1)

1− ( bc − 1)−1
.

For large d ≥ 2t and b
c − 1 ≥ 1, this sum can be approximated by the leading term:

d∑
i=t

vi ≈
1

cL
· (b

c
− 1)−t · 1

1− ( bc − 1)−1
.

Thus, applying the inequality 1
1
x−1

≤ x for all x < 1, we obtain the following lower bound for the
sum:

d∑
i=t

vi = Ω

(
1

cL
·
(c
b

)t)
.

Lemma 6 Let N (µ1,Σ1) and N (µ2,Σ2) be two multivariate normal distributions with means
µ1,µ2 ∈ Rd and covariance matrices Σ1,Σ2 ∈ Rd×d. The squared 1-Wasserstein distance between
these distributions is bounded by:

W 2
1 (N (µ1,Σ1), N (µ2,Σ2)) ≤ ∥µ1 − µ2∥2 + tr

(
Σ1 +Σ2 − 2 (Σ1Σ2)

1/2
)
.

This expression bounds the Wasserstein distance between two multivariate normal distributions, as
shown in Dowson and Landau [1982].

Lemma 7 Let N (µ1,Σ) and N (µ2,Σ) be two multivariate normal distributions with means
µ1,µ2 ∈ Rd and a shared covariance matrix Σ ∈ Rd×d. The χ2-divergence between these
distributions is bounded by:

χ2(N (µ1,Σ), N (µ2,Σ)) = 1− e−
1
2 (µ1−µ2)

⊤Σ−1(µ1−µ2) ≤ 1

2
(µ1 − µ2)

⊤Σ−1(µ1 − µ2).

This provides the χ2-divergence between two multivariate normal distributions, as shown in Nielsen
and Okamura [2024].

Lemma 8 Any projection proj(.) from Rd into any convex set C ∈ Rd is a continuous function.

Proof: To prove that the projection is continuous, we need to show that if xn → x in Rd, then
projC(xn) → projC(x).

Let yn = projC(xn) and y = projC(x). Since yn ∈ C and yn minimizes the distance to xn, we have:

∥xn − yn∥ ≤ ∥xn − y∥ for alln.
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As xn → x, the right-hand side ∥xn − y∥ → ∥x − y∥, and thus ∥xn − yn∥ is bounded. Since the
sequence {yn} is bounded and lies in the compact set C, it has a convergent subsequence ynk

→ ȳ ∈ C.
By the continuity of the distance function, we have:

∥x− ȳ∥ = lim
k→∞

∥xnk
− ynk

∥.

As y = projC(x) minimizes the distance from x to C, it follows that ȳ = y, and thus yn → y.
Therefore, projC(xn) → projC(x), proving continuity.

Lemma 9 The set of stable points for any method in the class of Affine Risk Minimizers is equivalent
to the set of stable points for standard RRM.

Proof: Consider the mapping for an affine risk minimizer using the last τ iterates, defined as:

Gτ (θ
t−1, θt−2, . . . , θt−τ ) = (θt, θt−1, . . . , θt−τ+1),

where
θt = argmin

θ∈Θ
Ez∼Dt

[ℓ(fθ(x), y)].

At a stable point, the mapping satisfies:

(θt, θt−1, . . . , θt−τ ) = (θt, θt−1, . . . , θt−τ+1),

which implies that:
θt = θt−1 = · · · = θt−τ .

We now show that every stable point for this mapping is also a stable point for the standard RRM
mapping, defined as:

G(θt−1) = θt.

From the definition of Dt, we have:

Dt =

t−1∑
i=t−τ

α
(t)
i D(θi) = D(θt−1),

since
∑t−1

i=t−τ α
(t)
i = 1. Therefore:

θt = argmin
θ∈Θ

Ez∼Dt
[ℓ(fθ(x), y)] = argmin

θ∈Θ
Ez∼D(θt−1)[ℓ(fθ(x), y)] = G(θt−1),

implying that any stable point for Gτ is also a stable point for G.

Conversely, if θt = θt−1 at a stable point of G, then iterating the mapping Gτ τ times yields the
sequence:

θt = θt+1 = · · · = θt+τ ,

A similar argument shows that this stable point satisfies:

θt+τ = argmin
θ∈Θ

Ez∼D(θt+τ−1)[ℓ(fθ(x), y)] = argmin
θ∈Θ

Ez∼Dt+τ [ℓ(fθ(x), y)],

because:

Dt+τ =

t+τ−1∑
i=t

α
(t)
i D(θi) = D(θt−1).

Which leads to,
Gτ (θ

t, θt+1, . . . , θt+τ ) = (θt−1, θt, . . . , θt+τ−1)

showing that this stable point is also stable for Gτ .

Thus, the set of stable points is equivalent for both mappings.

Lemma 10 Let a be a real number with 0 < a < 1. Then for every integer t ≥ 0,

a⌊t/2⌋ ≤ a−
1
2
(
at/2

)
.
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Lemma 11 Let A1 and A2 be two probability distributions and let B1 and B2 be another two
probability distributions. Then, we have

χ2

(
A1 +A2

2
,
B1 +B2

2

)
≤ χ2(A1, B1) + χ2(A2, B2).

Proof: To compute the χ2 divergence between the averages A1+A2

2 and B1+B2

2 , we start with the
definition:

χ2

(
A1 +A2

2
,
B1 +B2

2

)
=

∫ ∞

−∞

(
pA
1 (x)+pA

2 (x)
2 − pB

1 (x)+pB
2 (x)

2

)2
pB
1 (x)+pB

2 (x)
2

dx.

Simplifying the numerator, we get:

=
1

2

∫ ∞

−∞

(
pA1 (x) + pA2 (x)− pB1 (x)− pB2 (x)

)2
pB1 (x) + pB2 (x)

dx.

Applying the inequality (a+ b)2 ≤ 2a2 + 2b2, we can further bound this as follows:

≤ 1

2

∫ ∞

−∞

2(pA1 (x)− pB1 (x))
2 + 2(pA2 (x)− pB2 (x))

2

pB1 (x) + pB2 (x)
dx.

By distributing the terms, this becomes:

=

∫ ∞

−∞

(pA1 (x)− pB1 (x))
2

pB1 (x) + pB2 (x)
+

(pA2 (x)− pB2 (x))
2

pB1 (x) + pB2 (x)
dx.

Now, since 1
pB
1 (x)+pB

2 (x)
≤ 1

pB
1 (x)

and 1
pB
1 (x)+pB

2 (x)
≤ 1

pB
2 (x)

, we can split the integral as follows:

≤
∫ ∞

−∞

(pA1 (x)− pB1 (x))
2

pB1 (x)
+

(pA2 (x)− pB2 (x))
2

pB2 (x)
dx.

By definition of the χ2 divergence, this final expression is equivalent to:
= χ2(A1, B1) + χ2(A2, B2).

Thus, we have shown that

χ2

(
A1 +A2

2
,
B1 +B2

2

)
≤ χ2(A1, B1) + χ2(A2, B2),

which completes the proof.

Lemma 12 Let η = fG(θ′) − fG(θ). Suppose the function space F is convex, and
G(θ) = arg min

θ′∈Θ
Ez [ℓ(fθ′(x), y)] ,

where z = (x, y) ∼ pfθ represents the distribution induced by the model fθ, and ℓ is a continuously
differentiable loss function. Then the following inequality holds:∫

η(x)⊤∇yℓ(fG(θ)(x), y) pfθ (z) dz ≥ 0.

Refer to Mofakhami et al. [2023] for the proof.

Lemma 13 Suppose a nonnegative sequence (at)t≥0 satisfies the recurrence
at+1 ≤ ϵ max{at, at−1}

for all t ≥ 1 and some 0 < ϵ ≤ 1. Then for every integer t ≥ 0, one has

at ≤ ϵ⌊t/2⌋ max{a0, a1}.

