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ABSTRACT

Common certification methods operate on a flat pre-defined set of fine-grained
classes. In this paper, however, we propose a novel, more general, and practical
setting, namely adaptive hierarchical certification for image semantic segmenta-
tion. In this setting, the certification can be within a multi-level hierarchical label
space composed of fine to coarse levels. Unlike classic methods where the certi-
fication would abstain for unstable components, our approach adaptively relaxes
the certification to a coarser level within the hierarchy. This relaxation lowers the
abstain rate whilst providing more certified semantically meaningful information.
We mathematically formulate the problem setup and introduce, for the first time,
an adaptive hierarchical certification algorithm for image semantic segmentation,
that certifies image pixels within a hierarchy and prove the correctness of its guar-
antees. Since certified accuracy does not take the loss of information into account
when traversing into a coarser hierarchy level, we introduce a novel evaluation
paradigm for adaptive hierarchical certification, namely the certified information
gain metric, which is proportional to the class granularity level. Our evaluation
experiments on real-world challenging datasets such as Cityscapes and ACDC
demonstrate that our adaptive algorithm achieves a higher certified information
gain and a lower abstain rate compared to the current state-of-the-art certification
method, as well as other non-adaptive versions of it.

1 INTRODUCTION

Image semantic segmentation is of paramount importance to many safety critical applications such
as autonomous driving (Kaymak & Uçar, 2019; Zhang et al., 2016), medical imaging (Kayalibay
et al., 2017; Guo et al., 2019; Pham et al., 2000), video surveillance (Cao et al., 2020) and object
detection (Gidaris & Komodakis, 2015). However, ever since deep neural networks were shown to
be inherently non-robust in the face of small adversarial perturbations (Szegedy et al., 2014), the
risk of using them in such applications has become evident. Moreover, an arms race between new
adversarial attacks and defenses has developed; which calls for the need of provably and certifiably
robust defenses. Many certification techniques have been explored in the case of classification (Li
et al., 2023), with the first recent effort in semantic segmentation (Fischer et al., 2021).

Certification for segmentation is a hard task since it requires certifying many components (i.e., pix-
els) simultaneously. The naive approach would be to certify each component to its top class within
a radius, and then take the minimum as the overall certified radius of the image. This is problem-
atic since a single unstable component could lead to a very small radius, or even abstain due to a
single abstention. The state-of-the-art certification technique for semantic segmentation SEGCER-
TIFY (Fischer et al., 2021) relies on randomized smoothing (Lecuyer et al., 2019). It mitigates the
many components issue by abstaining from unstable components and conservatively certifies the
rest. While an unstable component implies that the model is not confident about a single top class,
it often means that it fluctuates between classes that are semantically related. For example, if an
unstable component fluctuates between car and truck, certifying it within a semantic hierarchy as
vehicle would provide a more meaningful guarantee compared to abstaining.

We propose a novel hierarchical certification method for semantic segmentation, which adaptively
certifies pixels within a multi-level hierarchical label space while preserving the same theoretical
guarantees from Fischer et al. (2021). The hierarchy levels start from fine-grained labels to coarser
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SegCertify
(a) CIG= 0.7, ⊘ = %13

AdaptiveCertify
(b) CIG= 0.73, ⊘ = %6

(c) CIG= 0.8, ⊘ = %13 (d) CIG= 0.82, ⊘ = %6

Figure 1: The certified segmentation outputs from SEGCERTIFY in (a) and (c), and ADAPTIVECER-
TIFY in (b) and (d) with their corresponding certified information gain (CIG) and abstain rate %⊘.
Our method provides more meaningful certified output in pixels the state-of-the-art abstains from
(white pixels), with a much lower abstain rate, and higher certified information gain.

ones that group them. Our algorithm relies on finding unstable components within an image and
relaxing their label granularity to be certified within a coarser level in a semantic hierarchy. Mean-
while, stable components can still be certified within a fine-grained level. As depicted in Figure 1,
this relaxation of the label granularity lowers the abstain rate while providing more certified infor-
mation to the end user compared to the state-of-the-art method.

To quantifiably evaluate our method, we propose a novel evaluation paradigm that accounts for
the hierarchical label space, namely the certified information gain (CIG). The certified information
gain is proportional to the granularity level of the certified label; a parent vertex (e.g., vehicle) has
less information gain than its children (e.g., car, truck, bus, etc.) since it provides more general
information, while leaf vertices have the most information gain (i.e., the most granular classes in the
hierarchy). Our certified information gain metric is equivalent to certified accuracy if the defined
hierarchy is flat.