Proof: Set A := max{a0, a1}. We proceed by unrolling the recursion in pairs:
a2 ≤ ϵA, a3 ≤ ϵ max{a2, a1} ≤ ϵA, a4 ≤ ϵ max{a3, a2} ≤ ϵ2A, . . .

and in general, each two steps introduce at least one additional factor of ϵ, yielding the claimed
bound.
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B Proof of Theorem 1

The proof of Theorem 1 largely follows the approach in Mofakhami et al. [2023]. To facilitate
readability, we have restated the common parts from the proof in Mofakhami et al. [2023].

Fix θ and θ′ in Θ. Let h : F → R and h′ : F → R be two functionals defined as follows:

h(fθ̂) = Ez∼D(fθ)[ℓ(fθ̂(x), y)] =

∫
ℓ(fθ̂(x), y)pfθ (z)dz (21)

h′(fθ̂) = Ez∼D(fθ′ )
[ℓ(fθ̂(x), y)] =

∫
ℓ(fθ̂(x), y)pfθ′ (z)dz (22)

where each data point z is a pair of features x and label y.

For a fixed z = (x, y), due to strong convexity of ℓ(fθ(x), y) in fθ(x) we have:

ℓ(fG(θ)(x), y)− ℓ(fG(θ′)(x), y) ≥
(
fG(θ)(x)− fG(θ′)(x)

)⊤ ∇ŷℓ(fG(θ′)(x), y)

+
γ

2
∥fG(θ)(x)− fG(θ′)(x)∥2. (23)

Taking an integral over z w.r.t pfθ(z), and knowing that ∥fG(θ) − fG(θ′)∥2fθ =
∫
∥fG(θ)(x) −

fG(θ′)(x)∥2pfθ (z)dz, we get the following:

h(fG(θ))− h(fG(θ′)) ≥
(∫ (

fG(θ)(x)− fG(θ′)(x)
)⊤ ∇ŷℓ(fG(θ′)(x), y)pfθ (z)dz

)
+

γ

2
∥fG(θ) − fG(θ′)∥2fθ . (24)

Similarly:

h(fG(θ′))− h(fG(θ)) ≥
(∫ (

fG(θ′)(x)− fG(θ)(x)
)⊤ ∇ŷℓ(fG(θ)(x), y)pfθ (z)dz

)
+

γ

2
∥fG(θ) − fG(θ′)∥2fθ . (25)

Since fG(θ) minimizes h, the following result can be achieved through the convexity of the function
space, (Lemma 12):∫ (

fG(θ′)(x)− fG(θ)(x)
)⊤ ∇ŷℓ(fG(θ)(x), y)pfθ (z)dz ≥ 0. (26)

Adding (24) and (25) and using the above inequality, we conclude:

−γ∥fG(θ) − fG(θ′)∥2fθ ≥
∫ (

fG(θ)(x)− fG(θ′)(x)
)⊤ ∇ŷℓ(fG(θ′)(x), y)pfθ (z)dz. (27)

This is a key inequality that will be used later in the proof.

Now recall that there exists M such that M = supx,y,θ ∥∇ŷℓ(fθ(x), y)∥ and the distribution map
over data is ϵ-sensitive w.r.t Pearson χ2 divergence, i.e.

χ2(D(fθ′),D(fθ)) ≤ ϵ∥fθ − fθ′∥2fθ . (28)
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With this in mind, we do the following calculations:∣∣∣∣∫ (fG(θ)(x)− fG(θ′)(x)
)⊤ ∇ŷℓ(fG(θ′)(x), y)pfθ (z)dz −

∫ (
fG(θ)(x)− fG(θ′)(x)

)⊤ ∇ŷℓ(fG(θ′)(x), y)pfθ′ (z)dz

∣∣∣∣
=

∣∣∣∣∫ (fG(θ)(x)− fG(θ′)(x)
)⊤ ∇ŷℓ(fG(θ′)(x), y)

(
pfθ (z)− pfθ′ (z)

)
dz

∣∣∣∣
(∗)
≤
∫ ∣∣∣(fG(θ)(x)− fG(θ′)(x)

)⊤ ∇ŷℓ(fG(θ′)(x), y)
(
pfθ (z)− pfθ′ (z)

)∣∣∣ dz
≤ M

∫ ∣∣∥fG(θ)(x)− fG(θ′)(x)∥
(
pfθ (z)− pfθ′ (z)

)∣∣ dz
= M

∫ ∣∣∣∣∥fG(θ)(x)− fG(θ′)(x)∥
pfθ (z)− pfθ′ (z)

pfθ (z)
pfθ (z)

∣∣∣∣ dz
= M

∣∣∣∣∫ ∣∣∥fG(θ)(x)− fG(θ′)(x)∥
pfθ (z)− pfθ′ (z)

pfθ (z)

∣∣pfθ (z)dz∣∣∣∣
Cauchy-Schwarz Ineq.

≤ M

(∫
∥fG(θ)(x)− fG(θ′)(x)∥2pfθ (z)dz

) 1
2

(∫ (
pfθ (z)− pfθ′ (z)

pfθ (z)

)2

pfθ (z)dz

) 1
2

= M∥fG(θ) − fG(θ′)∥fθ
√
χ2(D(fθ′),D(fθ))

(∗) comes from the fact that
∣∣∫ f(x)dx

∣∣ ≤ ∫ |f(x)|dx, and the Cauchy-Schwarz inequality states
that |E[XY ]| ≤

√
E[X2]E[Y 2].

We conclude from the above derivations that:∣∣∣∣∫ (fG(θ)(x)− fG(θ′)(x)
)⊤ ∇ŷℓ(fG(θ′)(x), y)pfθ (z)dz −

∫ (
fG(θ)(x)− fG(θ′)(x)

)⊤ ∇ŷℓ(fG(θ′)(x), y)pfθ′ (z)dz

∣∣∣∣
≤ M∥fG(θ) − fG(θ′)∥fθ

√
χ2(D(fθ′),D(fθ)). (29)

Similar to inequality (26), since fG(θ′) minimizes h′, one can prove:∫ (
fG(θ)(x)− fG(θ′)(x)

)⊤ ∇ŷℓ(fG(θ′)(x), y)pfθ′ (z)dz ≥ 0. (30)

From (27) we know that
∫ (

fG(θ)(x)− fG(θ′)(x)
)⊤ ∇ŷℓ(fG(θ′)(x), y)pfθ (z)dz is negative, so with

this fact alongside (29) and (30), we can write:∫ (
fG(θ)(x)− fG(θ′)(x)

)⊤ ∇ŷℓ(fG(θ′)(x), y)pfθ (z)dz ≥ −M∥fG(θ)−fG(θ′)∥fθ
√
χ2(D(fθ′),D(fθ)).

(31)
Combining (27) and (31), we obtain:

γ∥fG(θ) − fG(θ′)∥2fθ ≤ M∥fG(θ) − fG(θ′)∥fθ
√
χ2(D(fθ′),D(fθ))

⇒ ∥fG(θ) − fG(θ′)∥fθ ≤ M

γ

√
χ2(D(fθ′),D(fθ))

(28)

≤
√
ϵM

γ
∥fθ − fθ′∥fθ (32)

To prove the existence of a fixed point, we use the Schauder fixed point theorem [Schauder, 1930].
Define

U : f ∈ F → argmin
f ′∈F

E
z∼D(f)

ℓ(f ′(x), y).