Main Contributions. Our main contributions are the following: (i) We introduce the concept of
adaptive hierarchical certification for image semantic segmentation by mathematically formulating
the problem and its adaptation to a pre-defined class hierarchy, (ii) We propose ADAPTIVECERTIFY,
the first adaptive hierarchical certification algorithm, which certifies the image pixels within different
fine-to-coarse hierarchy levels, (iii) We employ a novel evaluation paradigm for adaptive hierarchical
certification by introducing the certified information gain metric and (iv) we extensively evaluate
our algorithm, showing that certifying each pixel within a multi-level classes hierarchy achieves a
lower abstain rate and higher certified information gain than the current state-of-the-art certification
method for segmentation. Our analysis further shows the generalization of ADAPTIVECERTIFY
with respect to different noise levels and challenging datasets.

2 RELATED WORKS

Certification. The competition between attacks and defenses has resulted in a desire for certifiably
robust approaches for verification and training (Li et al., 2023). Certification is proving that no
adversarial sample can evade the model within a guaranteed range under certain conditions (Papernot
et al., 2018). There are two major lines of certifiers, deterministic and probabilistic techniques.

Deterministic certification techniques such as SMT solvers (Pulina & Tacchella, 2010; 2012),
Mixed-Integer Linear Programming (MILP) (Cheng et al., 2017; Dutta et al., 2018) or Extended
Simplex Method (Katz et al., 2017) mostly work for small networks. To certify bigger networks, an
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over-approximation of the network’s output corresponding to input perturbations is required (Salman
et al., 2019; Gowal et al., 2019), which underestimates the robustness.

Probabilistic methods work with models with added random noise: smoothed models. Currently,
only probabilistic certification methods are scalable for large datasets and networks (Li et al., 2023).
Randomized smoothing is a probabilistic approach introduced for the classification case against lp
(Cohen et al., 2019) and non-lp threat models (Levine & Feizi, 2020). Beyond classification, it
has been used in median output certification of regression models (Chiang et al., 2020), center-
smoothing (Kumar & Goldstein, 2021) to certify networks with a pseudo-metric output space, and
most relevant to our work, scaled to certify semantic segmentation models (Fischer et al., 2021). We
expand on randomized smoothing and Fischer et al. (2021) in Section 3 to provide the necessary
background for our work.

Hierarchical Classification and Semantic Segmentation. Hierarchical classification is the idea of
classifying components within a hierarchical class taxonomy (Silla & Freitas, 2011). This taxonomy
can be defined as a tree (Wu et al., 2005) or a Directed Acyclic Graph (DAG). A DAG means that a
node can have multiple parent nodes, whereas trees only allow one. Hierarchical classifiers differ in
how deep the classification in the hierarchy is performed. Some methods require the classification
to be within the most fine-grained classes, namely mandatory leaf-node prediction (MLNP), whilst
others can stop the classification at any level, namely non-mandatory leaf-node prediction (NMLNP)
(Freitas & Carvalho, 2007). One way to deal with NMLNP is to set thresholds on the posteriors to
determine which hierarchy level to classify at (Ceci & Malerba, 2007).

Hierarchical classification can be generalized to segmentation if the same hierarchical classifica-
tion logic is done pixel-wise. In Li et al. (2022), a hierarchical semantic segmentation model is
introduced that utilizes a hierarchy during training. NMLNP is by no means standard in current
semantic segmentation work, even though it is, also from a practical perspective, useful for many
down-stream tasks. Our certification for segmentation method follows an NMLNP approach: we can
certify a pixel at a non-leaf node. Although we use some hierarchy-related concepts from previous
works, our main focus is hierarchical certification for segmentation, not hierarchical segmentation,
as we deal with the input segmentation model as a black-box.

3 PRELIMINARIES: RANDOMIZED SMOOTHING FOR SEGMENTATION

In this section, we provide an overview of the essential background and notations needed to un-
derstand randomized smoothing for classification and segmentation, which we build on when we
introduce our adaptive method.

Classification. The core idea behind randomized smoothing (Cohen et al., 2019) is to construct
a smoothed classifier g from a base classifier f . The smoothed classifier g returns the class the
base classifier f would return after adding as isotropic Gaussian noise to the input x. The smooth
classifier is certifiably robust to ℓ2-perturbations within a certain radius. Formally, given a classifier
f : Rm 7→ Y and Gaussian noise ϵ ∽ N (0, σ2I), the smoothed classifier g is defined as:

g(x) := argmax
a∈Y

IP(f(x+ ϵ) = a) (1)

In order to evaluate g at a given input x and compute the certification radius R, one cannot compute g
exactly for black-box classifiers due to its probability component. Cohen et al. (2019) use a Monte-
Carlo sampling technique to approximate g by drawing n samples from ϵ ∽ N (0, σ), evaluating
f(x + ϵ) at each, and then using its outputs to estimate the top class and certification radius with a
pre-set confidence of 1− α, such that α ∈ [0, 1) is the type I error probability.