For this function, U(fθ) = fG(θ). So instead of Equation 32, we can write:

∥U(fθ)− U(fθ′)∥fθ ≤
√
ϵM

γ
∥fθ − fθ′∥fθ . (33)

Using Assumption 2, we derive the following bound,

∥U(fθ)− U(fθ′)∥ ≤

(√
C

c

) √
ϵM

γ
∥fθ − fθ′∥. (34)
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This inequality shows that for any fθ0 ∈ F , if limn→∞ ∥fθn − fθ0∥ = 0, then limn→∞ ∥U(fθn)−
U(fθ0)∥ = 0, which proves the continuity of U with respect to the norm ∥.∥. Thus, since U is a
continuous function from the convex and compact set F to itself, the Schauder fixed point theorem
ensures that U has a fixed point. Therefore, fθPS exists such that fG(θPS) = fθPS .

If we set θ = θPS and θ′ = θt−1 for θPS being any sample in the set of stable classifiers, we know
that G(θ) = θPS and G(θ′) = θt. So we will have:

∥fθt − fθPS∥fθPS
≤

√
ϵM

γ
∥fθt−1 − fθPS∥fθPS

. (35)

Thus,

∥fθt − fθPS∥fθPS
≤

√
ϵM

γ
∥fθt−1 − fθPS∥fθPS

≤
(√

ϵM

γ

)t

∥fθ0 − fθPS∥fθPS
. (36)

Note that Equation 36 applies to any stable point. Suppose there are two distinct stable points, fθ1
PS

and fθ2
PS

. By the definition of stable points and using Equation 33, we have:

∥U(fθ1
PS

)− U(fθ2
PS

)∥f
θ1
PS

= ∥fθ1
PS

− fθ2
PS

∥f
θ1
PS

≤
√
ϵM

γ
∥fθ1

PS
− fθ2

PS
∥f

θ1
PS

.

Under the assumption that
√
ϵM
γ < 1, the inequality above ensures that fθ1

PS
= fθ2

PS

5 and the stable
point must be unique. Thus, Equation 36 confirms that RRM converges to a unique stable classifier at
a linear rate when

√
ϵM
γ < 1.

5It is important to clarify that fθ1
PS

= fθ2
PS

does not imply ∀x fθ1
PS

(x) = fθ2
PS

(x). Instead, it indicates
that ∥fθ1

PS
− fθ2

PS
∥ = 0.
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C Proof of Theorem 3

In this section, we examine the tightness of the analysis presented in Perdomo et al. [2020] by
considering a specific loss function and designing a particular performativity framework. We focus
on the loss function ℓ(z, θ) = γ

2 ∥θ−
β
γ z∥

2, which is γ-strongly convex with respect to the parameter
θ and its gradient w.r.t. θ is β-Lipschitz, aligning with the assumptions stipulated in Perdomo et al.
[2020].

We model performativity through the following distribution: z ∼ N (ϵθ, σ2) . According to Lemma
6 the 1-Wasserstein distance between two normal distributions is upper bounded by:

W1(N (µ1, σ
2
1), N (µ2, σ

2
2)) ≤

√
(µ1 − µ2)2 = ϵ∥θ1 − θ2∥

it follows that the distribution mapping specified is ϵ-sensitive, as described in Perdomo et al. [2020].

Under these conditions, the RRM process results in the following update mechanism:

θt+1 = ϵ
β

γ
θt = (ϵ

β

γ
)tθ0

This arises because:

θt+1 = argmin
θ

Ez∼D(θt)[ℓ(z, θ)] = argmin
θ

Ez∼D(θt)

[
γ

2
θ2 − βθz +

β2

2γ
z2
]

= argmin
θ

Ez∼D(θt)

[γ
2
θ2 − βθz

]
= argmin

θ

γ

2
θ2 − βϵθθt = ϵ

β

γ
θt

This progression directly corresponds to the upper bound suggested by Perdomo et al. [2020],
confirming that the analysis is tight. No further refinement of the analytical model would mean a
faster convergence rate for the given set of assumptions as detailed in Perdomo et al. [2020].
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D Proof of Theorem 2

We define the model fitting function as fθ(x) = θ, and the corresponding loss function is:

ℓ(x, θ) =
1

2γ

∥∥∥γfθ(x)−M proj∥.∥=0.95(x)
∥∥∥2 ,

where proj∥.∥=0.95 denotes the projection onto the surface of a ball with radius 0.95. By setting
θ ∈ Θ = {z | ∥z∥ ≤ 0.05min{M

γ , 1√
ϵ
}}, we ensure that the gradient norm remains smaller than M .

Since the loss function is γ-strongly convex, it satisfies both Assumptions 4 and 3.

Throughout this proof ∥θ1 − θ2∥ = ∥fθ1 − fθ2∥fθ′ for any choice of θ′.

We define the distribution mapping as follows:

D(θ) = N

(√
ϵθ,

1

2

)
,

The χ2-divergence between two distributions D(θ1) = N(µ1, σ) and D(θ2) = N(µ2, σ), where
µ1 =

√
ϵθ1 and µ2 =

√
ϵθ2, with σ = 1

2 , is given by (Lemma 7):

χ2(N(µ1,Σ), N(µ2,Σ)) ≤
1

2
(µ1 − µ2)

⊤Σ−1(µ1 − µ2) = ϵ∥θ1 − θ2∥2 = ϵ∥fθ1 − fθ2∥2fθ1 .

Thus, the χ2-divergence between the distributions is bounded by ϵ∥θ1 − θ2∥2, making it ϵ-sensitive
according to Assumption 1. Note that

With this set up one would derive the update rule:

θt+1 = projΘ

(
M

γ
E [proj(x)]

)
= projΘ

(
M

γ
erf
(
2E [x]√

2

))
Using,

erf
(
2x√
2

)
≥ x ∀x ≤ 0.05,

and given that E[x] =
√
ϵθ ≤ 0.05min

{√
ϵM
γ , 1

}
by the definition of Θ, the condition holds.

θt+1 ≥ projΘ

(
M

γ
E [x]

)
= projΘ

(
M

√
ϵ

γ
θt
)

Assuming we start with θ0 in the feasible set and operate in the regime where M
√
ϵ

γ ≤ 1, the projection
into the feasible set can be omitted. Therefore, we have:

θt ≥
(
M

√
ϵ

γ

)t

θ0.

It is clear that θ = 0 is the stable point in this setup, so:

∥θt − θPS∥ = Ω

((
M

√
ϵ

γ

)t
)
.

In other words:

∥fθt − fθPS
∥fθPS

= Ω

((
M

√
ϵ

γ

)t
)
.

For the case where M
√
ϵ

γ > 1, the projection remains constrained to the surface of the ball Θ,
preventing convergence to the stable point.
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E Proof of Lemma 1 and Theorem 4

This proof is heavily inspired by the proof of Theorem 1 in Appendix B. We start by restating the
stronger assumption that was added in Lemma 1 and that implies other standard assumptions for this
paper.

Assumption 6 ϵ-sensitivity with respect to Pearson χ2 divergence (version 2): The distribution map
D(fθ) maintains ϵ-sensitivity with respect to Pearson χ2 divergence. For all fθ, fθ′ ∈ F:

χ2(D(fθ′),D(fθ)) ≤
ϵ

C
∥fθ − fθ′∥2, (37)

where ∥fθ − fθ′∥2 is defined in Equation 8.

Note that, Assumptions 2 and 6, imply Assumption 1:

χ2(D(fθ′),D(fθ)) ≤
ϵ

C
∥fθ − fθ′∥2 ≤ ϵ∥fθ − fθ′∥2fθ∗ .