Segmentation. To adapt randomized smoothing to the segmentation case, Fischer et al. (2021)
propose a mathematical formulation for the problem and introduce the scalable SEGCERTIFY algo-
rithm to certify any segmentation model f : R3×N 7→ YN , such that N is the number of components
(i.e., pixels), and Y is the classes set. The direct application of randomized smoothing is done by
applying the certification component-wise on the image. This is problematic since it gets affected
dramatically by a single bad component by reporting a small radius or abstaining from certifying
all components. SEGCERTIFY circumvents the bad components issue by side-stepping them by
introducing a strict smooth segmentation model, that abstains from a component if the top class
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probability is lower than a threshold τ ∈ [0, 1). The smooth model gτ : R3×N 7→ ŶN is defined as:

gτi (x) =

{
cA,i if IPϵ∽N (0,σ)(fi(x+ ϵ)) > τ,

⊘ otherwise
(2)

where cA,i = argmaxc∈Y IPϵ∽N (0,σ)(f(x + ϵ) = c) and Ŷ = Y ∪ {⊘} is the set of class labels
combined with the abstain label. For all components where gτi (x) commits to a class (does not
abstain), the following theoretical guarantee holds:
Theorem 1 (from (Fischer et al., 2021)). Let Ix = {i | gτi ̸= ⊘, i ∈ 1, . . . , N} be the set of certified
components indices in x. Then, for a perturbation δ ∈ RN×3 with ||δ||2 < R := σΦ−1(τ), for all
i ∈ Ix: gτi (x+ δ) = gτi (x).

That is, if the smoothed model gτ commits to a class, then it is certified with a confidence of 1− α
to not change its output if the input perturbations are l2-bounded by the radius R.

To estimate gτ , Fischer et al. (2021) employ a Monte-Carlo sampling technique in SEGCERTIFY to
draw n samples from f(x + ϵ) where ϵ ∽ N (0, σ), while keeping track of the class frequencies
per pixel. With these frequencies, p-values are computed for hypothesis testing that either results in
certification or abstain. Since there are N tests performed at once, a multiple hypothesis scheme is
used to bound the probability of type I error (FWER: family-wise error rate) to α.

4 ADAPTIVE HIERARCHICAL CERTIFICATION

Enforcing to only certify components with a top-class probability > τ as previously described is a
conservative requirement. While it mitigates the bad components effect on the certification radius
by abstaining from them, those components are not necessarily “bad” in principle. Bad components
have fluctuating classes due to the noise during sampling, which causes their null hypothesis to be
accepted, and hence, are assigned ⊘. While this is a sign of the lack of the model’s confidence in a
single top class, it often means that the fluctuating classes are semantically related. For example, if
sampled classes fluctuate between rider and person, this is semantically meaningful and can be certi-
fied under a grouping label human. This motivates the intuition behind our hierarchical certification
approach, which can relax the sampling process to account for the existence of a hierarchy.

Challenges: To construct a certifier that adaptively groups the fluctuating components’ outputs,
there are three challenges to solve: (i) Finding fluctuating components: The question is: how do
we find fluctuating or unstable components? Using the samples that are used in the statistical test
would violate it since the final certificate should be drawn from i.i.d samples, (ii) Adaptive sam-
pling: Assuming fluctuating components were defined, the adjustment of the sampling process to
group semantically similar labels while working with a flat base model can be tricky. The challenge
is to transform a model with flat, fine-grained labels into one whose output labels are part of a hierar-
chy while dealing with said model as a black-box, and (iii) Evaluation: Given a certifier that allows
a component to commit to coarser classes, we need a fair comparison to other classical flat-hierarchy
certification approaches (e.g., SEGCERTIFY). It is not fair to use the certified accuracy since it does
not account for the information loss when grouping classes.

We construct a generalization of the smoothed model which operates on a flat-hierarchy of a pre-
defined set of classes in Eq. 2 to formulate a hierarchical version of it. To recall in the definition, a
smooth model gτ certifies a component if it commits to a top class whose probability is > τ , other-
wise it abstains. The construction of gτ deals with the model f as a black-box, that is, by plugging
in any different version of f , the same guarantees in Theorem 1 hold. We show the mathematical
formulation of how we construct a hierarchical version of the smoothed model, and discuss how we
overcome the challenges associated with it in this section.

4.1 HIERARCHICAL CERTIFICATION: FORMULATION

To define a hierarchical version of the smoothed model, we first replace the flat-hierarchy set of
classes Y with a pre-defined class hierarchy graph H = (V, E), where the vertex set V contains
semantic classes and the edge set E contains the relation on the vertices. Second, we define a
hierarchical version of f , namely fH : RN×3 7→ VN , that maps the image components (pixels)
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to the vertices V . Third, we define a hierarchical smoothed model cτ,H : RN×3 7→ V̂N , such that
V̂ = V ∪ {⊘}:

cτ,Hi (x) =

{
vA,i if IPϵ∽N (0,σ)(f

H
i (x+ ϵ)) > τ

⊘, otherwise
(3)

where vA,i = argmaxv∈V IPϵ∽N (0,σ)(f
H
i (x + ϵ) = v). This certifier cτ,H has three main novel

components: the hierarchy graph H (Section 4.2), the hierarchical function fH (Section 4.3) and
the certification algorithm to compute cτ,H (Section 4.4).

4.2 THE CLASS HIERARCHY GRAPH

We design the class hierarchy H used by cτ,H to capture the semantic relationship amongst the
classes in Y , as illustrated in Figure 2. H is a pair (V, E) representing a DAG, where V is the set of
vertices, and E is the set of edges representing the IS-A relationship among edges. We do not allow
more than one parent for each vertex. An edge e = (u, v) ∈ E is defined as a pair of vertices u and
v, which entails that u is a parent of v. The root vertex of the DAG denotes the most general class,
everything, which we do not use. The hierarchy is divided into multiple levels H0, . . . ,H3, the more
fine-grained the classes are, the lower the level. A hierarchy level is a set Hl of the vertices falling
within it. Leaf vertices Y are not parents of any other vertices but themselves. Essentially, Y = H0.

Figure 2: Illustration of a semantic hierarchy graph on Cityscapes classes.

4.3 FLUCTUATING COMPONENTS AND ADAPTIVE SAMPLING

In this part, we discuss how to solve two of the challenges concerning constructing an adaptive
hierarchical certifier: defining fluctuating components without using the samples in the statistical
test, and the adjustment of the sampling process to be adaptive.

We define the fluctuating components by an independent set of samples from those used in the
hypothesis test. We first draw initial n0 posterior samples per component from the segmentation
head of f , defined as fseg : RN×3 7→ [0, 1]N×|Y|. We then look at the top two classes’ mean
posterior difference. The smaller the difference, the coarser the hierarchy level the component is
assigned to. These steps are outlined in Algorithm 1 describing GETCOMPONENTLEVELS, which
finds the hierarchy level index for every component.

We invoke SAMPLEPOSTERIORS to draw initial n0 samples from fseg(x + ϵ), ϵ ∽ N (0, σ). This
method retrieves n0 posteriors per component: Ps01, . . . , Ps0N , such that Ps0i is a set of n0 posterior
vectors ∈ [0, 1]|Y| for the i-th component. Then, for every component i, we get the mean of its
n0 posteriors P 0

i , and calculate the posterior difference ∆Pi between the top two classes, indexed
by ĉAi and ĉBi . We use thresholds to determine its hierarchy level index l by invoking a threshold
function Tthresh. Given a hierarchy with L levels, the threshold function Tthresh is defined as:

Tthresh(∆Pi) = argmin
l∈{0,...,L−1}

tl, s.t. tl < ∆Pi (4)

with tl ∈ [0, 1]. Tthresh returns the index of the most fine-grained hierarchy level the component can
be assigned to based on the pre-set thresholds t0 > t1 > . . . > tL−1.
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Algorithm 1 GETCOMPONENTLEVELS: algorithm to map components to hierarchy levels

function GETCOMPONENTLEVELS(f , x, n0, σ)
Ps01, . . . , Ps0N ← SAMPLEPOSTERIORS(f , x, n0, σ)
for i← 1, . . . , N do

P 0
i ← mean Ps0i

ĉAi , ĉBi ← top two class indices P 0
i

∆Pi ← P 0
i [ĉAi ]− P 0

i [ĉBi ]
li ← Tthresh(∆Pi)

return (l1, . . . , lN ), (ĉA1
, . . . , ĉAN

)

Now that we know which level index every component is mapped to, we can define fH , which
takes an image x and does a pixel-wise mapping to vertices v̂ within every component’s assigned
hierarchy level Hli . Mathematically, we define the predicted label v̂i component i as:

fH
i (x) = K(fi(x), li) = v̂i ⇐⇒ ∃v̂i,u1,...,up,ŷi

({(v̂i, u1), . . . , (up, ŷi)} ⊆ E) ∧ (v̂i ∈ Hli) (5)

such that there is a path from the parent vertex v̂i that belongs to the hierarchy level Hli to the
predicted leaf ŷi = fi(x). For example, K(bus, 0) = bus,K(bus, 1) = vehicle and K(bus, 2) =

dynamic obstacle. Constructing a smoothed version of fH , namely cτ,Hi , is now equivalent to the
hierarchical certifier we formulated earlier in Eq. 3.

Evaluating cτ,H requires a sampling scheme over fH to get the top vertex frequencies
cnts1, . . . , cntsN as outlined in Algorithm 2. The sampling of fH(x+ ϵ) such that ϵ ∽ N (0, σ) is
a form of adaptive sampling over f . For the ith component with level li, fH is invoked on x + ϵ,
which in its definition invokes f(x+ ϵ) to output a flat segmentation label map ŷ, whose component
ŷi is mapped to its parent vertex v̂i in Hli using the function K as in Eq. 5.