Following the methodology described for Theorem 2 in Mofakhami et al. [2023], we begin by defining
the functional evaluations at consecutive time steps as follows:

ht(fθ̂) = Ez∼Dt [ℓ(fθ̂, z)] =

∫
ℓ(fθ̂, z)pt(z) dz,

ht−1(fθ̂) = Ez∼Dt−1
[ℓ(fθ̂, z)] =

∫
ℓ(fθ̂, z)pt−1(z) dz,

where pt(z) denotes the probability density function of sample z from the distribution Dt.

Utilizing the convexity of ℓ and Lemma 1 from Mofakhami et al. [2023], following the line of
argument in Equation 17 of Mofakhami et al. [2023], we establish the following inequality:

−γ∥fθt+1 − fθt∥2pt
≥
∫

(fθt+1(x)− fθt(x))
⊤ ∇ŷℓ(fθt(x), y)pt(z) dz, (38)

where ∥fθt+1 − fθt∥2pt
represents the squared norm, calculated as:

∥fθt+1 − fθt∥2pt
=

∫
∥fθt+1(x)− fθt(x)∥2pt(z) dz.

and pt(x) =
1
n

∑n−1
i=0 pfθt−i (x), Using the bounded gradient assumption, we deduce:∫

(fθt+1(x)− fθt(x))
⊤ ∇ŷℓ(fθt(x), y)pt(z) dz ≥ −M∥fθt+1 − fθt∥pt

√
χ2(Dt,Dt−1). (39)

Now combining equations 38 and 39 we get,

γ∥fθt+1 − fθt∥pt
≤ M

√
χ2(Dt,Dt−1). (40)

Note that Equation 40, is a direct consequence of Assumptions 3-4, 6, and doesn’t rely on definition
of Dt (refer to Equation 32 for the proof). In other words, if we define our method as the mapping

U(fθ1 . . . fθn) = argmin
f∈F

E(x, y)∼D(fθ1 ... fθn ) [ℓ(f(x), y)] ,

where D(fθ1 . . . fθn) =
∑n

i=1 D(fθi )

n , then,

γ∥U(fθ1 . . . fθn)− U(fθ′
1
. . . fθ′

n
)∥pd

≤ M
√

χ2(D(fθ1 . . . fθn), D(fθ′
1
. . . fθ′

n
)), (41)

where, pd is probability density function of distribution D(fθ1 . . . fθn). We use this information
further on in the proof.

The remaining task is to bound the χ2 divergence. Start by defining:

D̃t =
1

n− 1

n−1∑
i=1

D(fθt−i)
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Which implies:

Dt =
n− 1

n
D̃t +

1

n
D(fθt) and Dt−1 =

1

n
D(fθt−n) +

n− 1

n
D̃t

Now, using this one can derive:

χ2(Dt−1,Dt) ≤ (
1

n
)3 χ2(D(fθt), D(fθt−n))

+ 2 (
1

n
)2(

n− 1

n
)
[
χ2(D(fθt), D̃t) + χ2(D(fθt−n), D̃t)

]
(by Lemma 4)

≤ (
1

n
)3 χ2(D(fθt), D(fθt−n))

+ 2 (
1

n
)2(

n− 1

n
)(

1

n− 1
)

n−1∑
i=1

χ2(D(fθt), D(fθt−i))

+ 2 (
1

n
)2(

n− 1

n
)(

1

n− 1
)

n−1∑
i=1

χ2(D(fθt−n), D(fθt−n+i))

(Proposition 6.1 of Goldfeld et al. [2020], convexity of f -divergence w.r.t. its arguments)

≤ ϵ

C
(
1

n
)3 ∥fθt − fθt−n∥2

+ 2 (
ϵ

C
)(
1

n
)3

n−1∑
i=1

∥fθt − fθt−i∥2

+ 2 (
ϵ

C
)(
1

n
)3

n−1∑
i=1

∥fθt−n − fθt−n+i∥2

(by ϵ-sensitivity)

≤ m2
t (

ϵ

C
)(
1

n
)2 + 4m2

t (
ϵ

C
)(
1

n
)3

n−1∑
i=1

i2 = m2
t (

ϵ

C
)

[
1

n2
+

2(n− 1)(2n− 1)

3n2

]
where m2

t = max0≤i<n{∥fθt−i−1 − fθt−i∥2}. Which further gives us,

χ2(Dt−1,Dt) ≤
ϵm2

t

C

[
4n2 − 6n+ 5

3n2

]
And in conclusion, we derive the following bound:

∥fθt+1 − fθt∥pt
≤

√
ϵMmt√
Cγ

[
4n2 − 6n+ 5

3n2

] 1
2

.

Using Assumption 2, we further obtain:

C∥fθt+1 − fθt∥2pt
: = C

∫
∥fθt+1(x)− fθt(x)∥2pt(x)dx

=
C

n

n−1∑
i=0

∫
∥fθt+1(x)− fθt(x)∥2pfθt−i (x)dx

=
C

n

n−1∑
i=0

∥fθt+1 − fθt∥2fθt−i
≥ ∥fθt+1 − fθt∥2

(42)

Substituting this back into the previous inequality, we finally get:

∥fθt+1 − fθt∥ ≤
√
ϵMmt

γ

[
4n2 − 6n+ 5

3n2

] 1
2

. (43)
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Note the n = 2 minimizes the bracket above amongst the integers.6 Continuing with n = 2, we have:

∥fθt+1 − fθt∥ ≤

(√
3

2

) √
ϵMmt

γ
. (44)

Convergence to a Stable Point. By expanding the max term in Equation 44, using Lemma 13, we
establish the following bound:

∥fθt+1 − fθt∥ ≤

(√
3

2

√
ϵM

γ

)⌊ t
2⌋

f0,

with f0 = max{∥fθ2 − fθ1∥, ∥fθ1 − fθ0∥}. Combining this inequality with Lemma 10 and assuming√
ϵM
γ ≤ 4

√
3
2 , we obtain:

∥fθt+1 − fθt∥ ≤ c

(√
3

2

√
ϵM

γ

) t
2

f0, (45)

Where c =
(√

3
2

√
ϵM
γ

)− 1
2

. For clarity, let α =
(√

3
2

√
ϵM
γ

) 1
2

, resulting in:

∥fθt+k − fθt∥ ≤
k−1∑
i=0

∥fθt+i+1 − fθt+i∥ ≤ 2αt∥fθ1 − fθ0∥

(
k−1∑
i=0

αi

)

= 2αt

(
1− αk−1

1− α

)
∥fθ1 − fθ0∥

(assuming α<1)

≤ 2

(
αt

1− α

)
∥fθ1 − fθ0∥.

Notice that the right-hand side of this inequality is independent of k. With α =
(√

3
2

√
ϵM
γ

) 1
2

< 1,
for any δ > 0, there exists t > 1 such that for all m > t, ∥fθm − fθt∥ ≤ δ. Thus, the sequence is
Cauchy with respect to the norm ∥ · ∥; and by the compactness (and therefore completeness) of F , it
converges to a point f∗.

To show that f∗ is a stable point, we start by showing the continuity of the mapping

U(fθ1 , fθ2) = argmin
f∈F

E(x,y)∼D(fθ1 ,fθ2 )
[ℓ(f(x), y)] ,

where D(fθ1 , fθ2) =
D(fθ1 )+D(fθ2 )

2 . Applying Lemma 11 and Assumption 6, we obtain:

χ2(D(fθ1 , fθ2), D(fθ′
1
, fθ′

2
)) ≤ χ2(D(fθ1), D(fθ′

1
)) + χ2(D(fθ2), D(fθ′

2
))

≤ ϵ

C
∥fθ1 − fθ′

1
∥2 + ϵ

C
∥fθ2 − fθ′

2
∥2.

Combining this with equations 41 and 42, we derive:

γ2∥U(fθ1 , fθ2)− U(fθ′
1
, fθ′

2
)∥2 ≤ C2M2χ2(D(fθ1 , fθ2), D(fθ′

1
, fθ′

2
))

≤ ϵM2(∥fθ1 − fθ′
1
∥2 + ∥fθ2 − fθ′

2
∥2).

(46)

Thus, for any sequence limn→∞(fθ1
n
, fθ2

n
) = (fθ1 , fθ2),

lim
n→∞

∥U(fθ1
n
, fθ2

n
)− U(fθ1 , fθ2)∥ ≤ lim

n→∞

ϵM2

γ2
(∥fθ1

n
− fθ1∥2 + ∥fθ2

n
− fθ2∥2) = 0.

This implies that if limn→∞(fθ1
n
, fθ2

n
) = (fθ1 , fθ2), then limn→∞ ∥U(fθ1

n
, fθ2

n
)−U(fθ1 , fθ2)∥ = 0.

By the continuity of U , we conclude:

f∗ = lim
t→∞

fθt+1 = lim
t→∞

U(fθt , fθt−1) = U
(
lim
t→∞

fθt , lim
t→∞

fθt−1

)
= U(f∗, f∗).

This establishes that f∗ = fθPS
is a stable point.

6We can derive a convergence guarantee for any n. The values of n ≤ 5 yields a bracket of ≤ 1 and thus
can match or improve the class of convergence compared to just the last iterate. For larger n’s, we still have
convergence, but on a smaller class of functions as the bracket > 1.
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F Proof of Lower bound in Perdomo et al. [2020] Framework

In this proof, we begin by considering a loss function defined as follows:

ℓ(z, θ) =
γ

2
∥θ − β

γ
z∥2. (47)

This function is γ-strongly convex for the parameter θ and its gradient with respect to θ is β-Lipschitz
in sample space. The necessary assumptions on the loss function, as outlined in Perdomo et al. [2020],
are satisfied by this formulation.

We define the matrix A within Rd×d as:

A =


1 0 0 . . . 0
1 1 0 . . . 0
0 1 1 . . . 0
...

...
. . . . . .

...
0 . . . 0 1 1

 .

The critical property of this matrix is that if a vector b The key property of this matrix is that if a
vector b ∈ span{ei | i ≤ t}, then Ab ∈ span{ei | i ≤ t + 1}, where each ei ∈ Rd is a standard
basis vector with all coordinates zero except for the i-th coordinate, which is 1. This structure
enables the introduction of a new dimension only at the end of each RRM iteration. With the correct
initialization, this ensures that the updates remain within a minimum distance from the stable point
due to undiscovered dimensions.

We define D(θ) as the distribution of z given by:

z ∼ N
( ϵ
2
Aθ + e1, σ

2
)
.

Note that since spectral radius A is 2, the mapping D(.) defined as above would be ϵ-sensitive. Under
this setting, the first-order Repeated Risk Minimization (RRM) update, starting with θ0 = e1, is
described by:

θt+1 =
β

γ

( ϵ
2
Aθt + e1

)
,

Due to the properties of matrix A, we conclude that θt+1 ∈ span{ei | ∀i ≤ t+ 1}.

The stationary point θPS of this setup is located at:

θPS =

(
γ

β
I − ϵ

2
A

)−1

e1,

Note that at time step t the best model within the feasible set is θt ∈ span{ei|∀i ≤ t}. Given that one
can conclude that the best L1-distance to stationary point achievable at time step t is lower bounded
by the sum over the last d− t entries of θPS . Setting d = 2T and using Lemma 5 we get

∥θt − θPS∥ = Ω

(
(
ϵβ

2γ
)t
)
.

Similar to Repeated Risk Minimization (RRM), the Repeated Gradient Descent (RGD) method
introduces a new dimension in each iteration step. Specifically, the gradient update rule in RGD is
given by:

Ez∼D(θt)∇θℓ(z, θ) = γθt + β
( ϵ
2
Aθt + e1

)
,

This formulation ensures that each step effectively augments the dimensionality of the parameter
space being explored only by a single dimension. Consequently, the lower bound established for
RRM also applies to these RGD settings.
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F.1 Lower Bound for Proximal RRM

We proceed to use the exact same setup as Appendix F. Keeping in mind that the only changing factor
here would be the optimization oracle at each step of RRM. Consider the general case of

θt+1 = argmin
θ∈Θ

E(x, y)∼Dt
[ℓ(fθ(x), y)] +

λ

2
∥θ − θt∥2 + ω

2
∥θ∥2 (48)

with Dt defined as:

Dt =

t−1∑
i=0

α
(t)
i D(fθi), s.t.

t−1∑
i=0

α
(t)
i = 1. (49)

Now given that the loss is strongly convex, the minimizer retrieves a unique point according to the
mapping:

θt+1 =
1

γ + λ+ ω

(
βE(x, y)∼Dt

[z] + λθt
)

(50)

Same as before, using Lemma 9, we search for the stable point using the standard RRM update rule,
which in this setup would be the following:

θt+1 =
1

γ + λ+ ω

(
β
( ϵ
2
Aθt + e1

)
+ λθt

)
This update rule for λ ̸= ∞ would retrieve the stationary point θPS ,

θPS =

(
γ + ω

β
I − ϵ

2
A

)−1

e1,

Note that again, because of the structure of matrix A, Equation 50 can introduce a new dimension
only after taking one step of RRM. Therefore, the best method any method in the ARM class can
do is to only match the first t coordinates of the stationary point. So one can conclude that the best
L1-distance to stationary point achievable at time step t is lower bounded by the sum over the last
d− t entries of θPS . Setting d = 2T and using Lemma 5 we get

∥θt − θPS∥ = Ω

(
(

ϵβ

2(γ + ω)
)t
)
.
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G Proof of Lower Bound for Modified Mofakhami et al. [2023] Framework

We define the model fitting function as fθ(x) = θ, and the corresponding loss function is:

ℓ(x, θ) =
1

2γ

∥∥∥γfθ(x)−M(1− δ)xe−
1
2e∥x∥

2
∥∥∥2 .

This loss is γ-strongly convex, ensuring unique minimizers and stable convergence properties.
Additionally, we assume θ ∈ Θ = {z|∥z∥ ≤ δM

γ }, ensuring that the gradient norm ∥γθ −M(1−
δ)xe−

1
2e∥x∥

2∥ remains bounded by M . This holds because the mapping f(x) = xe−
1
2e∥x∥

2

is chosen
such that, f : R → [0, 1].

Observe that, for all fθ∗, fθ, fθ′ ∈ F , we have ∥θ − θ′∥ = ∥fθ − fθ′∥fθ∗ :

∥fθ − fθ′∥2fθ∗ =

∫
∥fθ(x)− fθ′(x)∥2pfθ∗(x) dx =

∫
∥θ − θ′∥2pfθ∗(x) dx = ∥θ − θ′∥2.

We define the distribution mapping as follows:

D(θ) = N

(√
σ2ϵ

2
Aθ +

e1
L
, σ2I

)
,

where A is a lower triangular matrix:

A =


1 0 0 . . . 0
1 1 0 . . . 0
0 1 1 . . . 0
...

...
. . . . . .

...
0 . . . 0 1 1

 .

Matrix A has the property that if b is in the span of {e1, . . . , ei}, then Ab will be in the span of
{e1, . . . , ei+1}. Here, ei denotes the standard basis vector, where its i-th element is 1 and all other
elements are 0. This makes A crucial for ensuring that each update step involves interactions that
span progressively larger subspaces.