Algorithm 2 HSAMPLE: algorithm to adaptively sample

function HSAMPLE(f , K, (l1, . . . , lN ), x, n, σ)
cnts1, . . . , cntsN ← initialize each to a zero vector of size |V|
draw random noise ϵ ∽ N (0, σ)
for j ← 1, . . . , n do

ŷ = f(x+ ϵ)
for i← 1, . . . , N do

v̂i ← K(ŷ[i], l[i])
cntsi[v̂i] += 1

return cnts1, . . . , cntsN

mathematically
equivalent
to calling
≡ fH(x + ϵ)

4.4 OUR ALGORITHM: ADAPTIVECERTIFY

Putting it all together, we now introduce ADAPTIVECERTIFY 3, which overcomes the challenges of
defining the fluctuating components and employing an adaptive sampling scheme to certify an input
segmentation model f given a hierarchy H . Our certification algorithm approximates the smoothed
model cτ,H following a similar approach by Fischer et al. (2021).

Algorithm 3 ADAPTIVECERTIFY: algorithm to hierarchically certify and predict

function ADAPTIVECERTIFY(f , K, σ, x, n, n0, τ , α)
(l1, . . . , lN ), (ĉA1 , . . . , ĉAN

)← GETCOMPONENTLEVELS(f , x, n0, σ)
v̂1, . . . , v̂N ← Use K and li to get parent vertices of ĉA1 , . . . , ĉAN

cnts1, . . . , cntsN ← HSAMPLE(f , K, (l1, . . . , lN ), x, n, σ)
pv1, . . . , pvN ←BINPVALUE((v̂1, . . . , v̂N ), (cnts1, . . . , cntsN ), τ )
v̂1, . . . , v̂N ← HYPOTHESESTESTING(α, ⊘, (pv1,. . . ,pvN ), (v̂1, . . . , v̂N ))
R← σΦ−1(τ)
return v̂1, . . . , v̂N , R
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On a high level, ADAPTIVECERTIFY consists of three parts: (i) mapping components to hierar-
chy level indices by invoking GETCOMPONENTLEVELS, (ii) adaptively sampling to estimate the
smoothed model cτ,H by invoking HSAMPLE, and (iii) employing multiple hypothesis testing via
HYPOTHESESTESTING to either certify a component or assign⊘ to it. To avoid invalidating our hy-
potheses test, we use the initial set of n0 independent samples drawn in GETCOMPONENTLEVELS
to both decide on the assigned component levels indices l1, . . . , lN , as well as the top class indices
ĉA1 , . . . , ĉAN

. Since those classes are inY since they come from the flat model f , we transform them
using the mapping function K the levels to get their corresponding parent vertices in the hierarchy:
v̂1, . . . , v̂N . These vertices are used to decide on the top vertex class, while the counts drawn from
the adaptive sampling function HSAMPLE are used in the hypothesis testing. With these counts, we
perform a one-sided binomial test on every component to retrieve its p-value, assuming that the null
hypothesis is that the top vertex class probability is < τ . Then, we apply multiple hypothesis testing
to reject (certify) or accept (abstain by overwriting v̂i with ⊘) from components while maintaining
an overall type I error probability of α.

We now show the soundness of ADAPTIVECERTIFY using Theorem 1. That is, if ADAPTIVECER-
TIFY returns a class v̂i ̸= ⊘, then with probability 1− α, the vertex class is certified within a radius
of R := σΦ−1(τ), same as in Fischer et al. (2021).

Proposition 1 (Similar to (Fischer et al., 2021)). Let v̂1, . . . , v̂N be the output of ADAPTIVECER-
TIFY given an input image x and Îx := {⊘ | v̂i ̸= ⊘} be the set of non-abstain components indices
in x. Then with probability at least 1− α, Îx ⊆ Ix such that Ix denotes the theoritical non-abstain
indices previously defined in Theorem 1 by replacing gτ with our smoothed model cτ,H . Then,
∀i ∈ Îx, v̂i = cτ,Hi (x) = cτ,Hi (x+ δ) for an l2 bounded noise ||δ||2 ≤ R.

Proof. With probability α, a type I error would result in i ∈ Îx \ Ix. However, since α is bounded
by HYPOTHESESTESTING, then with probability at least 1− α, Îx ⊆ Ix.

4.5 PROPERTIES OF ADAPTIVECERTIFY

The hierarchical nature of ADAPTIVECERTIFY means that instead of abstaining for unstable com-
ponents, it relaxes the certificate to a coarser hierarchy level. While not always successful, this
increases the chances for certification to succeed on a higher level. The abstaining can still occur on
any hierarchy level, and it has two reasons: the top vertex probability is ≤ τ , and by definition cτ,H

would abstain, or it is a Type II error in ADAPTIVECERTIFY.

ADAPTIVECERTIFY guarantees that the abstain rate is always less than or equal to a non-adaptive
flat-hierarchy version (e.g., SEGCERTIFY). If our algorithm only uses level H0 to all components,
the abstain rate will be equal to a non-adaptive version. So, since some components are assigned to
a coarser level, their p-values can only decrease, which can only decrease the abstain rate.

By adapting the thresholds in Tthresh and the hierarchy definition, one can influence the hierarchy
levels assigned to the components. Strict thresholds or coarser hierarchies would allow most compo-
nents to fall within coarse levels. This is a parameterized part of our algorithm that can be adjusted
based on the application preferences, trading off the certification rate versus the certified information
gain, which we detail in App A.1.

4.6 EVALUATION PARADIGM: CERTIFIED INFORMATION GAIN (CIG)

As mentioned previously, certified accuracy does not take the loss of information into account when
traversing into coarser hierarchies, it would be trivial to maximize certified robustness by assigning
all components to the topmost level. We therefore define a new certified information gain (CIG)
metric that is proportional to the class granularity level. That is, a pixel gets maximum CIG if
certified within the most fine-grained level H0, and it decreases the higher the level is.

Formally, the certified information gain metric CIG for a component i, its certified vertex v̂i, its
ground truth flat label yi, and its hierarchy level Li is defined as:

CIG(v̂i, yi, Li) =

{
log(|Y|)− log(generality(vi)) v̂i = K(yi, Li)

0 otherwise.
(6)
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|Y| is the number of leaves (i.e., the number of the most fine-grained classes), and generality(vi)
is defined as the number of leaf vertices that are reachable by vi. Assuming certification succeeds,
CIG is maximized when v̂i is a leaf vertex since CIGi(x) = log(|Y|) − 0. We normalize CIG by
log(|Y|), which results in a score between 0 and 1 and reduces to certified accuracy for non-adaptive
algorithms that only consider H0.

5 RESULTS

We evaluate ADAPTIVECERTIFY in a series of experiments to show its performance against the
current state-of-the-art, and illustrate its hierarchical nature. We use two segmentation datasets:
Cityscapes (Cordts et al., 2016) and the Adverse Conditions Dataset with Correspondences (ACDC)
(Sakaridis et al., 2021). Cityscapes contains images (1024 × 2048 px) of scenes across different
cities. ACDC is a challenging traffic scene dataset with images across four adverse visual conditions:
snow, rain, fog, and nighttime. It uses the same 19 classes as Cityscapes (H0 in Figure 2). Our
implementation can be found in the supplementary material and will be published with the paper.

We use HrNetV2 (Sun et al., 2019; Wang et al., 2019) as the uncertified base model, trained on
Gaussian noise with σ = 0.25 by Fischer et al. (2021). The inference is invoked on images with
their original dimension without scaling. We use the hierarchy defined in Figure 2 and n0 = 10,
n = 100, τ = 0.75 throughout experiments unless stated otherwise. We use different parameters for
the threshold function Tthresh (Eq 4) for ADAPTIVECERTIFY on both datasets which we denote as
a 3-tuple (t2, t1, t0). The choice of the 3-tuple is a consequence of the 4-level hierarchy. The values
used are (0, 0, 0.25) for Cityscapes and (0, 0.05, 0.3) for ACDC, which we found via a grid search
that maximizes the certified information gain, as detailed in App. A.2.

Table 1: Certified segmentation results for 200 images from each dataset. CIG stands for per-pixel
certified information gain, and %⊘ is the abstain rate. Our method AdaptiveCertify and SegCertify
use n0 = 10, α = 0.0001, and their CIG is certified within a radius R at different noise levels σ,
thresholds τ , and number of samples n.

Cityscapes ACDC

σ R CIG %⊘ CIG %⊘
Uncertified HrNet - - 0.91 - 0.55 -

n = 100,
τ = 0.75

SEGCERTIFY
0.25 0.17 0.87 11 0.53 34
0.33 0.22 0.77 21 0.43 44
0.50 0.34 0.35 41 0.17 38

ADAPTIVECERTIFY
0.25 0.17 0.88 (↑ 0.01) 9 (↓ 2%) 0.54 (↑ 0.01) 28 (↓ 6%)

0.33 0.22 0.79 (↑ 0.02) 17 (↓ 3%) 0.45 (↑ 0.02) 35 (↓ 8%)

0.50 0.34 0.38 (↑ 0.03) 30 (↓ 11%) 0.20 (↑ 0.03) 29 (↓ 9%)

n = 500,
τ = 0.95

SEGCERTIFY
0.25 0.41 0.84 14 0.49 41
0.33 0.52 0.72 27 0.38 53
0.50 0.82 0.31 50 0.15 47

ADAPTIVECERTIFY
0.25 0.41 0.85 (↑ 0.01) 12 (↓ 2%) 0.51 (↑ 0.02) 36 (↓ 5%)

0.33 0.52 0.73 (↑ 0.01) 24 (↓ 3%) 0.40 (↑ 0.02) 46 (↓ 7%)

0.50 0.82 0.34 (↑ 0.03) 41 (↓ 10%) 0.18 (↑ 0.03) 38 (↓ 8%)

We first investigate the overall performance of ADAPTIVECERTIFY against the current state-of-the-
art SEGCERTIFY across different noise levels σ and number of samples n. We show the results
on both datasets in Table 1. On a high level, ADAPTIVECERTIFY consistently has a higher certi-
fied information gain and lower abstention rate than SEGCERTIFY. Although increasing the noise
level σ degrades the performance in both algorithms, ADAPTIVECERTIFY abstains much less than
SEGCERTIFY, while maintaining a higher certified information gain, at higher noise levels. We look
more into the effect of increasing the noise level in App. A.2.