The χ2-divergence between two distributions D(θ1) = N(µ1,Σ) and D(θ2) = N(µ2,Σ), where

µ1 =
√

σ2ϵ
2 Aθ + e1

L and µ2 =
√

σ2ϵ
2 Aθ′ + e1

L , with Σ = σ2I , according to Lemma 7:

χ2(N(µ1,Σ), N(µ2,Σ)) ≤
1

2
(µ1 − µ2)

⊤Σ−1(µ1 − µ2) =
1

σ2
(

√
σ2ϵ

2
A)2∥θ1 − θ2∥2.

Since the spectral norm of matrix A is 2, we have:

χ2(D(θ1), D(θ2)) ≤ ϵ∥θ1 − θ2∥2 = ϵ∥fθ − fθ′∥fθ .

Thus, the χ2-divergence between the distributions is bounded by ϵ∥θ − θ′∥2, ensuring that the
divergence scales with the difference between θ and θ′.

The update rule for θ is:

θt+1 = projΘ

(
M

γ
(1− δ)E

[
xe−

1
2e∥x∥

2
])

= projΘ

(
M

γ
(1− δ) exp

(
−∥E[x]∥2

2σ2

(
1− 1

σ2

e + 1

))
· E[x]

σ2

e + 1

)
.

This is the unique minimizer of the loss function due to the γ-strong convexity. Additionally, this is
a continuous mapping from a compact convex set Θ to itself. By Schauder ’s fixed-point theorem,
there exists a stable fixed point, denoted as θPS , satisfying:

θPS = projΘ

(
Mcσ2,θPS

γ
(1− δ)E[x]

)
= projΘ

(
Mcσ2,θPS

γ
(1− δ)

(√
σ2ϵ

2
AθPS +

e1
L

))
,
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where cσ2,θPS
=

exp

(
− ∥E[x]∥2

2σ2

(
1− 1

σ2
e

+1

))
σ2

e +1
≤ 1. Assuming M

√
ϵ

γ ≤ 1 and σ ≤
√
2
2 we get that,

∥
Mcσ2,θPS

γ
(1− δ)

(√
σ2ϵ

2
AθPS +

e1
L

)
∥ ≤ ∥

Mcσ2,θPS

γ
(1− δ)

√
σ2ϵ

2
AθPS∥+

Mcσ2,θPS
(1− δ)

γL

≤ ∥1
2
(1− δ)θPS∥+

M(1− δ)

γL

≤ 1

2
(1− δ)δ +

M(1− δ)

γL

Choosing L ≥ 2M(1−δ)
γ(δ+δ2) one can guarantee the term in the projection operation would have a norm

smaller than δ, i.e. it would be in Θ. So you can drop the projection operation from the equality
above.

Thus, the stable point would hold true in the following equality:

θPS =

(
I − (1− δ)

cσ2,θPS√
2

√
σ2ϵM

γ
A

)−1
e1
L
.

The same assumptions stated above would allow us to use Lemma 5:

∥θt − θPS∥ = Ω

((1− δ)
cσ2,θPS√

2

√
σ2ϵM

γ

)t
 .

To lower bound cσ2,θPS
, we note that ∥E[x]∥ ∈ [0, ϵ

2δ +
γ(δ+δ2)
2M(1−δ) ] and minimize the exponential

term with respect to σ2:

exp

(
−∥E[x]∥2

2σ2

(
1− 1

σ2

e + 1

))
≥ exp (−cδ) ,

Where c > 0 is a constant independent of δ. Setting σ =
√
2
2 to maximise σ

σ2

e +1
, and lim δ → 0, we

achieve:

∥θt − θPS∥ = Ω

((
1

1
e + 2

√
ϵM

γ

)t
)
.

Hence,

∥fθt − fθPS
∥fθPS

= Ω

((
1

1
e + 2

√
ϵM

γ

)t
)
.
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H Proof of Theorem 8

Consider a feature vector x divided into strategic features xs and non-strategic features xf , so that
x = (xs, xf ). We resample only the strategic features with probability g(fθ(x)), representing the
probability of rejection for x. The pdf of the modified distribution pfθ is:

pfθ (x) = p(x) (1− g(fθ(x))) +

∫
x′
s

p(x′
s, xf ) g(fθ(x

′
s, xf )) p(xs)dx

′
s,

where the integral is over all possible values of x′
s with xf held constant, since only the strategic

features are resampled. The first term represents the option that we accept the first sample at x;
the second term represents the possibility that we reject the first sample at x′ = (x′

s, xf ) and then
resample at xs to obtain x as well.

Assuming the strategic and non-strategic features are independent, we can rewrite this expression as:

pfθ (x) =p(x)(1− g(fθ(x))) +

∫
x′
s

p(x′
s, x

′
f = xf ) g(fθ(x

′)) p(xs)dx
′
s

= p(x)(1− g(fθ(x))) +

∫
x′
s

g(fθ(x
′))pXs

(x′
s)pXf

(xf )pXs
(xs)dx

′
s

= p(x)(1− g(fθ(x))) +

∫
x′
s

g(fθ(x
′))pXs

(x′
s)p(x)dx

′
s

= p(x)
(
(1− g(fθ(x))) +

∫
x′
s

g(fθ(x
′))pXs(x

′
s)dx

′
s

)
= p(x) (1− g(fθ(x)) + Cθ(xf )) ,

(51)

where pXs and pXf
are the marginal distributions of the strategic and non-strategic features, respec-

tively, and we define:

Cθ(xf ) =

∫
x′
s

pXs(x
′
s) g(fθ(x

′
s, xf )) dx

′
s.

Since 0 ≤ fθ(x) ≤ 1− δ for some δ > 0, it follows that δ ≤ g(fθ(x)) ≤ 1 for every x. Therefore,
δ ≤ Cθ(xf ) ≤ 1.

In the RIR procedure, the distribution of the label y given x is not affected by the predictions so for
every z = (x, y) we have pfθ (z) = pfθ (x)p(y|x) for any fθ. This results in the following equality:

χ2(D(fθ′),D(fθ)) =

∫
(pfθ′ (z)− pfθ (z))

2

pfθ (z)
dz =

∫
(pfθ′ (x)− pfθ (x))

2

pfθ (x)
dx

We prove that this mapping is ϵ-sensitive with respect to χ2 divergence, where ϵ =
1

δ

(
1 +

1− δ

2
√
δ

)
.

χ2(D(fθ′),D(fθ)) =

∫ (
pfθ′ (x)− pfθ (x)

)2
pfθ (x)

dx

=

∫
p(x)2 [fθ(x)− fθ′(x)− (Cθ(xf )− Cθ′(xf ))]

2

p(x) (1− fθ(x)− δ + Cθ(xf ))
dx

≤ 1

δ

∫
p(x)

[
(fθ(x)− fθ′(x))

2
+ (Cθ(xf )− Cθ′(xf ))

2

− 2 (fθ(x)− fθ′(x)) (Cθ(xf )− Cθ′(xf ))

]
dx

This inequality follows from the fact that δ ≤ Cθ(xf ) and 1 − g(fθ(x)) ≥ 0, therefore
1

1−g(fθ(x))+Cθ(xf )
≤ 1

δ .

Continuing, we have:
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=
1

δ

[ ∫
p(x) (fθ(x)− fθ′(x))

2
dx

+

∫
xf

pXf
(xf ) (Cθ(xf )− Cθ′(xf ))

2
dxf

− 2

∫
xf

pXf
(xf ) (Cθ(xf )− Cθ′(xf ))

∫
xs

pXs(xs) (fθ(x)− fθ′(x)) dxs dxf

]

=
1

δ

[∫
p(x) (fθ(x)− fθ′(x))

2
dx−

∫
xf

pXf
(xf ) (Cθ(xf )− Cθ′(xf ))

2
dxf

]

≤ 1

δ

∫
p(x) (fθ(x)− fθ′(x))

2
dx

This comes from the fact that
∫
x′
s
pXs

(x′
s)(fθ((x

′
s, xf ))− fθ′((x′

s, xf )))dx
′
s = Cθ(xf )− Cθ′(xf ).