8



Under review as a conference paper at ICLR 2024

We now take a closer look at the performance of ADAPTIVECERTIFY versus SEGCERTIFY by vary-
ing the number of samples. We show in Figure 3 that ADAPTIVECERTIFY consistently outperforms
SEGCERTIFY in terms of the certification rate and CIG.
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Figure 3: %certified (mean per-pixel certification rate) and cert. info. gain (mean per-pixel certified
information gain) versus the number of samples n on Cityscapes and ACDC.

To illustrate the hierarchical nature of ADAPTIVECERTIFY, we inspect the pixel distribution across
hierarchy levels. We show results in Figure 4. For ADAPTIVECERTIFY, most pixels are certified at
H0, and only a small percentage of pixels fall under coarser hierarchy levels. ACDC has more pixels
in coarser levels (H1 and H2) than Cityscapes (H1). This is because ACDC is a more challenging
dataset, leading to more fluctuating components, which our algorithm assigns to coarser levels in-
stead of abstaining. ADAPTIVECERITFY correctly certifies almost the same percentage of pixels in
H0 as SEGCERTIFY, and due to our relaxation, we certify an additional 3% and 6% of the pixels in
Cityscapes and ACDC at coarser levels.
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Figure 4: The performance in terms of percentage of abstain (⊘), certified wrong (certified label
doesn’t match the ground truth) and certified correct (certified label matches the ground truth) under
hierarchy levels from Figure 2. Note that SEGCERTIFY, by definition, only uses H0.

6 CONCLUSION

In this paper, we introduced adaptive hierarchical semantic segmentation. We mathematically for-
mulated the problem and proposed a method that solves three main challenges: finding bad com-
ponents, relaxing the sampling process for those components to certify them within a coarser level
of a semantic hierarchy, and evaluating the results using the certified information gain metric. We
proposed our novel method ADAPTIVECERTIFY for adaptive hierarchical certification for image se-
mantic segmentation, which solves these challenges. Instead of abstaining for unstable components,
ADAPTIVECERTIFY relaxes the certification to a coarser hierarchy level. It guarantees an abstain
rate less than or equal to non-adaptive versions while maintaining a higher CIG across different noise
levels and number of samples. The formulation of our hierarchical certification method is general
and can adopt any hierarchy, which allows for adaptation to different tasks.
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Reproducibility Statement. In this paper, we describe our novel algorithm ADAPTIVECERTIFY
on multiple levels: (1) We describe the algorithm in detail in Section 4, supported by mathematical
definitions throughout the section. (2) We discuss its implementation using high-level pseudo-code
in Algorithms 1, 2, and 3. (3) We are sharing an anonymous link to our code for ADAPTIVECERTIFY
and the experiment scripts with the reviewers, which we will publish in a formal repository for public
access once the paper is accepted. The datasets and hyper-parameters used for the experiments are
specified in the beginning of Section 5, and we provide details on how to set the thresholds of Tthresh

in App. A.2.
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A APPENDIX

A.1 HIERARCHY LEVELS CERTIFIED INFO. GAIN (CIG) VS. CERTIFICATION RATE TRADEOFF

We want to analyze the influence different hierarchy levels have on abstention rate and certified
information gain. To this end, we create non-adaptive versions of our algorithm for each hierar-
chy Hi. We denote a non-adaptive version of our algorithm that only uses a single hierarchy level
Hi as Non-adaptive-Hi. Since SEGCERTIFY is non-adaptive and restricted to H0, it is equivalent
to Non-adaptive-H0. Figures 5 and 6 show the results of these experiments for different numbers
of samples n and noise levels σ on both datasets. ADAPTIVECERTIFY consistently has a higher
certification rate and certified information gain than SEGCERTIFY. In Figure 5, both algorithms’
performance increases with increasing n since having more samples leads to more evidence to reject
the null hypothesis, and hence, certifying more components. In Figure 6, the performance decreases
by increasing σ for both algorithms. In both figures, for the none-adaptive algorithms, a coarser
level leads to a higher certification rate but lower certified information gain. This makes sense, as
relaxing the certification to coarse levels only makes the certification easier since the labels become
less granular, it comes at the cost of a decreased certified information gain since the certified vertices
labels are more general. Our algorithm finds a balance between all hierarchies: if a component is
found to be stable, it will be certified within a fine-grained level (e.g., H0), maximizing the informa-
tion. Whereas an unstable component will be certified at coarser levels instead of abstaining, which
makes it outperform all other non-adaptive setups considering the certification rate and certified
information gain trade-off.
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Figure 5: %certified (mean per-pixel certification rate) and cert. info. gain (mean per-pixel certified
information gain) versus the number of samples n (n0 = 10, n = 100, τ = 0.75) on Cityscapes and
ACDC.
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Figure 6: %certified (mean per-pixel certification rate) and cert. info. gain (mean per-pixel certified
information gain) versus the noise levels σ (n0 = 10, n = 100, τ = 0.75) on Cityscapes and ACDC.

A.2 THRESHOLD SEARCH

We use grid search over different threshold function parameters Tthresh and measure the perfor-
mance across different n in Figure 7 and noise level σ in Figure 8. We find that the best thresholds
for both datasets that give the highest mean certified information gain compared to the rest are
(0, 0, 0.25) and (0, 0.05, 0.3) on Cityscapes and ACDC, respectively.
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Figure 7: An extended version of Figure 3. The performance of SEGCERTIFY (black line) against
multiple versions of ADAPTIVECERTIFY by varying the threshold function parameters Tthresh on
both datasets. The legend is ordered in a descending order of the performance in terms of the mean
certified information gain across the number of samples n. This is a result of a grid search over 63
threshold functions, but we are plotting only some of them for clarity.
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Figure 8: An extended version of Figure 6. The performance of SEGCERTIFY (black line) against
multiple versions of ADAPTIVECERTIFY by varying the threshold function parameters Tthresh on
both datasets. The legend is ordered in a descending order of the performance in terms of the mean
certified information gain across different noise levels σ. This is a result of a grid search over 63
threshold functions, but we are plotting only some of them for clarity.

A.3 VISUAL RESULTS

We sample images from both datasets Cityscapes and ACDC to visually evaluate the performance
of ADAPTIVECERTIFY (ours) against SEGCERTIFY. In Figure 9, we show selected examples that
resemble a significant improvement from ADAPTIVECERITIFY against the baseline in terms of the
certified information gain and abstain rate. In Figures 10 and 11, we show randomly picked samples
to evaluate the average performance of our method.
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Input image Ground truth

SEGCERTIFY
CIG = 0.63,
%⊘ = 28.6

ADAPTIVECERTIFY
CIG = 0.67(↑ 0.04),
%⊘ = 20.7(↓ 7.9%)

CIG = 0.72,
%⊘ = 26.0

CIG = 0.75(↑ 0.03),
%⊘ = 18.3(↓ 7.7%)

CIG = 0.49,
%⊘ = 49.0

CIG = 0.52(↑ 0.03),
%⊘ = 38.8(↓ 10.3%)

CIG = 0.64,
%⊘ = 26.0

CIG = 0.68(↑ 0.04),
%⊘ = 17.3(↓ 8.7%)

CIG = 0.69,
%⊘ = 31.2

CIG = 0.72(↑ 0.03),
%⊘ = 22.3(↓ 8.9%)

CIG = 0.61,
%⊘ = 31.4

CIG = 0.64(↑ 0.03),
%⊘ = 23.4(↓ 8.0%)

Figure 9: Selected examples showcasing the performance of ADAPTIVECERTIFY against SEGCER-
TIFY. The certified information gain is consistently higher by at least 0.03 while the abstain rate is
lower by at least 6.8%.
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Input image Ground truth

SEGCERTIFY
CIG = 0.76,
%⊘ = 23.0

ADAPTIVECERTIFY
CIG = 0.78(↑ 0.03),
%⊘ = 16.5(↓ 6.5%)

CIG = 0.55,
%⊘ = 40.3

CIG = 0.55,
%⊘ = 38.7(↓ 1.6%)

CIG = 0.70,
%⊘ = 29.5

CIG = 0.72(↑ 0.02),
%⊘ = 22.3(↓ 7.3%)

CIG = 0.66,
%⊘ = 29.8

CIG = 0.69(↑ 0.03),
%⊘ = 21.4(↓ 8.4%)

CIG = 0.63,
%⊘ = 31.0

CIG = 0.65(↑ 0.02),
%⊘ = 26.4(↓ 4.6%)

Figure 10: Randomly picked samples.
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Input image Ground truth

SEGCERTIFY
CIG = 0.67,
%⊘ = 28.9

ADAPTIVECERTIFY
CIG = 0.68(↑ 0.01),
%⊘ = 26.5(↓ 2.4%)

CIG = 0.72,
%⊘ = 32.3

CIG = 0.72,
%⊘ = 30.6(↓ 1.8%)

CIG = 0.73,
%⊘ = 26.5

CIG = 0.74(↑ 0.01),
%⊘ = 22.9(↓ 3.6%)

CIG = 0.75,
%⊘ = 22.8

CIG = 0.77(↑ 0.02),
%⊘ = 18.1(↓ 4.7%)

CIG = 0.71,
%⊘ = 36.8

CIG = 0.72(↑ 0.01),
%⊘ = 31.8(↓ 5.0%)

Figure 11: Extension of Figure 10.
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