We use equation 51 to replace p(x).

=
1

δ

∫
(pfθ (x) + p(x) (fθ(x) + δ − Cθ(xf ))) (fθ(x)− fθ′(x))

2
dx

=
1

δ
∥fθ − fθ′∥2fθ +

1

δ

∫
p(x) (fθ(x) + δ − Cθ(xf )) (fθ(x)− fθ′(x))

2
dx

Cauchy-Schwarz
≤ 1

δ
∥fθ − fθ′∥2fθ +

1

δ

(∫
p(x) (fθ(x) + δ − Cθ(xf ))

2
dx

)1/2(∫
p(x) (fθ(x)− fθ′(x))

4
dx

)1/2

≤ 1

δ
∥fθ − fθ′∥2fθ +

1

δ

(∫
xf

pXf
(xf )V arxs

[g(fθ(x))] dxf

)1/2(∫
p(x) (fθ(x)− fθ′(x))

4
dx

)1/2

Since g(fθ(x)) is a bounded random variable in [δ, 1], its variance is less than (1−δ)2

4 , according to
Popoviciu’s inequality. Also since for any θ ∈ Θ we have fθ(x) ≤ 1 we can infer |fθ(x)−fθ′(x)| ≤ 1

≤ 1

δ
∥fθ − fθ′∥2fθ +

1− δ

2δ

(∫
p(x) (fθ(x)− fθ′(x))

4
dx

)1/2

≤ 1

δ
∥fθ − fθ′∥2fθ +

1− δ

2δ

(∫
p(x) (fθ(x)− fθ′(x))

2
dx

)1/2

≤ 1

δ
∥fθ − fθ′∥2fθ +

1− δ

2δ
∥fθ − fθ′∥

From Appendix A.3 in Mofakhami et al. [2023], we know that ∥fθ − fθ′∥2 ≤ 1
δ ∥fθ − fθ′∥2fθ . Hence,

χ2(D(fθ′),D(fθ)) ≤
1

δ

(
1 +

1− δ

2
√
δ

)
∥fθ − fθ′∥2fθ

Rate Improvement Arguments: By using Assumptions 4 and 6 from Mofakhami et al. [2023], it
can be shown that the method is Cϵ-sensitive as defined in Assumption 1. Specifically,

χ2(D(fθ′),D(fθ)) ≤ ϵ∥fθ − fθ′∥2 ≤ Cϵ∥fθ − fθ′∥2fθ .

In this case, our rate aligns with the rate from Mofakhami et al. [2023], demonstrating that in all
cases where their rate holds, our approach offers at least an equivalent or faster rate. However, there
are instances where our rate results in a smaller constant than Cϵ. As outlined in Appendix A.3
of Mofakhami et al. [2023], the same RIR framework derives C = 1

δ under Assumption 2 and
ϵ = 1

δ with respect to Assumption 6, yielding Cϵ = 1
δ2 . We show that instead of Cϵ = 1

δ2 , we

obtain 1
δ

(
1 + 1−δ

2
√
δ

)
, which is strictly smaller for any 0 ≤ δ < 1. This shows that this rate is a strict

improvement over Mofakhami et al. [2023].
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Figure 4: Log performative risk for the credit scoring environment across the RRM iterations. The
numbers in the plot are averaged over 500 runs. Increasing the size of aggregation window τ from
1 → 2 → 4 → t/2 → all reduces the oscillations in the risk and converges to the same point.
Note that the plot starts from iteration 5 for better readability as the initial risk values were very high.

I Performative Risk for Credit-Scoring

Figure 4 shows the log performative risk for the credit-scoring environment. This metric has been
adapted from Mofakhami et al. [2023]. Figure 4 further substantiates our claims as we see lower
oscillations in the risk for larger aggregation windows. We also note that although larger windows
yield more stable trajectories, they can incur worse performative risk along the way before ultimately
settling. Furthermore, methods converge to roughly the same performatively stable point—as
predicted by the theory of a unique stable point in Lemma 9—since the difference in log performative
risk at the end of 50 iterations is negligible between all methods. However, as pointed out in Section
7, all methods oscillate in a similar range, thus hindering the readability of the plot.

Hyper-parameters. For our experiments, we fix the value of δ = 0.55. The RRM procedure is
carried out for a maximum of 50 iterations with a learning rate of 3e-4 and Adam optimizer run over
A100-40G GPUs. Each run only took a few minutes. Further, all the experimental results and plots
are averaged over 500 runs, where each run for each method has the same model initialization. Thus,
the only source of randomization is the sampling under RIR mechanism, where the sampling changes
across different runs but is the same for all the methods given a specific run.
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Figure 5: The plot shows loss shift due to performativity and performative risk across the iterations for
player 1 in the game between two firms. The values in the plot are means over 200 runs. Increasing
the aggregation window size τ leads to lower loss shifts even in this simple game and hence, faster
convergence than just relying on the dataset from the current timestamp.

J Revenue Maximization in Ride Share Market

Setup. This is a two-player semi-synthetic game between two ride-share providers, Uber and Lyft,
both trying to maximize their respective revenues. Each player takes an action in this game by setting
their price for the riders across 11 different locations in the same city of Boston, MA. The price set
by one firm directly influences the demand observed by both firms. The demand constitutes the data
distribution and at each time step, a total of 25 demand samples are sampled for a firm i, and the
optimal response is found by minimizing Equation 53 for a maximum of 40 retraining steps on CPU.
Each run took only a few seconds. The simulations use the publicly available Uber and Lyft dataset
from Boston, MA on Kaggle7.

Notations and Equations. Let i = 1, 2 denote the two firms in the game. Inspired by Narang
et al. [2024], each firm i observes a demand zi that depends linearly on the firm’s price xi and its
opponent’s price x−i as follows:

zi = Aixi +A−ix−i + ξ, ξ ∼ N (zbase, 1) (52)

where zbase is the mean demand observed at each of the 11 locations, as measured in the kaggle
dataset. Each demand sample is a vector of dimension 11.
Ai and A−i are fixed matrices representing the price elasticity of demand, i.e. the change in demand
due to a unit change in price for the player i and −i (opponent) respectively. We introduce interactions
between the ride prices in a location and the demand in a different location within the same city
by making A matrices non-diagonal. Additionally, note that the price elasticities Ai will always
be negative as the firm will experience less demand if it increases its price. Similarly, the price
elasticities A−i will be positive.
Each player observes a revenue of zTi xi. Thus, the loss function that each player i seeks to minimize
in the RRM framework can be described as:

xt+1
i = argmin

xi

Ezi∼Dt

[
−zTi xi +

λ

2
∥xi∥2

]
(53)

where λ is a hyperparameter for the regularization term (= 70 for our experiments). For any player i,
each element of xi is clipped to be between the range of [−30, 30] and the initial price x0

i is sampled
randomly from a uniform distribution on [0, 1].

Results. Figure 5 shows the plot for loss shift due to performativity and the performative risk versus
the iterations averaged over 200 runs. For this plot, we assume player 1 is the player who makes the
predictions and adjusts to the performative effects introduced due to the actions of player 2. It can be
clearly observed that as we increase the aggregation window from 1 → 2 → 4 → t/2 → all, we

7Uber and Lyft dataset from Boston, MA, 2019: https://www.kaggle.com/datasets/brllrb/
uber-and-lyft-dataset-boston-ma
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get mostly lower loss shifts and hence, an improvement in the convergence rate. Since we start at
random price value, taking the past into account in the beginning makes the algorithm worse but the
effect is neutralized as the data from more time steps is observed. Given the simple linear nature of
the problem, this is a significant improvement and provides evidence for our claims about using the
data from the previous snapshots. Secondly, performative risk plot in figure 5 also highlights that all
methods converge to points having very close values of performative risk, with the methods having
larger τ showing oscillations with smaller amplitude.
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K Proximal RRM Convergence in Perdomo et al. [2020] Framework

Theorem 9 (Proximal RRM Convergence) Suppose the loss ℓ(z; θ) is β-jointly smooth and
γ-strongly convex. If the distribution map D(·) is ϵ-sensitive, then for

G(θ) = argmin
ϕ

Ez∼D(θ)

[
ℓ(z;ϕ)

]
+

λ

2
∥θ − ϕ∥2, (54)

we have, for all θ, θ′ ∈ Θ,

∥G(θ)−G(θ′)∥ ≤ ϵβ + λ

γ + λ
∥θ − θ′∥.

Furthermore, if ϵβ+λ
γ+λ < 1, then G is a contraction, possesses a unique fixed point θPS , and the

proximal RRM iterates θt+1 = G(θt) converge linearly:

∥θt − θPS∥ ≤
(
ϵβ + λ

γ + λ

)t

∥θ0 − θPS∥.

Proof. Fix θ and θ′. Let

f(ϕ) = Ez∼D(θ)ℓ(z;ϕ) +
λ

2
∥θ − ϕ∥2, f ′(ϕ) = Ez∼D(θ′)ℓ(z;ϕ) +

λ

2
∥θ′ − ϕ∥2.

Because ℓ(z;ϕ) is γ-strongly convex, both f and f ′ are (γ + λ)-strongly convex. Hence

f
(
G(θ)

)
− f
(
G(θ′)

)
≥
(
G(θ)−G(θ′)

)⊤∇ϕf
(
G(θ′)

)
+

γ + λ

2
∥G(θ)−G(θ′)∥2, (55)

f
(
G(θ′)

)
− f
(
G(θ)

)
≥
(
G(θ′)−G(θ)

)⊤∇ϕf
(
G(θ)

)
+

γ + λ

2
∥G(θ′)−G(θ)∥2. (56)

Since f is minimized at G(θ), the inner product in 56 is non-negative. Combining 55 and 56 yields(
G(θ)−G(θ′)

)⊤∇ϕf
(
G(θ′)

)
≤ −(γ + λ) ∥G(θ)−G(θ′)∥2. (57)

Define the regularized loss

ℓθ(z;ϕ) = ℓ(z;ϕ) +
λ

2
∥θ − ϕ∥2.

The map

z 7−→
(
G(θ)−G(θ′)

)⊤∇ϕℓθ
(
z;G(θ′)

)
β ∥G(θ)−G(θ′)∥

is 1-Lipschitz in z because of the β-joint smoothness of ℓ. The ϵ-sensitivity of D(·) then implies
sup

g is 1-Lip

∣∣Ez∼D(θ)g(z)− Ez∼D(θ′)g(z)
∣∣ ≤ ϵ ∥θ − θ′∥. (58)

Using the 1-Lipschitz function above in 58 gives∣∣∣ (G(θ)−G(θ′))⊤

β∥G(θ)−G(θ′)∥
(
Ez∼D(θ)∇ϕℓθ(z;G(θ′))− Ez∼D(θ′)∇ϕℓθ(z;G(θ′))

)∣∣∣ ≤ ϵ∥θ − θ′∥.
Unfolding ℓθ and rearranging, we obtain

−ϵβ∥θ − θ′∥ ∥G(θ)−G(θ′)∥ ≤
(
G(θ)−G(θ′)

)⊤[∇ϕf
(
G(θ′)

)
−∇ϕf

′(G(θ′)
)]

+ λ
(
G(θ)−G(θ′)

)⊤
(θ′ − θ). (59)

Since G(θ′) minimizes f ′, we have
(
G(θ)−G(θ′)

)⊤∇ϕf
′(G(θ′)

)
≥ 0. Thus

−ϵβ∥θ − θ′∥ ∥G(θ)−G(θ′)∥ ≤
(
G(θ)−G(θ′)

)⊤∇ϕf(G(θ′))

+ λ∥G(θ)−G(θ′)∥ ∥θ − θ′∥ (60)
by the Cauchy–Schwarz inequality. Combining 59 and 60 gives

(−ϵβ − λ) ∥θ − θ′∥ ∥G(θ)−G(θ′)∥ ≤
(
G(θ)−G(θ′)

)⊤∇ϕf(G(θ′)), (61)
and substituting the upper bound 57 for the right-hand side yields

(−ϵβ − λ) ∥θ − θ′∥ ∥G(θ)−G(θ′)∥ ≤ −(γ + λ) ∥G(θ)−G(θ′)∥2. (62)
Since ∥G(θ)−G(θ′)∥ ≥ 0, dividing both sides of 62 by (γ + λ)∥G(θ)−G(θ′)∥ gives

∥G(θ)−G(θ′)∥ ≤ ϵβ + λ

γ + λ
∥θ − θ′∥. (63)
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Stability of the Proximal RRM Solution in Standard RRM

We examine whether the fixed point of the Proximal RRM introduced in Theorem 9 coincides with
the performatively stable point of RRM.

Assume that ϵβ
γ < 1, Under this condition, a performatively stable point of RRM exists and it’s

unique. Because the proximal term vanishes at ϕ = θPS , optimality of θPS yields

Ez∼D(θPS) ℓ(z; θPS) ≤ Ez∼D(θPS) ℓ(z;ϕ) ≤ Ez∼D(θPS) ℓ(z;ϕ) +
λ

2
∥θPS − ϕ∥2 ∀ϕ.

Hence
θPS = argmin

ϕ
Ez∼D(θPS) ℓ(z;ϕ) +

λ

2
∥θPS − ϕ∥2 , (64)

so θPS is also a fixed point of the Proximal RRM.

Note that, for any λ > 0,
ϵβ

γ
≤ 1 =⇒ ϵβ + λ

γ + λ
≤ 1. (65)

By Theorem 9, inequality 65 guarantees that the Proximal RRM admits a unique fixed point, denoted
by θλPS . Since θPS satisfies 64 and the minimiser of 64 is unique, we conclude

θλPS = θPS .

Thus, under eβ
γ < 1, the performatively stable solution of RRM is identical to the unique fixed point

of the Proximal RRM.
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L Limitations

Despite our contributions, several limitations warrant discussion. First, although we prove that
ARM achieves performative stability under a broader set of sensitivity conditions than standard
RRM, this does not necessarily translate into faster convergence rates. Second, while the underlying
techniques can extend to other iterative schemes, such as Repeated Gradient Descent (RGD), and
more general gradient-based methods, we do not provide explicit convergence analyses or lower-
bound characterizations for these alternatives. Finally, our entire treatment assumes deterministic,
non-stochastic setups with exact access to full distributions; we leave the problem of accommodating
sampling noise and stochastic gradients for future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide support for all the claims made in the submission.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in Appendix L.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All the assumptions required are prescribed in the main text.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental setup to reproduce the results for both experiments is
provided in the Appendix J and I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
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datasets used throughout the experiments is provided in the text.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details are provided in the Appendix J and I.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Because the methodology requires linear memory overhead, we couldn’t retain
the intermediate data needed for error bars, and since variance grows with more steps,
demanding an impractically large number of runs to mitigate, we report only mean trends.
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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error rates).
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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didn’t make it into the paper).
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Answer: [Yes]
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Answer: [NA]

Justification: [NA]
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• The answer NA means that there is no societal impact of the work performed.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Original owners of the experimental setups used in the paper are referenced.
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• The answer NA means that the paper does not use existing assets.
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URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For existing datasets that are re-packaged, both the original license and the license of
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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